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Abstract

We consider the quasilinear parabolic-parabolic Keller-Segel system

{

ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

under homogeneous Neumann boundary conditions in a convex smooth bounded do-
main Ω ⊂ R

n with n ≥ 1.
It is proved that if S(u)

D(u) ≤ cuα with α < 2
n
and some constant c > 0 for all u > 1, then

the classical solutions to the above system are uniformly-in-time bounded, provided
that D(u) satisfies some technical conditions such as algebraic upper and lower growth
(resp. decay) estimates as u→ ∞. This boundedness result is optimal according to a
recent result by the second author (Math. Meth. Appl. Sci. 33 (2010), 12-24), which

says that if S(u)
D(u) ≥ cuα for u > 1 with c > 0 and some α > 2

n
, n ≥ 2, then for each

mass M > 0 there exist blow-up solutions with mass
∫

Ω
u0 =M .

In addition, this paper also proves a general boundedness result for quasilinear non-
uniformly parabolic equations by modifying the iterative technique of Moser-Alikakos
(Alikakos, Comm. PDE 4 (1979), 827-868).
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Introduction

This work is concerned with the initial-boundary value problem



















ut = ∇ · (D(u)∇u)−∇ · (S(u)∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(0.1)

for the unknown u = u(x, t), v = v(x, t), where Ω is a bounded convex domain in R
n

with smooth boundary, and n ≥ 1. The initial distributions u0 and v0 are assumed to be
nonnegative functions subject to the inclusions u0 ∈ C0(Ω̄) and v0 ∈ C1(Ω̄), respectively.

Chemotaxis, the biased movement of cells (or organisms) in response to chemical gradients,
plays an important role coordinating cell migration in many biological phenomena (cf. the
review article [HP09]). In (0.1), u denotes the cell density and v describes the concentration
of the chemical signal secreted by cells. In addition to diffusion, cells move towards higher
signal concentration, whereas the chemical signal undergoes random diffusion and decay.
An important variant of the quasilinear chemotaxis model (0.1) was initially proposed by
Painter and Hillen [PH]. Their approach assumes the presence of a so-called volume-filling
effect: The movement of cells is inhibited near points where the cells are densely packed.
Painter and Hillen [PH] derived their model via a random walk approach and they found
a functional link between the diffusivity D(u) and the chemotactic sensitivity S(u) that,
in a non-dimensionalized version, takes the form

D(u) = Q(u)− uQ′(u), S(u) = uQ(u) (0.2)

where Q(u) denotes the density-dependent probability for a cell to find space somewhere
in its neighboring location. Since this probability is basically unknown, different choices
for Q are conceivable.

If Q(u) ≡ 1 we arrive at the classical Keller-Segel model ([KSe]),



















ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v − v + u, x ∈ Ω, t > 0,

∂νu = ∂νv = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(0.3)

which has been investigated quite thoroughly during the past three decades. In view of
the biologically meaningful question whether or not cell populations spontaneously form
aggregates, most mathematical studies focused on whether solutions remain bounded or
blow up. If n = 1, then all solutions of (0.3) are global in time and bounded ([OY]); if
n = 2 and

∫

Ω u0 < 4π, then the solution will be global and bounded ([NSY]); if n ≥ 3 and,
for any δ > 0, the quantities ‖u0‖Ln/2+δ(Ω) and ‖∇v0‖Ln+δ(Ω) are small, then the solution
is global and bounded ([Wi2]). On the other hand, if n = 2 then for almost every M > 4π
there exist smooth initial data (u0, v0) with

∫

Ω u0 = M such that corresponding solution
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of (0.3) blows up either in finite or infinite time provided Ω is simply connected ([HWa]);
in the particular framework of radially symmetric solutions in a planar disk, solutions may
even blow up in finite time ([HV]); if n ≥ 3 and Ω is a ball, then for all M > 0 there exist
initial data with

∫

Ω u0 =M such that the solution will become unbounded either in finite
or infinite time ([Wi2]).

In [HP01] the authors analyze (0.1) upon the particular choicesD(u) ≡ 1 and S(u) = u(1−
u)+. This corresponds to the case of the compactly supported probability Q(u) = (1−u)+
in the volume-filling model, in particular meaning that the chemotactic movement is en-
tirely stopped when the cell density reaches the critical level u = 1. The resulting system
admits global bounded solutions only ([HP01]). Furthermore, Wrzosek ([Wr2], [Wr1])
studied the dynamical properties such as instability of constant steady states or the exis-
tence of attractors.

The focus of this paper is to provide some further step towards understanding in more de-
tail the interaction of the competing nonlinear mechanisms of diffusion and cross-diffusion
in (0.1), allowing for rather general choices of D(u) and S(u). Here we concentrate on
the particular phenomenon of blow-up, and observe that in this respect, previous results
indicate that the asymptotic behavior of the ratio S(u)

D(u) for large values of u seems to be

decisive: Namely, in [Wi1] it has been shown that

if S(u)
D(u) ≥ cu

2
n
+ε for all u > 1 and some c > 0 and ε > 0,

then there exist smooth solutions of (0.1) which blow up
(0.4)

either in finite or infinite time, provided that Ω is a ball. However, to the best of our
knowledge the existing literature leaves open the question in how far this growth condition
is critical in respect of blow-up.
It is the purpose of the present work to close this gap, and correspondigly we shall suppose
throughout that D and S, besides

D ∈ C2([0,∞)) and S ∈ C2([0,∞)) with S(0) = 0, (0.5)

are such that their ratio satisfies the growth condition

S(u)

D(u)
≤ K(u+ 1)α for all u ≥ 0 (0.6)

with some K > 0 and α > 0. Moreover, our approach will require the further technical
assumptions that

D(u) ≥ K0(u+ 1)m−1 for all u ≥ 0 (0.7)

and
D(u) ≤ K1(u+ 1)M−1 for all u ≥ 0 (0.8)

are valid with some constants m ∈ R,M ∈ R,K0 > 0 and K1 > 0.

Under these hypotheses, our main result reads as follows.
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Theorem 0.1 Suppose that Ω ⊂ R
n, n ≥ 1, is a bounded convex domain with smooth

boundary. Assume that D and S satisfy (0.5), (0.6), (0.7) and (0.8) with some m ∈
R,M ∈ R and positive constants K,K0,K1 and

α <
2

n
.

Then for any nonnegative u0 ∈ C0(Ω̄) and v0 ∈ C1(Ω̄), there exists a couple (u, v) of
nonnegative bounded functions belonging to C0(Ω̄× [0,∞))∩C2,1(Ω̄× (0,∞)) which solve
(0.1) classically.

In conjunction with (0.4), this provides an essentially complete picture on the dichotomy
boundedness vs. blow-up in (0.1), provided that the (self-)diffusivity D(u) has an asymp-
totically algebraic behavior. It is an interesting open question that unfortunately has to
be left open here whether the above boundedness statement is also valid when D(u) is
allowed to grow or decay exponentially, for instance.

Let us mention some further previous contributions in this direction. In the particular
case D(u) ≡ 1, the criticality of S(u)

D(u) ≃ u
2
n was already revealed in [HWi], where global

boundedness of solutions was shown when S(u) ≤ cu
2
n
−ε for all u > 1 and some c > 0

and ε > 0, and where some radial blow-up solutions were constructed if S(u) ≥ cu
2
n
+ε for

u > 1 with c > 0 and ε > 0, and if some further technical restrictions hold.
As to the special case when S(u) = u, Kowalczyk and Szymańska ([KSz]) proved that

solutions remain bounded under the condition that D(u) ≥ cu2−
4
n
+ε for all u > 0 with

some c > 0 and ε > 0. In view of the above results, this is optimal for non-degenerate
diffusion (with D > 0 on [0,∞)) if and only if n = 2. For the same choice of S(u) and
D > 0 on [0,∞), Senba and Suzuki ([SeSu]) reached the critical exponent by showing

boundedness under the hypothesis that D(u) ≥ cu
n−2
n

+ε be valid for u > 1 with some
c > 0 and ε > 0. For more general D(u) and S(u) satisfying some technical assumptions,

Cieślak ([C2]) asserted boundedness of solutions when either n = 2 and S(u)
D(u) ≤ cu

1
2
−ε, or

n = 3 and S(u)
D(u) ≤ cu−ε for all u > 1 and some c > 0 and ε > 0 (cf. also [C1] for related

results).

When the diffusion of the chemical signal is considered to occur much faster than that of
cells, by the approach of quasi-steady-state approximation (cf. [JL] or [P]), the parabolic-
parabolic chemotaxis model (0.1) can be reduced to simplified parabolic-elliptic mod-
els where the second PDE in (0.1) is replaced with either 0 = ∆v − v + u, or with
0 = ∆v−M +u, where M :=

∫

Ω u0 denotes the total mass of cells. For the former model,
if n = 2, S(u) = u and D(u) ≥ c(1+u)1+ε with c > 0 and ε > 0, boundedness of solutions
was proved in [K], and the same conclusion was found in [CM-R] for more general D(u)

and S(u) with the property that for some c > 0 and ε > 0 we have S(u)
D(u) ≤ cu−ε when

n = 2, and S(u)
D(u) ≤ cu−1−ε when n = 3.

As to the latter simplification, the knowledge appears to be rather complete and consistent
with the results for the parabolic-parabolic case if D(u) ≃ u−γ and S(u) ≃ uα for large
u with some γ ≥ 0 and α ∈ R: Solutions remain bounded if α + γ < 2

n
, whereas blow-up
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may occur if α + γ > 2
n
([DW], cf. also [CW] for a precedent addresing the special case

S(u) = u). Moreover, if S(u) = u, then even the critical case D(u) ≃ u
n−2
n can be ana-

lyzed, and Cieślak and Laurençot have shown it to belong to the blow-up regime ([CL]).
Refined conditions ensuring boundedness in two-dimensional parabolic-elliptic Keller-Segel
models can be found in [CC]. For results in the whole space Rn with D(u) and S(u) being
exact powers of u (thus involving porous medium-type or fast diffusion), we refer to [S]
and the references therein.

The proof of our main results will be based on a priori estimates in spatial Lebesgue
spaces for u and ∇v. Due to the careful adjustment of some parameters (cf. Section 2),
our technique of deriving integral bounds (see Section 3) does not need any iterative argu-
ment to establish bounds for u(·, t) in Lp(Ω) for any finite p, as required in some previous
approaches (cf. [HWi], for instance). Only in a final step an iteration is needed in order
to turn this into a bound in L∞(Ω) by means of a Moser-Alikakos-type procedure (cf. the
appendix).

1 Local existence

The following statement concerning local existence of classical solution can be proved by
well-established methods involving standard parabolic regularity theory and an appropri-
ate fixed point framework (for details see [HWi], [Wr1] or also [C1], for instance).

Lemma 1.1 Let D and S satisfy (0.5), (0.7) and (0.8) with some m ∈ R,M ∈ R,K0 > 0
and K1 > 0, and assume that u0 ∈ C0(Ω̄) and v0 ∈ C1(Ω̄) are nonnegative. Then
there exist Tmax ∈ (0,∞] and a pair (u, v) of functions from C0(Ω̄× [0, Tmax))∩C

2,1(Ω̄×
(0, Tmax)) solving (0.1) classically in Ω×(0, Tmax). These functions satisfy the inequalities

u ≥ 0 and v ≥ 0 in Ω× (0, Tmax),

and moreover

either Tmax = ∞, or lim sup
tրTmax

(

‖u(t)‖L∞(Ω) + ‖v(t)‖L∞(Ω)

)

= ∞. (1.1)

The following properties of solutions of (0.1) are well-known.

Lemma 1.2 i) The first component u of the solution of (0.1) satisfies the mass conser-
vation property

‖u(t)‖L1(Ω) = ‖u0‖L1(Ω) for all t ∈ (0, Tmax). (1.2)

ii) For all s ∈ [1, n
n−1) there exists c > 0 such that

‖v(t)‖W 1,s(Ω) ≤ c for all t ∈ (0, Tmax) (1.3)

holds.
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Proof. Integrating with respect to x ∈ Ω, we see that d
dt

∫

Ω u ≡ 0, and that d
dt

∫

Ω v =
−
∫

Ω v +
∫

Ω u for t ∈ (0, Tmax). This yields (1.2) and moreover shows that v is bounded
in L∞((0, Tmax);L

1(Ω)). Now this implies (1.3) upon a standard regularity argument
involving the variation-of-constants formula for v and Lp − Lq estimates for the heat
semigroup (see [HWi, Lemma 4.1], for instance). �

2 Adjusting some parameters

We now make sure that when the parameter α in (0.6) indeed satisfies α < 2
n
, we can

choose certain parameters, to be used in Lemma 3.3 below, appropriately.

Lemma 2.1 Let n ≥ 2,m ∈ R, α ∈ (0, 2
n
), p̄ ≥ 1 and q̄ ≥ 2. Then there exist numbers

p ≥ p̄, q ≥ q̄, s ∈ [1, n
n−1), θ > 1 and µ > 1 such that

p > max
{

4−m,
n(1−m)

2

}

, (2.1)

n− 2

n
·
m+ p+ 2α− 3

m+ p− 1
<

1

θ
, (2.2)

n− 2

n
·

2

m+ p− 1
<

1

µ
, (2.3)

1

θ
< 1−

n− 2

n
·
1

q
and (2.4)

1

µ
<

2

n
+
n− 2

n
·
1

q
, (2.5)

and such that moreover

m+ p+ 2α− 3− 1
θ

1− n
2 + n(m+p−1)

2

+
2
s
− 1 + 1

θ

1− n
2 + nq

s

<
2

n
(2.6)

as well as
2− 1

µ

1− n
2 + n(m+p−1)

2

+

2(q−1)
s

− 1 + 1
µ

1− n
2 + nq

s

<
2

n
(2.7)

hold.

Proof. Let us first fix numbers θ > 1 and µ > 1 such that

(n− 2)θ < n (2.8)

and
µ >

n

2
, (2.9)

and let

q0(p) :=
n(m+ p− 1)

2(n− 1)
for p ≥ 1.
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Then we can easily find some large p ≥ p̄ fulfilling

q0(p) > q̄, (2.10)

and such that (2.1), (2.2) and (2.3) hold as well as

1

θ
< 1−

n− 2

n
·

1

q0(p)
(2.11)

and
1

µ
<

2

n
+
n− 2

n
·

1

q0(p)
. (2.12)

Here we note that (2.8) asserts that (2.2) is true for all sufficiently large p, whereas the
fact that q0(p) → +∞ as p→ ∞ along with the inequality θ > 1 and (2.9) guarantees the
validity of (2.11) and (2.12) for appropriately large p.
We next let

f(q, s) :=
m+ p+ 2α− 3− 1

θ

1− n
2 + n(m+p−1)

2

+
2
s
− 1 + 1

θ

1− n
2 + nq

s

for q ≥ 2 and s ∈ [1, n
n−1 ], (2.13)

and

g(q, s) :=
2− 1

µ

1− n
2 + n(m+p−1)

2

+

2(q−1)
s

− 1 + 1
µ

1− n
2 + nq

s

for q ≥ 2 and s ∈ [1, n
n−1 ]. (2.14)

Then

g
(

q0(p),
n

n− 1

)

=
2− 1

µ
+ 2(n−1)

n
·
(

n(m+p−1)
2(n−1) − 1

)

− 1 + 1
µ

1− n
2 + n(m+p−1)

2

=
1 + (m+ p− 1)− 2(n−1)

n

1− n
2 + n(m+p−1)

2

=
2
n
− 1 + (m+ p− 1)

1− n
2 + n(m+p−1)

2

=
2

n
.

Since

∂g

∂q

(

q,
n

n− 1
) =

2(n−1)
n

·
[

1− n
2 + (n− 1)q

]

−
[

2(n−1)
n

· (q − 1)− 1 + 1
µ

]

· (n− 1)
[

1− n
2 + (n− 1)q

]2

= (n− 1) ·

2
n
− 1 + 2(n−1)q

n
− 2(n−1)q

n
+ 2(n−1)

n
+ 1− 1

µ
[

1− n
2 + (n− 1)q

]2

= (n− 1) ·
2− 1

µ
[

1− n
2 + (n− 1)q

]2

> 0 for all q > 2,
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this implies

g
(

q,
n

n− 1

)

<
2

n
for all q ∈ (2, q0(p)). (2.15)

Moreover, our assumption α < 2
n
entails that

f
(

q0(p),
n

n− 1

)

=

(

m+ p+ 2α− 3− 1
θ

)

+
(

1− 2
n
+ 1

θ

)

1− n
2 + n(m+p−1)

2

=
m+ p+ 2α− 2− 2

n

1− n
2 + n(m+p−1)

2

<
m+ p− 2 + 2

n

1− n
2 + n(m+p−1)

2

=
2

n
·
n(m+p−1)

2 + 1− n
2

1− n
2 + n(m+p−1)

2

=
2

n
.

Therefore by a continuity argument using (2.10) we can now fix q > q̄ fulfilling

q < q0(p) (2.16)

and

f
(

q,
n

n− 1

)

<
2

n
(2.17)

and such that furthermore (2.4) and (2.5) hold, where the latter two can be achieved on
choosing q close enough to q0(p) according to (2.11) and (2.12). We observe that by (2.16)
and (2.15) we also have

g
(

q,
n

n− 1

)

<
2

n
,

so that, again by continuity, we can finally find s ∈ [1, n
n−1) close to n

n−1 such that with q
as fixed above we still have

f(q, s) <
2

n
and g(q, s) <

2

n
.

In view of the definitions (2.13) and (2.14) of f and g, these two inequalities are equivalent
to (2.6) and (2.7). �

3 Proof of the main results

The following preparation is a direct consequence of Young’s inequality.
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Lemma 3.1 Let β > 0 and γ > 0 be such that β + γ < 1. Then for all ε > 0 there exists
c > 0 such that

aβbγ ≤ ε(a+ b) + c for all a ≥ 0 and b ≥ 0.

Our approach strongly relies on the following favorable property of functions satisfying
a homogeneous Neumann boundary condition on convex domains. Its proof is implicitly
contained in [DalPGG, Appendix], but we include an elementary proof here for complete-
ness.

Lemma 3.2 Assume that Ω is convex, and that w ∈ C2(Ω̄) satisfies ∂w
∂ν

= 0 on ∂Ω. Then

∂|∇w|2

∂ν
≤ 0 on ∂Ω.

Proof. Let us fix x0 ∈ ∂Ω. Since ∂Ω belongs to the class C2 and hence can be
represented locally as the graph of a C2 function, upon a translation and a rotation we
may assume that x0 = 0, and that there exist neighborhoods U ⊂ R

n and V ⊂ R
n−1 of

the origins in R
n and R

n−1, respectively, such that ∂Ω ∩ U = {(x′, ψ(x′)) | x′ ∈ V } and
Ω ∩ U = {(x′, xn) | xn < ψ(x′), x′ ∈ V } for some ψ ∈ C2(V ). Here since Ω is convex, we
may moreover assume that

ψ(x′) ≤ 0 = ψ(0) for all x′ ∈ V (3.1)

and hence
∇x′ψ(0) = 0. (3.2)

Now if x ∈ ∂Ω ∩ U then ν(x) is parallel to (−∇x′ψ(x′), 1), and therefore our hypothesis
∂w
∂ν

= 0 on ∂Ω entails that

−
n−1
∑

i=1

ψxiwxi + wxn = 0 for all x′ ∈ V, (3.3)

where for convenience we drop the arguments x′ of ψ and (x′, ψ(x′)) of w. Differentiating
(3.3) with respect to xj , j ∈ {1, ..., n− 1}, yields

wxjxn =
n−1
∑

i=1

ψxixjwxi +
n−1
∑

i=1

ψxiwxixj for all x′ ∈ V

and thus, by (3.2),

wxjxn =
n−1
∑

i=1

ψxixjwxi at x = 0 for j ∈ {1, ..., n− 1}.

At x = 0 we consequently obtain, using that wxn = 0 at this point by (3.3) and (3.2),

∂|∇w|2

∂ν
=

∂|∇w|2

∂xn
= 2

n
∑

j=1

wxjwxjxn = 2

n−1
∑

j=1

wxjwxjxn = 2

n−1
∑

j=1

wxj ·

n−1
∑

i=1

ψxixjwxi

= 2∇x′w · (D2
x′ψ · ∇x′w).
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Since the Hessian D2
x′ψ is negative semidefinite at x = 0 according to (3.1), this shows

that ∂|∇w|2

∂ν
≤ 0 at this point and thereby completes the proof. �

We proceed to establish the main step towards our boundedness proof.

Lemma 3.3 Suppose that Ω is convex, and that (0.6), (0.7) and (0.8) hold with some
K > 0, K0 > 0,K1 > 0,m ∈ R,M ∈ R and some positive

α <
2

n
.

Then for all p ∈ [1,∞) and each q ∈ [1,∞) there exists c > 0 such that

‖u(t)‖Lp(Ω) ≤ c for all t ∈ (0, Tmax) (3.4)

and
‖∇v(t)‖L2q(Ω) ≤ c for all t ∈ (0, Tmax) (3.5)

Proof. We only consider the case n ≥ 2 and remark that upon straightforward modi-
fications, the proof in the one-dimensional case can be can be carried out along the same
lines.
It is evidently sufficient to prove that for any p0 > 1 and q0 > 2 we can find some p > p0
and q > q0 such that (3.5) and

‖u(t)‖Lp+m−M (Ω) ≤ c for all t ∈ (0, Tmax) (3.6)

hold with some c > 0, where m and M are taken from (0.7) and (0.8), respectively. To
achieve this, given such p0 and q0 let us set p̄ := p0 +M −m and q̄ := q0 and then fix
p > p̄, q > q̄, s ∈ [1, n

n−1), θ > 1 and µ > 1 as provided by Lemma 2.1. Then by (0.7),

φ(r) :=

∫ r

0

∫ ρ

0

(σ + 1)m+p−3

D(σ)
dσdρ for r ≥ 0. (3.7)

is finite and positive for all r ≥ 0 with

φ(r) ≤
1

K0
·

∫ r

0

∫ ρ

0
(σ + 1)p−2dσdρ ≤

1

p(p− 1)K0
· (r + 1)p for all r ≥ 0, (3.8)

and furthermore due to (0.8) we have

φ(r) ≥ c0(r + 1)p+m−M for all r ≥ 0 (3.9)

with some c0 > 0. Since moreover φ is smooth on (0,∞) and u is positive in Ω× (0, Tmax)
by the strong maximum principle, we may use φ′(u) as a test function for the first equation
in (0.1). Integrating by parts we thereby see that

d

dt

∫

Ω
φ(u) =

∫

Ω
φ′(u)∇ · (D(u)∇u)−

∫

Ω
φ′(u)∇ · (S(u)∇v)

= −

∫

Ω
φ′′(u)D(u)|∇u|2 +

∫

Ω
φ′′(u)S(u)∇u · ∇v

= −

∫

Ω
(u+ 1)m+p−3|∇u|2 +

∫

Ω
(u+ 1)m+p−3 S(u)

D(u)
∇u · ∇v (3.10)
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for all t ∈ (0, Tmax), where thanks to Young’s inequality and (0.6),

∫

Ω
(u+ 1)m+p−3 S(u)

D(u)
∇u · ∇v ≤

1

2

∫

Ω
(u+ 1)m+p−3|∇u|2 +

K2

2

∫

Ω
(u+ 1)m+p+2α−3|∇v|2.

(3.11)
We next differentiate the second equation in (0.1) to obtain

(|∇v|2)t = 2∇v · ∇∆v − 2|∇v|2 + 2∇u · ∇v

and hence, recalling the identity ∆|∇v|2 = 2∇v · ∇∆v + 2|D2v|2,

(|∇v|2)t = ∆|∇v|2 − 2|D2v|2 − 2|∇v|2 + 2∇u · ∇v

for all x ∈ Ω and t ∈ (0, Tmax). Testing this against |∇v|2q−2 yields

1

q

d

dt

∫

Ω
|∇v|2q + (q − 1)

∫

Ω
|∇v|2q−4

∣

∣

∣
∇|∇v|2

∣

∣

∣

2
+ 2

∫

Ω
|∇v|2q−2|D2v|2 + 2

∫

Ω
|∇v|2q

≤ 2

∫

Ω
|∇v|2q−2∇u · ∇v for all t ∈ (0, Tmax), (3.12)

where we have used that ∂|∇v|2

∂ν
≤ 0 on ∂Ω by Lemma 3.2. On the right of (3.12) we

integrate by parts and use Young’s inequality to find

2

∫

Ω
|∇v|2q−2∇u · ∇v = −2(q − 1)

∫

Ω
u|∇v|2q−4∇v · ∇|∇v|2 − 2

∫

Ω
u|∇v|2q−2∆v

≤
q − 1

2

∫

Ω
|∇v|2q−4

∣

∣

∣
∇|∇v|2

∣

∣

∣

2
+ 2(q − 1)

∫

Ω
u2|∇v|2q−2

+
2

n

∫

Ω
|∇v|2q−2|∆v|2 +

n

2

∫

Ω
u2|∇v|2q−2, (3.13)

where

2

n

∫

Ω
|∇v|2q−2|∆v|2 ≤ 2

∫

Ω
|∇v|2q−2|D2v|2

in view of the pointwise inequality |∆v|2 ≤ n|D2v|2. We thus infer from (3.10)-(3.13) that
there exists c1 > 0 such that

d

dt

{
∫

Ω
φ(u) +

1

q

∫

Ω
|∇v|2q

}

+
2

(m+ p− 1)2

∫

Ω
|∇(u+ 1)

m+p−1
2 |2 +

2(q − 1)

q2

∫

Ω

∣

∣

∣
∇|∇v|q

∣

∣

∣

2

≤ c1

∫

Ω
(u+ 1)m+p+2α−3|∇v|2 + c1

∫

Ω
(u+ 1)2|∇v|2q−2 (3.14)

for all t ∈ (0, Tmax). Here we use the Hölder inequality to estimate the integrals on the
right according to

∫

Ω
(u+ 1)m+p+2α−3|∇v|2 ≤

(

∫

Ω
(u+ 1)(m+p+2α−3)θ

)
1
θ
·
(

∫

Ω
|∇v|2θ

′

)
1
θ′

(3.15)

11



and
∫

Ω
(u+ 1)2|∇v|2q−2 ≤

(

∫

Ω
(u+ 1)2µ

)
1
µ
·
(

∫

Ω
|∇v|2(q−1)µ′

)
1
µ′

(3.16)

with θ′ := θ
θ−1 and µ′ := µ

µ−1 . Now since (2.1) in conjunction with the positivity of α and
the fact that θ > 1 implies that

2(m+ p+ 2α− 3)θ

m+ p− 1
>

2

m+ p− 1
,

and since (2.2) asserts that

2(m+ p+ 2α− 3)θ

m+ p− 1
<

2n

n− 2
,

we may invoke the Gagliardo-Nirenberg inequality to estimate

(

∫

Ω
(u+ 1)(m+p+2α−3)θ

)
1
θ

= ‖(u+ 1)
m+p−1

2 ‖
2(m+p+2α−3)

m+p−1

L
2(m+p+2α−3)θ

m+p−1 (Ω)

≤ c2‖∇(u+ 1)
m+p−1

2 ‖
2(m+p+2α−3)

m+p−1
·a

L2(Ω)
· ‖(u+ 1)

m+p−1
2 ‖

2(m+p+2α−3)
m+p−1

·(1−a)

L
2

m+p−1 (Ω)

+c2‖(u+ 1)
m+p−1

2 ‖
2(m+p+2α−3)

m+p−1

L
2

m+p−1 (Ω)
for all t ∈ (0, Tmax), (3.17)

with some c2 > 0 and a ∈ (0, 1) determined by

−
n(m+ p− 1)

2(m+ p+ 2α− 3)θ
=
(

1−
n

2

)

· a−
n(m+ p− 1)

2
· (1− a).

Thus,

a =

n(m+p−1)
2 · (1− 1

(m+p+2α−3)θ )

1− n
2 + n(m+p−1)

2

and hence

2(m+ p+ 2α− 3)

m+ p− 1
· a = n ·

m+ p+ 2α− 3− 1
θ

1− n
2 + n(m+p−1)

2

,

so that (3.17) yields

(

∫

Ω
(u+ 1)(m+p+2α−3)θ

)
1
θ
≤ c3

(

∫

Ω
|∇(u+ 1)

m+p−1
2 |2

)

n
2
·

m+p+2α−3− 1
θ

1−n
2 +

n(m+p−1)
2 + c3 (3.18)

for all t ∈ (0, Tmax) with some c3 > 0, because (1.2) states boundedness of (u + 1)
m+p−1

2

in L∞((0, Tmax);L
2

m+p−1 (Ω)).

12



Similarly, using that µ > 1 implies

4µ

m+ p− 1
>

2

m+ p− 1
,

and that (2.3) entails

4µ

m+ p− 1
<

2n

n− 2
,

we interpolate

(

∫

Ω
(u+ 1)2µ

)
1
µ

= ‖(u+ 1)
m+p−1

2 ‖
4

m+p−1

L
4µ

m+p−1 (Ω)

≤ c4‖∇(u+ 1)
m+p−1

2 ‖
4

m+p−1
·b

L2(Ω)
· ‖(u+ 1)

m+p−1
2 ‖

4
m+p−1

·(1−b)

L
2

m+p−1 (Ω)

+c4‖(u+ 1)
m+p−1

2 ‖
4

m+p−1

L
2

m+p−1 (Ω)
for all t ∈ (0, Tmax)

with some c4 > 0 and

b =

n(m+p−1)
2 (1− 1

2µ)

1− n
2 + n(m+p−1)

2

∈ (0, 1).

Again in view of (1.2), we therefore obtain c5 > 0 such that

(

∫

Ω
(u+ 1)2µ

)
1
µ
≤ c5

(

∫

Ω
|∇(u+ 1)

m+p−1
2 |2

)

n
2
·

2− 1
µ

1−n
2 +

n(m+p−1)
2 + c5 for all t ∈ (0, Tmax).

(3.19)
As to the integrals in (3.15) and (3.16) involving ∇v, we proceed in quite the same manner,
relying on (1.3) rather than on (1.2). First, we note that

2θ′

q
>
s

q
, (3.20)

because θ′ > 1 and s < n
n−1 ≤ 2 whenever n ≥ 2. Moreover, we know that

2θ′

q
<

2n

n− 2
, (3.21)

for (2.4) says that

1

θ′
= 1−

1

θ
>
n− 2

n
·
1

q
.

Now (3.20) and (3.21) allow for an application of the Gagliardo-Nirenberg inequality which
ensures the existence of c6 > 0 fulfilling

(

∫

Ω
|∇v|2θ

′

)
1
θ′

=
∥

∥

∥
|∇v|q

∥

∥

∥

2
q

L
2θ′
q (Ω)

≤ c6

∥

∥

∥
∇|∇v|q

∥

∥

∥

2
q
·c

L2(Ω)
·
∥

∥

∥
|∇v|q

∥

∥

∥

2
q
(1−c)

L
s
q (Ω)

+ c6

∥

∥

∥
|∇v|q

∥

∥

∥

2
q

L
s
q (Ω)
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with

c =
nq(1

s
− 1

2θ′ )

1− n
2 + nq

s

∈ (0, 1).

By means of (1.3), we thus find c7 > 0 such that

(

∫

Ω
|∇v|2θ

′

)
1
θ′

≤ c7

(
∫

Ω

∣

∣

∣
∇|∇v|q

∣

∣

∣

2
)

n
2
·

2
s−

1
θ′

1−n
2 +

nq
s

+ c7 for all t ∈ (0, Tmax). (3.22)

As to the corresponding term in (3.16), we similarly observe that

2(q − 1)µ′

q
>
s

q
, (3.23)

which immediately follows from the inequalities µ′ > 1 and q > q̄ ≥ 2 and our assumption
n ≥ 2. We furthermore have

2(q − 1)µ′

q
<

2n

n− 2
, (3.24)

because (2.5) asserts that

1

µ′
= 1−

1

µ
> 1−

2

n
−
n− 2

n
·
1

q
=
n− 2

n
·
q − 1

q
.

Thanks to (3.23), (3.24) and the Gagliardo-Nirenberg inequality, we can find c8 > 0
satisfying

(

∫

Ω
|∇v|2(q−1)µ′

)
1
µ′

=
∥

∥

∥
|∇v|q

∥

∥

∥

2(q−1)
q

L
2(q−1)µ′

q (Ω)

≤ c8

∥

∥

∥
∇|∇v|q

∥

∥

∥

2(q−1)
q

·d

L2(Ω)
·
∥

∥

∥
|∇v|q

∥

∥

∥

2(q−1)
q

·(1−d)

L
s
q (Ω)

+ c8

∥

∥

∥
∇v|q‖

2(q−1)
q

L
s
q (Ω)

with

d =
nq · (1

s
− 1

2(q−1)µ′ )

1− n
2 + nq

s

∈ (0, 1).

Consequently, once again recalling (1.3) we have

(

∫

Ω
|∇v|2(q−1)µ′

)
1
µ′

≤ c9

(
∫

Ω

∣

∣

∣
∇|∇v|q

∣

∣

∣

2
)

n
2
·

2(q−1)
s −

1
µ′

1−n
2 +

nq
s

+ c9 for all t ∈ (0, Tmax) (3.25)

for some positive constant c9.
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Now collecting (3.18), (3.19), (3.22) and (3.25), from (3.15) and (3.16) we obtain

c1

∫

Ω
(u+ 1)m+p+2α−3|∇v|2 + c1

∫

Ω
(u+ 1)2|∇v|2q−2

≤ c10

(
∫

Ω
|∇(u+ 1)

m+p−1
2 |2

)β1

·

(
∫

Ω

∣

∣

∣
∇|∇v|q

∣

∣

∣

2
)γ1

+c10

(
∫

Ω
|∇(u+ 1)

m+p−1
2 |2

)β2

·

(
∫

Ω

∣

∣

∣
∇|∇v|q

∣

∣

∣

2
)γ2

+c10 for all t ∈ (0, Tmax) (3.26)

with some c10 > 0 and positive numbers β1, β2, γ1 and γ2 satisfying

β1 + γ1 =
n

2
·
m+ p+ 2α− 3− 1

θ

1− n
2 + n(m+p−1)

2

+
n

2
·

2
s
− 1 + 1

θ

1− n
2 + nq

s

< 1

according to (2.6), and

β2 + γ2 =
n

2
·

2− 1
µ

1− n
2 + n(m+p−1)

2

+
n

2
·

2(q−1)
s

− 1 + 1
µ

1− n
2 + nq

s

< 1

by (2.7). Therefore Lemma 3.1 states that for some c11 > 0 we have

c1

∫

Ω
(u+ 1)m+p+2α−3|∇v|2 + c1

∫

Ω
(u+ 1)2|∇v|2q−2

≤
1

(m+ p− 1)2

∫

Ω
|∇(u+ 1)

m+p−1
2 |2 +

q − 1

q2

∫

Ω

∣

∣

∣
∇|∇v|q

∣

∣

∣

2
+ c11 (3.27)

for all t ∈ (0, Tmax). Here we once more employ the Gagliardo-Nirenberg inequality to
estimate

∫

Ω
(u+ 1)p = ‖(u+ 1)

m+p−1
2 ‖

2p
m+p−1

L
2p

m+p−1 (Ω)

≤ c12‖∇(u+ 1)
m+p−1

2 ‖
2p

m+p−1
·κ1

L2(Ω)
· ‖(u+ 1)

m+p−1
2 ‖

2p
m+p−1

·(1−κ1)

L
2

m+p−1 (Ω)

+c12‖(u+ 1)
m+p−1

2 ‖
2p

m+p−1

L
2

m+p−1 (Ω)
(3.28)

and
∫

Ω
|∇v|2q =

∥

∥

∥
|∇v|q

∥

∥

∥

2

L2(Ω)

≤ c12

∥

∥

∥
∇|∇v|q

∥

∥

∥

2κ2

L2(Ω)
·
∥

∥

∥
|∇v|q

∥

∥

∥

2(1−κ2)

L
s
q (Ω)

+ c12

∥

∥

∥
|∇v|q

∥

∥

∥

2

L
s
q (Ω)

(3.29)
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with some c12 > 0 and

κ1 =

n(m+p−1)
2 (1− 1

p
)

1− n
2 + n(m+p−1)

2

and κ2 =
nq
s
− n

2

1− n
2 + nq

s

,

where we note that 2p
m+p−1 <

2n
n−2 by (2.1) and s

q
< 2 since q > q̄ > 2 and s < n

n−1 ≤ 2.
As a consequence of (3.27), (3.28), (3.29), (1.2) and (1.3), (3.14) can be turned into the
inequality

d

dt

(
∫

Ω
φ(u) +

1

q

∫

Ω
|∇v|2q

)

+ c13

(

∫

Ω
(u+ 1)p

)
m+p−1

pκ1 + c13

(

∫

Ω
|∇v|2q

)
1
κ2 ≤ c14

for all t ∈ (0, Tmax) and positive constants c13 and c14. In view of (3.8), we infer that the
function

y(t) :=

∫

Ω
φ(u(t)) +

1

q

∫

Ω
|∇v(t)|2q, t ∈ [0, Tmax),

satisfies

y′(t) + c15y
κ(t) ≤ c16 for all t ∈ (0, Tmax)

with certain positive constants κ, c15 and c16. Upon an ODE comparison argument this
entails that

y(t) ≤ c17 := max

{

y0,
(c16

c15

)
1
κ

}

for all t ∈ (0, Tmax).

Thus, in view of (3.9) we arrive at the inequalities
∫

Ω
(u+ 1)p+m−M (t) ≤

c17

c0
and

∫

Ω
|∇v(t)|2q ≤ qc17 for all t ∈ (0, Tmax)

and conclude. �

Now we can immediately pass to our main result.

Proof (of Theorem 0.1) The proof is an evident consequence of Lemma 3.3, Lemma
4.1 below and the extendibility criterion provided by Lemma 1.1. �

4 Appendix: A general boundedness result for quasilinear

non-uniformly parabolic equations

In this concluding section, which might be of interest of its own, we derive uniform bounds
for nonnegative subsolutions of some quasilinear problems which need not necessarily be
uniformly parabolic. More precisely, we consider functions u fulfilling

{

ut ≤ ∇ · (D(x, t, u)∇u) +∇ · f(x, t) + g(x, t), x ∈ Ω, t ∈ (0, T ),

∂νu(x, t) ≤ 0, x ∈ ∂Ω, t ∈ (0, T ),
(4.1)
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in the classical sense, where we allow the diffusion to be degenerate in the sense that we
require that

D ∈ C1(Ω̄× [0, T )× [0,∞)) and D ≥ 0, (4.2)

and that there exist m ∈ R, s0 ≥ 1 and δ > 0 such that

D(x, t, s) ≥ δsm−1 for all x ∈ Ω, t ∈ (0, T ) and s ≥ s0. (4.3)

Our goal is to derive estimates in L∞(Ω× (0, T )) under the assumptions that

f ∈ C0((0, T );C0(Ω̄) ∩ C1(Ω)) and g ∈ C0(Ω× (0, T )) (4.4)

with
f · ν ≤ 0 on ∂Ω× (0, T ), (4.5)

that
f ∈ L∞((0, T );Lq1(Ω)) and g ∈ L∞((0, T );Lq2(Ω)), (4.6)

and that
u ∈ L∞((0, T );Lp0(Ω)) (4.7)

be valid with suitably large q1, q2 and p0.
The derivation of the following statement follows a well-established iterative technique (see
[A] for an application in a similar framework). Since we could not find a precise reference
covering our situation, and since some major modifications to the original procedure are
necessary, we inculde a full proof here for the sake of completeness.

Lemma 4.1 Suppose that T ∈ (0,∞], that Ω ⊂ R
n, n ≥ 1, is a bounded domain, and

that D, f and g comply with (4.2), (4.4) and (4.5). Moreover, assume that (4.3) and (4.6)
hold for some δ > 0, m ∈ R and s0 ≥ 1, and some q1 > n + 2 and q2 >

n+2
2 . Then if

u ∈ C0(Ω̄ × [0, T )) ∩ C2,1(Ω̄ × (0, T )) is a nonnegative function satisfying (4.1), and if
(4.7) is valid for some p0 ≥ 1 fulfilling

p0 > 1−m ·
(n+ 1)q1 − (n+ 2)

q1 − (n+ 2)
(4.8)

and
p0 > 1−

m

1− n
n+2

q2
q2−1

(4.9)

as well as

p0 >
n(1−m)

2
, (4.10)

then there exists C > 0, only depending on m, δ,Ω, ‖f‖L∞((0,T );Lq1 (Ω)), ‖g‖L∞((0,T );Lq2 (Ω)),
‖u‖L∞((0,T );Lp0 (Ω)) and ‖u(0)‖L∞(Ω), such that

‖u(t)‖L∞(Ω) ≤ C for all t ∈ (0, T ).
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Proof. We evidently may assume that m ≤ 0, and then fix r ∈ (2, 2(n+2)
n

) close enough

to 2(n+2)
n

such that writing θ(ρ) := ρ
2 ·

m+p0−1
−m+p0−1 and µ(ρ) := ρ

2 ·
m+p0−1
p0−1 we have θ(r) ≥ q1

q1−2

and µ(r) ≥ q2
q2−1 . Indeed, this is possible since our assumption (4.8) on p0 ensures that

θ
(2(n+ 2)

n

)

=
n+ 2

n
·
(

1 +
2m

−m+ p0 − 1

)

>
n+ 2

n
·

(

1 +
2m

−m+ [1−m · (n+1)q1−(n+2)
q1−(n+2) ]− 1

)

=
n+ 2

n
·

nq1

(n+ 2)(q1 − 2)

=
q1

q1 − 2

due to the fact that q1 > n+ 2, and since (4.9) entails

µ
(2(n+ 2)

n

)

=
n+ 2

n
·
(

1 +
m

p0 − 1

)

>
n+ 2

n
·

(

1 +
m

[

1− m
1− n

n+2
·

q2
q2−1

]

− 1

)

=
q2

q2 − 1
.

We can now pick s ∈ (0, 2) sufficiently close to 2 fulfilling

r <
2(n+ s)

n
(4.11)

and such that
nr
s
− n

2q1
q1−2 · (1− n

2 + n
s
)
< 1, (4.12)

where the latter can be achieved due to the fact that as s→ 2, the expression on the left
tends to

nr
2 − n
2q1
q1−2

<
n
2 · 2(n+2)

n
− n

2q1
q1−2

= 1−
2

q1
< 1.

We now recursively define

pk :=
2

s
· pk−1 + 1−m, k ≥ 1, (4.13)

and note that (pk)k∈N increases and

c1 ·
(2

s

)k

≤ pk ≤ c2 ·
(2

s

)k

for all k ∈ N (4.14)
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holds with positive c1 and c2 which, as all constants c3, c4, ... appearing below, are inde-
pendent of k. Writing

θk :=
r

2
·
m+ pk − 1

−m+ pk − 1
, k ∈ N, (4.15)

since m ≤ 0 we see that also (θk)k∈N is increasing with θk ≥ θ0 = θ(r) ≥ q1
q1−2 , and hence

θ′k := θk
θk−1 satisfies

1 < θ′k ≤
q1

2
for all k ∈ N. (4.16)

Similarly,

µk :=
r

2
·
m+ pk − 1

pk − 1
, k ∈ N, (4.17)

defines an increasing sequence of numbers such that µk ≥ µ0 = µ(r) ≥ q2
q2−1 , and such

that for µ′k := µk
µk−1 we have

1 < µ′k ≤ q2 for all k ∈ N. (4.18)

Our goal is to derive a recursive inequality for

Mk := sup
t∈(0,T )

∫

Ω
ûpk(x, t)dx, k ∈ N, (4.19)

where û(x, t) := max{u(x, t), s0} for x ∈ Ω̄ and t ∈ [0, T ). To this end, we note that by
a standard approximation procedure we may use pkû

pk−1 as a test function in (4.1) to
obtain for k ≥ 1

d

dt

∫

Ω
ûpk + pk(pk − 1)

∫

Ω
D(x, t, u)ûpk−2|∇û|2

≤ −pk(pk − 1)

∫

Ω
ûpk−2f · ∇û+ pk

∫

Ω
ûpk−1g

for all t ∈ (0, T ), where we have used our assumptions that f · ν ≤ 0 and ∂νu ≤ 0 on ∂Ω.
We now employ Young’s inequality in estimating

−pk(pk − 1)

∫

Ω
ûpk−2f · ∇û ≤

pk(pk − 1)δ

2

∫

Ω
ûm+pk−3|∇û|2

+
pk(pk − 1)

2δ

∫

Ω
û−m+pk−1|f |2,

recall (4.3) and observe that D(x, t, u) = D(x, t, û) wherever u ≥ s0, to find c3 > 0 and
c4 > 0 such that

d

dt

∫

Ω
ûpk + c3

∫

Ω

∣

∣

∣
∇û

m+pk−1

2

∣

∣

∣

2
≤ c4p

2
k

∫

Ω
û−m+pk−1|f |2

+pk

∫

Ω
ûpk−1g (4.20)
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for all t ∈ (0, T ). Here, by the Hölder inequality, (4.6) and (4.16), there exists c5 > 0 such
that

∫

Ω
û−m+pk−1|f |2 ≤

(

∫

Ω
û(−m+pk−1)θk

)
1
θk ·

(

∫

Ω
|f |q1

)
2
q1 · |Ω|

q1−2θ′k
q1θ

′

k

≤ c5

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2(−m+pk−1)

m+pk−1

L

2(−m+pk−1)θk
m+pk−1 (Ω)

= c5

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
θk

Lr(Ω)
for all t ∈ (0, T )

due to (4.15). Similarly, thanks to (4.18) there exists c6 > 0 such that

∫

Ω
ûpk−1g ≤

(

∫

Ω
û(pk−1)µk

)
1
µk ·

(

∫

Ω
|g|q2

)
1
q2 · |Ω|

q2−µ′k
q2µ

′

k

≤ c6

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
µk

Lr(Ω)

= c6

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
θk

Lr(Ω)
·
∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2m
m+pk−1

Lr(Ω)
for all t ∈ (0, T ),

where we have recalled the definitions (4.15) and (4.17) of µk and θk. Now since û ≥ s0 ≥ 1
and m < 0, the latter factor can be estimated from above according to

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2m
m+pk−1

Lr(Ω)
≤ |Ω|

2m
r(m+pk−1) → 1 as k → ∞.

Therefore, using that pk ≥ 1 for k ≥ 1, from (4.20) we thus see that

d

dt

∫

Ω
ûpk + c3

∫

Ω

∣

∣

∣
∇û

m+pk−1

2

∣

∣

∣

2
≤ c7p

2
k

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
θk

Lr(Ω)
for all t ∈ (0, T ) (4.21)

is valid with some c7 > 0.
Now invoking the Gagliardo-Nirenberg inequality ([F]) we find c8 > 0, by (4.16) yet
independent of k, such that

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
θk

Lr(Ω)
≤ c8

∥

∥

∥
∇û

m+pk−1

2

∥

∥

∥

ra
θk

L2(Ω)
·
∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r(1−a)
θk

Ls(Ω)

+c8

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
θk

Ls(Ω)
,

whence observing that (m+pk−1)s
2 = pk−1 by (4.13), from (4.19) we obtain

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

r
θk

Lr(Ω)
≤ c8M

r(1−a)
θks

k−1 ·

(
∫

Ω

∣

∣

∣
∇û

m+pk−1

2

∣

∣

∣

2
)

ra
2θk

+ c8M
r

θks

k−1

for all t ∈ (0, T ), with

a =
n
s
− n

r

1− n
2 + n

s

∈ (0, 1). (4.22)
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Upon an application of Young’s inequality, (4.21) thus yields

d

dt

∫

Ω
ûpk +

c3

2

∫

Ω

∣

∣

∣
∇û

m+pk−1

2

∣

∣

∣

2
≤ c9

(

p2kM

r(1−a)
θks

k−1

)

2θk
2θk−ra

+ c9p
2
kM

r
θks

k−1 (4.23)

for all t ∈ (0, T ) and some c9 > 0, where we made use of the fact that (4.12) entails that

ra

2θk
≤

ra

2θ0
≤

ra
2q1
q1−2

=
nr
s
− n

2q1
q1−2 · (1− n

2 + n
s
)
< 1 for all k ∈ N.

Next, since pk >
n(1−m)

2 for all k ≥ 1 by (4.10), we can pick λ ∈ (2, 2n
(n−2)+

) such that
2pk

m+pk−1 ≤ λ for all k ≥ 1. Thus, by the Hölder inequality,

∫

Ω
ûpk =

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2pk
m+pk−1

L

2pk
m+pk−1 (Ω)

≤ |Ω|
1−

2pk
λ(m+pk−1) ·

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2pk
m+pk−1

Lλ(Ω)

≤ c10

∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2pk
m+pk−1

Lλ(Ω)
for all t ∈ (0, T )

with some c10 > 0, and therefore applying the Poincaré inequality in the form

‖ϕ‖2Lλ(Ω) ≤ c11

(

‖∇ϕ‖2L2(Ω) + ‖ϕ‖2Ls(Ω)

)

for all ϕ ∈W 1,2(Ω),

we infer that

∫

Ω
ûpk ≤ c12 ·

(

∥

∥

∥
∇û

m+pk−1

2

∥

∥

∥

2

L2(Ω)
+
∥

∥

∥
û

m+pk−1

2

∥

∥

∥

2

Ls(Ω)

)

pk
m+pk−1

holds for all t ∈ (0, T ) with a certain c12 > 0. In consequence, writing c13 := infk≥1 c
−

m+pk−1

pk
12 >

0, we have

∫

Ω

∣

∣

∣
∇û

m+pk−1

2

∣

∣

∣

2
≥ c13

(

∫

Ω
ûpk
)

m+pk−1

pk −M
2
s
k−1 for all t ∈ (0, T ).

Combined with (4.23), this gives the inequality

d

dt

∫

Ω
ûpk ≤ −

c3

2
· c13 ·

(

∫

Ω
ûpk
)

m+pk−1

pk

+c9p
4θk

2θk−ra

k ·M
2r(1−a)

s(2θk−ra)

k−1 + c9p
2
kM

r
θks

k−1 +
c3

2
M

2
s
k−1 (4.24)

for all t ∈ (0, T ) and k ≥ 1. To simplify this, we observe that

2r(1− a)

s(2θk − ra)
≥ max

{ r

θks
,
2

s

}

for all k ≥ 1,
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because (4.15) guarantees that θk ≤ r
2 . Since furthermore clearly

2 <
4θk

2θk − ra
≤

4θ0
2θ0 − ra

for all k ≥ 1,

from (4.24) and (4.14) we obtain

d

dt

∫

Ω
ûpk ≤ −c14

(

∫

Ω
ûpk
)

m+pk−1

pk + c15 · b̃
k ·M

2r(1−a)
s(2θk−ra)

k−1

for all t ∈ (0, T ) and k ≥ 1, suitable c14 > 0 and c15 > 0 and b̃ := (2
s
)

4θ0
2θ0−ra > 1.

An integration of this ODI provides c16 > 0 such that

Mk ≤ max

{

∫

Ω
û
pk
0 ,
[c15

c14
· b̃k ·M

2r(1−a)
s(2θk−ra)

k−1

]

pk
m+pk−1

}

≤ max

{
∫

Ω
û
pk
0 , c16b

kM
κk
k−1

}

for all k ≥ 1, (4.25)

where û0(x) := û(x, 0) for x ∈ Ω, κk := 2r(1−a)
s(2θk−ra) ·

pk
m+pk−1 and b := b̃

p0
m+p0−1 , and where

we have used that pk
m+pk−1 ≤ p0

m+p0−1 for all k ≥ 1. Writing

κk =
2

s
·

(

1 +
1− 2θk

r
2θk
r

− a

)

·

(

1 +
1−m

m+ pk − 1

)

,

we easily infer from (4.13), (4.15) and (4.14) that

κk =
2

s
· (1 + εk), k ≥ 1, (4.26)

holds with some εk ≥ 0 satisfying

εk ≤
c17

pk
≤ c18 ·

(s

2

)k

(4.27)

for all k ≥ 1 and appropriately large c17 > 0 and c18 > 0.
Therefore, in the case when c16b

kM
κk
k−1 <

∫

Ω û
pk
0 holds for infinitely many k ≥ 1, we obtain

sup
t∈(0,T )

(

∫

Ω
ûpk−1

)
1

pk−1 ≤

(

1

c16bk

∫

Ω
û
pk
0

)
1

κkpk−1

for all such k, and hence conclude that

‖û(t)‖L∞(Ω) ≤ ‖û0‖L∞(Ω) for all t ∈ (0, T ),

because pk
κkpk−1

→ 1 as k → ∞ according to (4.13), (4.26) and (4.27).

In the opposite case, upon enlarging c16 if necessary we may assume that

Mk ≤ c16b
kM

κk
k−1 for all k ≥ 1.
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By a straightforward induction, this yields

Mk ≤ c

1+
k−2∑

j=0

k∏

i=k−j

κi

16 · b
k+

k−2∑

j=0
(k−j−1)·

k∏

i=k−j

κi

·M

k∏

i=1
κi

0

for all k ≥ 2, and hence in view of (4.26) and (4.14) we obtain

M
1
pk
k ≤ c

1
c1

( s
2
)k+ 1

c1
·
k−2∑

j=0
( s
2
)k−j−1·

k∏

i=k−j

(1+εi)

16

×b

1
c1

k( s
2
)k+ 1

c1
·
k−2∑

j=0
(k−j−1)·( s

2
)k−j−1·

k∏

i=k−j
(1+εi)

×M

1
c1

·
k∏

i=1
(1+εi)

0

for k ≥ 2. Since ln(1 + z) ≤ z for z ≥ 0, from (4.27) and the fact that s < 2 we gain

ln
(

k
∏

i=1

(1 + εi)
)

=

k
∑

i=1

εi ≤
c18

1− s
2

,

so that using
k−2
∑

j=0
(k − j − 1) · ( s2)

k−j−1 ≤
∞
∑

l=1

l( s2)
l <∞,

from this we conclude that also in this case ‖û(t)‖L∞(Ω) is bounded from above by a
constant independent of t ∈ (0, T ). This clearly proves the lemma. �
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