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Abstract We consider the ordinary differential equation

x2u′′ = axu′ + bu − c
(
u′ − 1

)2
, x ∈ (0, x0),

with a ∈ R, b ∈ R, c > 0 and the singular initial condition u(0) = 0, which in financial
economics describes optimal disposal of an asset in a market with liquidity effects. It
is shown in the paper that if a + b < 0 then no continuous solutions exist, whereas if
a + b > 0 then there are infinitely many continuous solutions with indistinguishable
asymptotics near 0. Moreover, it is proved that in the latter case there is precisely one
solution u corresponding to the choice x0 = ∞ which is such that 0 ≤ u(x) ≤ x for
all x > 0, and that this solution is strictly increasing and concave.
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1 Introduction

The paper is concerned with solutions of the problem

x2u′′ = axu′ + bu − c
(
u′ − 1

)2
, x > 0, (1.1)

u(0) = 0, (1.2)

where a and b are real numbers and c > 0. By a solution of (1.1) in [0, x0] we mean
a function u ∈ C0([0, x0]) ∩ C2((0, x0)) which satisfies (1.1) for x > 0.

Equation (1.1) arises in the study of a specific stochastic optimization similar to the
classical LQ problem. The equation is singular at x = 0 which in itself is not particu-
larly noteworthy, since stochastic LQ problems with geometric Brownian state vari-
able invariably give rise to nonlinear singular ODEs/PDEs of the type seen in (1.1)
and in (1.3) below, see for example [9]. Our problem derives its rich structure from
the fact that the initial condition (1.2), too, refers to the singular point x = 0. This,
as we demonstrate below, poses certain technical obstacles in establishing existence
and, more importantly, gives rise to infinitely many solutions with indistinguishable
asymptotics near zero (Corollary 4.4).

As was already highlighted, the ODE (1.1), (1.2) is not artificial, rather it stems
from a well-defined optimization problem in financial economics. Specifically, it is
obtained from the PDE

{
1
2y2σ 2wyy + λywy + r∗zwz − ρw + (y−wz)

2

4η
= 0,

w(y,0) = 0,
(1.3)

using the scaling

w(y, z) = y2

η
u(x), x = η

z

y
.

The PDE (1.3) in turn represents the Hamilton-Jacobi-Bellman equation for the
optimal value function w of the following dynamic optimization problem:

w
(
y(0), z(0)

) = max E

(∫ T (z=0)

0
e−ρsf

(
y(s), z(s)

)(
y(s) − ηf

(
y(s), z(s)

))
ds

)
,

(1.4)
subject to

dy(t) = λy(t)dt + σy(t)dB(t), (1.5)

dz(t) = (
r∗z(t) − f

(
y(t), z(t)

))
dt, (1.6)

over the controls f : R+ × R+ �→ R, T (z = 0) being the first arrival time at z = 0
and B(t) the standard Wiener process.

Optimization (1.4) with dynamics given by (1.5), (1.6) models optimal liquidation
of a large quantity of an asset whose market price is adversely affected by its ongoing
sale. In this context z(0) represents the quantity of the asset yet to be sold, y(0) is the
prevailing price and w captures the expected revenue of an optimal sale of quantity z

conditional on the current price being y. For more details we refer the reader to [3].
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The problem of existence is the first principal subject of this paper. It is shown
that for a + b > 0 the problem (1.1), (1.2) has a continuum of local solutions and at
least one global solution bounded between 0 and x (Sect. 2), while for a + b < 0 no
solutions exist (Sect. 3).

If one admits the possibility that there are multiple solutions to (1.1), (1.2), one
immediately has to deal with the additional challenge of identifying “the” right so-
lution relevant to the associated optimization problem. The economic nature of the
optimization (1.4)–(1.6) strongly suggests that the relevant solution of (1.1), (1.2)
should be increasing (larger amount of asset means larger revenue) but concave (de-
creasing returns to scale, since larger volume of sales has greater adverse effect on
the sale price of the asset). However, there is no indication in the form of (1.1) that
a solution with these properties should exist in the first place. In Sect. 4 we thus an-
alyze monotonicity and convexity properties of a solution bounded between 0 and x

(Proposition 4.5), the upper bound corresponding to an immediate sale of the entire
stock of the asset without any adverse price effect.

In Sect. 5 we address the question of global uniqueness. We show that there is
exactly one solution on R+ which remains bounded between 0 and x, and this so-
lution is necessarily increasing and concave (Proposition 5.1). Finally, in Sect. 6 we
examine finer aspects of local non-uniqueness.

In the current paper we focus on the intricacies of the initial value problem (1.1),
(1.2). The implication of the results for the underlying optimal control problem is a
delicate issue left to further research.

A paper similar in spirit to ours is [4]. It studies a specific second order equation
with a singularity at 0, arising in the theory of general relativity. As in our case, the
existence of infinitely many solutions is established by the method of upper and lower
solutions and then the properties of the set of solutions are studied.

As far as the local existence is concerned, Liang in [7] carried out a systematic
study of second order singular initial value problems of the form

u′′ = 1

x
F

(
x,u,u′), (1.7)

where F is a continuous function and the initial conditions satisfy F(0, u(0), u′(0)) =
0. The key quantity in this study is γ := ∂

∂u′ F(0, u(0), u′(0)). It is shown that for
γ < 0 local uniqueness holds, while for γ > 0 solutions become unique only after the
asymptotics of u′ have been fixed to the order xγ near x = 0. The case γ = 0 is not
treated. Each solution has an asymptotic expansion in powers of x and xγ (provided
γ is not an integer), and asymptotic expansion of u(n) is obtained by differentiating
n-times the asymptotic expansion for u.

In contrast, we study a specific singular IVP from a wider class

u′′ = 1

xα
F

(
x,u,u′), (1.8)

with α = 2, u(0) = 0, u′(0) = 1 and F(x,u,u′) := axu′ +bu−c(u′ −1)2. Like in [7]
our ODE arises from a self-similar solution of a PDE. However, we deal with a bor-
derline case where ∂

∂u′ F(0, u(0), u′(0)) = 0. As a result, standard blow-up techniques
are not productive and we have to resort to the method of sub-supersolutions.
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Finally, we remark that it is not uncommon for HJB equations associated with
stochastic optimization to exhibit multiple solutions. The meaningful solution then
has to be selected by employing additional criteria. In the case of linear-quadratic
problems the relevant solution is identified as the maximal/minimal one. In other
cases the optimal solution can be singled out as the unique viscosity solution of the
HJB equation, cf. [1]. In our case these criteria do not seem to be helpful. Rather, the
significant solution is uniquely determined by its global monotonicity and concavity
properties.

2 Existence for a + b ≥ 0

In essence, existence will be proved similarly as in [4]. That is, ordered pairs of sub-
and a supersolutions of (1.1) will be found, and an application of a standard existence
result for second order boundary-value problems will provide solutions lying in be-
tween, cf. [5]. As in [4], due to the singularity in the ODE (1.1), an approximation
procedure will be involved in the proof. However, compared to [4], the presence of
u′ in the equation will require additional arguments. We isolate technical arguments
in the following propositions.

Proposition 2.1 Let 0 < x1 < x2 and suppose that there exist u,u ∈ C2([x1, x2])
such that

u ≤ u in [x1, x2]; (2.1)

E u < 0 in [x1, x2]; (2.2)

E u > 0 in [x1, x2]; (2.3)

the operator E being defined according to

E u := −x2u′′ + axu′ + bu − c
(
u′ − 1

)2 (2.4)

for functions u which belong to C2([x1, x2]). Then for each u1 ∈ [u(x1), u(x1)], u2 ∈
[u(x2), u(x2)] there exists a solution u ∈ C2([x1, x2]) to (1.1) in [x1, x2] satisfying
u ≤ u ≤ u, u(x1) = u1, u(x2) = u2.

Proof Rewrite (1.1) as

u′′ = f
(
x,u,u′)

with

f
(
x,u,u′) = x−1au′ + x−2bu − x−2c

(
u′ − 1

)2
.

For x1 ≤ x ≤ x2 and u(x) ≤ u ≤ u(x), f satisfies the Bernstein condition [2]
∣∣f

(
x,u,u′)∣∣ ≤ A + Bu′2

for suitable A,B > 0. Therefore, the result follows from Nagumo [8], Satz 2, cf.
also [5], Theorem II-1.3 for a more recent reference. �
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Remark Recall that regularity of a differential equation is inherited by its solutions
(cf. [6], Chap. V, Corollary 4.1). In particular, since the expression for u′′ is C∞ in
x,u,u′ for x > 0, any solution u of (1.1) in [x1, x2] with 0 < x1 is in C∞([x1, x2]).

Proposition 2.2

(i) Let x0 ∈ (0,∞). Suppose that there exist u,u ∈ C0[0, x0] ∩ C2(0, x0) satisfying

u(0) = u(0) = 0 (2.5)

in addition to (2.1)–(2.3) with x1 = 0, x2 = x0. Then, for each u0 ∈ [u(x0), u(x0)]
there exists a solution of (1.1), (1.2) in [0, x0] such that u ≤ u ≤ u in (0, x0) and
u(x0) = u0.

(ii) Let u,u satisfy (2.1)–(2.3) for x1 = 0 and x2 = ∞ as well as (2.5). Then, there
exists a solution of (1.1), (1.2) in [0,∞) such that u ≤ u ≤ u.

Proof (i) By Proposition 2.1, for each ε ∈ (0, x0) and each u0 ∈ [u(x0), u(x0)] there
exists a solution uε ∈ C2([ε, x0]) of

{
E uε = 0 in [ε, x0],
uε(ε) = u(ε), uε(x0) = u0,

(2.6)

which satisfies

u(x) ≤ uε(x) ≤ u(x) for all x ∈ (ε, x0). (2.7)

Let now εn ↘ 0 for n → ∞. For fixed n, the functions uεk
with k ≥ n are uni-

formly bounded on [εn, x0]. By [2] (cf. also [5], I.4.3 page 45), the same holds for
their derivatives u′

εk
. Therefore, on [εn, x0], uεk

are equicontinuous and, moreover,
from (1.1) it follows that u′′

εk
, k ≥ n are uniformly bounded on [εn, x0]. Thus u′

εk

are equicontinuous and, in turn, because od (1.1), u′′
εk

are equicontinuous as well
on [εn, x0]. Therefore, one can pick a subsequence uεkj

which converges C2 uni-

formly to a C2 function un satisfying (1.1) on [εn, x0] together with un(x0) = u0

and u(x) ≤ un(x) ≤ u(x). By standard diagonal selection we can pick a subsequence
from the sequence uεkj

which converges pointwise in [0, x0] and uniformly in [ε, x0]
for each 0 < ε ≤ x0 to a function u ∈ C0[0, x0]∩C2(0, x0] and satisfying the require-
ments of item (i) of the proposition.
(ii) By (i), for each ε we have a solution of (1.1), (1.2) such that uε(0) = 0 and
u ≤ u ≤ u in [0,1/ε]. Applying for ε > 0 the same extraction idea as in (i) we obtain
the claimed solution in [0,∞). �

Proposition 2.3

(i) For a + b > 0 and any x0 > 0 there is a continuum of solutions to (1.1), (1.2) on
[0, x0] such that 0 ≤ u ≤ x.

(ii) For a + b ≥ 0 there is at least one solution of (1.1), (1.2) on [0,∞) such that
0 ≤ u ≤ x.
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Proof For a +b > 0 it is readily checked that u(x) ≡ 0 is a subsolution and u(x) = x

is a supersolution in [0,∞). The claim thus follows from Proposition 2.2. For
a + b = 0, u(x) = x is a global solution. �

The problem (1.1), (1.2) can for a + b > 0 be formally solved by a power series.
We let

k0 := 1, k1 := −2

3

√
a + b

c
, (2.8)

and inductively define

fn(x) :=
n∑

i=0

kix
1+i/2, (2.9)

where

kn+1 := lim
x→0+

2E fn

3ck1(n + 3)x(n+2)/2
(2.10)

for n ≥ 1.

Lemma 2.4 Let a + b > 0. Then the coefficients {ki}ni=0 are well-defined and E fn =
O(x(n+2)/2) as x ↘ 0 for all n ∈ N.

Proof The statement clearly holds for n = 1. Arguing by induction, we suppose that
it is valid for some n ≥ 1. Then

E fn+1 = E fn − 2c
(
f ′

n − 1
)(

1 + (n + 1)/2
)
kn+1x

(n+1)/2 + O
(
x(n+3)/2)

= E fn − 3

2
ck1(n + 3)kn+1x

(n+2)/2 + O
(
x(n+3)/2) as x ↘ 0. (2.11)

Since E fn is a polynomial in powers of
√

x and E fn = O(x(n+2)/2) it follows that
kn+1 is well defined and that E fn − (3/2)ck1(n + 3)kn+1x

(n+2)/2 = O(x(n+3)/2). In
view of (2.11) this implies that E fn+1 = O(x(n+3)/2) and thus completes the proof. �

Easy calculations show that the coefficients {kn}n≥2 satisfy the recursion

k2i = 1

6(i + 1)k1

[

2
k2i−1

c

(
a + b +

(
i − 1

2

)
a −

(
i2 − 1

4

))

−
i−1∑

j=1

(3 + j)(2 + 2i − j)kj+1k2i−j

]

, (2.12)

k2i+1 = 1

3(2i + 3)k1

[

2
k2i

c

(
a + b + ia − i(1 + i)

) − 1

2
(3 + i)2k2

i+1

−
i−1∑

j=1

(3 + j)(3 + 2i − j)kj+1k2i−j+1

]

. (2.13)
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From here it is readily seen that the radius of convergence of the power series (2.9) is
nil when a < 3

2 and b ∈ (−a, 3
4 − 3

2a], firstly by showing inductively ki > 0 for i ≥ 2
and subsequently neglecting all quadratic terms in ki in (2.12), (2.13) and proving
the easy estimate kn+1/kn ≥ −2(n − 1)/(3k1c) for sufficiently large n. Hence the
power series fn does not define a solution directly via limn→∞ fn(x) outside x = 0.
We conjecture this remains to be the case for arbitrary parameter values as long as
a + b > 0.

We will show later (Corollary 4.4) that every local solution of (0.1), (0.2) with the
property u(x) ≤ x satisfies

u(k)(x) = f (k)
n (x) + o

(
x(n+3)/2−k

)
,

for k ∈ {0,1} and n = 1. Whether this is true for n > 1 or k > 1 remains an open
question.

3 Nonexistence for a + b < 0

In this second part we shall deduce Proposition 3.2 below which will exclude the
existence of any continuous solution to (1.1) for any x0 > 0 under the assumption
a + b < 0 which is complementary to the hypothesis of Proposition 2.3.

To this end we first prove that any supposedly existing continuous solution must
satisfy u′(x) → 1 as x → 0. This property can formally easily be guessed upon trac-
ing the possible solution behavior near x = 0.

Lemma 3.1 Suppose that for some x0 > 0, the function u ∈ C0([0, x0])∩C2((0, x0))

is a solution of (1.1), (1.2). Then

lim
x↘0

u′(x) = 1. (3.1)

Proof Letting v := u′ − 1 we can rewrite (1.1) as

u′ = v + 1,

x2v′ = ax(v + 1) + bu − cv2.

Let X(t) := −t−1 for t < 0. Then X′(t) = t−2 and X(t) ↘ 0 as t → −∞. We next in-
troduce U(t) := u(X(t)) and V (t) := v(X(t)) for t < 0. Then the pair (U,V ) solves
the following system of differential equations

U ′ = t−2(V + 1),

V ′ = −at−1(V + 1) + bU − cV 2.

By assumption, we have U(t) → 0 as t → −∞ and thus

V ′(t) = p(t) + q(t)V (t) − cV 2(t) (3.2)
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with

p(t) → 0 and q(t) → 0 as t → −∞. (3.3)

We wish to show that if V (t) is defined for all t ≤ −x−1
0 then V (t) → 0 as t → −∞.

The proof proceeds in several steps.

(i) Given ε > 0 there is T < −x−1
0 such that |p(t)| < ε2c/3 and |q(t)| < εc/3 for

all t ≤ T , by virtue of (3.3).
(ii) Consider t0 ≤ T . We claim that if |V (t)| ≥ ε for all t ≤ t0 then

V (t) ≥ 1

V (t0)−1 + c
3 (t − t0)

for all t ≤ t0, (3.4)

while defined. To this end note that (3.2) and (i) yield

V ′(t) ≤ − c

3
V 2(t) if t ≤ T and |V (t)| ≥ ε. (3.5)

By the comparison theorem for ordinary differential equations we conclude that

V (t) ≥ Y(t) for t ≤ t0,

where Y solves the differential equation Y ′ = − c
3Y 2 with Y(t0) = V (t0). On

solving for Y we obtain (3.4).
(iii) Now we prove that there exists t1 ≤ T such that V (t1) > −ε. Suppose to the

contrary that V (t) ≤ −ε for all t ≤ T . Then, (3.4) gives V (t) ≥ −ε/2 for t <

t0 − 6
cε

, yielding the desired contradiction.
Next we show that V (t) > −ε for all t ≤ t1. Arguing by contradiction, sup-

pose this is not the case. Then there is t2 such that −∞ < t2 = sup{t ≤ t1 :
V (t) ≤ −ε} < t1. By continuity we have V (t2) = −ε. From (3.5) we obtain
V ′(t2) < 0 which is in conflict with V (t2) = −ε and V (t) > −ε for t ∈ (t2, t1).

(iv) Finally, we show that V (t) ≤ ε for all t ≤ T . If not, there is t3 ≤ T such that
V (t3) > ε and we have t4 := sup{t ≤ t3 : V (t) ≤ ε} < t3. The same argument
as in part (iii) shows that t4 = −∞ and therefore V (t) > ε for all t ≤ t3. From
(3.4) we now obtain V (t) → ∞ for t ↘ t3 − 3

c
V (t3)

−1. Therefore, V (t) is not

defined for some t ≤ −x−1
0 which is inconsistent with differentiability of U in

(−∞,0).

Since ε was arbitrary this completes the proof of the lemma. �

It is now possible to rule out local existence of a continuous solution of (1.1), (1.2)
under the condition that a + b be strictly negative.

Proposition 3.2 Suppose that a + b < 0. Then for each x0 > 0, the problem (1.1),
(1.2) does not possess any solution u in [0, x0].

Proof Suppose that such a solution exists for some x0 > 0. Then from Lemma 3.1
we know that u actually belongs C1([0, x0]) with u′(0) = 1, and hence the functions
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ϕ1 and ϕ2 defined by

ϕ1(x) := u′(x) − 1, x ∈ (0, x0), and ϕ2(x) := u(x) − x

x
, x ∈ (0, x0),

satisfy ϕ1(x) → 0 and ϕ2(x) → 0 as x → 0. Since a + b < 0, we can thus find
x ∈ (0, x0) such that

a + b + aϕ1(x) + bϕ2(x) ≤ a + b

2
for all x ∈ (0, x).

Therefore, (1.1) shows that

x2u′′(x) = axu′(x) + bu(x) − c
(
u′(x) − 1

)2

≤ axu′(x) + bu(x)

= ax
(
1 + ϕ1(x)

) + bx
(
1 + ϕ2(x)

)

= (
a + b + aϕ1(x) + bϕ2(x)

) · x
≤ −δx for all x ∈ (0, x)

holds with δ := − a+b
2 > 0. By integration we find that

u′(x) − u′(x) ≤ −δ ln
x

x
for all x ∈ (0, x).

This implies that u′(x) → +∞ as x → 0 and thereby contradicts Lemma 3.1. �

4 Monotonicity and Concavity Properties of Solutions

In this section we assume a + b > 0 and we study monotonicity and convexity prop-
erties of solutions to (1.1), whose existence was established in Sect. 2.

The following lemma is the key to establishing monotonicity, concavity, and ulti-
mately also uniqueness in a certain restricted class of solutions.

Lemma 4.1 Consider a nonconstant function y ∈ C0([0,∞)) ∩ C2((0,∞)) satisfy-
ing

x2y′′(x) = f (x)y′(x) + g
(
x, y(x)

)
, (4.1)

for some continuous functions f and g. Suppose there is a constant y∗ ∈ [−∞,∞]
such that for all x > 0 one has g(x, y) > 0 for y > y∗ and g(x, y) < 0 for y < y∗.
Then there is at most one x0 ∈ (0,∞) such that y′(x0) = 0. If such x0 exists then one,
and only one, of the following two alternatives is possible: Either

• y′(x) < 0 for x < x0, y′(x) > 0 for x > x0, and y(x) > y(x0) > y∗ for all x �= x0,

or

• y′(x) > 0 for x < x0, y′(x) < 0 for x > x0, and y(x) < y(x0) < y∗ for all x �= x0.
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Proof We first note that because of continuity of g we have g(x, y∗) = 0 for all x > 0
whenever y∗ is finite. By an ODE uniqueness argument, y(x0) = y∗ and y′(x0) = 0
implies y(x) ≡ y∗. Therefore, if y(x) is not constant and y′(x0) = 0 then y(x0) �= y∗.

Now suppose that y(x0) > y∗. Then from (4.1) it follows that y′′(x0) > 0, hence
y′(x) < 0 for x < x0 sufficiently close to x0. Arguing by contradiction, let us suppose
that there exists 0 < x1 < x0 such that y′(x1) ≥ 0. Then there is x2 ∈ [x1, x0) such that

y′(x2) = 0, y′(x) < 0 for x2 < x < x0, (4.2)

which implies y′′(x2) < 0 and also y(x) > y(x0) > y∗ for x2 ≤ x < x0. On the other
hand, (4.1) together with y(x2) > y∗ and y′(x2) = 0 entails that y′′(x2) > 0, yield-
ing the desired contradiction. Therefore, y′(x) < 0 for all x ∈ (0, x0). The proof of
y′(x) > 0 for x > x0 follows the same lines. Finally, the case y(x) < y∗ can be re-
duced to the case y(x) > y∗ by the transformation y �→ −y, y∗ �→ −y∗. �

We now apply this to derive some monotonicity properties of solutions. Here in
order to abbreviate notation, we call a function φ : [0,∞) → R eventually monotonic
if it is monotonic on [x0,∞) for some x0 ≥ 0.

Lemma 4.2 Let u be a nonconstant solution of (1.1) on (0,∞).

(i) If b �= 0 and u is bounded and eventually monotonic, then u(x) converges to
the unique stationary solution û = c/b as x → ∞. If b = 0 and u is eventually
monotonic, then u is unbounded.

(ii) If b > 0 and u ≥ 0, then one of the following alternatives occurs: Either

• u′(x) < 0 for all x > 0, u(x) > c/b for all x > 0 and u(x) → c/b as x → ∞,

or

• u′(x) > 0 for all x > 0, and either u(x) < c/b for all x > 0 and u(x) → c/b

as x → ∞, or u is unbounded,

or finally

• there exists a unique x0 > 0 such that u′(x0) = 0, and we have u′′(x0) > 0,
u(x) > u(x0) > c/b for all x �= x0, u′(x) < 0 for x < x0, u′(x) > 0 for x > x0,
and u is unbounded.

(iii) If b ≤ 0 and u ≥ 0 then u′(x) > 0 for all x > 0 and u is unbounded.

Proof

(i) The substitution x(t) = et , ũ(t) = u(x(t)) transforms (1.1) into

ũ′′ = (a + 1)ũ′ + bũ − c
(
e−t ũ′ − 1

)2
. (4.3)

Being bounded and eventually monotonic, ũ has a limit l as t → ∞ and con-
sequently limt→∞ ũ′(t) = 0. From (4.3) it now follows that limt→∞ ũ′′(t) =
bl − c. If bl − c �= 0 then limt→∞ ũ′′(t) �= 0 which is inconsistent with the con-
vergence of ũ′. This proves bl − c = 0. For b = 0 this is a contradiction with
c > 0, for b �= 0 it yields l = c/b.
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(ii) If u′(x) < 0 for all x then u is bounded and, by (i), tends to c/b as x → ∞ which
is possible only if u(x) > c/b for all x. If u′(x) > 0 for all x then thanks to
monotonicity, u(x) approaches a limit in [0,∞] as x → ∞. If this limit is finite
it has to equal c/b by virtue of (i), and in the remaining case u is unbounded.

Suppose now there is x0 > 0 such that u′(x0) = 0. Lemma 4.1 applied to
(1.1) with y ≡ u ≥ 0, g(x, y) := by − c and y∗ := c/b yields two alternatives,
the first of which is stated in part (ii). The second alternative is not possible since
it implies 0 ≤ u ≤ c/b but at the same time u′(x) < 0 for x > x0 which means
that u �→ c/b as x → ∞. A bounded solution not converging to c/b contradicts
part (i).

(iii) If u′ is not positive everywhere then Lemma 4.1 applied to (1.1) with y ≡ u ≥ 0,
g(x, y) := by − c and y∗ := ∞ implies that there is x0 such that u(x) < u(x0)

and u′(x) < 0 for x > x0. Therefore u is bounded and eventually monotonic.
This contradicts (i) when b = 0. For b < 0, (i) dictates that u should converge to
c/b as x → ∞, which contradicts u ≥ 0 since c/b < 0. �

Proposition 4.3 Suppose that a + b > 0 and that u(x) ≤ x is a solution of (1.1),
(1.2) on (0, x0) with some x0 > 0. Then there exists x1 ∈ (0, x0) such that u′(x) > 0,
u′′(x) < 0 and u′′′(x) > 0 for all x ∈ (0, x1). Furthermore, in this case we have

lim
x→0

u′(x) − 1√
x

= −
√

a + b

c
. (4.4)

Proof We recall that by Lemma 3.1 u′(0) = 1 and that by the remark following
Proposition 2.1, u(x) is C∞ for x > 0. As an immediate consequence we must have
u′(x) > 0 for all sufficiently small x > 0. On differentiating (1.1) we obtain

x2u′′′ + 2xu′′ = axu′′ + (a + b)u′ − 2c
(
u′ − 1

)
u′′ on (0, x0). (4.5)

Lemma 4.1 applied to (4.5) with y ≡ u′, g(x, y) := (a + b)y, y∗ := 0 implies that u′′
has a constant non-zero sign near x = 0. This, together with u(x) ≤ x and u′(0) = 1,
yields that necessarily u′′(x) < 0 for all sufficiently small x > 0.

We now differentiate (4.5) once more to obtain

x2u′′′′ = (
(a − 4)x − 2c

(
u′ − 1

))
u′′′ + (2a + b − 2)u′′ − 2c

(
u′′)2 on (0, x0). (4.6)

Lemma 4.1 applied to (4.6) with y ≡ u′′ ≤ 0, g(x, y) := (2a + b − 2)y − 2cy2 and
y∗ := (2a + b − 2)/(2c) implies that u′′′(x) has a constant non-zero sign near x = 0.
Arguing by contradiction, we suppose that u′′′ < 0 near x = 0. Since u′′ < 0, this
implies that L := limx↘0 u′′(x) exists and is finite. This however contradicts (1.1),
since on integrating we find x2u′′(x) = Lx2 + o(x2), xu′(x) = x + Lx2 + o(x2) and
u(x) = x +Lx2/2 + o(x2) as x → 0, and on substituting these expressions into (1.1)
one concludes that it cannot hold near x = 0. We have thus proved u′′′ > 0 near zero.

Next, dividing (1.1) by x we obtain

xu′′(x) = au′(x) + b
u(x)

x
+ c

(u′(x) − 1)2

x
for all x ∈ (0, x0). (4.7)
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Since u′′ is increasing and negative, by (3.1) we find that

u′(x) − 1 =
∫ x

0
u′′(ξ)dξ ≤ xu′′(x) ≤ 0,

and, consequently,

xu′′(x) → 0 as x → 0. (4.8)

Substituting this into (4.7) we obtain

lim
x→0

c
(u′(x) − 1)2

x
= a + b.

Since u′(x) − 1 ≤ 0, this is equivalent to (4.4). �

Corollary 4.4 There is a continuum of local solutions of (1.1), (1.2), with the prop-
erty 0 ≤ u(x) ≤ x and they all satisfy

u(x) = x − 2

3

√
a + b

c
x3/2 + o

(
x3/2) (4.9)

u′(x) = 1 −
√

a + b

c
x1/2 + o

(
x1/2). (4.10)

Proof Multiplicity of solutions was proved in Proposition 2.3. Expansion (4.10) fol-
lows from (4.4), and (4.9) follows by integration of (4.10). �

Proposition 4.5 Let u be a solution of (1.1), (1.2) with x0 = ∞ such that 0 ≤
u(x) ≤ x for all x > 0. Then, in addition to (4.9) and (4.10), we have that u′(x) > 0,
u′′(x) < 0 and u′′′(x) > 0 for all x > 0. Moreover,

lim
x→∞u′(x) = 0. (4.11)

Proof The conclusion u′(x) > 0 for all x > 0 is a trivial consequence of Lem-
ma 4.2(iii) for b ≤ 0. In the case b > 0, Lemma 4.2(ii) implies that if u is not increas-
ing everywhere then there is x0 > 0 such that u′(x) < 0 on (0, x0) and this contradicts
the facts that u(0) = 0 and u ≥ 0.

Next, Lemma 4.1 applied to (4.5) with y ≡ u′ ≥ 0, g(x, y) := (a + b)y ≥ 0 and
y∗ := 0 shows that if u′′ < 0 does not hold over (0,∞) then u′′(x) > 0 for all suffi-
ciently large x > 0. We show that the latter alternative is impossible. To this end, we
let v := u′ and ṽ(t) := v(x(t)) with x(t) = et . Arguing by contradiction, since v is
eventually increasing and u(x) ≤ x, we must have v ≤ 1, which implies that v and ṽ

converge as x → ∞ and t → ∞, respectively. This in turn implies v′(x(t)) → 0 and
ṽ′(t) → 0 as t → ∞. Since from (4.5) we see that

ṽ′′(t) = (a − 1)ṽ′(t) + (a + b)ṽ(t) − 2c
(
ṽ(t) − 1

)
v′(x(t)

)
, (4.12)
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we therefore obtain ṽ′′(t) − (a + b)ṽ(t) → 0 as t → ∞. Since ṽ > 0 is increasing
and convergent, so is ṽ′′. This is inconsistent with ṽ′(t) → 0 as t → ∞. We have thus
proved u′′(x) < 0 for all x > 0.

Now since v is decreasing and bounded below by 0, it converges as t → ∞. There-
fore, both v′(x(t)) and ṽ′(t) converge to 0 as t → ∞. From (4.12) we thus obtain
ṽ′′(t) − (a + b)ṽ(t) → 0 as t → ∞. Should the limit of ṽ for t → ∞ not be zero, the
same would hold for ṽ′′. This, however, is in conflict with the convergence of ṽ′ for
t → ∞. This proves statement (4.11).

Finally, in order to verify that u′′′ > 0 throughout (0,∞), we note that from
Lemma 4.3 we know that u′′′ is positive near zero. Arguing by contradiction, we
assume that u′′ is not increasing everywhere. Lemma 4.1 applied to (4.6) implies
that in such case u′′ must be eventually decreasing and therefore limx→∞ u′′(x) �= 0
which contradicts statement (4.11). �

The following inequality is related to the theory of speculative attacks, in which
an agency artificially supports a (low) fixed price of an asset, using a limited amount
of reserves. The inequality indicates that in order for the speculator to make expected
profit or at least for her to break even, the price of the asset must always jump up-
wards after the speculative attack has exhausted the entire supply of the asset at the
subsidized price.

Corollary 4.6 Let u be a solution of (1.1), (1.2) with a +b > 0 such that 0 ≤ u(x) ≤
x for all x > 0. Then

1 + u′(x) > 2
u(x)

x
for all x > 0. (4.13)

Proof Since u′′′(x) > 0 for x > 0 by Proposition 4.5, the function u′ is strictly convex
on [0,∞). Therefore

u′(x) − u′(0)

x
< u′′(x) for all x > 0.

On multiplying both sides by x, utilizing u′(0) = 1 and integrating we obtain

u(x) − x < xu′(x) − u(x) for all x > 0,

which yields the desired inequality. �

5 Uniqueness of the Global Solution Bounded Between 0 and x

Proposition 5.1 There is one, and only one, solution u of (1.1), (1.2) in [0,∞) which
has the additional property that 0 ≤ u(x) ≤ x for all x > 0. This solution necessarily
satisfies u > 0, u′ > 0, u′′ < 0, and u′′′ > 0 on (0,∞).

The proposition stems from the following result:
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Lemma 5.2 Let u �= v be two solutions of (1.1) in [0,∞) which satisfy u(0) = v(0),
u′(0) = v′(0) and u′′ ≤ 0 on (0,∞). Then w := v − u satisfies either w′′ > 0 on
(0,∞) or w′′ < 0 throughout (0,∞).

Proof The function w solves

x2w′′ = axw′ + bw − 2c
(
u′ − 1

)
w′ − cw′2 on (0,∞),

which on differentiation yields

x2w′′′ = (a − 2)xw′′ + (a + b)w′ − 2cu′′w′ − 2c
(
u′ − 1

)
w′′ − 2cw′w′′ on (0,∞).

(5.1)
Lemma 4.1 applied to (5.1) with y ≡ w′, g(x, y) := (a + b − 2cu′′(x))y and y∗ := 0
shows that w′′ can have at most one root. Now the existence of such a root x0 > 0
would imply either w′ > 0, w′′(x) < 0 for 0 < x < x0 and w′′(x) > 0 for x > x0; or
w′ < 0, w′′(x) > 0 for 0 < x < x0 and w′′(x) < 0 for x > x0. This however contra-
dicts w′(0) = 0. Thus one must have either w′′(x) > 0 or w′′(x) < 0 for all x > 0. �

Proof of Proposition 5.1 Suppose there are two solutions u �= v bounded between 0
and x and let w := v − u. Proposition 4.5 yields limx→∞ u′(x) = limx→∞ v′(x) = 0
and therefore

lim
x→∞w′(x) = 0. (5.2)

On the other hand, Proposition 4.5 also gives u′(0) = v′(0) = 1, implying w′(0) = 0.
We can thus employ Lemma 5.2 to obtain that either w′′(x) > 0 or w′′(x) < 0 for all
x > 0. In view of w′(0) = 0 both alternatives contradict (5.2). The claimed further
properties of the unique solution bounded between 0 and x follow from Proposi-
tion 4.5. �

6 Finer Aspects of Non-uniqueness

By Corollary 4.4 there is a continuum of local solutions sharing the same asymptotics
up to degree 3/2 at 0. The solutions are parametrized by their values at any x > 0. In
this section we establish existence of disjoint continua of local solutions of (1.1),
(1.2) distinguished by refinement of their asymptotic at 0.

We first show that the higher order terms specification of (4.10) can be somewhat
sharpened. Denote

k =
√

a + b

c
.

Lemma 6.1 Let u,x0, x1 be as in Corollary 4.4. Then there exists l > 0 such that
∣∣∣
∣
u′(x) − 1√

x
+ k

∣∣∣
∣ ≤ l

√
x for all x ∈ (0, x1). (6.1)

If u is the unique solution provided by Proposition 5.1 then (6.1) holds for all 0 ≤
x < ∞ for some l > 0.
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Proof Since u′(x)−1√
x

→ −k as x ↘ 0 by Proposition 4.3, we can find x1 > 0, c1 > 0
such that

∣
∣u′(x) − 1

∣
∣ ≤ c1

√
x for 0 < x < x1. (6.2)

Therefore trivially
∣∣au′(x) − a

∣∣ ≤ c1|a|√x for all 0 < x < x1 (6.3)

and also
∣∣∣∣
bu(x)

x
− b

∣∣∣∣ = |b|
x

·
∣∣∣∣

∫ x

0

(
u′(y) − 1

)
dy

∣∣∣∣ ≤ c1|b|
x

·
∫ x

0

√
ydy

= 2c1|b|
3

√
x for all 0 < x < x1. (6.4)

Taking x1 sufficiently small, using Proposition 4.3 we obtain that u′′ ≤ 0 and u′′′ ≥ 0
and hence |xu′′(x)| ≤ |u′(x) − 1| for all 0 < x < x1, from (6.2) we also infer that

∣∣xu′′(x)
∣∣ ≤ c1

√
x for all 0 < x < x1.

Accordingly, from (1.1) we obtain that ϕ(x) := u′(x)−1√
x

,0 < x < x1, satisfies

∣
∣cϕ2(x) − ck2

∣
∣ =

∣∣
∣∣
(
au′(x) − a

) +
(

bu(x)

x
− b

)
− xu′′(x)

∣∣
∣∣

≤ c2
√

x for all 0 < x < x1 (6.5)

with c2 := c1|a| + 2c1|b|
3 + c1. Therefore ϕ2(x) ≤ k2 + c2

c

√
x, so that

−ϕ(x) = ∣∣ϕ(x)
∣∣ ≤ k ·

√

1 + c2
√

x

ck2
≤ k ·

(
1 + c2

√
x

2ck2

)
for all 0 < x < x1, (6.6)

where we have used that
√

1 + ξ ≤ 1 + ξ
2 for all ξ > 0. Likewise, (6.5) entails that

ϕ2(x) ≥ k2 − c2
c

√
x for all x > 0. Thus, since

√
1 − ξ ≥ 1 − ξ√

2
for all ξ ∈ (0, 1

2 ), we
see that

−ϕ(x) ≥ k ·
√

1 − c2
√

x

ck2
≥ k − c2

√
x√

2ck
for all x ∈ (0, x2), (6.7)

where x2 := min{x1, (
ck2

2c2
)2}.

If u is the global solution of Proposition 5.1, then (6.1) is obvious in [x1,∞)

because u′(x) → 0 as x → ∞. This, together with (6.6) and (6.7) concludes the
proof of the lemma. �

The core of our approach will be formed by the usage of on ordered pair of sub-
and supersolutions which deviate from our original solution by an exponentially small
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term near x = 0. As a preparation, let us compute the action of the operator E , as
defined in (2.4), on such functions.

Lemma 6.2 Suppose that u is a solution of (1.1), (1.2) in (0, x0) for some x0 > 0.
Then for all ε > 0, α ∈ R and β ∈ R, the function v defined by

v(x) := u(x) − εxαe
− β√

x , x ∈ (0, x0), (6.8)

satisfies

E v = εe
− β√

x ·
{

β2

4
xα−1 +

[(
α − 3

2

)
β

2
+ αβ

2
− aβ

2

]
· xα− 1

2

+ [
α(α − 1) − aα − b

] · xα + 2c · u′ − 1√
x

·
[
β

2
xα−1 + αxα− 1

2

]

− εc ·
[
β

2
xα− 3

2 + αxα−1
]2

· e− β√
x

}
(6.9)

for all x ∈ (0, x0).

Proof We write

w(x) := εxαe
− β√

x , x ∈ (0, x0),

so that v = u − w and consequently

E v = −x2u′′ + axu′ + bu

+ x2w′′ − axw′ − bw

+ c
(
u′ − w′ − 1

)2 in (0, x0).

Since (u′ − w′ − 1)2 = (u′ − 1)2 − 2(u′ − 1)w′ + w′2, using that E u ≡ 0 we see that

E v = x2w′′ − axw′ − bw + 2c
(
u′ − 1

)
w′ − cw′2 in (0, x0). (6.10)

We now compute

w′(x) = ε
β

2
xα− 3

2 e
− β√

x + εαxα−1e
− β√

x

and

w′′(x) = ε
β2

4
xα−3e

− β√
x + ε

(
α − 3

2

)
β

2
xα− 5

2 e
− β√

x + ε
αβ

2
xα− 5

2 e
− β√

x

+ εα(α − 1)xα−2e
− β√

x
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and hence obtain from (6.10) that

E v = εe
− β√

x ·
{

β2

4
xα−1 +

(
α − 3

2

)
β

2
xα− 1

2 + αβ

2
xα− 1

2 + α(α − 1)xα

− aβ

2
xα− 1

2 − aαxα − bxα + 2c · u′ − 1√
x

· √x ·
[
β

2
xα− 3

2 + αxα−1
]

− εc

[
β

2
xα− 3

2 + αxα−1
]2

e
− β√

x

}
in (0, x0).

On straightforward rearrangements, this yields (6.9). �

We can now identify an appropriate family of subsolutions for (1.1).

Lemma 6.3 Suppose that for some x0 > 0, u is a solution of (1.1), (1.2) in (0, x0)

satisfying (6.1) with some l > 0. Then for any real number α < 3
2 + a − 2cl there

exists x3 = x3(α) ∈ (0, x0) such that for each ε > 0, the function v defined by

v(x) := u(x) − εxαe
− 4ck√

x , x ∈ (0, x3), (6.11)

satisfies

E v < 0 in (0, x3). (6.12)

Proof Given α < 3
2 + a − 2cl, thanks to the positivity of c and k we can find x1 ∈

(0, x0) such that both

2ck√
x1

+ α ≥ 0 (6.13)

and

2ck · ( 3
2 + a − 2cl − α)√

x1
> α(α − 1) − aα − b + 2clα (6.14)

hold. Then for ε > 0 we define v as in (6.11) and thus obtain from Lemma 6.2,
applied to β := 4ck, that (6.9) holds for v = v and all x ∈ (0, x1). In order to utilize
(6.1) appropriately, we note that in view of (6.13) we have

β

2
xα−1 + αxα− 1

2 =
(

2ck√
x

+ α

)
· xα− 1

2 ≥ 0 for all x ∈ (0, x1).

We may thus multiply this by the inequality

u′(x) − 1√
x

≤ −k + l
√

x for all x ∈ (0, x1),

as resulting from (6.1), to infer from (6.9) on dropping a nonpositive term that
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E v ≤ εe
− β√

x ·
{

β2

4
xα−1 +

[(
α − 3

2

)
β

2
+ αβ

2
− aβ

2

]
· xα− 1

2

+ [
α(α − 1) − aα − b

] · xα + 2c(−k + l
√

x) ·
[
β

2
xα−1 + αxα− 1

2

]}

= εe
− β√

x ·
{[

β2

4
− ckβ

]
· xα−1

+
[(

α − 3

2

)
β

2
+ αβ

2
− aβ

2
− 2ckα + clβ

]
· xα− 1

2

+ [
α(α − 1) − aα − b + 2clα

] · xα

}
in (0, x1).

Here the leading term disappears because β = 4ck, whereas

(
α − 3

2

)
β

2
+ αβ

2
− aβ

2
− 2ckα + clβ = 2ck ·

[
α − 3

2
+ α − a − α + 2cl

]

= 2ck ·
[
α − 3

2
− a + 2cl

]
< 0.

Hence, using (6.14) we infer that

E v ≤ εe
− β√

x · xα ·
{
−2ck · ( 3

2 + a − 2cl − α)√
x

+ α(α − 1) − aα − b + 2clα

}

< 0 in (0, x1),

as desired. �

Our construction of supersolutions to (1.1) is similar.

Lemma 6.4 Let u be a solution of (1.1), (1.2) in (0, x0) for some x0 > 0, which
satisfies (6.1) with some l > 0. Then for each ε0 > 0 and α > 3

2 + a + 2cl one can
pick x4 = x4(α) ∈ (0, x0) such that for any ε ∈ (0, ε0), the function v defined by

v(x) := u(x) − εxαe
− 4ck√

x , x ∈ (0, x4), (6.15)

satisfies

E v > 0 in (0, x4). (6.16)

Proof Relying on our assumption on α, let us first pick x4 ∈ (0, x0) such that besides
again

2ck√
x3

+ α ≥ 0, (6.17)
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the inequality

2ck(α − 3
2 − a − 2cl)√
x4

>
∣∣α(α − 1) − aα − b − 2clα

∣∣

+ c · sup
x∈(0,x4)

{
x−α · [2ckxα− 3

2 + αxα−1]2 · e− 4ck√
x
}

(6.18)

holds. Then writing β := 4ck, we again have β
2 xα−1 + αxα− 1

2 ≥ 0 in (0, x4). Hence,
using that (6.1) implies that

u′(x) − 1√
x

≥ −k − l
√

x for all x ∈ (0, x0),

from (6.9) we obtain

E v ≥ εe
− 4ck√

β ·
{

β2

4
xα−1 +

[(
α − 3

2

)
β

2
+ αβ

2
− aβ

2

]
· xα− 1

2

+ [
α(α − 1) − aα − b

] · xα + 2c · (−k − l
√

x) ·
[
β

2
xα−1 + αxα− 1

2

]

− ε0c ·
[
β

2
xα− 3

2 + αxα−1
]2

· e− β√
x

}
in (0, x4).

Since β = 4ck, this reduces to

E v ≥ εe
− 4ck√

x · xα ·
{

2ck(α − 3
2 − a − 2cl)√

x
+ α(α − 1) − aα − b − 2clα

− ε0cx
−α · [2ckxα− 3

2 + αxα−1]2 · e− 4ck√
x

}
in (0, x4),

and hence (6.18) asserts (6.16). �

By means of Proposition 2.2, we can now infer the existence of infinitely many
classes of continua of local solutions to (1.1), (1.2). Here we shall strongly rely on
the fact that the numbers α in Lemmas 6.3 and 6.4 can be chosen in such a way that
the functions v and v defined in (6.11) and (6.15) are ordered appropriately.

Proposition 6.5 Suppose that for some x0 > 0, u is a solution of (1.1), (1.2) in (0, x0)

satisfying (6.1) with some l > 0. Then for all α ∈ (−∞, 3
2 + a − 2cl) and α ∈ ( 3

2 +
a + 2cl,∞) there exists x̂0 ∈ (0, x0) such that given ε ∈ (0,1) and any û0 satisfying

û0 ∈ (
u(x) − εxαe

− 4ck√
x , u(x) − εxαe

− 4ck√
x
)

at x = x̂0,

(1.1), (1.2) possesses a solution û on (0, x̂0) fulfilling

u(x) − εxαe
− 4ck√

x ≤ û(x) ≤ u(x) − εxαe
− 4ck√

x for all x ∈ (0, x̂0) (6.19)

as well as û(̂x0) = û0.
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Proof We invoke Lemmas 6.3 and 6.4 with ε0 := 1 to obtain x3 ∈ (0, x0) and x4 ∈
(0, x0) such that for any ε ∈ (0,1), the functions v and v defined by v(x) := u(x) −
εxαe

− 4ck√
x , x ∈ (0, x3), and v(x) := u(x) − εxαe

− 4ck√
x , x ∈ (0, x4), have the properties

E v < 0 on (0, x3) and E v > 0 on (0, x4). Writing x̂0 := min{1, x3, x4}, we moreover
see using α < α that v < v throughout (0, x̂0). Therefore the claim results upon an
application of Proposition 2.2(i). �
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