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Abstract

We consider the chemotaxis system

{

ut = ∆u−∇ ·
(

u
v
∇v

)

,

vt = ∆v − uv,

as originally introduced in 1971 by Keller and Segel in the second of their seminal works. This
system constitutes a prototypical model for taxis-driven pattern formation and front propagation
in various biological context such as tumor angiogenesis, but in the higher-dimensional context any
global existence theory for large-data solutions is yet lacking.

In the present work it is shown that in bounded planar domains Ω with smooth boundary, for all
reasonably regular initial data u0 ≥ 0 and v0 > 0, the corresponding Neumann initial-boundary
value problem possesses a global generalized solution. Thus particularly addressing arbitrarily
large initial data, this goes beyond previously gained results asserting global existence of solutions
only in spatial one-dimensional problems, or under certain smallness conditions on the initial data.
The derivation of this result is based on a priori estimates for the quantities ∇ ln(u + 1) and ∇v
in spatio-temporal L2 spaces, where further boundedness and compactness properties are derived
from the former by relying on the planar spatial setting in using an associated Moser-Trudinger
inequality.

Furthermore, some further boundedness and relaxation propeties are derived, inter alia indicating
that for any such solution we have v(·, t) → 0 in Lp(Ω) as t→ ∞ for all finite p > 1, and that in an
appropriate generalized sense the quantities u and ∇ ln v eventually enter bounded sets in Lp(Ω)
and L2(Ω), respectively, with diameters only determined by the total population size

∫

Ω
u0.

Finally, some numerical experiments illustrate the analytically obtained results.
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1 Introduction

The Keller-Segel system with singular sensitivity and signal consumption. The theoret-
ical understanding of taxis-driven spontaneous emergence of spatial structures in biological systems
has attracted great interest in the past decades. In their seminal works ([19], [20]), Keller and Segel
achieved a breakthrough in the mathematical modeling by proposing two-component cross-diffusive
parabolic systems for the description of such processes in two types of situations: The first of these is
characterized by the ability of individuals to actively secrete a chemoattractive signal, as present in
numerous types of cell populations, with the prototypical case of starving Dictyostelium discoideum
colonies forming the probably most prevalent representative. The correspondingly obtained PDE
model, widely referred to as the classical Keller-Segel system, has been studied intensely in the mathe-
matical literature, and thereby substantial knowledge could be achieved, especially with regard to the
occurrence of blow-up as a mathematical counterpart of aggregation processes revealed by experiments
(cf. the surveys [15], [14] and [2], for instance).

Contrary to this, in the second biological framework addressed by Keller and Segel the considered
individual cells are yet much more primitive in that they merely follow a chemical cue which they are
unable to produce, but which they rather consume as a nutrient, and which they thus nevertheless
influence in their concentration. As indicated by striking experimental evidence, even such simple
situations may support the onset of structures in that sharp fronts may spontaneously develop from
originally almost homogeneously distributed populations, e.g. of Escherichia coli ([1]). In order to
capture such phenomena theoretically, Keller and Segel proposed the system

{

ut = ∆u− χ∇ · (u
v
∇v),

vt = ∆v − uv,
(1.1)

with χ > 0, for the unknown cell density u = u(x, t) and signal concentration v = v(x, t), where the
second equation models consumption of the signal upon contact with cells, and where in the first equa-
tion it is assumed that the chemotactic stimulus is perceived in accordance with the Weber-Fechner
law, thus requiring the chemotactic sensitivity S(u, v) := χu

v
to be chosen proportional to the recipro-

cal signal density. Indeed, the ability of this particular type of absorption-taxis interplay to generate
wave-like solution behavior, as discussed already in [20], formed a motivation for several analytical
studies on the existence and stability properties of traveling wave solutions to (1.1) ([17], [26], [27]),
and also to some closely related systems ([35], [30], [32]). In fact, the biological importance of sin-
gular chemotactic sensitivities as in (1.1), apparently of substantial mathematical relevance to the
occurrence of such wave-like behavior, has been further underlined independently in more thorough
modeling approaches ([33], [23], [18], cf. also the survey [14]), also in more complex biological frame-
works such as especially in tumor angiogenesis ([36], [24]), but also e.g. in taxis-driven morphogen
transport ([5]).

The challenges of proving global existence in (1.1). Beyond the detection of solutions with
particular wave-like structures, however, only little seems known with regard to a rigorous mathemat-
ical theory of global existence and qualitative behavior of solutions to (1.1) emanating from general
initial data. This may be viewed as reflecting the circumstance that on the one hand, it should
be expected that the absorption mechanism in the second equation in (1.1) will force the solution
component v to attain small values in a significant part of an associated space-time region, whereas
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on the other hand the destabilizing cross-diffusive action expressed in the first equation in (1.1) is
significantly enhanced precisely at points where this concentration v is small. Accordingly, up to now
a comprehensive existence theory apparently is available only in the spatially one-dimensional case
where results on global existence for appropriate initial-boundary value problems for (1.1) with widely
arbitrary initial data have been derived in [39] and [28]. As for higher-dimensional settings, the only
result we are aware of has recently been obtained in [42], where the Cauchy problem for (1.1) in R

n

has been addressed for n ∈ {2, 3}, and where under appropriate smallness conditions on the initial
data the existence of globally defined classical solutions has been established. Even in the simplified
variant of (1.1) obtained on replacing the second equation therein by the ODE vt = −uv, global
existence results seem restricted to one-dimensional cases so far, whereas corresponding statements in
higher-dimensional situations have been derived only under suitable smallness conditions on the data
([48], [25]).

In contrast to this, in the related chemotaxis system

{

ut = ∆u− χ∇ · (u
v
∇v),

vt = ∆v − v + u
(1.2)

the signal production mechanism expressed in the second equation is known to inhibit an evolution of
v toward small values in such an effective manner that global existence of bounded smooth solutions
can be achieved for reasonably smooth but arbitrarily large data in initial-boundary value problems in

bounded n-dimensional domains under the assumption that χ <
√

2
n
([3], [44]), with a slight relaxation

of this condition recently achieved when n = 2 ([22]). Within larger ranges of χ, at least weak solutions
exist globally ([44]), where in the two-dimensional radially symmetric case certain generalized solutions
can be constructed actually without any restriction on the size of χ ([37]).

On the other hand, the signal absorption mechanism of the type considered in (1.1), inter alia through
its evident consequence on boundedness of v throughout evolution, is known to have a significant
smoothing effect in related chemotaxis systems with regular sensitivity functions. For instance, the
Neumann initial-boundary value problem for

{

ut = ∆u−∇ · (u∇v),
vt = ∆v − uv,

(1.3)

when posed in bounded domains in R
n with arbitrarily large initial data (u0, v0), possesses global

bounded classical solutions in the case n = 2 and global weak solutions if n = 3 ([40]), whereas if
n ≥ 3 then global bounded classical solutions can be found whenever ‖v0‖L∞(Ω) is suitably small
([38]). In comparison with known results on the occurrence of exploding solutions in the classical
Keller-Segel system containing vt = ∆v − v + u as its second equation ([13], [45], [31]), this indeed
underlines that signal absorption in fact may entirely suppress blow-up, at least in presence of non-
singular chemotactic sensitivities.

Main results. It is the goal of the present paper to address the questions of global solvability
and large time behavior in the two-dimensional version of (1.1) for arbitrarily large initial data in
an appropriate framework. In order to accomplish this, it will be necessary to develop an approach
which is entirely different from those used in the precedent literature: In fact, the derivation of the
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small-data global existence results in e.g. the works [42], [48] and [25] exclusively follow the intuitively
nearby strategy to show that if u and ∇ ln v are appropriately small at the initial time, then the
smoothing effect of diffusion will overbalance the destabilizing action of cross-diffusion throughout
evolution, because in (1.1) the latter can then be viewed as an essentially quadratic and hence small
deviation of a linear parabolic problem. Similar perturbation arguments have been used in detecting
global existence and essentially diffusive behavior of small-data solutions in various related chemotaxis
systems ([38], [6], [43]), but as evident from complementary results on the occurrence of explosions
e.g. in the classical Keller-Segel system, such a reasoning may blend out possibly singular behavior of
large-data solutions, and thereby be insufficient to unveil the global dynamics.

As described in more detail below, contrary to these previous approaches our analysis will hence be
based on a priori information on regularity properties of solutions which rely on very mild assumptions
on the initial constellation only, and particularly allow for large data. To make this more precise, let
us consider the initial-boundary value problem



















ut = ∆u−∇ · (u
v
∇v), x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.4)

in a bounded domain Ω ⊂ R
2, where for convenience in presentation the initial data in (1.4) are

supposed to satisfy
{

u0 ∈ C0(Ω̄) with u0 ≥ 0 in Ω and u0 6≡ 0 as well as

v0 ∈W 1,∞(Ω) with v0 > 0 in Ω̄.
(1.5)

Under these assumptions, we shall firstly see that actually no further requirements on the size of the
data are necessary for the construction of certain globally defined generalized solutions:

Theorem 1.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Then for all u0 and v0

satisfying (1.5), the problem (1.4) possesses at least one global generalized solution in the sense of
Definition 2.1 below.

According to the respective requirements (2.1), (2.2 and (2.3) made in Definition 2.1, the regularity
properties of such generalized solutions may be rather poor. We therefore believe that within the
concept pursued here, solutions will in general not be unique; however, an in-depth analysis of this
mathematically delicate issue would significantly go beyond the scope of the present work, so that
we have to leave a detailed discussion of the uniqueness question as an interesting topic for future
research.

After all, all of the solutions obtained in Theorem 1.1 enjoy further boundedness and relaxation
properties:

Theorem 1.2 Suppose that Ω ⊂ R
2 is a bounded domain with smooth boundary. Then given any

m > 0 and p > 1 one can find K1(m, p) > 0 and K2(m) > 0 with the property that for each M > 0
there exist T1(m,M) > 0 and T2(M) > 0 such that whenever u0 and v0 satisfy (1.5) with

∫

Ω
u0 ≤ m and −

∫

Ω
ln
( v0

‖v0‖L∞(Ω)

)

≤M, (1.6)
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then the global generalized solution (u, v) of (1.4) from Theorem 1.1 satisfies

1

T

∫ T

0
ln

{

1

|Ω|

∫

Ω

(

u(x, s) + 1
)p

dx

}

dt ≤ K1(m, p) for all T ≥ T1(m,M) (1.7)

and
1

T

∫ T

0

∫

Ω

|∇v|2
v2

≤ K2(m) for all T ≥ T2(M). (1.8)

In particular, (1.7) firstly implies that given any finite p > 1, the function u(·, t) belongs to Lp(Ω) for
a.e. t > 0. But beyond this, from (1.7) it also follows that in the generalized sense of temporal averages
appearing therein, for any p > 1 the first component u of each individual solution will eventually enter
a bounded set in Lp(Ω), the diameter of which depends only on the size of the total mass

∫

Ω u0 of cells
as a biologically relevant quantity. Likewise, (1.8) may be interpreted as reflecting a similar property
of the signal gradient ∇ ln v in (1.4), expressing eventual absorption of the latter in a ball in L2(Ω),
with radius again determined by

∫

Ω u0 only.

Finally, the solution component v always approaches the steady-state limit zero asymptotically, re-
gardless of the size of the initial data:

Theorem 1.3 Assume that Ω ⊂ R
2 is a bounded domain with smooth boundary, and that (1.5) holds.

Then the global generalized solution (u, v) of (1.4) from Theorem 1.1 has the additional properties that

v ∈ L∞(Ω× (0,∞)) as well as v ∈ C0
w⋆([0,∞);L∞(Ω)), (1.9)

where the latter is to be understood in the sense that possibly after redefinition on a null set of times,
v is continuous on [0,∞) as an L∞(Ω)-valued function with respect to the weak-⋆ topology.
Moreover,

v(·, t) ⋆
⇀ 0 in L∞(Ω) as t→ ∞ (1.10)

and
v(·, t) → 0 in Lp(Ω) as t→ ∞ (1.11)

for any p ∈ [1,∞).

Main ideas. As compared to previous studies on (1.1), the main novelty in our approach appears
to consist in the circumstance that at its core it resorts to the apparently only evident global quasi-
dissipative structure inherent to (1.4), as given by the identity

d

dt

∫

Ω

(

− ln v
)

+

∫

Ω

|∇v|2
v2

= m :=

∫

Ω
u0, (1.12)

which can formally be obtained on testing the second equation in (1.4) by 1
v
, and using the mass

conservation property d
dt

∫

Ω u = 0. In fact, a corresponding variant thereof that can rigorously be
derived at the level of solutions (uε, vε) to suitably regularized problems (see (2.10)) can be used to
establish the inequality

∫ t

0

∫

Ω

|∇u|2
(u+ 1)2

≤ −
∫

Ω
ln
( v0

‖v0‖L∞(Ω)

)

+ 2m+mt, (1.13)
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by using 1
u+1 as a test function in the first equation of (1.4) (Lemma 2.3 and Lemma 2.4). Together

with suitable time regularity properties thereby implied (Lemma 2.5), this will allow for passing to
limits through an appropriate sequence ε = εk ց 0, and for the identification of corresponding limit
functions u and v as potential candidates for a generalized solution (Lemma 2.6). The verification of
the fact that this limit indeed satisfies (1.4) in the claimed generalized sense proceeds in several steps:
Firstly, by means of the Moser-Trudinger inequality it can be shown that the estimate associated with
(1.13) entails a bound for the corresponding quantity appearing on the left of (1.7) (Lemma 2.7),
which in conjunction with the Vitali convergence theorem can be seen to imply strong convergence of
the respective first solution components in L1(Ω× (0, T )) for arbitrary T > 0 (Lemma 2.8). This will
enable us to conclude in Lemma 2.9 that indeed the initial-boundary value problem for the second
equation in (1.4) is satisfied by (u, v) in the natural weak sense specified in Definition 2.1. Thereupon,
an appropriate testing procedure applied to this weak identity shows that the accordingly defined
function w satisfies (1.12) at least in the sense of an inequality, with ”=” replaced by ”≥”, for al-
most every t > 0 (Lemma 2.10). Hence implying strong convergence of the corresponding sequence
(∇wεk)k∈N in L2(Ω × (0, T )) for all T > 0 (Corollary 2.11), this will enable us to show that also the
first sub-problem in (1.4) is satisfied in a suitably generalized sense, and thus to complete the proof
of Theorem 1.1.

Mainly based on the estimates collected in the course of our analysis, the boundedness and regularity
properties from Theorem 1.2 and Theorem 1.3 will thereafter be derived in Section 3 and Section 4,
respectively. Finally, Section 5 contains some numerical simulations illustrating the results previously
gained, as well as possible types of solution behavior.

As can already be conjectured from the above outline, by relying on very basic structural properties of
the system our strategy of constructing solutions enjoys a certain robustness with respect to variations
in the model. In particular, the main steps of our analysis readily extend to more realistic models
derived from (1.4) on accounting for couplings to further components and mechanisms such as hapto-
tactic interactions, for instance. Rather than providing a corresponding result for the greatest possible
class of systems, however, for reasons of clarity in presentation the present work aims at concretizing
our apparently new method of analyzing the interaction of singular chemotaxis with signal absorption
to the prototypical model (1.4).

2 Construction of global generalized solutions

2.1 A generalized solution concept and a family of approximate solutions

Let us first specify the particular notion of solution that will be pursued in the sequel, guided by the
motivation to employ a concept which is weak enough so as to be compatible with the rather weak a
priori information on solution regularity to be gained below. To this end, we will follow an approach
partially addressing suitably transformed versions of the functions in question, which may be viewed as
a far relative of the well-known concept of renormalized solutions ([8]), and which resembles concepts
which have previously been used in the context of certain types of chemotaxis problems ([46], [47]).

Definition 2.1 Assume that u0 and v0 satisfy (1.5). Then a pair (u, v) of functions
{

u ∈ L1
loc(Ω̄× [0,∞)),

v ∈ L∞
loc(Ω̄× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω)),
(2.1)
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with
u ≥ 0 a.e. in Ω× (0,∞) and v > 0 a.e. in Ω× (0,∞) (2.2)

as well as
∇ ln(u+ 1) ∈ L2

loc(Ω̄× [0,∞)) and ∇ ln v ∈ L2
loc(Ω̄× [0,∞)), (2.3)

will be called a global generalized solution of (1.4) if u has the mass conservation property
∫

Ω
u(x, t)dx =

∫

Ω
u0(x) for a.e. t > 0, (2.4)

if the inequality

−
∫ ∞

0

∫

Ω
ln(u+ 1)ϕt −

∫

Ω
ln(u0 + 1)ϕ(·, 0) ≥

∫ ∞

0

∫

Ω
|∇ ln(u+ 1)|2ϕ−

∫ ∞

0

∫

Ω
∇ ln(u+ 1) · ∇ϕ

−
∫ ∞

0

∫

Ω

u

u+ 1

(

∇ ln(u+ 1) · ∇ ln v
)

ϕ

+

∫ ∞

0

∫

Ω

u

u+ 1
∇ ln v · ∇ϕ (2.5)

holds for each nonnegative ϕ ∈ C∞
0 (Ω̄× [0,∞)), and if moreover the identity

∫ ∞

0

∫

Ω
vϕt +

∫

Ω
v0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇v · ∇ϕ+

∫ ∞

0

∫

Ω
uvϕ (2.6)

is valid for any ϕ ∈ L∞(Ω× (0,∞))∩L2((0,∞);W 1,2(Ω)) having compact support in Ω̄× [0,∞) with
ϕt ∈ L2(Ω× (0,∞)).

Remark. i) Using that 0 ≤ ln(ξ + 1) ≤ ξ for all ξ ≥ 0, the requirements in (2.1), (2.2) and (2.3)
can easily be verified to warrant that each of the summands in (2.5) and (2.6) is well-defined.

ii) Along the lines demonstrated in [46, Lemma 2.1], in conjunction with the mass conservation
law (2.4), the weak supersolution property (2.5) of u with respect to the first equation in (1.4) can
be seen to be actually a genuine generalization of a respective solution property; that is, if (u, v) ∈
(C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)))2 is such that u ≥ 0 and v > 0 in Ω̄× [0,∞) and such that (u, v)
is a generalized solution of (1.4) in the above sense, then (u, v) also solves (1.4) in the classical sense.

In order to construct such generalized solutions by means of an approximation procedure, throughout
the sequel we fix a nonincreasing cut-off function ρ ∈ C∞([0,∞)) fulfilling ρ ≡ 1 in [0, 1] and ρ ≡ 0 in
[2,∞), and define fε ∈ C∞([0,∞)) by letting

fε(s) :=

∫ s

0
ρ(εσ)dσ, s ≥ 0, (2.7)

for ε ∈ (0, 1). Then for any such ε, the properties of ρ imply that fε evidently satisfies

fε(0) = 0 and 0 ≤ f ′ε ≤ 1 on [0,∞) (2.8)

as well as

fε(s) = s for all s ∈
[

0,
1

ε

]

and f ′ε(s) = 0 for all s ≥ 2

ε
, (2.9)
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and moreover we have

fε(s) ր s and f ′ε(s) ր 1 as εց 0

for each s ≥ 0.
Now as a consequence of (2.9), each of the approximate problems























uεt = ∆uε −∇ · (uεf
′
ε(uε)
vε

∇vε), x ∈ Ω, t > 0,

vεt = ∆vε − fε(uε)vε, x ∈ Ω, t > 0,
∂uε
∂ν

= ∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), vε(x, 0) = v0(x), x ∈ Ω.

(2.10)

is in fact globally solvable:

Lemma 2.2 Assume that (1.5) holds, and let ε ∈ (0, 1). Then (2.10) possesses a global classical
solution (uε, vε), for each ϑ > 2 uniquely determined by the inclusions

{

uε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

vε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞
loc([0,∞);W 1,ϑ(Ω)),

which is such that uε > 0 in Ω̄× (0,∞) and

∫

Ω
uε(x, t)dx =

∫

Ω
u0(x)dx for all t > 0 (2.11)

as well as
0 < vε ≤ ‖v0‖L∞(Ω) in Ω̄× [0,∞). (2.12)

Proof. By straightforward adaptation of well-known arguments, as detailed e.g. in [16] and [10]
for closely related situations, it can be verified that for each ε ∈ (0, 1) there exist Tmax,ε ∈ (0,∞] and
a unique couple of functions

{

uε ∈ C0(Ω̄× [0, Tmax,ε)) ∩ C2,1(Ω̄× (0, Tmax,ε)),

vε ∈ C0(Ω̄× [0, Tmax,ε)) ∩ C2,1(Ω̄× (0, Tmax,ε)) ∩ L∞
loc([0, Tmax,ε);W

1,ϑ(Ω)),

with uε > 0 in Ω̄× (0, Tmax,ε) and vε > 0 in Ω̄× [0, Tmax,ε), such that (uε, vε) is a classical solution of
(2.10) in Ω× (0, Tmax,ε), and such that

either Tmax,ε = ∞, or lim sup
tրTmax,ε

(

‖uε(·, t)‖L∞(Ω)+‖vε(·, t)‖W 1,ϑ(Ω)

)

= ∞, or lim inf
tրTmax,ε

inf
x∈Ω

vε(x, t) = 0.

(2.13)
Moreover, an integration of the first equation in (2.10) over x ∈ Ω shows that this solution enjoys the
mass conservation property

d

dt

∫

Ω
uε = 0 for all t ∈ (0, Tmax,ε),

8



whereas from the nonnegativity of fε and the maximum principle it follows that

‖vε(·, t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω) in Ω̄× (0, Tmax,ε).

To prove the lemma, we thus only need to verify that for any fixed ε ∈ (0, 1), the corresponding
maximal existence time Tmax,ε cannot be finite, which amounts to showing that in (2.13), neither the
second nor the third alternative can occur under the contrary hypothesis that Tmax,ε <∞. But since
supp f ′ε ⊂ [0, 2

ε
] by (2.9), an application of the maximum principle to the first equation in (2.10) shows

that

uε(x, t) ≤ c1(ε) := max
{

‖u0‖L∞(Ω) ,
2

ε

}

for all x ∈ Ω and t ∈ (0, Tmax,ε). (2.14)

Together with (2.12) and an argument from parabolic regularity theory (see e.g.[16, Lemma 4.1]),
this firstly ensures that for each τ ∈ (0, Tmax,ε) the number supt∈(τ,Tmax,ε) ‖vε(·, t)‖W 1,ϑ(Ω) is finite.
Secondly, by comparison in the second equation in (2.10) we moreover obtain from (2.14) that

vε(x, t) ≥
{

min
y∈Ω̄

v0(y)
}

· e−c1(ε)t for all x ∈ Ω and t ∈ (0, Tmax,ε),

which also excludes the rightmost alternative in (2.13) and thereby completes the proof. �

Now following a standard procedure of changing variables in (1.4), taking uε and vε from Lemma 2.2
we substitute

wε(x, t) := − ln
( vε(x, t)

‖v0‖L∞(Ω)

)

, (x, t) ∈ Ω̄× [0,∞), ε ∈ (0, 1), (2.15)

and thus infer from the latter that each of the problems























uεt = ∆uε +∇ · (uεf ′ε(uε)∇wε), x ∈ Ω, t > 0,

wεt = ∆wε − |∇wε|2 + fε(uε), x ∈ Ω, t > 0,
∂uε
∂ν

= ∂wε

∂ν
= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), wε(x, 0) = w0(x) := − ln
(

v0(x)
‖v0‖L∞(Ω)

)

, x ∈ Ω,

(2.16)

possesses a global classical solution (uε, wε) for which both uε and wε are nonnegative.

2.2 A priori estimates. Preliminary compactness properties of ((uε, wε))ε∈(0,1)

We next collect some ε-independent a priori estimates for the solutions of (2.16), where in view of the
requirements from Definition 2.1 it will be indispensable to obtain appropriate bounds especially for
the respective spatial gradients. As for the second solution component, this can easily be achieved by
combining the presence of the dissipative term |∇wε|2 in the second equation of (2.16) with the mass
control expressed in (2.11).

Lemma 2.3 For all ε ∈ (0, 1), we have

∫

Ω
wε(·, t) +

∫ t

0

∫

Ω
|∇wε|2 ≤

∫

Ω
w0 +mt for all t > 0, (2.17)
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where m :=
∫

Ω u0. In particular,

‖wε(·, t)‖L1(Ω) ≤
∫

Ω
w0 +mt for all t > 0 (2.18)

and
∫ t

0

∫

Ω
|∇wε|2 ≤

∫

Ω
w0 +mt for all t > 0, (2.19)

where m :=
∫

Ω u0.

Proof. An integration of the second equation in (2.16) over Ω shows that

d

dt

∫

Ω
wε = −

∫

Ω
|∇wε|2 +

∫

Ω
fε(uε) for all t > 0.

Since
∫

Ω fε(uε(·, t)) ≤
∫

Ω uε(·, t) = m for all t > 0 by (2.7) and (2.11), this immediately yields (2.17),
whereupon thanks to the nonnegativity of wε, both (2.18) and (2.19) are evident consequences thereof.
�

In comparison to this, deriving bounds for ∇uε seems more delicate. In view of the sparse information
available so far, it seems adequate to therefore resort to estimating ∇ ln(uε+1) instead, thus following
approaches in related situations characterized by a similar lack of evident regularity information ([46],
[47]).

Lemma 2.4 For each ε ∈ (0, 1), we have

∫ t

0

∫

Ω

|∇uε|2
(uε + 1)2

≤
∫

Ω
w0 + 2m+mt for all t > 0, (2.20)

where m :=
∫

Ω u0.

Proof. We multiply the first equation in (2.16) by 1
uε+1 and integrate by parts to find that

d

dt

∫

Ω
ln(uε + 1) =

∫

Ω

uεt

uε + 1

=

∫

Ω

1

uε + 1
∆uε +

∫

Ω

1

uε + 1
∇ ·

(

uεf
′
ε(uε)∇wε

)

=

∫

Ω

|∇uε|2
(uε + 1)2

+

∫

Ω

uεf
′
ε(uε)

(uε + 1)2
∇uε · ∇wε for all t > 0, (2.21)

and using Young’s inequality we see that here

∣

∣

∣

∣

∫

Ω

uεf
′
ε(uε)

(uε + 1)2
∇uε · ∇wε

∣

∣

∣

∣

≤ 1

2

∫

Ω

|∇uε|2
(uε + 1)2

+
1

2

∫

Ω

u2εf
′2
ε (uε)

(uε + 1)2
|∇wε|2

≤ 1

2

∫

Ω

|∇uε|2
(uε + 1)2

+
1

2

∫

Ω
|∇wε|2 for all t > 0,

10



because f ′2ε ≤ 1. As 0 ≤ ln(uε + 1) ≤ uε, on integration in time we thus obtain from (2.21) that

1

2

∫ t

0

∫

Ω

|∇uε|2
(uε + 1)2

≤ 1

2

∫ t

0

∫

Ω
|∇wε|2 +

∫

Ω
ln
(

uε(·, t) + 1
)

−
∫

Ω
ln(u0 + 1)

≤ 1

2

∫ t

0

∫

Ω
|∇wε|2 +

∫

Ω
uε(·, t)

≤ 1

2

∫ t

0

∫

Ω
|∇wε|2 +m for all t > 0

according to (2.11). An application of Lemma 2.3 therefore yields (2.20). �

Inter alia to eventually achieve suitable pointwise convergence properties through applications of the
Aubin-Lions lemma, let us state some straightforward consequences of the above estimates for the
regularity of the solutions to (2.16) with respect to the time variable. Independently, we shall derive
the corresponding inequality (2.24) for the component vε which will become relevant in the proof of
the continuity property in (1.9).

Lemma 2.5 For all T > 0 there exists C(T ) > 0 such that for any ε ∈ (0, 1),
∫ T

0

∥

∥

∥
∂t ln (uε(·, t) + 1)

∥

∥

∥

(W 2,2(Ω))⋆
dt ≤ C(T ) (2.22)

and
∫ T

0
‖wεt(·, t)‖(W 2,2(Ω))⋆dt ≤ C(T ). (2.23)

Moreover, for each p > 2 and any T > 0 one can find C(p, T ) > 0 fulfilling
∫ T

0
‖vεt(·, t)‖2(W 1,p(Ω))⋆dt ≤ C(p, T ) (2.24)

for each ε ∈ (0, 1).

Proof. On testing the first equation in (2.16) by ψ
uε(·,t)+1 for fixed t > 0 and arbitrary ψ ∈ C∞(Ω̄),

we obtain
∫

Ω
∂t ln(uε(·, t) + 1) · ψ = −

∫

Ω

1

uε + 1
∇uε · ∇ψ +

∫

Ω

1

(uε + 1)2
|∇uε|2ψ

−
∫

Ω

uεf
′
ε(uε)

uε + 1
∇wε · ∇ψ

+

∫

Ω

uεf
′
ε(uε)

(uε + 1)2
(∇uε · ∇wε)ψ,

which by several applications of the Cauchy-Schwarz inequality and Young’s inequality implies that
∣

∣

∣

∣

∫

Ω
∂t ln(uε(·, t) + 1) · ψ

∣

∣

∣

∣

≤
{

(
∫

Ω

|∇uε|2
(uε + 1)2

)
1
2

+

∫

Ω

|∇uε|2
(uε + 1)2

+

(
∫

Ω
|∇wε|2

)
1
2

+

(
∫

Ω

|∇uε|2
(uε + 1)2

)
1
2

·
(
∫

Ω
|∇wε|2

)
1
2

}

·
{

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω)

}

≤
{

2

∫

Ω

|∇uε|2
(uε + 1)2

+

∫

Ω
|∇wε|2 + 1

}

·
{

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω)

}
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for all ψ ∈ C∞(Ω̄), where again we have used that 0 ≤ f ′ε ≤ 1 by (2.7). Since in view of the fact that
W 2,2(Ω) →֒ L∞(Ω) we can fix c1 > 0 such that ‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω) ≤ c1‖ψ‖W 2,2(Ω) for any such
ψ, this entails that

∥

∥

∥
∂t ln(uε(·, t) + 1)

∥

∥

∥

(W 2,2(Ω))⋆
≤ c1 ·

{

2

∫

Ω

|∇uε|2
(uε + 1)2

+

∫

Ω
|∇wε|2 + 1

}

for all t > 0,

so that after an integration in time, thanks to Lemma 2.4 and Lemma 2.3 this implies (2.22).

Similarly, for ψ ∈ C∞(Ω̄) and t > 0 we obtain from the second equation in (2.16) together with (2.8)
and (2.11) that

∣

∣

∣

∣

∫

Ω
wεt(·, t)ψdx

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Ω
∇wε · ∇ψ −

∫

Ω
|∇wε|2ψ +

∫

Ω
fε(uε)ψ

∣

∣

∣

∣

≤
{

{
∫

Ω
|∇wε|2

}
1
2

+

∫

Ω
|∇wε|2 +

∫

Ω
fε(uε)

}

·
{

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω)

}

≤
{

2

∫

Ω
|∇wε|2 +

1

4
+

∫

Ω
u0

}

· c1‖ψ‖W 2,2(Ω).

Therefore,

‖wεt(·, t)‖(W 2,2(Ω))⋆ ≤ c1 ·
{

2

∫

Ω
|∇wε|2 +

1

4
+

∫

Ω
u0

}

for all t > 0,

from which (2.23) readily follows.

Finally, for fixed p > 2 we have W 1,p(Ω) →֒ L∞(Ω), which allows us to pick c2 > 0 such that for all
ψ ∈ C∞(Ω̄) we have ‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω) ≤ c2‖ψ‖W 1,p(Ω) and hence

∣

∣

∣

∣

∫

Ω
vεt(·, t)ψdx

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Ω
∇vε · ∇ψ −

∫

Ω
fε(uε)vεψ

∣

∣

∣

∣

≤
{

{
∫

Ω
|∇vε|2

}
1
2

+

∫

Ω
fε(uε)vε

}

·
{

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω)

}

≤
{

{
∫

Ω
|∇vε|2

}
1
2

+m‖v0‖L∞(Ω)

}

· c2‖ψ‖W 1,p(Ω)

by (2.7), (2.11) and (2.12). As a consequence,

‖vεt(·, t)‖2(W 1,p(Ω))⋆ ≤ 2c22

{
∫

Ω
|∇vε|2 +m2‖v0‖2L∞(Ω)

}

for all t > 0,

so that also (2.24) results from Lemma 2.3, because |∇vε| ≤ |∇wε| · ‖v0‖L∞(Ω) by (2.12). �

Now a straightforward reasoning involving the extraction of suitable sequences, based on the last
three lemmata and standard compactness arguments, readily leads to the following result identifying
a candidate (u, v) for a generalized solution, as well as some first approximation properties thereof
with respect to the solutions of (2.10).

12



Lemma 2.6 There exist nonnegative functions u and w defined on Ω× (0,∞) as well as a sequence
(εk)k∈N ⊂ (0, 1) such that εk ց 0 as k → ∞, and such that as ε = εk ց 0,

uε → u a.e. in Ω× (0,∞), (2.25)

ln(uε + 1)⇀ ln(u+ 1) in L2
loc([0,∞);W 1,2(Ω)), (2.26)

wε → w in L1
loc(Ω̄× [0,∞)) and a.e. in Ω× (0,∞), (2.27)

wε ⇀ w in L2
loc([0,∞);W 1,2(Ω)) and (2.28)

wε(·, t) → w(·, t) in L1(Ω) for a.e. t > 0 (2.29)

as well as

vε → v in L1
loc(Ω̄× [0,∞)) and a.e. in Ω× (0,∞), (2.30)

vε
⋆
⇀ v in L∞(Ω× (0,∞)), (2.31)

vε ⇀ v in L2
loc([0,∞);W 1,2(Ω)), (2.32)

vε(·, t) → v(·, t) in L1(Ω) for a.e. t > 0 and (2.33)

vεt ⇀ vt in L2
loc([0,∞); (W 1,p(Ω))⋆) for all p > 2 (2.34)

with v := ‖v0‖L∞(Ω) · e−w. Moreover, the pair (u, v) has the properties (2.1), (2.2) and (2.3) in
Definition 2.1.

Proof. In view of Lemma 2.4, Lemma 2.3 and Lemma 2.5, the properties (2.25)-(2.29) can be
achieved on choosing an appropriate sequence by means of two straightforward applications of an
Aubin-Lions lemma ([41]). By nonnegativity of wε, (2.27), (2.28) and (2.29) thereafter imply (2.30),
(2.32) and (2.33), whereas (2.12) guarantees that on extraction of a suitable subsequence, also (2.31)
is valid. That finally also (2.34) can be achieved is a direct consequence of the estimate (2.24) in
Lemma 2.5.
Now the properties (2.2) and (2.3) immediately follow from (2.25), (2.30) and the finiteness of w a.e. in
Ω× (0,∞) as well as (2.26) and (2.28), while the second inclusion in (2.1) is obvious from (2.31) and
the first follows from Fatou’s lemma, which in conjunction with (2.11) implies that

∫ T

0

∫

Ω
u ≤ lim inf

ε=εkց0

∫ T

0

∫

Ω
uε ≤ mT

for all T > 0. �

2.3 Strong convergence of (uεk)k∈N in L1
loc(Ω̄× [0,∞)). Validity of (2.6)

Up to now, our knowledge on approximation of u by uε is essentially restricted to information on the
corresponding convergence properties of ln(uε+1), as described in Lemma 2.6. For adequately passing
to the limit in various expressions related to those appearing in (2.5) and (2.6) and also in the crucial
mass conservation law (2.4), however, it seems indispensable to derive some further compactness prop-
erties addressing the quantity uε itself in appropriate Lebesgue spaces. In the presently considered
spatially two-dimensional setting, we shall see that in fact strong precompactness of the sequence
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(uεk)k∈N in L1
loc(Ω̄ × [0,∞)) can be achieved by an argument based on exploiting (2.20) by means

of the Moser-Trudinger inequality, and a subsequent application of the Vitali convergence theorem.
A similar overall strategy has previously been applied in the different context of a chemotaxis-fluid
system ([47]).

For this purpose, we shall first derive from Lemma 2.4 the following inequality which will, indepen-
dently from our present purpose, moreover form the source of the relaxation property (1.7).

Lemma 2.7 For all p > 1 there exists Λ(p) > 0 such that whenever u0 and v0 satisfy (1.5), given
any ε ∈ (0, 1) we have

∫ t

0
ln

{

1

|Ω|

∫

Ω

(

uε(x, s) + 1
)p

dx

}

ds ≤ Λ(p) · (1+m)t+Λ(p) ·
{
∫

Ω
w0 +m

}

for all t > 0, (2.35)

where again m :=
∫

Ω u0.

Proof. According to the Moser-Trudinger inequality ([7]), we can find positive constats c1, c2 and
c3 such that

∫

Ω
eϕ ≤ c1 e

c2
∫
Ω |∇ϕ|2+c3

∫
Ω ϕ for all nonnegative ϕ ∈W 1,2(Ω).

Applying this to ϕ := p ln(uε(·, t) + 1) for fixed p > 1 and t > 0, we see that

1

|Ω|

∫

Ω

(

uε(·, t) + 1
)p

≤ c1

|Ω| · e
p2c2

∫
Ω

|∇uε|
2

(uε+1)2
+pc3

∫
Ω ln(uε+1)

for all t > 0,

so that since
∫

Ω
ln(uε + 1) ≤

∫

Ω
uε = m for all t > 0

by (2.11), we obtain that

ln

{

1

|Ω|

∫

Ω
(uε + 1)p

}

≤ ln
c1

|Ω| + p2c2

∫

Ω

|∇uε|2
(uε + 1)2

+ pc3m for all t > 0.

On integration in time using (2.20), we therefore conclude that for all t > 0,

∫ t

0
ln

{

1

|Ω|

∫

Ω

(

uε(·, s) + 1
)p

}

ds ≤
{

ln
c1

|Ω| + pc3m
}

· t+ p2c2

∫ t

0

∫

Ω

|∇uε|2
(uε + 1)2

≤
{

ln
c1

|Ω| + pc3m
}

· t+ p2c2 ·
{
∫

Ω
w0 + 2m+mt

}

which immediately yields (2.35) if we let Λ(p) := max{ln c1
|Ω| , 2p

2c2, pc3 + p2c2}, for instance. �

Now thanks to the Vitali convergence theorem, the desired strong precompactness property of the
particular sequence (uεk)k∈N can be derived from this in quite a straightforward manner.
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Lemma 2.8 Let u and (εk)k∈N ⊂ (0, 1) be as obtained in Lemma 2.6. Then

uε → u in L1
loc(Ω̄× [0,∞)) as ε = εk ց 0. (2.36)

In particular,
∫

Ω
u(·, t) =

∫

Ω
u0 for a.e. t > 0. (2.37)

Proof. This can be derived from Lemma 2.6 and Lemma 2.7 by means of the Vitali convergence
theorem. Since details on this have been given in [47, Lemma 4.2] for a closely related situation, we
may confine ourselves with sketching the main steps here.
We fix T > 0, and taking Λ := Λ(2) > 0 from Lemma 2.7 we abbreviate c1 := Λ · (1+m)T +Λ(

∫

Ωw0+
m), again with m :=

∫

Ω u0. Given η > 0, we can then pick Σ > 1 large enough and thereafter δ > 0
suitably small such that

mc1

ln Σ
|Ω|

<
η

2
and

√
ΣTδ <

η

2
. (2.38)

Then introducing the sets

S1(ε) :=

{

t ∈ (0, T )

∣

∣

∣

∣

∫

Ω
u2ε(·, t) ≤ Σ

}

and

S2(ε) :=

{

t ∈ (0, T )

∣

∣

∣

∣

∫

Ω
u2ε(·, t) > Σ

}

,

for ε ∈ (0, 1), we first use (2.35) to estimate

c1 ≥
∫

S2(ε)
ln

{

1

|Ω|

∫

Ω

(

uε(·, t) + 1
)2

}

dt ≥
∫

S2(ε)
ln

{

1

|Ω|

∫

Ω
u2ε(·, t)

}

dt ≥
∫

S2(ε)
ln

Σ

|Ω|

and hence

|S2(ε)| ≤
c1

ln Σ
|Ω|

for any such ε.
Therefore, given an arbitrary measurable E ⊂ Ω × (0, T ) such that |E| < δ, writing E(t) := {x ∈
Ω | (x, t) ∈ E} we may recall (2.11) and twice apply the Cauchy-Schwarz inequality to see that for
each ε ∈ (0, 1) we have

∫ ∫

E

uε ≤
∫

S1(ε)

∫

E(t)
uε(x, t)dxdt+

∫

S2(ε)

∫

E(t)
uε(x, t)dxdt

≤
∫

S1(ε)
|E(t)| 12

{
∫

Ω
u2ε(x, t)dx

}
1
2

dt+m|S2(ε)|

≤
√
Σ · |S1(ε)|

1
2

{
∫

S1(ε)
|E(t)|dt

}
1
2

+m|S2(ε)|

≤
√
Σ
√
T
√

|E|+m · c1

ln Σ
|Ω|
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≤
√
ΣTδ +m · c1

ln Σ
|Ω|

≤ η

2
+
η

2
= η

according to (2.38) and our assumption on the size of E. Since we already know from Lemma 2.6 that
uε → u a.e. in Ω× (0, T ) as ε = εk ց 0, along with the Vitali theorem this shows that in fact uε → u

in L1(Ω× (0, T )) and thereby establishes (2.36). The mass conservation property (2.37) is thereafter
an obvious consequence of (2.11) and (2.36). �

As a first consequence thereof, we can pass to the limit in the weak formulation of the second equation
in (2.10), thereby showing that v indeed is a weak solution of the respective sub-problem of (1.4), as
required in Definition 2.1.

Lemma 2.9 The functions u and v obtained in Lemma 2.6 satisfy the identity (2.6) in Definition 2.1
for all test functions from the class indicated there.

Proof. For each ϕ from the class in question, in light of Lemma 2.8 combined with (2.31) we know
that if (εk)k∈N ⊂ (0, 1) is as in Lemma 2.6 then

∫ ∞

0

∫

Ω
fε(uε)vεϕ→

∫ ∞

0

∫

Ω
uvϕ as ε = εk ց 0, (2.39)

because the definition of fε warrants that for each T > 0 we have

∫ T

0

∫

Ω
|fε(uε)− u| ≤

∫ T

0

∫

Ω
|fε(uε)− fε(u)|+

∫ T

0

∫

Ω
|fε(u)− u|

≤
∫ T

0

∫

Ω
|uε − u|+

∫ T

0

∫

{u(·,t)≥ 1
ε
}
|fε(u)− u|

≤
∫ T

0

∫

Ω
|uε − u|+ 2

∫ T

0

∫

{u(·,t)≥ 1
ε
}
u

→ 0 as ε = εk ց 0

due to Lemma 2.8 and the dominated convergence theorem. Thanks to (2.39) as well as (2.30) and
(2.32), it readily follows on taking ε = εk ց 0 in each of the integrals making up the corresponding
weak formulation of the respective initial-boundary value subproblem of (2.10) satisfied by vε that
indeed (2.6) is satisfied. �

2.4 Strong convergence of (∇wεk)k∈N in L2
loc(Ω̄× [0,∞)). Proof of Theorem 1.1

In order to be able to pass to the limit also in the first equation in (2.10) in an appropriate manner,
in view of the integrals making up (2.5) and its approximate analogue, the currently gained weak
precompactness properties of (∇ ln(uε+1))ε∈(0,1) and (∇wε)ε∈(0,1) in L2

loc(Ω̄× [0,∞)) seem yet insuf-
ficient. To overcome this shortage, our next goal will consist in showing that (∇wεk)k∈N is convergent
actually with respect to the strong topology in L2(Ω× (0, T )) for any T > 0. The crucial step toward
this will be established in the following lemma in which we shall make use of the fact that, as we
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already know from Lemma 2.9, v satisfies the weak identity (2.6) for all corresponding test functions
ϕ indicated there. On suitable choices of adequately regularized variants of

ϕ(x, t) :=
1

v(x, t)
, x ∈ Ω, t > 0,

namely, we shall see that the regularity properties of v gained up to now are sufficient to justify the
identity

−
∫

Ω
ln
( v(x, t0)

‖v0‖L∞(Ω)

)

dx+

∫ t0

0

∫

Ω

|∇v(x, t)|2
v2(x, t)

dxdt = −
∫

Ω
ln
( v0(x)

‖v0‖L∞(Ω)

)

dx,

as formally obtained from (1.4) by means of a corresponding testing procedure, at least in form of an
inequality for almost all times:

Lemma 2.10 Let w denote the limit function gained in Lemma 2.6. Then there exists a null set
N ⊂ (0,∞) such that

∫ t0

0

∫

Ω
|∇w|2 ≥

∫

Ω
w0 −

∫

Ω
w(·, t0) +mt0 for all t0 ∈ (0,∞) \N, (2.40)

where m :=
∫

Ω u0.

Proof. We fix any sequence (ηk)k∈N ⊂ (0, 1) such that ηk ց 0 as k → ∞, and for each k ∈ N

we can then pick a null set Nk ⊂ (0,∞) such that each t0 ∈ (0,∞) \ Nk is a Lebesgue point of

0 < t 7→
∫

Ω ln
{

v(x, t) + ηk

}

dx. Moreover, Lemma 2.6 provides a null set N⋆ ⊂ (0,∞) with the

property that w(·, t0) ∈ L1(Ω) for all t0 ∈ (0,∞) \N⋆.
Now by concavity of 0 < ξ 7→ ln ξ, for all η ∈ (ηk)k∈N and any h > 0, the limit function v from Lemma
2.6 satisfies

ln
{

v(x, t)+η
}

−ln
{

v(x, t−h)+η
}

≤ 1

v(x, t− h) + η
·
{

v(x, t)−v(x, t−h)
}

for all x ∈ Ω and t > 0,

(2.41)
where we have extended v so as to exist on all of Ω× R by letting

v(x, t) := v0(x) for x ∈ Ω and t ≤ 0. (2.42)

In order to exploit (2.41) appropriately, we fix t0 ∈ N := N⋆ ∪
⋃

k∈NNk, and for δ ∈ (0, 1) we let
ζδ ∈W 1,∞(R) be defined by

ζδ(t) :=











1 if t ≤ t0,
t0+δ−t

δ
if t ∈ (t0, t0 + δ),

0 if t ≥ t0 + δ,

and multiply (2.41) by 1
h
ζδ(t) for h ∈ (0, t0) to see that for any such δ we have

I(δ, h) :=
1

h

∫ ∞

0

∫

Ω
ζδ(t) ln

{

v(·, t) + η
}

− 1

h

∫ ∞

0

∫

Ω
ζδ(t) ln

{

v(·, t− h) + η
}

≤ 1

h

∫ ∞

0

∫

Ω
ζδ(t) ·

{

v(·, t)− v(·, t− h)
}

· 1

v(·, t− h) + η

=: J(δ, h). (2.43)
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Here substituting t− h by t shows that

I(δ, h) =
1

h

∫ ∞

0

∫

Ω
ζδ(t) ln

{

v(·, t) + η
}

−1

h

∫ ∞

0

∫

Ω
ζδ(t+ h) ln

{

v(·, t) + η
}

− 1

h

∫ 0

−h

∫

Ω
ζδ(t+ h) ln

{

v(·, t) + η
}

= −
∫ ∞

0

∫

Ω

ζδ(t+ h)− ζδ(t)

h
· ln

{

v(·, t) + η
}

−
∫

Ω
ln(v0 + η),

because for h < t0 we know that ζδ ≡ 1 on (0, h) ⊂ (0, t0), and because v(·, t) ≡ v0 for t < 0 due to
(2.42). Since evidently

ζδ(·+ h)− ζδ

h

⋆
⇀ ζ ′δ in L∞(R) as hց 0, (2.44)

from this and the boundedness of ln(v+η), as guaranteed for each fixed η ∈ (ηk)k∈N by the boundedness
of v, it follows that

I(δ, h) → 1

δ

∫ t0+δ

t0

∫

Ω
ln
{

v(·, t) + η
}

−
∫

Ω
ln(v0 + η) as hց 0. (2.45)

On the right-hand side of (2.43) we also partially substitute as before to see, once more using (2.42),
that

J(δ, h) =
1

h

∫ ∞

0

∫

Ω
ζδ(t)v(·, t) ·

1

v(·, t− h) + η
− 1

h

∫ ∞

0

∫

Ω
ζδ(t)v(·, t− h) · 1

v(·, t− h) + η

=
1

h

∫ ∞

0

∫

Ω
ζδ(t)v(·, t) ·

1

v(·, t− h) + η
− 1

h

∫ ∞

0

∫

Ω
ζδ(t+ h)v(·, t) · 1

v(·, t) + η

−1

h

∫ 0

−h

∫

Ω
ζδ(t+ h)v(·, t) · 1

v(·, t) + η

= −
∫ ∞

0

∫

Ω

ζδ(t+ h)− ζδ(t)

h
· v(·, t) · 1

v(·, t) + η

−
∫ ∞

0

∫

Ω
ζδ(t)v(·, t) ·

1

h

{

1

v(·, t) + η
− 1

v(·, t− h) + η

}

−
∫

Ω

v0

v0 + η

=: J1(δ, h) + J2(δ, h) + J3(δ, h) for all δ ∈ (0, 1) and h ∈ (0, t0), (2.46)

where again by (2.44) and the boundedness of v,

J1(δ, h) →
1

δ

∫ t0+δ

t0

∫

Ω

v

v + η
as hց 0. (2.47)

In order to prepare an analysis of J2(δ, h), we note that

ϕ(x, t) := ζδ(t) · Sh
[ 1

v + η

]

(x, t), (x, t) ∈ Ω× (0,∞),

18



with the action of the backward averaging operator Sh given by

Sh[ψ](x, t) :=
1

h

∫ t

t−h
ψ(x, s)ds, (x, t) ∈ Ω× (0,∞), ψ ∈ L1

loc(Ω̄× R;Rd), d ≥ 1,

satisfies

ϕt = ζ ′δ(t) · Sh
[ 1

v + η

]

+ ζδ(t) ·
1

h

{

1

v(·, t) + η
− 1

v(·, t− h) + η

}

in Ω× (0,∞)

and

∇ϕ = −ζδ(t) · Sh
[ 1

(v + η)2
∇v

]

in Ω× (0,∞),

so that in particular the regularity properties of v obtained in Lemma 2.6 warrant that ϕ is an
admissible test function in (2.6). An evaluation of the latter, again using (2.42), thus shows that with
u taken from Lemma 2.6 we have

J2(δ, h) = −
∫ ∞

0

∫

Ω
vϕt +

∫ ∞

0

∫

Ω
ζ ′δ(t)v(·, t)Sh

[ 1

v + η

]

(·, t)

=

∫

Ω
v0ϕ(·, 0)−

∫ ∞

0

∫

Ω
∇v · ∇ϕ−

∫

Ω
uvϕ+

∫ ∞

0

∫

Ω
ζ ′δ(t)v(·, t)Sh

[ 1

v + η

]

(·, t)

=

∫

Ω

v0

v0 + η
+

∫ ∞

0

∫

Ω
ζδ(t)∇v(·, t) · Sh

[ 1

(v + η)2
∇v

]

(·, t)

−
∫ ∞

0

∫

Ω
ζδ(t)u(·, t)v(·, t)Sh

[ 1

v + η

]

(·, t)

+

∫ ∞

0

∫

Ω
ζ ′δ(t)v(·, t)Sh

[ 1

v + η

]

(·, t) for all δ ∈ (0, 1) and h ∈ (0, t0). (2.48)

Since 1
(v+η)2

∇v belongs to L2
loc(Ω̄×R) and 1

v+η lies in L∞(Ω×R), by means of a standard reasoning

(cf. e.g. the argument in [46, Lemma 10.2]) it follows that herein

∫ ∞

0

∫

Ω
ζδ(t)∇v(·, t) · Sh

[ 1

(v + η)2
∇v

]

(·, t) →
∫ ∞

0

∫

Ω
ζδ(t)

|∇v|2
(v + η)2

as hց 0

and that

−
∫ ∞

0

∫

Ω
ζδ(t)u(·, t)v(·, t)Sh

[ 1

v + η

]

(·, t) → −
∫ ∞

0

∫

Ω
ζδ(t)

uv

v + η
as hց 0

as well as
∫ ∞

0

∫

Ω
ζ ′δ(t)v(·, t)Sh

[ 1

v + η

]

(·, t) →
∫ ∞

0

∫

Ω
ζ ′δ(t)

v

v + η
= −1

δ

∫ t0+δ

t0

∫

Ω

v

v + η
as hց 0,

whence in the limit hց 0 from (2.43), (2.45), (2.46) (2.47) and (2.48) we infer that

1

δ

∫ t0+δ

t0

∫

Ω
ln
{

v(·, t) + η
}

−
∫

Ω
ln(v0 + η)
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≤ 1

δ

∫ t0+δ

t0

∫

Ω

v

v + η

+

{
∫

Ω

v0

v0 + η
+

∫ ∞

0

∫

Ω
ζδ(t)

|∇v|2
(v + η)2

−
∫ ∞

0

∫

Ω
ζδ(t)

uv

v + η
− 1

δ

∫ t0+δ

t0

∫

Ω

v

v + η

}

−
∫

Ω

v0

v0 + η

=

∫ ∞

0

∫

Ω
ζδ(t)

|∇v|2
(v + η)2

−
∫ ∞

0

∫

Ω
ζδ(t)

uv

v + η
for all δ ∈ (0, 1).

Now twice using the Beppo Levi theorem, thanks to the Lebesgue point property of t0 we obtain on
taking δ ց 0 that

∫

Ω
ln
{

v(·, t0) + η
}

−
∫

Ω
ln(v0 + η) ≤

∫ t0

0

∫

Ω

|∇v|2
(v + η)2

−
∫ t0

0

∫

Ω

uv

v + η
for all η ∈ (ηk)k∈N. (2.49)

Since again by Beppo Levi’s theorem, as η = ηk ց 0 we have

∫ t0

0

∫

Ω

|∇v|2
(v + η)2

ր
∫ t0

0

∫

Ω

|∇v|2
v2

=

∫ t0

0

∫

Ω
|∇w|2

and, thanks to the mass conservation property (2.37), also

∫ t0

0

∫

Ω

uv

v + η
ր

∫ t0

0

∫

Ω
u = mt0

as well as
∫

Ω
ln(v0 + η) ց

∫

Ω
ln v0 = −

∫

Ω
w0 + |Ω| ln ‖v0‖L∞(Ω)

and
∫

Ω
ln
{

v(·, t0) + η
}

ց
∫

Ω
ln v(·, t0) = −

∫

Ω
w(·, t0) + |Ω| ln ‖v0‖L∞(Ω),

with both
∫

Ωw0 and
∫

Ωw(·, t0) being finite according to the fact that t0 6∈ N⋆. In consequence, (2.49)
hence establishes (2.40) and thereby proves the lemma, because N clearly has measure zero. �

In view of the elementary criterion on strong convergence in L2 spaces, as implied by weak convergence
and convergence in R of the associated sequence of norms, the readily entails the desired convergence
property of (∇wεk)k∈N.

Corollary 2.11 Let w and (εk)k∈N by as given by Lemma 2.6. Then for each T > 0 we have

∇wε → ∇w in L2(Ω× (0, T )) as ε = εk ց 0. (2.50)
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Proof. Given T > 0, in view of Lemma 2.6 and Lemma 2.10 we can fix t0 ≥ T such that
∫

Ωwε(·, t0) →
∫

Ωw(·, t0) as ε = εk ց 0, and such that the inequality in (2.40) is valid. Recalling
Lemma 2.3, we therefore obtain

lim sup
ε=εkց0

∫ t0

0

∫

Ω
|∇wε|2 = lim sup

ε=εk−ց0

{
∫

Ω
w0 −

∫

Ω
wε(·, t0) +mt0

}

=

∫

Ω
w0 −

∫

Ω
w(·, t0) +mt0

≤
∫ t0

0

∫

Ω
|∇w|2,

which together with the weak convergence property in (2.28) ensures that ∇wε → ∇w in L2(Ω×(0, t0))
and hence implies (2.50), because t0 ≥ T . �

We are now in the position to accomplish the last step toward the existence result in Theorem 1.1.
For later reference, we formulate this in a separate lemma which also implicitly includes a statement
on how this particular solution can be found via approximation.

Lemma 2.12 The couple (u, v) provided by Lemma 2.6 is a global generalized solution of (1.4) in the
sense of Definition 2.1.

Proof. In view of Lemma 2.6, Lemma 2.8 and Lemma 2.9, we only need to verify (2.5). To this
end, we fix an arbitrary nonnegative ϕ ∈ C∞

0 (Ω̄ × [0,∞)) and then obtain on multiplying the first
equation in (2.16) by ϕ

uε+1 that

I1(ε) :=

∫ ∞

0

∫

Ω
|∇ ln(uε + 1)|2ϕ

= −
∫ ∞

0

∫

Ω
ln(uε + 1)ϕt −

∫

Ω
ln(u0 + 1)ϕ(·, 0) +

∫ ∞

0

∫

Ω
∇ ln(uε + 1) · ∇ϕ

−
∫ ∞

0

∫

Ω

uεf
′
ε(uε)

uε + 1

(

∇ ln(uε + 1) · ∇wε
)

ϕ+

∫ ∞

0

∫

Ω

uεf
′
ε(uε)

uε + 1
∇wε · ∇ϕ

=: I2(ε) + I3(ε) + I4(ε) + I5(ε) + I6(ε) (2.51)

for all ε ∈ (0, 1). Here choosing T > 0 large enough such that ϕ ≡ 0 on Ω × (T,∞), we obtain from
(2.26) that ln(uε + 1)⇀ ln(u+ 1) in L2((0, T );W 1,2(Ω)) as ε = εk ց 0, which ensures that

I2(ε) → −
∫ ∞

0

∫

Ω
ln(u+ 1)ϕt and I4(ε) →

∫ ∞

0

∫

Ω
∇ ln(u+ 1) · ∇ϕ (2.52)

as ε = εk ց 0, and that
∫ ∞

0

∫

Ω
|∇ ln(u+ 1)|2ϕ ≤ lim inf

ε=εkց0
I1(ε). (2.53)

Moreover, using that ∇wε → ∇w in L2(Ω × (0, T )) as ε = εk ց 0 by Corollary 2.11, and that this

combined with the observations that 0 ≤ uεf
′
ε(uε)

uε+1 ≤ 1 for all ε ∈ (0, 1) and uεf
′
ε(uε)

uε+1 → u
u+1 a.e. in

Ω× (0, T ) as ε = εk ց 0 warrants that

uεf
′
ε(uε)

uε + 1
∇wε →

u

u+ 1
∇w = − u

u+ 1
∇ ln v in L2(Ω× (0, T ))
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as ε = εk ց 0 ([46, Lemma 10.4]), we also find that

I5(ε) →
∫ ∞

0

∫

Ω

u

u+ 1

(

∇ ln(u+ 1) · ∇ ln v
)

ϕ and I6(ε) → −
∫ ∞

0

∫

Ω

u

u+ 1
∇ ln v · ∇ϕ (2.54)

as ε = εk ց 0. Collecting (2.52), (2.53) and (2.54), we readily see that (2.5) results from (2.51). �

Our main result on global existence of generalized solutions actually reduces to a corollary.

Proof of Theorem 1.1. The claim is an obvious consequence of Lemma 2.12. �

3 Relaxation. Proof of Theorem 1.2

Proof of Theorem 1.2. Givenm > 0 and p > 1, we letK1(m, p) := Λ(p)·(2+m) andK2(m) := 1+m,
where Λ(p) > 0 is as provided by Lemma 2.7. Then fixing M > 0 and assuming u0 and v0 to satisfy
(1.5) as well as (1.6), we set T1(m,M) := M +m and T2(M) := M . For each ε ∈ (0, 1), Lemma 2.7
thereupon warrants that

1

T

∫ T

0
ln

{

1

|Ω|

∫

Ω

(

uε(x, t) + 1
)p

dx

}

dt ≤ Λ(p) · (1 +m) +
Λ(p)

T
·
{
∫

Ω
w0 +m

}

≤ Λ(p) · (1 +m) +
Λ(p)

T
· (M +m) for all T > 0,

so that since Λ(p)
T1(M,m) · (M +m) = Λ(p) we obtain

1

T

∫ T

0
ln

{

1

|Ω|

∫

Ω

(

uε(x, t) + 1
)p

dx

}

dt ≤ Λ(p) · (2 +m) for all T > T1(M,m).

In order to derive (1.7) from this, in accordance with the convergence property (2.25) we fix a null set
N ⊂ (0,∞) such that as ε = εk ց 0 we have uε(·, t) → u(·, t) a.e. in Ω for all t ∈ (0,∞) \ N . Since
1
|Ω|

∫

Ω(ϕ+ 1)p ≥ 1 for any nonnegative measurable function ϕ on Ω, writing

gε(t) := ln

{

1

|Ω|

∫

Ω

(

uε(·, t) + 1
)p

}

and g(t) := ln

{

1

|Ω|

∫

Ω

(

u(·, t) + 1
)p

}

for t > 0 and ε ∈ (0, 1), we see that both gε and g are nonnegative, and from a first application of
Fatou’s lemma and the monotonicity of ln we conclude that

g(t) ≤ lim inf
ε=εkց0

gε(t) for all t ∈ (0,∞) \N.

Once more invoking Fatou’s lemma, we thus infer that

1

T

∫ T

0
ln

{
∫

Ω

(

u(x, t) + 1
)p

}

dt =
1

T

∫ T

0
g(t)dt

≤ lim inf
ε=εkց0

1

T

∫ T

0
gε(t)dt

= lim inf
ε=εkց0

1

T

∫ T

0
ln

{
∫

Ω

(

uε(x, t) + 1
)p

}

dt

≤ Λ(p) · (2 +m) for all T > T1(M,m),
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and that thus indeed (1.7) is valid. Similarly, (2.19) shows that

1

T

∫ T

0

∫

Ω
|∇wε|2 ≤ m+

1

T

∫

Ω
w0

≤ m+
M

T

≤ m+ 1 for all T > T2(M),

and thereby proves (1.8) by means of Lemma 2.6 and a standard argument. �

4 Decay of v. Proof of Theorem 1.3

In order to finally prove asymptotic decay of v, we shall first apply two standard testing procedures to
the second equation in (2.10) to obtain two preliminary weak decay properties, as expressed in terms
of finiteness of the spatio-temporal integrals in (4.1) and (4.2), as well as a favorable monotonicity
feature of the spatial L1 norm of v with respect to time. We formulate the latter in the version
(4.3) directly suitable for our later purpose, involving integrals over past time intervals rather than
evaluations at particular times therein, thereby also circumventing any difficulties possibly arising from
our lack of knowledge on whether in the convergence statement (2.33) from Lemma 2.6 the exclusion
of an exceptional null set can be removed.

Lemma 4.1 Assume (1.5), and let (u, v) denote the global generalized solution of (1.4) from Theorem
1.1. Then

∫ t

0

∫

Ω
uv ≤

∫

Ω
v0 for all t > 0 (4.1)

as well as
∫ t

0

∫

Ω
|∇v|2 ≤ 1

2

∫

Ω
v20 for all t > 0, (4.2)

and moreover ther exists a null set N ⊂ (0,∞) with the property that whenever t ∈ (0,∞) \ N , we
have

∫

S

∫

Ω
v ≥ |S|

∫

Ω
v(·, t) for all measurable S ⊂ (0, t). (4.3)

Proof. On testing the second equation in (2.10) against 1 and vε, respectively, we see that for all
ε ∈ (0, 1) we have

∫

Ω
vε(·, t) +

∫ t

s

∫

Ω
fε(uε)vε =

∫

Ω
vε(·, s) whenever 0 ≤ s < t <∞, (4.4)

that is,
∫ t

0

∫

Ω
fε(uε)vε =

∫

Ω
v0 −

∫

Ω
vε(·, t) ≤

∫

Ω
v0 for all t > 0 (4.5)

as well as
∫ t

0

∫

Ω
|∇vε|2 =

1

2

∫

Ω
v20 −

1

2

∫

Ω
v2ε(·, t)−

∫ t

0

∫

Ω
fε(uε)v

2
ε ≤

1

2

∫

Ω
v20 for all t > 0. (4.6)
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Thanks to the pointwise convergence statemets in (2.25) and (2.30), (4.1) results from (4.5) due to
Fatou’s lemma, whereas the weak convergence property (2.32) in conjunction with (4.6) entails (4.2)
by a standard argument based on lower semicontinuity of the norm in L2(Ω × (0, t)) with respect to
weak convergence.

To verify (4.3), recalling (2.33) we fix a null set N ⊂ (0,∞) such that for any t ∈ (0,∞) \N we have
vε(·, t) → v(·, t) in L1(Ω) as ε = εk ց 0, where (εk)k∈N ⊂ (0, 1) denotes the sequence provided by
Lemma 2.6. Then given an arbitrary t ∈ (0,∞) \N we first observe that

∫

Ω vε(·, s) ≥
∫

Ω vε(·, t) for all
s ∈ (0, t) by (4.4), so that if S ⊂ (0, t) is measurable, then

∫

S

∫

Ω
vε(x, s)dxds ≥

∫

S

∫

Ω
vε(x, t)dxds = |S|

∫

Ω
vε(·, t)

for all ε ∈ (0, 1). In view of (2.30) and our choice of t, we may take ε = εk ց 0 on both sides here to
infer that indeed (4.3) is valid. �

With this information at hand, we can now pass to the proof of our main result on additional regularity
and asymptotic decay of v.

Proof of Theorem 1.3. The first inclusion in (1.9) is obvious from (2.29), while the continuity
feature in (1.9) can be seen by means of a standard argument relying on the boundedness of v and an ap-
plication of the regularity property implied by (2.34) for arbitrary fixed p > 2: For any such p, namely,
the latter ensures that upon modification on a null set of times if necessary, v becomes an element
of C0([0,∞); (W 1,p(Ω))⋆), which can easily be seen to satisfy ‖v(·, t)‖L∞(Ω) ≤ c1 := ‖v‖L∞(Ω×(0,∞))

actually for all t ≥ 0, because the complement of null sets in (0,∞) is dense in (0,∞). Thus, if
t ∈ [0,∞) and (tk)k∈N ⊂ [0,∞) are such that tk → t as k → ∞, then v(·, tk) → v(·, t) in (W 1,p(Ω))⋆ as
k → ∞. Since W 1,p(Ω) is dense in (L∞(Ω))⋆ ≃ L1(Ω), and since from the above we know that v(·, tk)
is bounded and hence relatively compact in L∞(Ω) with respect to the weak-⋆ topology, this readily
implies that

∫

Ω v(·, tk)ϕ→
∫

Ω v(·, t)ϕ for all ϕ ∈ L1(Ω) as k → ∞, thus establishing (1.9).

Next, to verify (1.11) we first use Lemma 4.1 to see that

I1 :=

∫ ∞

0

∫

Ω
uv and I2 :=

∫ ∞

0

∫

Ω
|∇v|2 (4.7)

are both finite, and taking K1(m, 2) > 0 and T1(M,m) > 0 from (1.7), with m :=
∫

Ω u0 and M :=
∫

Ωw0, we fix Σ > 0 large such that ln Σ
|Ω| ≥ 2K1(m, 2) and define

S(t) :=
{

s ∈ (0, t)

∣

∣

∣

∣

∫

Ω
u2(·, s) ≤ Σ

}

for t > T1(M,m).

Then for any such t, (1.7) entails that

ln Σ
|Ω|

2
· t ≥ K1(m, 2)t ≥

∫ t

0
ln

{

1

|Ω|

∫

Ω

(

u(·, s) + 1
)2

}

ds ≥
∣

∣

∣
(0, t) \ S(t)

∣

∣

∣
· ln Σ

|Ω| ,

from which it follows that

|S(t)| ≥ t

2
for all t > T1(M,m). (4.8)
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Now in order to derive (1.11) from the basic decay properties implicitly contained in (4.7), we recall
that if we write ϕ := 1

|Ω|

∫

Ω ϕ for ϕ ∈ L1(Ω), then the Poincaré inequality provides c2 > 0 fulfilling

‖ϕ− ϕ‖L2(Ω) ≤ c2‖∇ϕ‖L2(Ω) for all ϕ ∈W 1,2(Ω),

so that in

I1 ≥
∫

S(t)

∫

Ω
uv

=

∫

S(t)

∫

Ω
u(x, s) ·

{

v(x, s)− v(·, s)
}

dxds+

∫

S(t)

∫

Ω
v(·, s) · u(x, s)dxds, t > T1(M,m),(4.9)

we can control the first summand on the right, also using the Cauchy-Schawrz inequality and the
definition of S(t), so as to obtain

∣

∣

∣

∣

∫

S(t)

∫

Ω
u(x, s) ·

{

v(x, s)− v(·, s)
}

dxds

∣

∣

∣

∣

≤
∫

S(t)

{
∫

Ω
u2(x, s)dx

}
1
2

·
{
∫

Ω

∣

∣

∣
v(x, s)− v(·, s)

∣

∣

∣

2
dx

}
1
2

ds

≤
√
Σ

∫

S(t)

∥

∥

∥
v(·, s)− v(·, s)

∥

∥

∥

L2(Ω)
ds

≤ c2
√
Σ

∫

S(t)

∫

S(t)
‖∇v(·, s)‖L2(Ω)ds for all t > T1(M,m). (4.10)

As S(t) is contained in (0, t) for all t > T1(M,m), another application of the Cauchy-Schwarz inequality
shows that herein

c2
√
Σ

∫

S(t)
‖∇v(·, s)‖L2(Ω)ds ≤ c2

√
Σ ·

√

I2|S(t)| ≤ c2
√

ΣI2t for all t > T1(M,m). (4.11)

On the other hand, thanks to the mass conservation law (2.4), the monotonicity property (4.3) and
(4.8), the last summand in (4.9) can be estimated from below according to

∫

S(t)

∫

Ω
v(·, s) · u(x, s)dxds =

∫

S(t)
v(·, s) ·

{
∫

Ω
u(x, s)dx

}

ds

= m

∫

S(t)
v(·, s)ds

=
m

|Ω|

∫

S(t)

∫

Ω
v(x, s)dxds

≥ m

|Ω| ·
{
∫

Ω
v(x, t)dx

}

· |S(t)|

≥ mt

2|Ω| ·
∫

Ω
v(x, t)dx for all t > T1(M,m).
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Together with (4.10) and (4.11) inserted into (4.9), this ensures that

mt

2|Ω| ·
∫

Ω
v(x, t)dx ≤ I1 + c2

√

ΣI2t for all t > T1(M,m)

and thereby shows that

‖v(·, t)‖L1(Ω) ≤
c3√
t

for all t > T1(M,m) (4.12)

with c3 :=
2|Ω|
m

· ( I1√
T1(M,m)

+ c2
√
ΣI2). As for p ∈ [1,∞) we have

‖v(·, t)‖Lp(Ω) ≤ ‖v(·, t)‖
p−1
p

L∞(Ω)‖v(·, t)‖
1
p

L1(Ω)
≤ c

p−1
p

1 ‖v(·, t)‖
1
p

L1(Ω)
for all t > T1(M,m)

by the Hölder inequality and our definition of c1, (4.12) implies (1.11).

Finally, if (1.10) was false, then once more by boundedness of (v(·, t))t>0 in L∞(Ω) we could find

v∞ ∈ L∞(Ω) \ {0} and (t̃k)k∈N ⊂ (0,∞) such that t̃k → ∞ and v(·, t̃k) ⋆
⇀ v∞ in L∞(Ω) as k → ∞.

But then (1.11) applied to e.g. p := 1 would entail that on passing to a subsequence we could assume
that v(·, t̃k) → 0 a.e. in Ω as k → ∞, so that by Egorov’s theorem we could draw the absurd conclusion
that v∞ = 0 a.e. in Ω. �

5 Numerical illustrations

In this section we shall present some numerical experiments in order to illustrate the behavior of
radially symmetric solutions to the Neumann initial-value problem for (1.1) in the unit disk B1(0) ⊂
R
2. To this end, we consider the correspondingly transformed problem



















ut =
1
r
(rur)r +

χ
r
(ruwr)r, r ∈ (0, 1), t > 0,

wt =
1
r
(rwr)r − w2

r + u, r ∈ (0, 1), t > 0,

ur(0, t) = ur(1, t) = wr(0, t) = wr(1, t) = 0, t > 0,

u(r, 0) = u0(r), w(r, 0) = w0(r), r ∈ (0, 1),

(5.1)

for the unknown functions u = u(r, t) and w = w(r, t) := − ln v(r, t), where r = |x| ∈ [0, 1], and
where for definiteness we have chosen χ = 20. The subsequent simulations were carried out using a
time-explicit finite difference scheme on an equidistant grid in the variable r, with grid size 0.0002 and
time step size 10−10.

We first study the behavior of the solution emanating from initial data which are given by

u0(r) := (1− 10r)2+ and w0(r) := 100 · (1− e−5r), r ∈ [0, 1], (5.2)

and plotted in Figure 1.
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Figure 1: Initial data u0(r) := (1− 10r)2+ and w0(r) := 100(1− e−5r)

Horizontal axis: r = |x|; vertical axis: u0(r) (left), w0(r) (right)

As Figure 2 illustrates, the initially present signal gradient, according to the positivity of w0r hence
reflecting attraction toward the origin, in this case seems sufficient to enforce a substantial mass
aggregation during evolution: In fact, the conserved total mass

∫

B1(0)
u0, though already originally

concentrated near r = 0, but yet to a rather mild extent, undergoes a considerable accumulation
during an initial period. This may be interpreted as indicating that for more extreme choices of the
initial data one may even expect the occurrence of genuine explosion phenomena, characterized by
finite-time blow-up of e.g. the norm of u(·, t) in L∞(B1(0)) and thus going beyond the capability of
the numerical scheme used here.
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Figure 2: Solution behavior for χ = 20, u0(r) := (1− 10r)2+ and w0(r) := 100(1− e−5r)
at times t = 10−7 (left) as well as t = 6 · 10−7, t = 2 · 10−6, t = 5 · 10−6, t = 2 · 10−5 (right).

Horizontal axis: r = |x|, restricted to the range [0, 0.01]; vertical axis: u(r, t)

On the other hand, Figure 3 combined with Figure 4 underlines that in accordance with the analytical
results on relaxation obtained in Theorem 1.2, such types of singular behavior indeed should be
transient: After a drastic initial increase, the spatial L∞ norm of u settles down to much smaller
magnitudes on larger time scales. Figure 3 moreover illustrates the convergence statement from
Theorem 1.3 by indicating that whereas v = e−w initially satisfies ‖v(·, 0)‖L∞(B1(0)) = 1 by (5.2),
already at time t = 0.1 we have ‖v(·, t)‖L∞(B1(0)) ≤ e−11.
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Figure 3: Behavior of the solution from Figure 2 at t = 0.1.

Horizontal axis: r = |x|; vertical axis: u(r, t) (left), w(r, t) (right)
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Figure 4: Time evolution of the norm of u(·, t) in L∞(B1(0))) of the solution from Figure 2.

Horizontal axis: t; vertical axis: ‖u(·, t)‖L∞(B1(0)))

In sharp contrast to the above, the solution behavior may be much more regular but yet nontrivial
when the initial setting reflects a repulsive signal gradient near the origin. To illustrate this, we
consider initial data with opposite monotonicity in the second component but essentially unchanged
otherwise, as given by

u0(r) := (1− 10r)2+ and w0(r) := 100e−5r, r ∈ [0, 1], (5.3)

and depicted in Figure 5.
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Figure 5: Initial data u0(r) := (1− 10r)2+ and w0(r) := 100e−5r

Horizontal axis: r = |x|; vertical axis: u0(r) (left), w0(r) (right)

According to the initially repulsive character of the origin, it may then be not surprising that at least
on short time scales, the spatial maximum ‖u(·, t)‖L∞(B1(0)) does not exhibit any type of singular
behavior comparable to that in the above situation, and in fact Figure 6 indicates that this quantity
even decreases monotonically in time.
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Figure 6: Time evolution of the norm of u(·, t) in L∞(B1(0))) of the solution from Figure 5.

Horizontal axis: t; vertical axis: ‖u(·, t)‖L∞(B1(0)))

As shown in Figure 7, however, contrary to the behavior seen in Figure 2 and Figure 3 the first solution
component now loses its spatial monotonicity with respect to r; instead, it rather exhibits a wave-like
evolution reflecting mass transport away from the origin, with the total mass essentially concentrated
in thin annuli at each fixed time, and with these annuli veering away from the origin at a speed which
apparently decreases with time.
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Figure 7: Solution behavior for the initial data from (5.3) at times t = 0.00000, t = 0.00002, ..., t = 0.00050.

Horizontal axis: r = |x|; vertical axis: u(r, t)

In accordance with Theroem 1.2, Figure 8 finally inter alia confirms that the signal gradient, consid-
erably large at the original state, substantially relaxes during this process.
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Figure 8: Behavior of the solution from Figure 5 at t = 0.0015.

Horizontal axis: r = |x|; vertical axis: u(r, t) (left), w(r, t) (right)
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