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Abstract

We consider a one-dimensional version of a model obtained in [9] and describing the anisotropic
spread of tumor cells in a tissue network. The model consists of a reaction-diffusion-taxis equation
for the density of tumor cells coupled with an ODE for the density of tissue fibers and allows
for strong degeneracy both in the diffusion and the haptotaxis terms. In this setting we prove
the global existence of weak solutions to an associated no-flux initial-boundary value problem.
Numerical simulations are performed in order to illustrate the model behavior.
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1 Introduction

Models with degenerate diffusion in the context of taxis equations have received increased interest
during the last decade. They describe the dynamics of a cell population in response to a chemoattrac-
tant [7, 14}, 20], moving up the gradient of an insoluble signal (haptotaxis) [24], or performing both
chemo- and haptotaxis [15], [19, 22].

In this work we consider a reaction-diffusion-transport-haptotaxis model which is inspired by the
effective equations obtained in [9] via parabolic scaling upon starting from a multiscale model for
glioma invasion in the anisotropic brain tissue and relying on the setting introduced in [8]. More
precisely, the following PDE-ODE model was considered for the density function p(t,z,v,y) of glioma
cells depending on time ¢, position z € R", velocity v € V := sS"" 1, and density y € Y := (0, Ry)
of cell surface receptorsﬂ bound to tissue fibers, and for the subcellular dynamics simplified to mass
action kinetics of the mentioned receptor binding:

Orp+ Va - (vp) + Vy - (Gy, w)p) = LINp + P(p) (1.1)
y=Gly,w). (1.2)

Thereby, w(z) represents the (macroscopic) volume fraction of tissue, the turning operator L{\|p :=
—Ay)p + [, My)K (2, v,0")p(v")dv" describes the reorientation of cells due to contact guidance by
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tissue, and the term P(p) := u(x, p,v) [y x(@, y,y")p(t, z, v,y )w(x)dy’ models proliferation subsequent
to cell-tissue interactions. The function A(y) denotes the cell reorientation rate, K(xz,v,v’) is the
turning kernel depending on the directional distribution ¢(z, v) of tissue fibers (obtained from diffusion
tensor imaging data), p represents the proliferation rate depending on the macroscopic cell density
p= fV fY p(t, z,v,y)dydv, and x is a kernel characterizing the transition from the state y to the state
1y’ during a proliferative action.

An appropriate parabolic scaling led to the macroscopic equation for (an approximation of) the tumor
cell density:
Ou — VV : (Dru) + V - (a(w)DrVw u) = wu(x, u)u, (1.3)

where a(w) is a function containing both macroscopic and subcellular level information,
D7 = const fv qv ® vdv is the tumor diffusion tensor encrypting the medical data about the structure
of brain tissue, and

VV : (Dru) =V - (Dp(z)Vu) + V- (((z)u) (1.4)

with the drift velocity ¢(z) = const [, v®wvVqdv. For more details and the precise definitions we refer
to [9].

Equation is of the reaction-diffusion-transport-(hapto)taxis type and characterizes the evolution
of the tumor cell density for a known underlying structure of brain tissue; in practice, the functions ¢
and w are assessed at a certain time point ¢ from medical data. This facilitates both its mathematical
analysis and efficient numerical handling, however in fact the tumor evolution in a patient also induces
dynamical changes in the tissue such as e.g. depletion or remodeling, which play an essential role in
the disease development, see e.g. [2, [I7] and the references therein. Therefore, a further equation is
needed to describe these tissue modifications under the influence of tumor cells. Although in practice
it is not feasible from the viewpoint of medical imaging to assess the tissue structure dynamically,
by way of model-based predictions relying on such PDE-ODE coupled systems it is possible to use a
sequence of just a few images in order to obtain via numerical simulations a good approximation of
the dynamics over the whole timespan of interest.

Another issue is related to possible (local) degeneracies of the tumor diffusion tensor Dy (x), which is
particularly relevant e.g. when modeling resected or irradiated regions of the tumor, where the tissue
has been depleted as well. In the respective domains, this indeed reduces the otherwise diffusion-
dominated PDE to a hyperbolic transport equation with nonlinear source term. The mathema-
tically quite delicate features of such strongly degenerate systems become manifest already in the case
when any taxis or source terms are absent, that is, when ¢ = 0 and p = 0 in . Indeed, in [11] the
linear scalar parabolic equation

Oru = (d1(y)u)ze + (d2(y)u)yy, (z,y) € 2= (0,Ly) x (0,Ly), t >0, (1.5)

has been studied, motivated among others by a monoscale model for anisotropic glioma spread in [16],
and it was shown there that if the functions d; and dy are smooth and nonnegative and such that d;
is strictly positive but dy vanishes precisely in some subinterval [a, ] of (0, L,), then solutions to an
associated no-flux initial-boundary value problem asymptotically approach a singular state reflecting
concentration of mass within the degeneracy region [0, L,] X [a, b] and extinction outside.

In this paper we intend to provide a first step toward a mathematical understanding of corresponding



systems when beyond such strongly degenerate diffusion processes, further crucial mechanisms and
especially nonlinear haptotaxis are involved. In order to concentrate on essential aspects of such types
of interplay within the framework of a model that captures the essential properties but beyond that
remains as simple as possible, we may restrict to the spatially one-dimensional case, in which the
tumor diffusion tensor D7 in actually reduces to a scalar function. In the context of a simple
evolution law for the haptotactic attractant, particularly neglecting remodeling mechanisms, this leads
to coupled parabolic-ODE systems of the form

{ up = (d(@)u), — (d(@)up(v)y)

vy = —uh(v), (1.6)

with given nonnegative functions d, v and h.

Although in our current 1D setting the model in [9] loses most of its anisotropy relevance, some
of it is retained in the space-dependent diffusion and haptotactic sensitivity coefficients. Likewise,
the multiscality considered in [9] and leading to a haptotactic coefficient depending on the subcellular
dynamics can still be partially retained in this model, in spite of the modified transport term, in which
the drift velocity has now a simpler form, yet depending on d(z). The very presence of the haptotaxis
term is a consequence of taking the receptor binding dynamics into account when describing the
evolution of the cell density function on the mesoscopic level and scaling up to the macroscopic one.
Hence, essential features of the model obtained in [9] are preserved even in this simplified, dimension-
reduced setting.

Other related models featuring degenerate diffusion in the context of haptotaxis were proposed and
investigated in [23] 24]. The kind of degeneracy considered there is, however, different from the one
in this and previous models, as it affects both the diffusion and the haptotaxis coefficients, thereby
allowing the diffusion to degenerate due to one or both solution components (tumor cell density and
tissue density). The model in [23] involves two subpopulations of tumor cells, differentiating between
moving and proliferatingﬂones, but allowing mutual transitions. Unlike the present model, in [23] 24]
there is (apart from the taxis) no other transport term.

Problem setup and main result. In order to make the essential mathematical aspects of
more transparent, let us write in a form involving a constant haptotacitc sensitivity, which
according to the simple ODE structure of the second equation therein can readily be achieved on
substituting w = ¥(v) with ¥(v) := [J ¢ (0)do, v > 0. Accordingly, in an open bounded interval
Q) C R we will henceforth consider the initial-boundary value problem

up = (d(2)u)ze — (d(z)uwy), + uf(x, u, w), reQ, t>0,

wy = —ug(w), xeQ, t>0, (17)
(d(z)u)y — d(x)uwy = 0, xed, t>0, .
u(z,0) = up(z), w(z,0)=wo(zx), x €,

with given parameter functions d : Q — [0,00), f : Q x [0,00)2 — R and g : [0,00) — [0, 00) satisfying

Vde Wh=(Q), feC' (Qx[0,00)?) and ge C'([0,0)), (1.8)

2whence in virtue of the go-or-grow dichotomy assumed to be non-motile



and with prescribed initial data ug and wg which are such that

{ 0 < ug € C%Q) satisfies ug Z0 and 19)
1.9

2
0 < wo € WH?(Q) has the property that [, % < 0.
As for the parameter functions in ([1.7)), throughout our analysis we shall furthermore assume that

f(z,u,w) < p(w) for all (z,u,w) € Q x [0,00)2  with some nondecreasing p : [0,00) — [0, 00),

(1.10)
and that there exists § > 0 such that writing
M := [Jwol| o (@) + 0, (1.11)
we have
g(0) =0, g(w) >0 for all w e (0, M] and g (w) >0 forall we [0, M] (1.12)
as well as
g (w)
lim inf > 0, (1.13)
w\O0~ g(w)
whence in particular there exist I' > 0 and v > 0 fulfilling
g(w) <Tw for all w € [0, M] (1.14)
and ((w)
g (w
> for all w € (0, M]. 1.15
L (0,0 (115)

this inter alia includes more general choices such as

g(w) =w(l —w), w >0,

1+v?
becomes formally equivalent to a corresponding initial-boundary value problem for the special version

{ we= (d),., - () (1.16)

upon which via the substitution w = %, on the set of solutions fulfilling v < 1 the system 1}

vy = —U,

of , as proposed in [24] for modeling tumor invasion in a tissue network, thereby paying increased
attention to the form of the haptotaxis coefficient. Specifically, the latter accounts for microscopic
cell-tissue interactions, which —besides having a haptotaxis term at all- retains a supplementary trace
of multiscality in our macroscopic model, although in a rather indirect way, as we do not explicitly
couple some ODE for receptor binding kinetics to the two PDEs for v and v. The presence of d(x) in
both diffusion/transport and haptotaxis coefficients is motivated by the deduction in [9].



The main results of our analysis indicate that even in this general setting, thus allowing for virtually
arbitrary strength of degeneracies in diffusion, haptotactic cross-diffusion does not result in a finite-
time collapse of solutions into e.g. persistent Dirac-type singularities. More precisely, let us introduce
the following solution concept to pursued below, in which we use the abbreviation {d > 0} := {x €
Q ’ d(z) > 0} which along with a corresponding definition of {d = 0} will frequently be used throughout
the sequel.

Definition 1.1 A pair (u,w) of nonnegative functions

u € L}OC(Q x [0,00)),
{ w e LS % [0,50)) (1 L ([0, 000 W ({d > 0}) (1D
satisfying B B
wf (-, u,w) € L, (Q x [0,00)) and ug(w) € Lj,.(Q x [0,00)) (1.18)
as well as
duw, € Li,([0,00); L' ({d > 0})) (1.19)

will be called a global weak solution of if

_/ /U‘Pt_/uﬂ‘p('vo) :/ / du@xm‘i‘/ / duw:}c@x"‘/ /uf('a%w)‘)o (1'20)
0o Ja Q o J{d>o} 0o J{a>0} 0o Ja

for all o € C§(2 x [0,00)) such that @, =0 on O x (0,00) and

/OOO/QW%—F/QUJOSO(-,O) :/Ooo/ﬂug(w)go (1.21)

for all ¢ € C§°(2 x [0, 00)).
Within this framework, a global solution of ([1.7]) can always be constructed:

Theorem 1.2 Suppose that Q C R is a bounded interval, and that ug, wo, d, f and g satisfy (@,

@, and . Then possesses at least one global weak solution in the sense specified
in Definition [1.1] below.

This paper is organized as follows: In Section [2] we introduce a regularized version of the degenerate
problem, for which some useful properties are obtained. Section [3] is concerned with studying an
entropy functional which allows to deduce a quasi-dissipative property of the regularized system, inter
alia asserting global existence of its solution. Some precompactness and regularity properties of terms
involved in that system follow in Sections [4] and [5] respectively, succeeded in Section [6] by regularity
features of corresponding time derivatives. Sections [7] and [8] provide convergence properties of the
approximate solution in the region with no degeneracy; further properties of the respective limits are
obtained in Section [9] Finally, Section [I0] concludes the existence proof for the strongly degenerate

problem (|1.7)).



2 Regularized problems and their basic properties

In order to prepare the construction of an appropriate family of non-degenerate approximations of
(1.7), according to the nonnegativity of d and the inclusion vd € WH®(Q) we may first choose
(de)ee(o,1y € C*(Q) in such a way that de, = 0 on 99 and that with some K > 0, for each ¢ € (0,1)
we have

Ve <d.(x) < ||d||Loo(Q) +1 for all = € Q, (2.1)
as well as 2 (@)
T x ®
<K for all 0 2.2
i) =5 or all z € Q, (2.2)
and such that moreover
d: - d in L*™(Q) as e \,0 (2.3)
and
dey — dp a.e.in €) as € \ 0. (2.4)

We next note that according to it is possible to fix g9 € (0,1) such that g(M) > &g, whereupon
with § as introduced in the course of the definition of M, for each € € (0,&0) we can choose
5e € (0,62) such that

g(w) > e for all w € [d:, M], (2.5)

and such that moreover J. — 0 as ¢ N\, 0. It is then easy to see that one can find (7:).¢(0,c9) C (0,1)
with the two properties that

1
In — — 400 as € \ 0, 2.6
and that
Ne — 0 as € \, 0; (2.7)
indeed, it can readily be checked that this can be achieved on choosing
Inln 4
M= XE, e € (0,e9),
SRV

with some suitably large A > 0. For ¢ € (0,&), we then let

woe () := wo(x) O, x €€, (2.8)

and consider the regularized variant of (1.7)) given by

Uet = (daus)x:ﬂ - (dEML#E)ZwEI> + Usf(x’uaa we), x € Q, t>0,

T

Wep = 5(\/1;’225) o a9 (we), r e, t>0, (2.9)
Ueg = Weg = 0, x eI, t>0,
ue(x,0) = up(x), we(x, 0) = woe(z), x €,

Due to the additionally introduced artificial diffusion in the equation for w. each of these problems
can be viewed as a variant of the well-studied Keller-Segel chemotaxis system; in fact, as can be seen



by straightforward adaptation of arguments well-established in the analysis of chemotaxis problems
([, [12], [21]), all these problems allow for local-in-time classical solutions which enjoy a favorable
extensibility criterion:

Lemma 2.1 For each € € (0,¢¢), there exist Traze € (0,00] and nonnegative functions

e € COQ % [0, Trnaz.e)) N C?H(Q x (0, Trnaze)),
we € CU[0, Thnaz,); WH2(Q)) N C*HQ x (0, Tinaz,e)),

which solve in the classical sense in Q x (0, Taze), and which are such that

) = 00. (2.10)

1
Ty < o0, then Ollomey+ T Dl + |
i T < 00, then Timsup (el Dlley + e Olhwranon + oot

t/(Tmaz,s

Lo (%)

Let us first collect some basic properties of these solutions. We first assert some useful pointwise upper
and lower bounds for w,.

Lemma 2.2 Let ¢ € (0,e9). Then

we(z,t) <M forallz € Q andt € (0, Tmaze) (2.11)
and -
we(z,t) > /0o et for allz € Q@ and t € (0, Thnaze), (2.12)

where I' > 0 is as in .

PROOF.  Since according to our choices of §. and M we have
we(2,0) = wo(r) + \/de < [Jwol[poo() +6 = M for all z € Q,

the inequality in (2.11]) immediately results from the maximum principle applied to the second equation
in (2.9). As a consequence thereof, in view of ((1.12) we know that ¢'(w:) > 01in Q x (0, T)naqz,c), whence

Ug 1 .
_— < — Q x (0,7,
1+n€uag<wa) = nag(wa) mn ( s maac,s);

so that using (2.9) and ((1.14]) we see that

Tr
Wep = ( Lew ) - —We in Q x (OaTmax,e)'
glwe)/ = Me

Since

satisfies




and g—% =0 on 0N x (0,00) as well as
w(z,0) = /6. < we(z,0) for all x € Q
by (2.8), the comparison principle therefeore ensures that w, > w in Q x (0, Tij42,¢) and that thus also

(2.12)) is valid. O
Using the latter along with ([1.10]), we easily obtain the following information on the evolution of [, ..

Lemma 2.3 With M as defined in and p taken from , we have

d/ ue < p(M)/ Ue for allt € (0, Trazc) (2.13)
dt Q Q ’

and

/ ug (-, 1) < {/ uo} - eP(M)t for all t € (0, Thnaz,e)- (2.14)
Q Q
PrROOF.  We integrate the first equation in (2.9) and use (1.10]) together with (2.11)) to find that

d
/ U = / Ue f (2, ug, we) < / uep(we) < p(M)/ Ug for all t € (0, Tnaz,e),
dt Jo Q Q Q

and that hence (2.13) holds, from which in turn (2.14)) results upon integration in time. O

3 Implications of an entropy-like structure

Now the core of our approach consists in the detection of a favorable quasi-dissipative property of the
system which can be revealed by following the well-established strategy of considering the time
evolution of a functional that combines a logarithmic entropy of the cell distribution with a properly
chosen summand annihilating the correspondingly obtained cross-diffusive interaction integral. In
order to clarify which precise form the latter takes in the context of the approximate problems ,
let us begin by separately tracking the logarithmic entropy.

Lemma 3.1 Let p, M and K; be as introduced in , and (2.9). Then for each e € (0,20)
we have

d 1 u? u K
= clnu. + = [ d.—=2 < Ao ey M)+ —1). / . eP(M)t
dt/Qu e +2/Q Us /Q (1+77€us)2w ‘|‘<P( )+ 2 ) { QUO} ‘
—i—/ ue Inug - f(, ue, we) for allt € (0, Thnaz.e)- (3.1)
Q

PROOF.  Since u. is positive in Q x (0, Tjnaz,c) by the strong maximum principle, we may multiply
the first equation in (2.9) by Inu. and integrate by parts to see that

d/ulnu —/ulnu—i—d/u
dtQE e—Qat 5dtQ5

Uey Ueg
= — [ (deue)z - — de——"—Wey 1 . , Ue,
/Q( cte) Ue +/Q Ut +/QU€ e - f{ e, we)
Ug for all t € (0, Tnaz,c)- (3.2)

Tt /.



Here by Lemma |2.3| we have

d

& [ e < plon) / we  for all ¢ € (0, Tonas.s), (3.3)
Q Q

and using Young’s inequality and ([2.2) we obtain

2
u u
_/(deua):c' = = _/ de—=* — degUcy
Q Ue Q  Ue
2 2
< _1/d€uax_’_1 dﬂue
2 QO Ue 2 Q dE
1 K
< —2/Qd51;€‘”—|—21/ﬂu5 for all t € (0, Trnaz,e)- (3.4)
€

Since

K K
(p(M) + %) / Uue < (p(M) + %) . { / uo} - eP(M)t for all t € (0, Tnaz.e)
Q Q
by Lemma combining (3.2))-(3.4) thus yields (3.1]). O

Thanks to a favorable exact relationship between the approximate signal absorption rate 0 < u —
T ;}EU and the tactic sensitivity 0 < m in 1} an exact compensation of the first summand on
the right of (3.1]) can be achieved on complementing the above by the following.

Lemma 3.2 With K; as in , we have
1d w? £ 1 w 1 u g (we)
- d az_’_/d‘ ( Ez)-l—/d' € . €w2

2dt Jo Eg(ws) 2 Ja ’ \/g(we) \/g(we) ¢ 2 Jq : L+neue glwe) =°

2
Uex

K
ek, w2, for all t € (0, Tynaz.c) (3.5)

< = | de——5Wer +
/Q 6(1 +776u5)2 = 2 Jo w/g(wg)3
whenever € € (0, ).

Proor.  Using that g(w.) is positive in Q x [0, Tinazc) due to Lemma and (|1.12)), on the basis



of the second equation in (2.9) we compute
d / w? / 1 / g (ws)
— [ d.—2 = 2 [ di——WepWes d W, W
dt Jo Eg(wg) (w ) seleet Q 692(71’6) st
2 [ e {o( ) (1 otm) )
g E —_—
) g(wa) xx 1+775u€g ) e
/ wa { wa;r Ue (w )}
x 1+ ngugg c
). ( = )
wsz

/
2ty (raotea),
<
o

' ( g(sfvs))x
g (we)

w2
1 + NeUe g we)

ET

for all t € (0, Traz,e)- (3.6)
Here we expand

1 U U,
2 d—w.,- (75 ) = —2/ de —————w
/Q Eg(ws) e 1+ nsusg(ws) z Q © (1 + 778“5—:)2 =

/
Uge g (wE) 2
92 d——_ w for all t € (0, Traz,e)s

/Q "1+ noue g(we)  =° ( <

so that

1 U U g (we) o
-2 [ de——w -<€gu)>+/al6 w
/Q “glwe) "\ 14 neue (we), o 1+nue glws) °°

Ueg ue g (we) o
= 2 [ der———5Wez — | der—— for all t € (0, Tinaz.c)- 3.7
/Q (1t neue)? /Q 5 now glwn) We oraltel & (37

We next use the identity

Weg g/<ws) 9 .

Weper = we) - + W, in Q x (0, Tna, 3.8

o = Vo) (22E) + gl (0, Trace) (3.8)

to rewrite
1 1 Ql(we) 2
de——Wey = do———Wepzx — d Wy + deg——Wep
( Eg(wé‘) § >z 69(“’6) : 692(“}6) © : g(we) :
1 Weg 1, g (we) o 1 .
= d - = Wy + deg ——Wey in Q x (0, Thaz,e),
E\/g(w8)<\/g(we)) 2 692(w6) : : g(ws) ‘ c

10



so that on the right-hand side of (3.6)) we can employ Young’s inequality to see that
1 w g (ws) o Wex
—26/<dw>-( i )—e/d w ( )
o\ glwe) e g(we)/ = o gHwe) T g(we)/ =

- 26/ \/gwE J;Ueig 2/ EIg ( Z(EZS)L
a2,

_ / 1 Weg )2 / Oex 1
N " Vo(we) \/ g(we) de \ﬁ
1 Wey /
< for all t € (0, Trnazc)s
\/g(ws \/g ws \/TE )

again due to (2.2)). In conjunction with (3.7)) and (3.6 this yields (3.5). O

In fact, combining the latter two lemmata yields a quasi-entropy inequality, the essential implications
of which can be summarized as follows.

Lemma 3.3 Let T > 0. Then there exist ,(T) € (0,e09) and C(T') > 0 such that for any choice of
g € (0,e4(T)), the solution of (2.9) satisfies

/ ue(-,t) Inue(-,t) < C(T)  for all t € (0,Ty) (3.9)
{ue (1)1}
and
/dw<C(T) for all t € (0,T%) (3.10)
0 glw-(0) = e |
and such that moreover R
Te u2
/ / d.—== < C(T) (3.11)
0 Q  Ue
and R
T:
/ / e Inug - fo (v, ue,we) < C(T) (3.12)
0 ue(+,t)>1}
as well as R
T us g (we)
d.————2>“Ly? < C(T), 3.13
/0 /Q €1+778Uag(wa) - ) ( )

where with Traze as in Lemma we have set ZA} = min{T, Trnaze}-

PrOOF.  We add the inequalities provided by Lemma [3.1] and Lemma [3.2] to see on dropping a
nonnegative summand on the right that for all € € (0,g9) we have

d 1 w? 1 u? 1 ue g (we)
<4 ] S B L2 G = O LN A C W
s [yt s e o L S

eK w?
< Cl"’/uslnus'f(l'aue»ws)"i' !
Q

— for all t € (0, Tnaz.e) (3.14)

2 /g(we)

11



with ¢; = ¢1(T) := (p(M) + %) . {fQ uo} -ePMT  Here we split f = f — f_ and
/us Inu. - f(x,us,ws) = / Ue Inug - fiy(x, ue, we) / Ue Inug - fo (2, ue, we)
Q {ue<1} {ue<1}

+/ Ue Inug - fiy(x, ue, we) / e Inug - f- (2, ue, we) (3.15)
{ue>1} {ue>1}

for ¢t € (0, Taz,e), where clearly

/ e Inug - foy(x,usywe) <0 for all t € (0, Tmaz.c), (3.16)
{ue<1}
and where using that
1
Elngé > — for all £ > 0, (3.17)
we see that 0
—/ e Inug - fo (2, ue,we) < MCQ for all t € (0, Tnaz.c) (3.18)
{ue<1} €
with
co 1= max = (z,u,w)

(z,u,w)€Qx[0,1]x[0,M]
being finite by continuity of f. Since
FiCouew) < p(M)  in ©x (0, Tase) (3.19)
by and Lemma again relying on we see that

/ e Inug - fr(z,us,we) < p(M)/ Uge Inug
{ue>1} {ue>1}

= p(M)-{/ualnug—/ uglnug}
Q {ue<1}

M)|Q
< /)(M)/uglnug—i—p()|| for all t € (0, Trnaz,e),
Q

e

so that from (3.15)), (3.16) and (3.18) we infer that

/ Ue Inug- f(x, ue, we) < p(M)/ Ug lnug/ Ue Inug- fo(x, ue, we ) 4¢3 for all t € (0, Tnaz.c)
Q Q {uc>1}

(3.20)
with ¢g := 7' (g + p(M)).
Next, the rightmost summand in can be estimated using Lemma along with the defining
properties of (d:)cc(0,e0) and (1:)ce(0,e0): ndeed, given T' > 0 we may use to fix e, = &.(T) €

(0,&0) small enough such that with I' as in (1.14) we have

for all € € (0,¢4),

12



which implies that for any such e,
e et ze_lnﬁ = /6. forallte (0,7T)
and hence, by Lemma [2.2]
M > w.(z,t) > /0. - e et > 0 forall z € Qand t (O,ﬁ).
Therefore, applies so as to ensure that
gws) >e  forallz e Qandte (0,7L),

so that the term in question satisfies

ek w.?ac < \/gKl / wgac
2 Q4 /g(u)a)3 o 2 Q g(wE)
K / w? ~
< — [ d.—=& for all t € (0,T;), 3.21
= 2 Jo % gt 01 320
because d. > +/z in by (2.1]). Together with (3.20)) and (3.14)), this shows that
1 w?, (-, 1)
= . 1 . t - d £ t 0 T
elt) = [ el + g [ dE e 0. T,

and

L 1 ugx('at) 1 UE('7t) g,(wa('ﬂt)) .
hs(t) T2 /ng Ua('vt) * 2 /Qdel —|—7]5u5(-,t) g(wa('at)) ng( 7t)

+/ ué('7t) 1nu6('7t) ' f_<','u5(',t),’u}€(-,t)), te <O7Tma:v,5)7
{ue(-t)=1}

have the property that

w2

Ky
"(t) + he(t) < M 1 — | d.—==
Ye(t) +he(t) < c1+e3+p( )/Que nue + - /Q )

1 w2,
= c1+ez+p(M)- {ye(t) - Q/Qdeg(we)} + Ky - {ys(t) - /Que lnus}
< catoesy(t)  forallt e (0,72) (3.22)

with ¢4 :=c1 + 3+ STt | ¢s = p(M) + K, where we again have used 1)

€

Now by nonnegativity of h. and (2.1)), an integration of (3.22) firstly yields

ye(t) < ya(o)€c5t + %ecst(l - 6705)&)
cs

1 w2 C4 T
< ¢g:= ugInug + = [|d]|pooqy +1) - sup /0””—1—}-665 3.23
‘ { /Q ‘ ‘ 2 <|| HL “ > €€(0,e0) /2 g(wO + 58) Cs ( )
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for all t € [0, TA}) and ¢ € (0,¢,), where we note that cg is finite according to 1} because §; — 0 as
£ \( 0, and because due to the fact that ¢’ > 0 on [0, M], as asserted by (1.12)), Beppo Levi’s theorem
warrants that as k£ — co we have

2 2
Wog Wog
N / < 00
/Q g(wo + 1) a 9(wo)
Once more in view of (3.17)), this entails both (3.9) and (3.10) with some suitably large C(T") > 0,
whereas another integration of (3.22)), this time making use of (3.23)), shows that

7 - 7
/ he(®)dt < ye(0) — yo(T2) + eaTh + o5 / e (t)dt
0 0

Q
< cri=ce+ u 4+ c4T + c5¢c6T, (3.24)
e
and that hence (3.10)-(3.13]) hold with some possibly enlarged C(T). O

Due to the boundedness property ([2.11)) of we, (1.12) and (1.15)), from (3.10]) and (3.13]) we particularly

obtain corresponding estimates for integrals no longer containing g(qvlv ) and ‘;’(55)).

Corollary 3.4 Suppose that T > 0, and let e,(T) € (0,£0) be as given by Lemma[3.5. Then there
exists C(T) > 0 with the property that for all € € (0,e,(T)),

/ dew?, (1) < C(T)  for allt € (0,1%) (3.25)
Q

and

T
Ue 2
de— w2, < C(T), 3.26
/O/QEHMEg (1) (3.26)

where again T\E = min{T, Thnazc}-
PrOOF.  Since g(we) < g(M) in Q X (0, Tnaz,.) by Lemma and (1.12), we immediately obtain
(3.25) from (3.10). As furthermore ([1.15)) warrants that
g'(we)
g(we)
by Lemma 2.2 we also infer from (3.13) that (3.26) is valid with some adequately large C(T') > 0. O
> and the uniform

As one consequence of |i when combined with the boundedness of m
positivity of d., we can infer that in fact our approximate solutions cannot blow up in finite time:

>y>0  inQx(0,Tmaze)

Lemma 3.5 For each € € (0,2¢), the solution of (@/ 1s global in time; that is, in Lemma we
have Tz e = 0.

PROOF.  Assuming on the contrary that 7,4, - be finite, combining (2.12]) with (1.12]) we first obtain
that then there would exist ¢; > 0 such that

< in Q x (0, Thnaz,e)- (3.27)

14



Moreover, as d. > 0 in by (2.1)), Corollary and Lemma would yield ¢z > 0 fulfilling
we (- t)[lwr2) < c2 for all t € (0, Tnaz.e)- (3.28)

In particular, the latter along with || and the fact that m < ﬁ for all £ > 0 ensures that the
cross-diffusive flux in the first equation in (2.9)) satisfies

et gt

Since furthermore, by (1.10) and again Lemma
f('vuevwE) SP(M) an X (07Tma:p,5),

1
< (11d|[ oo 1>.—- for all £ € (0, Tynan.c).
poiy < (@ +1) - ves or all £ € (0, Tgee)

a standard argument based on the smoothing properties of the non-degenerate linear semigroup
(etd=)ez),s g (cf. e.g. the reasoning in [3, Lemma 3.2]) provides c3 > 0 such that

||u8('7t)HL°°(Q) <c3 for all t € (OaTmax,s)-

In view of the extensibility criterion (2.10]), together with (3.27)) and (3.28)) this shows that our as-
sumption 7},q. . < 00 was absurd. O

4 Weak precompactness properties of u.f(z,u., w.) and u.g(w.) in L

In appropriately passing to the limit in the zero-order integrals appearing in the respective weak
formulations of , we shall make essential use of two compactness properties of the solutions
thereof which appear to go beyond trivial implications of the bounds provided by Lemma [3.3] As a
preparation for our arguments in this respect, let us state the following observation on a lower bound
for all possible values of u > 0 at which u- f_ (2, u, w) may become large for some 2 € Q and w € [0, M].
This will be used in Lemma to assert that for arbitrarily large x > 0 one can pick N > 0 in such
a way that whenever wue f_ (-, us, w:) > N, we know that u. > k.

Lemma 4.1 With M >0 as in , let

S(N) = {u >0 ’ u- f_(z,u,w) > N for some x € Q and w € [O,M]} (4.1)
and ' ‘
w(V) = { inf S(N) if S(N) # 0, (42)
+00 else
for N € N. Then
limsup k(N) = +oo. (4.3)

N—oo

Proor. If (4.3) was false, then there would exist Ny € N such that for all N > Ny we would have
S(N) # 0 and k(N) < ¢; with some ¢; > 0. By definition of S(N) and k(N), this would mean that
we could find (xN)NZNO C Q, (UN)NZNO C [0,00) and (wN)NZNO C [0, M] fulﬁlling

uy - f-(zn,un,wn) > N for all N > Ny (4.4)
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and
uy < c1 for all N > Ny,

where passing to a subsequence if necessary we may assume that as N — oo we have zy — Too,
UN — Uso and Wy — Weo With some zo € Q, us € [0,¢1] and ws € [0, M]. By continuity of f_,
however, this would imply that

un - o (TN, UN, WN) = Uso * - (Too, Usos Woo) as N = oo
and thereby contradict (4.4)). O

Making use of the latter, by means of the Dunford-Pettis theorem we can now establish suitable
compactness properties of the rightmost summands in the first two equations in ([2.9)).

Lemma 4.2 Let T > 0. Then with e,(T) € (0,£0) as in Lemmal[3.3,

(uef(-, uf’w5)>€€(0€ ) is relatively compact with respect to the weak topology in L*(Q x (0,T)),
(4.5)

and moreover

(ugg(wa)) Oen(T) is relatively compact with respect to the weak topology in L' (2 x (0,T)). (4.6)
ee(0,ex

PROOF.  According to Lemma [3.3] we can fix positive constants ¢; and ¢ such that
/ we(o ) (o) < e forallte (0,7) (@7)
{ue(-,t)>1}

and

T
/ / Ue Inug - fo (v ue, we) < co (4.8)
0 Hue(-t)21}

whenever ¢ € (0,e,(7T)). Aiming at an application of the Dunford-Pettis theorem, given p > 0 we first
fix an integer N > 1 suitably large such that

ap(M)T
N <1 (4.9)
and (DT
c19 I
—— < 4.1
mN 2 (4.10)
and such that with () as defined in Lemma |4.1| we have x(N) > 1 and
2 B (4.11)

Ink(N) 4’

where the latter is possible due to the outcome of Lemma Thereafter, we choose ¢ > 0 small

enough fulfilling
p(M)Nv < % (4.12)
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and

Ne<t (4.13)

4
as well as
g(M)N© < g (4.14)

and fix an arbitrary measurable set E C Q x (0,T) satisfying |E| < ¢. Then decomposing

//E ://Euaer('aans)—i—//lugf_(-,ua,wa), (4.15)

by combining (4.7) with Lemma (1.10) and (4.12)) we can estimate

/Usf—i-('aueaws) = // usf—&-('yuawe)""/ uef—&-('a“aa“’e)
E En{uc<N} En{uc>N}

e f (-, e, we)

M
< p(M) u5+p( )// Ug In ug
En{uc<N} In N En{uc>N}
M T
< p(M)N|E|+p()/ / Ue Inu,
N Jo Jiuc(p21y
p(M)
< .
< p(M)Nv+ v aTl
< % n % - % for all € € (0,,(T)). (4.16)

Likewise, relying on (4.13)) we see that

//Uaf—(‘auaawa) = // Uaf—('vua,wa)‘f‘// uaf—('7U57wa)
E En{ue f— (- ue,ws)<N} En{ue f— (- ue,we)>N}

S N’E‘+// u&f—('7u67w€)
En{uc f-(-,uc,we)>N}

< M+// Ue f (-, Ue, we) for all e € (0,e4(T)),  (4.17)
4 Enfuc f— (-ue,we)>N}

and in order to appropriately control the last summand herein we recall the definition of kK(N)
to observe that whenever u.(x,t)f_ (2, u.(z,t), w.(z,t)) > N for some ¢ € (0,e0), x € Q and t > 0, we
necessarily must have u(z,t) > k(N). Consequently, £ N {usf_(-,us,w:) > N} C EN{u. > k(N)},
so that and become applicable so as to guarantee that

// usf*('au&ws) < // uef*(HusvwE)
En{ue f—(-;ue,we)>N} En{u:>k(N)}

i/
S - U lnu ~f, 5y Ug, W
Ink(N) En{uc>r(N)} o e
1
< .
~ Ink(N) “
<% for all € € (0,,(T)),



which along with (4.15)), (4.16) and (4.17) shows that for any such E we have

/),

Similarly, using Lemma together with (|1.12)) we obtain

// = // Usg(w€)+// Usg(ws)
E En{u-<N} En{uc>N}
< g0 [ [ w+gn) [ e
En{u:<N} En{uc>N}

g(M) /T / .
15
N Jo Ju(p>1)

Ue f (o5 ue, we)| < po for all € € (0,e4(T)). (4.18)

ueg(we)

< g(M)-N|E| +

g(M)
< J\)
< g(M)NL—l— LN al
< g 4 g =pu for all € € (0,e,(T)),

because of (4.10) and (4.14). By means of the Dunford-Pettis compactness criterion, from this we
infer that (4.6)) holds, and that (4.5 is a consequence of (4.18]). O

5 Regularity properties of v/d.u.

In order to further prepare our limit procedure, especially with regard to pointwise convergence of u.
and of convergence in the cross-diffusive flux term da(lﬂquwm in , we next plan to combine
the weak compactness feature of the part \/d.w., thereof, as naturally implied by Corollary
by an appropriate result on convergence in the complementary factor \/E(H##S)Q in a strong L?
topology. To achieve this in Lemma by using underway an argument based on the Aubin-Lions
lemma, let us suitably interpolate between the inequalities in (2.14]) and (3.11]) to derive the following

spatio-temporal estimates for the quantity v/d-u. forming the core of the factor in question.

Lemma 5.1 Let T > 0 and e.(T) € (0,0) be as in Lemma[3.3. Then there exists C(T) > 0 such
that for all e € (0,e,(T)),

T 2
| vt o, o < (5.1)
and
T 2
/0 |Vt ot < o) (5.2)
as well as

/OT/Q\/df’ug < (7). (5.3)

PROOF.  According to Lemma and Lemma there exist ¢; = ¢;(T) > 0 and ¢ = c2(T") > 0
such that for any e € (0,£0) we have

/ us < 1 for all t € (0,7), (5.4)
Q
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and that

T u2
/ / i,z < o (5.5)
0 Q Ue

= clUeg +
[V + 5 2o
< Vde|uer| + ?Lue in Q x (0,00)

whenever € € (0,e,(T")). Since

|(Vdzu)s

due to (2.2)), by the Cauchy-Schwarz inequality these estimates imply that

Pl = [[{ vy 55 [{ [}
A{/Qda%:}-{/guf% SRV

LAT  forall e € (0,e,(T))

IN

< e3=c3(T) =

2

and thereby proves (5.1, whereupon (5.2)) follows from Lemma and the fact that WH1(Q) —
L>(Q). As the Gagliardo-Nirenberg inequality provides ¢4 > 0 such that

HSOH%3(Q) < C4H‘P$H%1(Q)H‘PHL1(Q) + 04H80H?i1(9) for all o € WH(Q),

in view of |D this furthermore entails that with cs := , /[|d|[ (@) + 1 we have
T 3 T 3
/ / Vidoud = / H\/daue(-,t)‘
0o Ja 0 L?

(Q)

s G /OT H(\/CTSU‘E(’ Ny H\Fug HL 1(Q) di +C4/ H\Fua ‘ Q)dt
T 3
= C4C5H“8HL°O ((0,T);L1 () / H (Vdeus (-, 1))z )dt+C4C§/O ‘Us('at)‘ Ll(ﬂ)dt
< cycscics + 04cgc§T for all € € (0,e4(7)),
and that thus also holds. O

6 Regularity in time

As a final preparation for our first subsequence extraction procedure, we combine our previously gained
estimates to obtain some regularity properties involving time derivatives of the solution components
ue and we.
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Lemma 6.1 Let T > 0 and &,(T) € (0,20) be as in Lemma[3.3 Then there exists C(T) > 0 such
that
/ H&g\/ (ue(+,t) +1) H — dt < C(T) for all e € (0,e,(T)). (6.1)
ProOOF. For fixed t > 0 and ¢ € C1(Q), from the first equation in (2.9) we obtain that
1 1

[oavituto+ e = - [ (Viom=v) - (@)
3 | (Vlommv) - derges

u- + 1 (14 neue)?
+;/Q\/£\/ujﬁuef(wue,wa)¢
! /Q \/@3¢%1Tﬁu§xw+fl /Q ﬂdW“Tﬁuw
1 1 1 d2, .
‘4/9\/@”\/@ Uegtp — \ﬁ\/uu—
5 [V smx—Q/QJd?dmmwm
1 3 U
1 /Q Vi T
L R e e
&/Vﬁ¢1u+m%>wm%

/ vd "y Ug, We ) for all € € (0,¢9). (6.2)
Ug +
Here using (2.1)) and Young’s inequality, we see that

3 1 2 \/a ugm %
IR §4{L%u}”Wm@
< YA [0t bl (6.3

‘ 1

with ¢1 := [|d|| (@) + 1, and similarly,

1 1
1 u? )2 2
Vdodp - < = d.—= L, d2
’ / EE\/ +1u£¢ B 4{/9 Eus} {/Q 8I(“€+1)3¢}
1
Kic u2, ) 2
< Yl e e
Q U
Kic u2:E
< YR [0 s ol (6.4

20



because
d?, < Kyd. < Kie;  in Q (6.5)

thanks to (2.2) and (2.1)). Next, by the Holder inequality and again due to (6.5)), (2.2), (2.1) and
Young’s inequality,
1
}2

1
1 uz )2 U
-7 dax ex - d&‘ﬁ : d2 <
‘ /V ﬂﬁ“ w‘ 4{/Q ug} {/Qmug+l

IN

1
VK u2$ 2
< B a0 )
4 Q Ue
Kie ugx
< Y a1 e (6.6)
Q Ue
and
1 [ 2w U1 3 5] ® S 2t V3l
P — . T 5 5
RV ~v==C I R R O RS O N
1 5
K 6 6
< Bl waf ()
Q
i 1
Kic 3 6
< 1{ JRCIN T
ch
< 1{/¢d a2+ 1ol 5 67
as well as
1 31 1 ul )2 L, ue ,)?
- 5 d ¥ x S - d L ° d T
‘ Q/suﬁvue+1usw 2{/Qu} {/gfueﬂw}
2 1
Cc1 u 2
< 2 d. £z .
< 2 [t e
2
C1 u
< = d-—=2 +1 . )
< 4{/9 w T }||1/1 220 (6.8)
and

[=[s3

1 Ue Ug % 6}
 a dsdsxi x x|
‘ |V v )

3} {dw\dmw(

|
N | =
/—’H

2 Ve + 1 U
< {/ﬂ }{w}
< F{/ﬂu} el g
ik
< YR Vit 1o (69
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Likewise, the integrals in (6.2)) stemming from the cross-diffusive interaction can be estimated according
to

1 1
1/ 3 Ug ‘ 1{/ ugm}Z {/ 5  ul 2}2

i vty < =4 [ d Y A L I ST

‘ 40" Vet A+ neue)? 4l Jo " ue o (us+1)%° 1]z o

5 1 1
Cl uECC 2 2
V4{A¢u}-{4¢@$nwm@
e

<
2
C1 Uy
g{{/¢€+/w@Mwm@ (6.10)
Q Ue Q
and
1 u 1 3 u2 3
= dad., g wept)| <= /dng} .{/dgx € 2}
’4/0 T Ve +1(1 4 neue)? “p‘ - 4{ Q- o417
1 1
VEKic 2 2
< YO [awt 8 [ ol
Q Q
K101
< YO [dwth [ufllie 61
Q Q
as well as
S T P Ry P |
— € Wer Py > 2 eWey ' T
2 Ja ue + 1(1 + neue)? 2 Jo ¢ Q ‘us+1
3 1 1
ct 2 2
< 21{/Qdaw§m} ‘{/Q\/dauad};%}
: } :
c 3
< Y [aar} L[V} Wi
Q Q
3
<

4 3
Cl{/dngIJr/ V. u§+1}|y¢$uL3(Q). (6.12)
4 {Ja Q0
Since finally

c1

1 "
’2/Q\/d7€mf(',ua,wa)¢' < 2{ /Qua|f('aua7w6)‘}H¢’LOO(Q)a (6.13)

and since in the present one-dimensional setting we have W13(Q) C ng(Q — L>®(Q) C L3(Q) C
L*(Q) C Lg(ﬂ), in view of the estimates implied by Lemma Corollary Lemma Lemma
and Lemma we only need to collect (6.3)), (6.4) and |i to derive (6.1)) from (6.2). O

It may be not surprising that our derivation of a corresponding property of w, is much less involved:

Lemma 6.2 Let T > 0, and let e,(T) € (0,0) be as in Lemma[3.3 Then one can find C(T) > 0

such that -
/O Hat(\/iwa('j))

3
< . )
H(Wlﬂ(g)ydt <C(T) for all e € (0,e,(T)) (6.14)
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PROOF.  For arbitrary ¢ € C1(€2), the second equation in (2.9) shows that

/Qat(\/lwe(‘,t))w = JTE /\FH RS

:gxdﬁm /ff*

- / V& —1 g(w.) (6.15)

for all € € (0,e9), where by the Cauchy-Schwarz inequality and ([2.2)),

€ d w € w2 2 d? 2
< ex Ex < de ex . Yex 12
' 2 Q\/I\/g(wg)w‘ = 2{/9 g(wg)} {/ﬂ dgw }

1
NIE w?, 2
< L [ o il (6.16)

1+55

because d% < L in Q according to |D Furthermore,
w
' —€ / Vi ——=
Q

NG
1
waf <ef [0t o) (6.17)
s € L2(9)» .
\/g(ws) ’ Q ag(wg) T
whereas again invoking Lemma along with (1.12)) we see that

‘ /\f 1/1’SQ(M)/Q\/iuawSg(M){/Q\/d?ug}éwnLg(m (6.18)

for all ¢ € (0,&0). Thus, since WH2(Q) — L%(Q) C L%(Q), and due to Lemma and Lemma
we obtain that for any 7" > 0,

1+ 175u5

Nl

2

sup / {/d )dzn} dtﬁT'{ sup sup/d )dm} < 00

€(0,2.(T)) t)) €(0,e. (T)) te(0,T) t))
and

T 3
sup / / Vde(x) ug(:v,t)d:vdt < o0,
€€(0,e4(T)) JO Q

it follows from (6.16)), (6.17)), and (6.18]) that (6.15] entails (6.14]). O

7 Construction of limit functions in {d > 0}

We are now prepared for the construction of a limit function inside the positivity set of d through

a straightforward extraction process based on straighforward compactness arguments. We remark

that at this stage, besides the weighted functions v/d.w., our reasoning yet involves the quantities
de(ue + 1), rather than those addressed in Lemma
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Lemma 7.1 There exist a sequence (ei)ren C (0,€0) and nonnegative functions u and w defined in
{d > 0} x (0,00) such that e, \, 0 as k — oo and

Ue — U a.e. in {d > 0} x (0, 00), (7.1)
ue =~ in Lj,([0,00); L' ({d > 0})), (7.2)
Vie(ue +1) = V/d(u+1)  in Lip,([0,00); L*({d > 0})), (7.3)
We = W a.e. in {d > 0} x (0,00) and (7.4)
Vdowe = Vi in L, ([0,00); W2 ({d > 0})) (7.5)

as € =g \( 0.

PROOF.  Since given T' > 0 we can use (2.2) to estimate

[ o = [ [V v

< = d.—ez z Qex 1
o //aue +2/0/Qde<u€+)
2 T
K,
< ET i 1
< //u R A KU

for all € € (0,0), it follows from Lemma [3.3[ and Lemma [2.3| that with e,(7) as introduced there,

. 72 L2
( de(ue + 1))66(0’5*(T)) is bounded in L*((0,7T); W*=(Q)).

Therefore, in view of Lemma [6.1] the Aubin-Lions lemma asserts that for any such T,

< de(ue + 1)) is relatively compact in L*((0,T); L*()),
e€(0,e4(T))

from which it follows by a standard argument that for a suitable sequence (x)ren C (0,&0) and some
z € L} ([0,00); L*(2)) we have e, \, 0 as k — oo and

de(us +1) =z in L2 ([0, 00); L*()) (7.6)

and
de(ue +1) = 2 a.e. in Q x (0, 00) (7.7)

as € = g \( 0. Since d; — d a.e. inQase\Oby (12.3), this means that if we let u(z,t) := 2t g
d(z)

for x € {d > 0} and ¢t > 0, then and (7.6 imply (7.1) and ( ., whereupon (7.1) a posteriori

also shows that @ must be nonnegatlve
We next make use of the estimate (3.9) from Lemma to infer that for T'> 0 and &,(T") as above,

(u€ In u5> 0T is bounded in L*(Q x (0,7)),

so that the Dunford-Pettis theorem guarantees that (uc).c(o,c, (1)) s relatively compact with respect to
the weak topology in L'(Q x (0,T)), and that hence (7.2)) can be achieved on extracting a subsequence
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of (er)ken if necessary.
As for the second solution component, we first use (2.2]) to see that

[ Wawa ] = [ Vv + .

< /d et /d2 2
w? w
- 2 Jode €
K
< 2/d6w§x+1/w3 for all ¢ > 0,
Q 2 Ja

so that for T' > 0 and ,(T') as before, Corollary and Lemma warrant that

<*/d8wa>ge(o,g*m) is bounded in L%((0, T); Wh2(4)). (7.8)
Thus,
(\/d€w€> 0en(T)) is relatively compact with respect to the weak topology in L?((0,T); W?(Q)),
ee€(0,ex

(7.9)
whereas ([7.8) in conjunction with Lemma and the Aubin-Lions lemma ensures that

(x/d5w5> is relatively compact in L2(Q x (0,7)).

€€(0,e4(T))

Consequently, arguing as above we conclude upon passing to a further subsequence if necessary that
both (7.4) and (7.5 hold with some w : {d > 0} x (0,00) — [0, c0). O

In dealing with the taxis term in ({2.9)), the following consequence of ([7.5)) will turn out to be more
convenient.

Corollary 7.2 With (ex)ren C (0,€0) and @ as in Lemma|[7.1], we have
Vdaw, = Vdw, — in LE,([0,00); L2({d > 0})) (7.10)
as € = e \, 0.

PRrROOF. We rewrite

(7.11)

\/>w693 = \/>w€ \/7

and note that in view of the dominated convergence theorem, combining ([2.4] , and (| . with
and Lemma. 2.2/ shows that for any 7> 0 and ¢ € LQ({d >0} x (0, T)) we obtaln

///{d>0} 2\/> wer //d>0} Q\f

d d
=w, = ——=w  in L ([0,00); L*({d > 0
N AV i0c([0, 00); L7 ({d > 0}))

as € = g \( 0. Therefore, ((7.10)) results from (7.11]) on using ([7.5]). O

and hence
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8 Further convergence and integrability properties

Let us now make use of the pointwise convergence property from Lemma to accomplish our
previously formulated goal concerning strong L? convergence of @Mﬁ Indeed, through an
argument based on Egorov’s theorem this will result from the fact that Lemma [5.1] implies bounds for
this quantity in Lebesgue spaces involving superquadratic integrability.

Lemma 8.1 Let (ex)ren C (0,£0) be as provided by Lemma[7.1, Then

ﬂ(lﬁiu)? S Vdu  in L2,([0,00); L2({d > 0})) (8.1)

as € = e (0.

PROOF.  As a consequence of Lemma given T' > 0 we can find ¢; = ¢1(T") > 0 such that with

£+(T) as in Lemma
T 3
/ / Vidoud < e for all € € (0,e4(T)). (8.2)
0o Jo

Since 1. > 0 for all € € (0,¢¢), this implies that for

Ue
= —_— T
Ze \/dg(1 R e € (0,e,(T)),

we have -
/ / 2 <e for all € € (0,e4(T)). (8.3)
o Jao
Since . — 0 as € \, 0 by (2.7), from Lemma we moreover know that
ze = Vdu ae. in {d > 0} x (0,00) as e =c¢ep \(0. (8.4)

Therefore, according to a standard argument involving Egorov’s theorem it particularly follows from

(8.3) that
ze = Vdu in L*({d > 0} x (0,T)) ase =g \(0,

so that it remains to show that

T T
limsup/ / 252 S/ / di?. (8.5)
e=¢,\0 JO {d>0} 0 {d>0}

To this end, supposing on the contrary that for some co > fOT | {d>0} du? and some subsequence (6kj )jeN

T
/ / 22— ey as € = ex; \(0, (8.6)
0 J{a>0}

of (ex)ken we had
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once more by means of (8.3) we could extract a further subsequence, again denoted by (akj )jen here

fore convenience, along which for some z € L%({d > 0} x (0,7)) we would have

zZ

2.2 inLi({d>0} x (0,T)) ase=ep \,0.

Since (8.4) warrants that 22 — du? a.e. in {d > 0} x (0,00) as € = €, \, 0, again by Egorov’s theorem
this would imply that actually

2 —di® i Li({d>0}x(0,T) ase=ep \0,

so that since the boundedness of {d > 0} x (0,T) allows for choosing nontrivial constants as test
functions here, we would conclude that we would conclude that

T T
/ / z§—>/ / du® as € =¢g; \(0.
0 J{d>0} 0 J{d>0}

This contradiction to (8.6 shows that in fact (8.5) must hold, whence the proof becomes complete. [

A further property of the limit couple (u,w), quite plausible in view of Corollary can also be
justified on the basis of Egorov’s theorem.

Lemma 8.2 Suppose that & and w are as constructed in Lemma[7.1. Then for all T > 0,

T
/ / duw? < oo. (8.7)
o J{a>0}
PROOF.  According to Lemma([7.1] (2.7)), and Corollary [7.2] with (ex)ken C (0,20) as in Lemma [7.1]

we have
Ue = .
— s Va a.e. in {d >0} x (0, T 8.8
Vi {d>0}x (0.7) (59

Vdowey = Vdw, — in L*({d > 0} x (0,T)) (8.9)
as € = g \, 0. Next, Corollary [3.4] entails that with ,(T) € (0,20) taken from Lemma 3.3} the family
(1 /dgﬁwagg) 0en(T)) is bounded in L2({d > 0} x (0,T)), so that we can find

eve ee€(0,e4

z e L2({d > 0} x (0,T)) (8.10)

and

and a subsequence (e, )jen of (€x)ken in such a way that

Ue _ Ue . 2
/ . Nz Jo— Y, L i
o (x/dgwg) ey oo 2 I LA({d >0} x (0,7)

as € = ¢x, 0. Here a known consequence of Egorov’s theorem ([24, Lemma A.1]) asserts that due

to (8.8]) and we may identify
2 =Va (Vi) = Vduw, — ae in{d>0}x(0,7),

so that (8.7) results from (8.10)). O
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9 Solution properties of © and w

We are now ready to make sure that (u,w) indeed solves (|1.7) when restricted to {d > 0} in the
following sense.

Lemma 9.1 Let u and w be as obtained in Lemma n
i) If p € C§(2 x [0,00)) is such that v, =0 on IQ x (0,00) and additionally

supp ¢ C {d > 0} x [0, 00), (9.1)
then
—/ / Upr — / uop(+,0) = / / AUy +/ / AU,
0 {d>0} {d>0} 0 {d>0} 0 {d>0}
+/ / af (-, w,w)e. (9.2)
0 {d>0}

it) For all ¢ € C§°(Q x [0,00)) fulfilling (9.1), we have

[ wet [ wet.0 = [T ag@e 03
0 {a>0} {d>0} 0

PROOF.  On testing the first equation in (2.9) by ¢ we see that

00 S ; 00 ; Ue
_ _ 0) = e
/0 /Qus@t /QUOSO( ) /0 /Q elUePry + /0 /Q € (1 T nsuz-:)z Weg P

o
+/ / usf('a Ug,’wg)(,p for all € € (OaEO)a (94)
0 Q

where since u. — u in L}, ([0,00); L'({d > 0})) as € = & \, 0 by Lemma according to (9.1)) we
have

o0 oo

—/ /Us@t_)_/ / up

0o Ja 0 J{d>0}

and

/ /dsus@zx —>/ / dﬂ@:px
o Ja 0o J{a>0}

as € = ¢ \( 0, because d. — d in L>*(2) as e \, 0 due to (2.3).
Next, since Lemmawarrants that also u. — u and we, — w a.e. in {d > 0} x (0,00) as € = g \( 0,
it follows from Lemma [4.2| and a standard argument, again involving Egorov’s theorem, that

ue f (- ue,we) = Uf(, @) in Ly([0,00); L' ({d > 0})),

Awﬁ%ﬂa%waﬁﬁmﬂbmwmﬁ@>

28

and that hence



as e =¢ (0.
Finally, from Corollary [7.2] we know that

\/iwax - \/gw:v in leoc([()? OO)? L2({d > O}))

as e = g \y 0, which combined with the strong convergence property of v/d W in Lloc([(), o0); L2({d >
) asserted by Lemma ensures that

zPr = x €T d T¥T
/ / +776U5 e / / 1+775Us ) (\/7105 4 _>/ /d>0} e

as € = g \( 0. Therefore, (9.2) is a consequence of @
To verify (9.3)), given ¢ € C§°(£2 x [0, 00)) fulfilling (9.1]) we obtain from ({2.9) that

/ /wacthr/wo&cp ——5/ /\/Tg /000/91;;6%9(%” (9.5)

for all € € (0,e9). Here by Lemma [7.1} n, Lemma and the dominated convergence theorem,

/ /wggot—>/ / N (9.6)
o Ja 0 J{d>0}

as € = e \( 0, whereas (2.8) trivially ensures that

/Q woep(-0) = /{ oy M0G0 (9.7)

as € = ¢ \¢ 0. Moreover, combining Lemma with the pointwise convergence properties in ((7.1))
and ([7.4)) we easily infer that

ueg(w.) — dig(@)  in Li,([0,00); L' ({d > 0}))
and thus, also relying on (2.7) and again on Lemma we obtain

/0 ) /Q T a9 = /O N /{ o, T (9.8)

as € = g, \, 0. Finally, once more relying on the fact that d. > /¢ by (2.1)), we see by using the
Cauchy-Schwarz inequality that if 7' > 0 is large enough such that ¢ =0 in Q x (T, 00), then

< < [{ s} {20
3 w? 2 o 2
< oo L[t [T o)

for all £ € (0,e9). Therefore, since with £,(T") € (0,e0) as given by Lemma we know from ((3.10))
that

[ e

A

2 (.
sup sup /dawm(’t) < 00,
£€(0,64(T)) te(0,T) JQ :



it follows that
o0
Weg
e e BPRNNY)
/0 /Q & (we) ’
as € = €, \, 0. In combination with —, this shows that (9.5)) implies (9.3)). O

10 Proof of Theorem [1.2

We can finally extend the above spatially local solution in an evident manner so as to become a global
weak solution in the flavor of Definition In the verification of the desired solution property near the
boundary of {d > 0} we shall make use of the following consequence of the inclusion vd € W1H(€Q).

Lemma 10.1 Let z € Q. Then
2

d(x) < %{dist (, {d = 0})}

PrOOF.  We only need to consider the case when d(z) > 0, in which by the closedness of {d = 0}
we can pick xg € Q such that d(zg) = 0 and |z — zg| = dist (z, {d = 0}) > 0. Thanks to (2.2), we then
have

(10.1)

Vi = [ Wiy =3 [* %dy < Y g = Y it (0 4a = o))

from which ((10.1]) follows. O

By means of an appropriate cut-off procedure we can thereby proceed to show that the natural
extension of (u,w), consisting of a solution to the ODE system formally associated with (1.7)) in
{d = 0} indeed solves (1.7)) in the desired sense.

PrROOF of Theorem We let uw and w denote the functions defined on {d > 0} x (0,00) in
Lemma and for fixed z € {d = 0} we let (u(x,-),w(z,-)) € (C*(]0,00)))? be the solution of the

initial-value problem
w), t >0,

9y a’
wy = —ug(w), t>0, (10.2)
u(z,0) = up(z), w(z,0)=wo(z).
Indeed, it follows from (1.8, (1.10) and (1.12) that for any such x this ODE problem possesses a
globally defined solution fulfilling

0 < w(x,t) <M for allt >0 (10.3)
and
0 < Gz, t) < ug(x)ePM? for all ¢t > 0, (10.4)

and since ug and wq are continuous in Q by (1.9)), standard ODE theory warrants that both @ and
are continuous in {d = 0} x [0, 00). Therefore,

(u, w)(x,t), xz € {d> 0}, t >0,

(u,w)(z, 1), ze{d=0}, t>0, (10.5)

(u,w)(z,t) := {
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defines a pair of nonnegative measurable functlons on all of Q x (0, 00) which thanks to Lemma [7.1] -,

Lemmau Lemma. - and (|10.4)) satisfy ([1.17)) and -, and for which Lemma

in particular entails that also holds

In order to verify , we first make use of the fact that by continuity of d the set {d > 0} is
relatively open in €2, and hence consists of countably many connected components; that is, there exist
an index set I C N and intervals P; C Q, i € I, such that {d > 0} = Uicr Piand P,NP; =0 fori,j el
with i # j. Now for each i € I, there exist a; € Q and b; € Q such that (a;,b;) C P; C [a;, b;], where
a; € P; if and only if a; € 9Q and b; € P; if and only if b; € 9. For fixed § € (0,1), defining §; := 27%,
1 € I, it is then possible to pick (Cél))iel C C*(Q) such that for all i € I we have 0 < Céz) <1in Q,
C(gz) (x) = 1 whenever x € P; is such that dist (xz,dF;) > ¢;, C(gz) =0in Q\ P, and

i 2 . =
1Y) < 5 inQ (10.6)
as well as
16 . =
G| < 7 Q, (10.7)

where in the exceptional case a; € 92 we can additionally achieve that ( 6i) = 1 holds even throughout
[a;, b; — &;], and where, similarly, in the case b; € 02 we require that Cl) = 1in [a; + &;, by].
Now given ¢ € C§°(2x [0, 00)) satisfying ¢, = 0 on 92 x (0, 00), from ([10.2)) and (10.4) we immediately

see that - ~
] we [ w0 = [Tt (10.8)
0o J{d=0} {d=0} 0 J{a=0}

Moreover, Lemma guarantees that if we let

G=Y.¢",  §e(0,1),

el

then since supp (¢s - ¢) C {d > 0} x [0, 00), we have

- / / Couspr — / Cruo(-,0)
0 J{d>0} {d>0}
~ / / d - (C5)as + / / duwg - (C5)a
0 J{d>0} 0 J{d>0}
+/ / C(SUf(',’UJ,’(U)C,D
0 {d>0}
= / / diUQwa—I-Q/ / C&L‘du@x‘i‘/ / C&xmduSO
0 {d>0} 0 {d>0} 0 {ad>0}
+ / / Csduw, o, + / / Cszduwgp
0 J{d>0} 0 J{d>0}

—i—/o [[d>0} Couf (-, u,w)p for all 6 € (0,1). (10.9)

31



Here we may use that 0 < {5 < 1 and that as 6 \, 0 we have (5 — 1 a.e. in {d > 0} to infer from the
dominated convergence theorem that

[ee] o0
- / / Cupr — — / / wpy (10.10)
0 J{d>0} 0 J{d>0}

and

- / Gsuop(+0) — —/ uop(+, 0) (10.11)
{d>0} {d>0}
as well as - ~
/ / Gdupzs — / / dupzy (10.12)
0 J{d>0} 0 J{d>0}
and - .
/ / Coduwg oy — / / duwg oy (10.13)
0 J{d>0} 0 J{d>0}
and - .
/ / Guf(-,u,w)p — / / wf (-, u, w)p (10.14)
0 J{d>0} 0 J{d>0}

as d \( 0. In order to estimate the integrals on the right of (10.9) which contain derivatives of (s, let
us first observe that as a consequence of ((10.6)), (10.7) and Lemma we know that whenever z € Q)
is such that (s, (z) # 0, for some i € I we have x € P; and dist (x, {d = 0}) < §; and hence

K162 22
2 (p) < 2% (2 =
(@), (@) < = (5) = (10.15)
as well as 52
2 16
() - |G ()] < = g = 4K (10.16)

Furthermore, again by mutual disjointness of the P;,

<Y 2.6,=> 2-(27%) <25 forall € (0,1),

el el

‘Supp Coz

so that since we know from Lemma Lemma [8:2] and Fatou’s lemma that with 7' > 0 taken large
enough fulfilling ¢ =0 in Q x (T, 00) we have

V' e L'({d > 0} x (0,T))
and
duw? € L'({d > 0} x (0,T)),

from the dominated convergence theorem it follows that

T 3
/ / Vdu? =0 (10.17)
0 Jsupp (s
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and

T
/ / duw? — 0 (10.18)
0 Jsupp (s
as § \ 0, whereas combining (|10.16|) with the dominated convergence theorem shows that also

/ Comal - d — 0 (10.19)
supp Csa

as 0 \ 0.
Thus, using the Holder inequality along with (|10.15)) and (10.17])) we obtain that

00 T 3 3 §
‘2/ / Godups| < 2H<P:c||Loo(Qx(o,oo)){/ / Vd U3} {/ / o0 ]2 4}
0 {d>0} supp (sz Supp (s

< 2/K Tsugozummm){// }
supp (sx

as § \( 0, while from (|10.19) we infer that

(e’ T
mdu < oo ) / \/&u T / TT -d dt
\ /0 /{M}gy o < Welim@omy [ Ve, .0 [ 16
T 3
Iellm@xaon{ [ Va0, gt} [ 16
S0 (10.21)

as § \( 0, because Lemma together with Fatou’s lemma warrants that

/ H\fu HLOO({d>O})dtS lim inf /TH\/iuf("t)Hioo(Q)dt< .

e:ak\(() 0

Since finally ((10.18)) along with (10.15)) ensures that also

’/Ooo/{d>0}C5xduwx90’ < H@Hmmx(o,m)){/T/Sllppgéz duwi} {/ /Cax }

< VET(ell Lo @x(0,00)) {/ / ) duw}
Supp Gsx

— 0

as d \, 0, from ((10.9)-(10.14)), (10.20) and (10.21)) we conclude that

—/ / wpt—/ uocp(',O)—/ / dumer/ / duwg g
0 J{d>0} {d>0} 0 J{d>0} 0 J{d>0}
+/ / Uf(',u, U])QO,
0 J{d>0}
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which in combination with (10.8]) shows that indeed ([1.20)) is valid for any such .
The derivation of (1.21]) is much less involved: Given ¢ € C§°(€2 x [0, 00)), from (10.5) and ([10.2) we

first obtain that - ~
/ / wey +/ wop(+,0) = / / ug(w)ep, (10.22)
0 J{d=0} {d=0} 0 J{d=0}

whereas with ((s5)se(0,1) as introduced above we obtain from Lemma that

/OOO/QCWP”/QCWO@('?O) :/Ooo/ﬂésug(w)cp (10.23)

for all § € (0,1). Using that w and ug(w) belong to L} ([0,00); L'({d > 0})) by Lemma Lemma

loc
[4.2] and Lemma [7.1], we may again employ the dominated convergence theorem here to see that in the

limit § N\, 0, (10.23)) implies that

/ / wes + / wop(-,0) = / / ug(w)p,
0 {d>0} {d>0} 0 {d>0}

and that thus in view of (10.22) also ((1.21]) holds. O

11 Discussion

In this paper we considered a model for tumor cell migration in an anisotropic environment. More
precisely, this is a 1D version of a model deduced in [9] to characterize glioma invasion. Here we
explicitly allow for strongly degenerate diffusion and the setting also involves haptotaxis and a drift
term coming from the non-Fickian transport obtained via parabolic scaling in [9]. We proved the
global existence of weak solutions, the boundedness and the uniqueness issues remaining open.

In order to illustrate the solution behavior some numerical experiments have been performed upon
using a finite volume method. It is well known that there are many serious numerical issues related
to handling chemotaxis and haptotaxis systems, even in the case with linear diffusion for the cell
density, as in such settings the solutions can infer large aggregations and even exhibit blow-up. We
are not aware of any well investigated numerical methods dealing with strongly degenerate diffusion
and haptotaxis, thus had to rely on methods which have been developed for other purposes in order
to get a glimpse into the solution behavior in this framework. Figure [I] shows the densities of cancer
cells and of tissue at several time points; the simulations confirm the expected qualitative behavior
and, moreover, hint on possible blowups in finite time, which in this work we have neither been able
to prove nor to rule out. Thereby, we considered for x € [0, 1] a diffusivity function

d(z) = (sin(4m(z — 0.25)))** 1995 0.5 + (sin(4m(z — 0.75)))** Li.75.1.0]

with a > 0 and started with initial conditions like shown in Figure they describe a tumor at time
t = 0 situated in a tissue region which has already been degraded by the cancer cells, most of the latter
still being located in the immediate neighbourhood of the tumor. Then the cells spread gradually into
the available tissue, eventually aggregating at the sites with highest difference between diffusivities,
see Figures Our results actually hint on the solution blowing up at those sites, see Figure
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Figure 1: Simulation results. Red line: cancer cell density, blue line: tissue density; a = 0.14.
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(a) Initial condition. (b) Simulation at time ¢t = 80 (c) Simulation at time ¢ = 200

This behavior corresponds to previous observations, in particular in the context of glioma migration,
which is heavily relying on the patient-specific brain tissue structure in which the tumor cells are
invading. Indeed, glioma cells have been observed to accumulate along interfaces between white and
gray matter [5]. This might be a consequence of the very different diffusivities in the two regions:
the white matter is much softer and allows for cell motility (along white matter tracts) which is 5-25
times higher than in gray matter, see [18, [13] [4]. According to the discussion in [4], such behavior can
be recovered, however, only if the equations involve myopic transport (i.e., the cells sense only locally
their neighbourhood, which is described by a term of the form VV : (D(z)u)) instead of the classical
Fickian diffusion, whence supplementing the diffusion with a transport term. The model we presented
and analyzed here features this myopic transport, but moreover also accounts for haptotaxis, which is
crucial for cells invading a tissue, [6] the more so for glioma cells following white matter tracts, [10, [§].
Most of the previous models addressing the issue of glioma invasion (including the already mentioned
ones [18), 13, 4] and [16]) did not involve haptotaxis; as mentioned in Section [I| our macroscopic model
is obtained from a micro-meso setting and the haptotaxis term is a consequence of the multiscality.
Our numerical experiments suggest strong cell aggregation at sites with high diffusivity situated in
the surroundings of regions with much lower diffusivity, whereby the latter may include areas with
sparse tissue. Given the heterogeneity of brain tissue it is possible to have a more or less frequent
alternation of such regions. This then leads to a rather fractal pattern for the tumor spread, featuring
an alternation of large cancer cell accumulations with smaller tumor cell groups, possibly separated
by hypocellular zones, occasionally exhibiting sharp transitions -as shown by our simulations. This
behavior is in line with the highly infiltrative character of glioma spread.

Both the mathematical analysis and the numerical handling of a model featuring haptotaxis, degen-
erate diffusion, and myopic transport are much more challenging than for the prevalent systems with
(nonlinear) diffusion and taxis. Not only are such models more realistic, but they also offer a research
field for several interesting questions, both from the mathematical and the biological point of view.
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