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Abstract

We consider positive classical solutions of

vt = (vm−1vx)x, x ∈ R, t > 0, (⋆)

in the super-fast diffusion range m < −1. Our main interest is in smooth positive initial data
v0 = v(·, 0) which decay as x → +∞, but which are possibly unbounded as x → −∞, having in
mind monotonically decreasing data as prototypes.

It is firstly proved that if v0 decays sufficiently fast only in one direction by satisfying

v0(x) ≤ cx−β for all x > 0 with some β > 2

1−m

and some c > 0, then the so-called proper solution of (⋆) vanishes identically in R × (0,∞), and
accordingly no positive classical solution exists in any time interval in this case. Complemented by
some sufficient criteria for solutions to remain positive either locally or globally in time, this con-
dition for instantaneous extinction is shown to be optimal at least with respect to algebraic decay
of the initial data. This partially extends some known nonexistence results for (⋆) (Daskalopoulos
and Del Pino, Arch. Rat. Mech. Anal. 137 (1997)) in that it does not require any knowledge on
the behavior of v0(x) for x < 0.

Next focusing on the phenomenon of extinction in finite time, we show that in this respect a mass
influx from x = −∞ can interact with mass loss at x = +∞ in a nontrivial manner. Namely, we
shall detect examples of monotone initial data, with critical decay as x → +∞ and exponential
growth as x → −∞, that lead to solutions of (⋆) which become extinct at a finite positive time,
but which have empty extinction sets. This is in sharp contrast to known extinction mechanisms
which are such that the corresponding extinction sets coincide with all of R.
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1 Introduction

In the modeling of nonlinear diffusion processes, an outstanding role is played by the prototypical
equation

vt = (vm−1vx)x, x ∈ R, t > 0, (1.1)

and its n-dimensional analogue, where m is a real parameter and the unknown v = v(x, t) is supposed
to be nonnegative. If m = 1, this becomes the usual linear heat equation, whereas choosing m > 1
leads to the porous medium equation that was thoroughly explored in the 1970s and 1980s (see [2]
and, for more recent developments, [13] and [32]). The study of the regime m < 1 began slightly later,
and this range is often referred to as the fast diffusion range, because in this case the diffsusivity vm−1

in (1.1) increases at small densities and even becomes singular in the limit v ց 0 (cf. [32] and [13] for
comprehensive surveys).

As one particular consequence of sufficiently singular diffusion, it is known that if m ≤ −1 then the
phenomenon of extinction may occur if the initial data decay fast enough as |x| → ∞. For m < −1, an
instructive example for such an effect is provided by the family (vT )T>0 of explicitly given functions
defined by

vT (x, t) := K
(T − t

x2

)
1

1−m
, x ∈ R, t ∈ (0, T ), with K :=

(2(−m− 1)

1−m

)
1

1−m
, (1.2)

which classically solve (1.1) in (R \ {0}) × (0, T ) and tend to zero everywhere as t ր T . Along with
an associated family of slightly less explicit nonsingular relatives sharing the same extinction behavior

(cf. (5.1) below), all these functions decay like |x|− 2
1−m as |x| → ∞ for all t ∈ [0, T ). Accordingly,

a straightforward analysis based on comparison arguments shows that for any bounded initial data

which lie below some multiple of |x|− 2
1−m for all x ∈ R, the corresponding solution of (1.1) becomes

extinct after a finite time ([32, Chapter 9]). Even more drastically, this extinction time is actually

zero, and thus no resonable solution exists at all, whenever m < −1 and v(x, 0) ≤ c(1 + |x|)− 2
1−m

−ε

holds for all x ∈ R and some c > 0 and ε > 0 ([11]).

Let us mention that both these effects can also be found in the higher-dimensional version of (1.1) for
appropriately smallm; in fact, in space dimension n ≥ 1 and for respectively subcriticalm considerable
knowledge has been gained concerning the set of initial data which either lead to extinction after a
positive time, or to instantaneous extinction, that is, to local nonexistence (see [9], [28], [11], [12], [32,
Chapter 5, Chapter 9] and also [15] for extinction in slightly more general models). Recent studies
have moreover revealed quite a large variety of quantitative results on how the respective extinction
mechanisms depend on the spatial decay of the initial data in fast diffusion equations involving such
subcritical m, with a particularly rich variety of facets appearing for intial data decaying at the critical

rate |x|− 2
1−m at first order ([14], [6], [7], [21], [17], [18], [19], [20]), but also some non-standard types

of behavior for data with faster spatial decay ([24], [21], [27]).

When looking for explanations for the above phenomena of mass loss, one is led to the interpretation
that if the initial distribution decays rapidly enough in space then the influence of fast diffusion,
present wherever the solution is small, is strong enough to quickly transport as much mass as available
away from each compact region towards infinity. The objective of the present work is to address the
question how this mass transport may be affected when spatial decay of the data is prescribed only
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in one direction, say, as x → +∞ in the one-dimensional equation (1.1), possibly accompanied by
unboundedness in the other. Thus having in mind as prototypes monotone initial data decreasing to
zero as x → +∞, we particularly ask whether one can observe a significant interplay between the
effects of mass loss towards x = +∞ and influx coming from the left.

Main results I: Instantaneous extinction enforced by decay in one direction. Let us
clarify the framework within which we can formulate the first of our main results. We shall assume
throughout that the initial data v0 are positive on R and, for simplicity in presentation, belong to
C3(R), and hence subsequently we will consider the Cauchy problem

{

vt = (vm−1vx)x, x ∈ R, t > 0,

v(x, 0) = v0(x), x ∈ R.
(1.3)

Since in view of well-known results ([16]) we neither expect uniqueness, nor classical solvability for all
such data, in the present setting we find it adequate to adopt from [22] the notion of a proper solution,
which one may think of as the largest function, defined on R× [0,∞), that can be approximated from
above by a sequence (vk)k∈N of positive classical solutions of (1.1) with initial data converging to v0
as k → ∞ (cf. Definition 3.3 for a precise definition of proper solutions). This guarantees that for any
choice of initial data with the mentioned properties, we will always be able to refer to some globally
defined object that deserves being called a solution of (1.3), regardless of any positivity properties of
this function, for instance.

Our first results concern the phenomenon of instantaneous extinction, and in this respect they essen-
tially rediscover criticality ([11]) of the decay in (1.2) even when present only as x→ +∞.

Theorem 1.1 Let m < −1, and suppose that v0 ∈ C3(R) is positive and such that

v0(x) ≤ cx−β for all x > 0 (1.4)

with some β > 2
1−m

and c > 0. Then the proper solution v of (1.3) satisfies v ≡ 0 in R × (0,∞). In
particular, in this case the problem (1.3) does not possess a positive classical solution in R× (0, T ) for
any T > 0.

To underline the optimality of the above condition β > 2
1−m

, in part i) of the following proposition
we include a corresponding statement on local existence for initial data lying above a multiple of

|x|− 2
1−m for all large values of |x|. Whereas this is a basically well-known consequence of a comparison

procedure involving separated solutions (cf. Section 4.2), the second part on global existence under a
slightly stronger condition seems to be new in this context.

Proposition 1.2 Let m < −1, and assume that v0 ∈ C3(R) is positive.
i) If there exists c > 0 such that

v0(x) ≥ c(1 + |x|)− 2
1−m for all x ∈ R,

then there exists T > 0 with the property that the proper solution v is a positive classical solution of
(1.3) in R× (0, T ).
ii) In the case when moreover

|x| 2
1−m v0(x) → ∞ as |x| → ∞,
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the same is true for T = ∞.

Theorem 1.1 especially means that if for large positive x, v0(x) lies significantly below all the singular
solutions in (1.2), then even arbitrary growth of v0 as x→ −∞ is not sufficient to prevent instantaneous
extinction: The strong loss of mass due to super-fast diffusion in one spatial direction cannot be
compensated by any diffusion-driven influx. Moreover, since v0 can be described at will for x < 0 in
Theorem 1.1, in this case we conclude that even arbitrarily high amounts of mass can immediately
be transported from any bounded region towards x = +∞. An interesting problem left open here
consists in determining to which extent parallels to this can be found in higher-dimensional nonlinear
diffusion flows. For a related study on issues of global existence and blow-up in dependence on the
asymptotics of initial data in the porous medium equation on Riemannian manifolds, we refer to
[23]; certain integral conditions for the occurrence of instantaneous extinction in nonlinear fractional
diffusion processes have recently been derived in [8].

Main results II: Extinction at spatial infinity. We next investigate in more detail the behavior
of some solutions evolving from initial data decaying critically as x → +∞, and we are thereby led
to studying the phenomenon of extinction in a finite but positive time. As to this, (1.2) provides
an example in which decay of the data as both x → +∞ and x → −∞ entails that extinction will

occur at a rate determined by (T − t)
1

1−m , and that it does so at each point x ∈ R. Consequently, the
extinction set

E :=
{

x ∈ R

∣

∣

∣
∃(xk, tk)k∈N ⊂ R× (0, T ) such that

xk → x, tk → T and v(xk, tk) → 0 as k → ∞
}

(1.5)

of these solutions is the whole line, E = R, and to the best of our knowledge this is the only possibility
ever detected in comparable situations (see the discussion in [32, Section 7] and in particular [32,
Theorem 7.6], for instance).

In contrast to this, we shall reveal a particular mechanism in which mass transport from x = −∞
interacts with mass transport to x = +∞ in a nontrivial manner, and thereby essentially influences the
asymptotics near extinction. Namely, we shall see that whenever m < 0, the problem (1.3) possesses
classical solutions v that are positive on R× (0, T ) and become extinct at some finite positive time T ,
but which have empty extinction sets:

Theorem 1.3 Let m < −1. Then for each k > 0 and all T > 0 there exists a positive classical
solution v of (1.3) which can be written in the form

v(x, t) = (T − t)
1

1−m · Fk

(

x+ k · ln(T − t)
)

, x ∈ R, t ∈ [0, T ), (1.6)

where Fk ∈ C∞(R) is a decreasing positive solution of

(Fm−1F ′)′ = − 1

1−m
F − kF ′ on R. (1.7)

The initial data v0 := v(·, 0) are decreasing on R with an asymptotic behavior described by

c0e
− 1

(1−m)k
x ≤ v0(x) ≤ c1e

− 1
(1−m)k

·x
for all x ≤ 0
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and

d0x
− 2

1−m ≤ v0(x) ≤ d1x
− 2

1−m for all x ≥ 1,

and the solution satisfies

v(x, t) ≥ ce
− 1

(1−m)k
·x

for all x ∈ R and t ∈ (0, T ) (1.8)

as well as
lim sup
tրT

v(x, t) ≤ Ce
− 1

(1−m)k
·x

for all x ∈ R (1.9)

with some positive constants c0, c1, d0, d1, c and C.
Moreover, v undergoes an extinction at t = T in the sense that for any T̃ > T , there is no positive
classical solution of (1.3) in R×(0, T̃ ) which coincides with v in R×(0, T ). In particular, the extinction
set of v is empty, E = ∅.
This curious effect, sometimes also referred to as extinction at spatial infinity according to the fact
that in the situation addressed in (1.5) it requires that xk → ∞, may be regarded as reflecting the
possibility of a certain compensation of mass loss near x = +∞ by an appropriate amount of mass
influx from x = −∞, leading to a rather precise balance of these processes until some time at which
the wave mechanism in (1.6) has established the state characterized by (1.8) and (1.9), and beyond
which no extension will thus be possible due to the exponential decay described in (1.9). It would of
course be interesting to see whether this phenomenon is stable in any sense, and if it can be observed
for other than the above choices of the initial data. Since we do not pursue the issue of uniqueness of
classical solutions of (1.3) here, we do not even know whether all solutions evolving from the initial
data in Theorem 1.3 have empty extinction sets. We also have to leave open whether the solutions
in Theorem 1.3 are maximal and thus coincide with the proper solutions discussed before. Another
natural question not addressed here concerns the precise extinction profile of the solutions found above,
which amounts to studying the asymptotics of the solutions of (1.7) as ξ → −∞ in more detail.

Consequences implied by the Bäcklund transform. We finally remark that by means of the
Bäcklund transform, from Theorem 1.3 we equivalently obtain a result on finite-time blow-up with
empty blow-up set, that is, on blow-up at spatial infinity, in one-dimensional porous medium equations
for monotone initial data satisfying a critical growth condition: Namely, taking v as in Theorem 1.3
and setting

z(y, t) :=
1

v(x, t)
, where y(x, t) := ϕ(t) +

∫ x

0
v(ξ, t)dξ with ϕ(t) :=

1

m

∫ t

0
(vm)x(0, s)ds (1.10)

for x ∈ R and t ≥ 0, we see that y(·, t) is a diffeomorphism from R onto itself, and can easily verify
that z satisfies the porous medium equation zt =

1
|m|(z

|m|)yy on R× (0, T ) ([31]). Moreover, from the

properties of v0 it can be computed that z0 := z(·, 0) increases on R with

c̃0

|y| ≤ z0(y) ≤
c̃1

|y| for all y ≤ −1

and

d̃0y
2

|m|−1 ≤ z0(y) ≤ d̃1y
2

|m|−1 for all y ≥ 1.
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The latter growth condition is precisely critical in respect of local existence of solutions for this porous
medium equation ([3], [5]), so that it is not surprising that z blows up in a finite positive time.
However, we are not aware of any result asserting emptyness of a corresponding blow-up set in related
situations.

Let us mention that some of our results also apply to different ranges of m that are not in the main
focus of this paper. In order not to distract from our main purpose, we will not state them here but
rather refer to Remarks 1, 2 and 4 below.

The paper is organized as follows. After introducing a convenient transformation in Section 2, in
Section 3 we shall describe the procedure along which we will construct proper solutions. Sections
4.1 and 4.2 will the be devoted to the proofs of Theorem 1.1 and Proposition 1.2, respectively, while
Theorem 1.3 will be established in Section 5.

2 Transformation to a degenerate parabolic problem

We find it more convenient for our analysis to reformulate (1.3) by introducing the new unknown

u(x, t) := vm(x, t), x ∈ R, t > 0, (2.1)

which should satisfy the degenerate parabolic problem
{

ut = upuxx, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R,
(2.2)

where p := 1−m
−m

satisfies

1 < p < 2

when m < −1, the borderline case m = −1 corresponding to p = 2. According to our assumptions on
v0, the initial data u0 := vm0 ∈ C3(R) are positive on R.
One technical advantage in addressing (2.2) rather than (1.3) will consist of the fact that in this new
formulation, minimal solutions can be approximated by solutions of asscociated problems in bounded
intervals with prescribed Dirichlet data zero on the lateral boundary.
All of our results shall be derived in terms of the variable u first, and then be translated to the original
coordinates. As a natural by-product, we thus obtain some statements for (2.2) concerning immediate
blow-up, and on finite-time blow-up with empty blow-up sets.

3 Proper solutions and approximation by bounded solutions

To begin with, we describe one possible approximation procedure by which we will obtain an object
that deserves being called a solution of (2.2) even when the value +∞ is allowed to be attained.
Although most parts of the reasoning are standard, we attempt to be as concise as possible here,
because in some of the rigorous arguments in Section 4 we shall essentially rely on some properties of
our approximate solutions, and accordingly we will frequently refer to some particular stages of the
construction process (cf. Lemma 4.2, for instance).
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In a first step we attempt to approximate (2.2) by problems having bounded solutions. To this end,
we consider solutions u = uM of

{

ut = upuxx, x ∈ R, t > 0,

u(x, 0) = u0M (x), x ∈ R,
(3.1)

where M > 0. Here, we choose the initial data u0M to be smooth bounded functions satisfying
0 ≤ u0M ≤ M on R and converging to u0 as M → ∞: To achieve this, we fix a nondecreasing
ρ ∈ C3([0,∞)) such that ρ(s) = s if s ≤ 1

4 , ρ(s) = 1 if s ≥ 1 and sρ′(s) ≤ ρ(s) for s ≥ 0, and given
M > 0 we let ρM (s) :=M · ρ( s

M
), s ≥ 0. Then

u0M (x) := ρM (u0(x)), x ∈ R, (3.2)

belongs to C3(R) with 0 ≤ u0M ≤M , and u0M coincides with u0 wherever u0(x) ≤ M
4 . Moreover, for

all x ∈ R we have u0M (x) ր u0(x) as M → ∞, because sρ′(s) ≤ ρ(s) for s ≥ 0 implies that ρM is
nondecreasing with M .

To act in bounded intervals rather than on the whole real line, we shall next approximate uM by

solutions u = u
(x0)
MR in BR(x0)× (0,∞), x0 ∈ R, R > 0, of











ut = upuxx, x ∈ BR(x0), t > 0,

u(x0 ±R, t) = 0, t > 0,

u(x, 0) = u
(x0)
0MR(x), x ∈ BR(x0),

(3.3)

with data u
(x0)
0MR constructed in such a way that

u
(x0)
0MR = u

(x0)
0MRx = u

(x0)
0MRxx = 0 for x = x0 ±R, (3.4)

and that in addition positivity of u0 on R implies positivity of u
(x0)
0MR inside BR(x0). To this end, we

take a nonincreasing function χ ∈ C3([0, 1]) such that χ ≡ 1 in [0, 12 ], χ > 0 in [0, 1), and such that

χ(1) = χx(1) = χxx(1) = 0. For x0 ∈ R and R > 0 we let χ
(x0)
R (x) := χ( |x−x0|

R
), x ∈ B̄R(x0). Then

u
(x0)
0MR(x) := u0M (x) · χ(x0)

R (x), x ∈ B̄R(x0), (3.5)

belongs to C3(B̄R(x0)) and satisfies u
(x0)
0MR ր u0MR as R → ∞ for each x0 ∈ R, and it can easily be

checked that our assumptions on χ guarantee that (3.4) holds.
We remark here that although for most of our purposes it would be sufficient to fix x0 = 0 throughout,
in Lemma 4.2 below we shall need to pick different x0 in order to prove that spatial monotonicity of
the initial data is inherited by solutions of (3.1).

Finally, following a standard way to achieve a non-degenerate parabolic regularization, for ε ∈ (0, 1)

we consider solutions u = u
(x0)
MRε of











ut = upuxx, x ∈ BR(x0), t > 0,

u(x0 ±R, t) = ε, t > 0,

u(x, 0) = u
(x0)
0MRε(x), x ∈ BR(x0),

(3.6)
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where

u
(x0)
0MRε(x) := u

(x0)
0MR(x) + ε, x ∈ B̄R(x0).

Then also u
(x0)
0MRε belongs to C

3(B̄R(x0)) and clearly satisfies u
(x0)
0MRε ≥ ε and u

(x0)
0MRε ց u

(x0)
0MR in B̄R(x0)

as εց 0, whereas (3.4) guarantees

u
(x0)
0MRε(x0 ±R) = ε as well as u

(x0)
0MRεxx(x0 ±R) = 0. (3.7)

This will entail convenient regularity properties for solutions of (3.6) that will be useful in Lemma 4.3
below.

The solvability of (3.6) and of (3.3) can be asserted by standard arguments, which we shortly repeat
for the sake of completeness in the following lemma. Here and in the sequel, we shall frequently
apply parabolic comparison arguments to sub- and supersolutions of suitable boundary value problems
associated with (2.2). However, known results on nonuniqueness in (2.2) for p > 2 ([16]) and even
for (weak solutions of) the corresponding Dirichlet problem in bounded domains when p = 1 ([26])
underline the need for being cautious in such reasonings in presence of degenerate diffusion. In [33],
the reader can find a corresponding version of the comparison principle that is adequate for all of our
arguments in this direction.

Lemma 3.1 Suppose that u0 ∈ C3(R) satisfies u0 > 0 on R. Then for all x0 ∈ R,M > 0, R > 0 and

ε ∈ (0, 1), the problem (3.6) has a global positive classical solution u
(x0)
MRε ∈ C2,1(B̄R(x0)× [0,∞)). As

εց 0, we have u
(x0)
MRε ց u

(x0)
MR in R×[0,∞) and u

(x0)
MRε → u

(x0)
MR in C0

loc(B̄R(x0)×[0,∞))∩C2,1
loc (BR(x0)×

(0,∞)), where u
(x0)
MR is the unique positive global classical solution of (3.3).

Proof. For convenience we drop the superscript (x0). In view of the comparison principle we have
the a priori estimates ε ≤ uMRε ≤ M + ε for t > 0 and x ∈ BR(x0), so that in fact (3.6) is non-
degenerate and hence admits a global classical solution uMRε which even belongs to C2,1(B̄R(x0) ×
[0,∞)), because (3.7) implies that the compatibility conditions for (3.6) up to first order are fulfilled
([25]). Moreover, using that u0 is positive on R and that hence u0MR is positive inside BR(x0), it
can readily be verified that for any choice of R′ ∈ (0, R) one can find cMR′ > 0 such that u0MR(x) ≥
c̃MR′ΘR′(x) holds for all x ∈ BR′(x0) with ΘR′(x) ≡ Θ

(x0)
R′ (x) := cos π(x−x0)

2R′ . Since the separated
function

u(x, t) := y(t) ·ΘR′(x), x ∈ B̄R′(x0), t ≥ 0,

with

y(t) :=
(

c̃
p
MR′ +

( π

2R′

)2
pt
)− 1

p
, t ≥ 0,

can readily be seen to satisfy ut ≤ upuxx in BR′(x0) × (0,∞), another comparison thus yields the
two-sided ε-independent estimate

y(t) ·ΘR′(x) ≤ uMRε(x, t) ≤M + 1 for all x ∈ BR′(x0) and t ≥ 0. (3.8)
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As R′ ∈ (0, R) was arbitrary here, this allows for invoking parabolic regularity theory to derive

uniform estimates for uMRε in C
θ, θ

2
loc (BR(x0) × [0,∞)) and in C

2,1
loc (BR(x0) × (0,∞)) for some θ > 0

([25]). Along with the evident ordering property of (uMRε)ε∈(0,1), this implies that as εց 0, we have

uMRε → uMR in C0
loc(BR(x0)× [0,∞)) ∩ C2,1

loc (BR(x0) × (0,∞)) for some nonnegative function uMR

defined on B̄R × [0,∞) which is positive and continuous in BR × [0,∞) and satisfies the initial value
problem in (3.3) classically, and which moreover is upper semicontinuous in B̄R(x0)× [0,∞). Since
clearly uMR vanishes on ∂BR(x0), this implies that actually uMR belongs to C0(B̄R(x0)× [0,∞)) with
uMR|∂BR(x0) = 0 and that hence uMRε → uMR even in C0

loc(B̄R(x0) × [0,∞)) as ε ց 0 according to
Dini’s theorem (cf. also [34, Lemma 1.2] for a precedent variant of this argument).
To see its uniqueness along the procedure presented in [33], we only need to make sure that whenever

T > 0, any positive classical solution v of (3.3) in R× (0, T ) coincides with the limit u := u
(0)
MR that we

have just found upon the particular choice x0 := 0. Indeed, since uMRε ≥ v by classical comparison,
we already know that u ≥ v and thus H(u) ≥ H(v), where H(s) :=

∫ s

1 σ
−pdσ, s > 0. On the other

hand, for any r ∈ (0, R), with Θr = Θ
(0)
r as introduced above we have

d

dt

∫

Br(0)

(

H(u(x, t))−H(v(x, t))
)

·Θr(x)dx =

∫

Br(0)
(uxx − vxx) ·Θr

=

∫

Br(0)
(u− v) ·Θrxx

−
(

u(r, t)− v(r, t)
)

·Θrx(r)

+
(

u(−r, t)− v(−r, t)
)

·Θrx(−r)

for all t > 0. As Θrxx ≤ 0 in Br(0) and ±Θrx(±r) = − π
2r < 0, using 0 ≤ v ≤ u we infer that

d

dt

∫

Br(0)

(

H(u(x, t))−H(v(x, t))
)

·Θr(x)dx ≤ π

r
· δ(r, T ) for all t ∈ (0, T ),

where δ(r, T ) := supt∈(0,T ) u(±r, t) → 0 as r ր R by continuity of u and the fact that u vanishes on
∂BR(0). In view of the fact that H(u(·, 0)) − H(v(·, 0)) ≤ 0 in BR(0), integrating with respect to
t ∈ (0, T ) and then taking r ր R thus yields H(u) ≤ H(v) in BR(0)× (0, T ) by Fatou’s lemma. This
implies u ≤ v and hence u ≡ v. �

Another limit process enables us to establish the existence of a minimal solution to (3.1).

Lemma 3.2 Let M > 0. Then (3.1) possesses a minimal positive classical solution uM which is global
in time and satisfies uM ≤ M in R × (0,∞). For arbitrary x0 ∈ R, this solution can be obtained as

the limit in C0
loc(R× [0,∞)) ∩ C2,1

loc (R× (0,∞)) of the solutions u
(x0)
MR of (3.3) as Rր ∞.

Proof. From the properties of (χR)R>0 it is easy to see using the comparison principle that for each

x0 ∈ R, u
(x0)
MR is nondecreasing with respect to R and hence monotonically approaches some limit u

(x0)
M

from below. Since u
(x0)
MR ≤M for all R by the maximum principle, parabolic regularity theory ensures

that actually u
(x0)
MR → u

(x0)
M takes place in the asserted topology. To see that u

(x0)
M is minimal, we only

need to observe that any positive classical solution ũ of (3.1) satisfies ũ ≥ u
(x0)
MR in BR(x0) × (0,∞)

9



for all x0 ∈ R and R > 0 by another comparison argument, and hence we have ũ ≥ u
(x0)
M . This entails

that in fact all the u
(x0)
M , x0 ∈ R, coincide, as desired. �

Once more thanks to the comparison principle, the family (uM )M>0 of minimal positive classical
solutions of (3.1) is ordered, so that

u(x, t) := lim
M→∞

uM (x, t), x ∈ R, t > 0, (3.9)

provides a well-defined function with values in (0,+∞]. Without any further investigation of its
particular solution properties in respect of the problem (2.2) directly, we adopt a notion from [22] in
giving the following definition.

Definition 3.3 Let u0 ∈ C3(R) be positive. Then the function u defined through (3.9) will be called
the proper solution of (2.2).
Given a positive v0 ∈ C3(R), the proper solution v of (1.3) is defined as the 1

m
-th power of the proper

solution u of (2.2) with data u0 := vm0 , v := u
1
m , where we set v(x, t) := 0 if u(x, t) = +∞.

Repeating the comparison argument from Lemma 3.2, we immediately obtain the following extremality
feature of proper solutions.

Corollary 3.4 Let u0 ∈ C3(R) be positive. Assume that T > 0, and that ũ is a positive classical
solution of (2.2) in R× (0, T ) with initial data u0. Then the proper solution u of (2.2) satisfies u ≤ ũ

in R× (0, T ).
Correspondingly, if ṽ is a positive classical solution of (1.3) in R×(0, T ) then ṽ ≤ v holds in R×(0, T )
with the proper solution v of (1.3).

4 Occurrence vs. absence of immediate blow-up in the transformed

problem

In this part our goal is to prove Theorem 1.1. In view of (2.1, this amounts to providing respective
conditions on the growth of u0(x) as x → +∞ that either enforce or rule out immediate blow-up of
the proper solution u of (2.2). Here we observe that since p = 1−m

−m
, the decay claimed to be critical

in Theorem 1.1 corresponds to a growth rate of u0(x) as x→ +∞ determined by x
2
p .

4.1 Immediate blow-up for data with supercritical growth as x → +∞. Proof of

Theorem 1.1

Let us first address Theorem 1.1, that is, we wish to assert immediate blow-up for u if u0(x) ≥ cxα

for all x > 0 with some α > 2
p
and c > 0. The main difficulty to be overcome here stems from the fact

that we claim to require no information about the behavior of u0 for x < 0 other than just positivity.
An essential preliminary step towards the desired result consists of giving a first a priori bound from
below for solutions on the half-line emanating from initial data with supercritical growth as x→ +∞.

Lemma 4.1 Suppose that p ∈ (0, 2), and that u0 ∈ C3(R) is positive and such that

u0(x) ≥ c0x
α for all x > 0 (4.1)
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with some c0 > 0 and α > 2
p
. Then there exists c > 0 with the property that for the proper solution u

of (2.2) we have
u(x, t) ≥ cxα for all x > 0 and t > 0. (4.2)

Proof. For δ > 0 and R > 0, we let wδR be the solution of

{

−wδRxx = δw
1−p
δR , x ∈ BR(0),

wδR(±R) = 0.
(4.3)

Then by a first integral procedure we obtain

1

2
w2
δRx(x) =

δ

2− p

(

A
2−p
δR − w

2−p
δR (x)

)

, x ∈ BR(0), (4.4)

where AδR := wδR(0). Upon another integration, we find that

∫ 1

wδR(x)

AδR

dσ√
1− σ2−p

=

√

2δ

2− p
·A− p

2
δR · |x|, x ∈ B̄R(0),

which evaluated at x = R allows us to determine AδR according to

AδR =

(

√

2δ
2−p

R

I

)
2
p

with I :=

∫ 1

0

dσ√
1− σ2−p

. (4.5)

Given x0 > 0, our goal is to compare uM for suitably large M > 0 to

uδ(x, t) := yδ(t) · wδRδ
(x− x0 −Rδ), x0 ≤ x ≤ x0 + 2Rδ, t ≥ 0,

for δ > 0 and some appropriate Rδ > 0, where

{

y′δ(t) = −δyp+1
δ (t), t > 0,

yδ(0) = 1,
(4.6)

that is, yδ(t) := (1 + pδt)−
1
p . From (4.3) and (4.6) we see that for any choice of δ and Rδ,

uδt − u
p
δuδxx = (y′δ + δy

p+1
δ ) · wδRδ

= 0 for all x ∈ (x0, x0 + 2Rδ) and t > 0.

Since uδ = 0 for x = x0 and for x = x0 + 2Rδ, the comparison principle will tell us that uM ≥ uδ in
(x0, x0 + 2Rδ) × (0,∞) whenever δ and Rδ are such that uM ≥ uδ holds initially. In view of (4.1),
however, this is true if

wδRδ
(x− x0 −Rδ) ≤ c0x

α for all x ∈ (x0, x0 + 2Rδ), (4.7)

and if moreover
M

4
≥ c0 · (x0 + 2Rδ)

α, (4.8)
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because then according to our construction of u0M and the monotonicity of the function ρM appearing
therein,

u0M (x) = ρM (u0(x)) ≥ ρM (c0x
α) = c0x

α for all x ∈ (x0, x0 + 2Rδ)

due to the fact that then c0x
α ≤ M

4 for any such x by (4.8).
We now claim that (4.7) holds if, given δ > 0, we let

Rδ := c1δ
− 1

2−p · x
p(α−1)
2−p

0 (4.9)

with

c1 :=
(2− p

2

)
1

2−p · I · c−
p(α−1)
2−p

2 , c2 := (α− 1
α−1 − α

− α
α−1 ) · c−

1
α−1

0 ,

where we observe that c2 > 0 because α > 2
p
entails α > 1.

To see that (4.9) implies (4.7), we note that by (4.4),

wδRδ
(x− x0 −Rδ) ≤ wδRδ

(−Rδ) + wδRδx(−Rδ) · (x− x0)

=

√

2δ

2− p
A

2−p
δRδ

· (x− x0) for all x ∈ (x0, x0 + 2Rδ),

so that (4.7) holds if

ϕ(x) := c0x
α −B · (x− x0), x > x0,

is nonnegative on (x0,∞), where we have set B :=
√

2δ
2−p

A
2−p
δRδ

. Computing ϕ′(x) = αcxα−1 − B for

x > x0, we see that unless ϕ is strictly increasing, ϕ attains its minimum at xm = ( B
αc0

)
1

α−1 with

inf
x∈(x0,∞)

ϕ(x) = ϕ(xm) = c0

( B

αc0

)
α

α−1 −B
( B

αc0

)
1

α−1
+Bx0

= −c2B
α

α−1 +Bx0.

We therefore obtain ϕ ≥ 0 on (x0,∞) provided that Bx0 ≥ c2B
α

α−1 , that is, if B ≤ (x0
c2
)α−1. Rewritten

in terms of AδRδ
and thus, via (4.5), of Rδ, this becomes

Rδ ≤
√

2− p

2δ
· I ·

{2− p

2δ
·
(x0

c2

)2(α−1)} p

2(2−p)

and is thus asserted by (4.9).

Consequently, for such Rδ by comparison we conclude that for any M > 0 fulfilling (4.8) we have
uM ≥ uδ in (x0, x0 + 2Rδ)× (0,∞) and thus, since u ≥ uM ,

u(x, t) ≥ (1 + pδt)−
1
p · wδRδ

(x− x0 −Rδ) for all x ∈ (x0, x0 + 2Rδ) and t > 0. (4.10)
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In order to derive (4.2) from this, let us make sure that there exist c3 > 0 independent of x0 and
δ0(x0) > 0 such that

wδRδ
(x0 −Rδ) ≥ c3x

α
0 whenever δ ∈ (0, δ0(x0)). (4.11)

Indeed, let

δ0(x0) := c
2−p
1 x

pα−2
0 , x0 > 0.

Then for δ < δ0(x0) we have

x0

Rδ
=

1

c1
· δ

1
2−p · x1−

p(α−1)
2−p

0

<
1

c1
· c1xpα−2

0 · x1−
p(α−1)
2−p

0

= 1,

and hence x0−Rδ < 0. Since wδRδ
increases on (−Rδ, 0), by (4.4) this means that if wδRδ

(x0−Rδ) ≤
1
2AδRδ

then

wδRδx(x) ≥
√

2δ

2− p
· (1− 2p−2) ·A2−p

δRδ
for all x ∈ (−Rδ, x0 −Rδ).

Expressing AδRδ
via (4.5) and (4.9) according to

AδRδ
= c4δ

− 1
2−p · x

2(α−1)
2−p

0

with c4 depending on p and α only, in this case we obtain

wδRδx ≥ c5x
α−1
0 on (−Rδ, x0 −Rδ)

for some c5 > 0 and therefore upon integration

wδRδ
(x0 −Rδ) ≥ c5x

α
0 if wδRδ

(x0 −Rδ) ≤
1

2
AδRδ

. (4.12)

On the other hand, if wδRδ
(x0 −Rδ) >

1
2AδRδ

then we directly find

wδRδ
(x0 −Rδ) >

1

2
AδRδ

=
c4

2
δ
− 1

2−p · x
2(α−1)
2−p

0

>
c4

2c1
x
− pα−2

2−p

0 · x
2(α−1)
2−p

0

=
c4

2c1
xα0 if wδRδ

(x0 −Rδ) >
1

2
AδRδ
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when δ < δ0(x0), which together with (4.12) proves (4.11). Hence, (4.10) tells us that

u(2x0, t) ≥ c3(1 + pδt)
− 1

pxα0 for all t > 0

whenever δ < δ0(x0), which upon letting δ ց 0 yields (4.2) in view of the fact that x0 > 0 was
arbitrary. �

Another preparation addresses the question whether spatial monotonicity of u0 is inherited by the
solutions of (3.1), and thus of (2.2). This issue appears to be obvious at first glance, but since we do
not see how to apply a corresponding comparison argument to the Cauchy problem (3.1) directly, it
seems that a rigorous argument should rather refer to the boundary value problems (3.3). However,

since in the latter we prescribe zero Dirichlet data, none of the approximations u
(x0)
MR of uM can be

nondecreasing in space (unless u
(x0)
MR ≡ 0). Fortunately, their limit will nevertheless have this property

whenever u0 is nondereasing, and the proof of this implication is the only place in this work where we
substantially need the freedom to choose the point x0 in the approximations (3.3) and (3.6) arbitrarily
in R.

Lemma 4.2 Suppose that u0x ≥ 0 on R. Then for all M > 0 we have

uMx ≥ 0 in R× (0,∞).

Proof. We fix x0 ∈ R and claim that for all t > 0 we have

uM (x0 + h, t) ≥ uM (x0 − h, t) for all h > 0, (4.13)

which evidently will imply uMx(x0, t) ≥ 0 for all t > 0. To see (4.13), for arbitrary R > h and ε ∈ (0, 1)
we let

z(y, t) := u
(x0)
MRε(x0 + y, t)− u

(x0)
MRε(x0 − y, t), y ∈ [0, R], t ≥ 0,

and observe that
z(0, t) = 0 and z(R, t) = 0 for all t ≥ 0. (4.14)

Moreover, from the assumption u0x ≥ 0 it immediately follows that u0Mx ≥ 0, which shows that

z(y, 0) =
(

χ
( |y|
R

)

· u0M (x0 + y) + ε
)

−
(

χ
( |y|
R

)

· u0M (x0 − y) + ε
)

= χ
( |y|
R

)

·
(

u0M (x0 + y)− u0M (x0 − y)
)

≥ 0 for all y ∈ [0, R]. (4.15)

Next, a straightforward computation reveals that

zt = a(y, t)zyy + b(y, t)z, y ∈ (0, R), t > 0, (4.16)

holds with

a(y, t) :=
(

u
(x0)
MRε(x0 + y, t)

)p

and

b(y, t) := u
(x0)
MRεxx(x0 − y, t) ·

∫ 1

0
p ·
{

s · u(x0)
MRε(x0 + y, t) + (1− s) · u(x0)

MRε(x0 − y, t)
}p−1

ds.
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Since ε ≤ u
(x0)
MRε ≤M and u

(x0)
MRε belongs to C

2,1(B̄R(x0)× [0,∞)), for each fixed ε the functions a and
b are continuous on B̄R(x0)× [0,∞) with a ≥ εp. Therefore the comparison principle can be applied
to guarantee that as a consequence of (4.14)-(4.16) we have z ≥ 0 in (0, R) × (0,∞). Taking ε ց 0
and then R→ ∞ now easily yields (4.13). �

As a last preliminary, we recall the following well-known semi-convexity estimate (cf. also [32], [1]).

Lemma 4.3 Let p > 0. Then for all M > 0 we have

uMt

uM
≥ − 1

pt
in R× (0,∞). (4.17)

Proof. For R > 0 and ε ∈ (0, 1), we let z :=
u
(0)
MRεt

u
(0)
MRε

. Then it follows from the regularity properties

of u
(0)
MRε that z is continuous in B̄R(0)× [0,∞) and solves

zt = a(x, t)zxx + b(x, t)zx + pz2 in BR(0)× (0,∞)

with a := (u
(0)
MRε)

p and b := 2(u
(0)
MRε)

p−1 · u(0)MRεx. Hence, by comparison we find that z lies above
z(x, t) := − 1

p(t+τ) in BR(0)× (0,∞) for all sufficiently small τ > 0, because zt − azxx − bzx − pz2 = 0,

z(±R, t) < 0 = z(±R, t) for t > 0 and z(x, 0) = − 1
pτ
< z(x, 0) for all x ∈ BR(0) if τ is small enough.

Taking τ ց 0, then εց 0 and finally R→ ∞ shows that (4.17) is true. �

We are now in the position to prove immediate blow-up of the proper solution of (2.2) under the
assumption of supercritical growth of u0 as x → +∞. Our proof will be based on a contradictory
argument, combining comparison techniques with an analysis of certain weighted integral norms of
inverse powers of the solution.

Lemma 4.4 Let p ∈ (0, 2) and assume that u0 ∈ C3(R) is positive on R and fulfills

u0(x) ≥ cxα for all x > 0 (4.18)

with some c > 0 and α > 2
p
. Then the proper solution u of (2.2) satisfies

u(x, t) = +∞ for all x ∈ R and t > 0. (4.19)

In particular, in this case the problem (2.2) does not possess a positive classical solution in R× (0, T )
for any T > 0.

Proof. Since u0⋆(x) :=
1
2 miny≥x u0(y), x ∈ R, defines a continuous nondecreasing positive function

on R fulfillig u0⋆ < u0 on R, on performing a straightforward mollifying procedure to the latter it is
possible to find u0 ∈ C3(R) fulfilling (4.18) such that 0 < u0 < u0 as well as (u0)x ≥ 0 on R. Applying
a comparison argument to the approximate problems (3.6), we may therefore assume that u0x ≥ 0 on
R and hence obtain from Lemma 4.2 that uMx ≥ 0 in R× (0,∞) for all M > 0. Supposing (4.19) to
be false, we could then find x0 ∈ R, t0 > 0 and c1 > 0 such that uM (x0, t0) ≤ c1 and hence

uM (x, t0) ≤ c1 for all x ∈ (−∞, x0]
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and each M > 0. Integrating the inequality (lnuM )t ≥ (ln t
− 1

p )t asserted by Lemma 4.3 shows that

uM (x, t) ≤ uM (x, t0) ·
( t0

t

)
1
p

for all x ∈ (−∞, x0] and t ∈ (0, t0]

and thus

uM (x, t) ≤ c2 := 2
1
p c1 for all x ∈ (−∞, x0] and t ∈

[ t0

2
, t0

]

. (4.20)

On the other hand, our assumptions on u0 guarantee that

u0(x) ≥ c3 · (x− x0 + 3)α for all x > x0 − 2

holds with some c3 > 0, whence an application of Lemma 4.1 yields

u(x, t) ≥ c4 · (x− x0 + 3)α =: w(x, t) for all x > x0 − 3 and t > 0 (4.21)

with a certain c4 > 0. In view of the monotone convergence uM ր u, Dini’s theorem applied to
(uM − u)+ enables us to find M > 0 and c5 > 0 such that whenever M ≥M , we have

uM (x, t) ≥ c5 for all x ∈ [x0 − 2, x0] and t ∈ [0, t0]. (4.22)

According to (4.20) and (4.22), parabolic regularity theory ([25]) ensures that for some c6 > 0 and
any such M we have

uMx(x0 − 1, t) ≤ c6 for all t ∈
[ t0

2
, t0

]

. (4.23)

In order to show that actually (4.20) is absurd, we note that since p ∈ (0, 2) it is possible to pick a
positive number β satisfying

p− 1 < β <
p

2
(4.24)

and then let

κ := 1− 2β

p
> 0.

With A := 2 − x0, multiplying (3.1) by (A + x)−κ · u−β−1
M and integrating by parts with respect to

x ∈ (x0 − 1, a) for a > x0 + 1 then yields

1

β

d

dt

∫ a

x0−1
(A+ x)−κ · u−β

M (x, t)dx = −
∫ a

x0−1
(A+ x)−κ · ·up−β−1

M uMxxdx

= −(β − p+ 1)

∫ a

x0−1
(A+ x)−κ · up−β−2

M u2Mxdx

−κ
∫ a

x0−1
(A+ x)−κ−1 · up−β−1

M uMxdx

−(A+ a)−κ · up−β−1
M (a, t) · uMx(a, t)

+up−β−1
M (x0 − 1, t) · uMx(x0 − 1, t)

=: I1 + I2 + I3 + I4 (4.25)
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for t ∈ ( t02 , t0). Here, I1 ≤ 0 by (4.24) and I3 ≤ 0 due to the fact that uMx ≥ 0. Moreover, (4.22) and
(4.23) ensure that

I4 ≤ c7

with a constant c7 depending on x0 but not on M . As to I2, we once more integrate by parts to see
that

I2 = − κ

p− β

∫ a

x0−1
(A+ x)−κ−1 · (up−β

M )xdx

= −κ(κ+ 1)

p− β

∫ a

x0−1
(A+ x)−κ−2 · up−β

M dx

− κ

p− β
· (A+ a)−κ−1 · up−β

M (a, t)

+
κ

p− β
· up−β

M (x0 − 1, t)

=: I21 + I22 + I23.

Since (4.24) entails that p− β > 0, we clearly have I22 ≤ 0 and, by (4.20),

I23 ≤ c8

whenever t ∈ ( t02 , t0), with c8 > 0 independent of M . Altogether, (4.25) leads to the inequality

1

β

d

dt

∫ a

x0−1
(A+ x)−κ · u−β

M (x, t)dx ≤ −κ(κ+ 1)

p− β

∫ a

x0−1
(A+ x)−κ−2 · up−β

M (x, t)dx+ c7 + c8 (4.26)

for all t ∈ ( t02 , t0). Now by the Hölder inequality, choosing q := p
p−β

> 1 we find

∫ a

x0−1

1

A+ x
dx =

∫ a

x0−1

(

(A+ x)−κ · u−β
M

)
1
q · (A+ x)

κ
q
−1 · u

β

q

Mdx

≤
(

∫ a

x0−1
(A+ x)−κ · u−β

M dx
)

1
q ·
(

∫ a

x0−1
(A+ x)

(κ
q
−1)· q

q−1 · u
β

q−1

M dx
)

q−1
q

≤
(

∫ a

x0−1
(A+ x)−κ · u−β

M dx
)

1
q ·
(

∫ a

x0−1
(A+ x)−κ−2 · up−β

M dx
)

q−1
q
,

which gives

∫ a

x0−1
(A+ x)−κ−2 · up−β

M dx ≥
(

ln(A+ a)
)

p

β ·
(

∫ a

x0−1
(A+ x)−κ · u−β

M dx
)− p−β

β
.

Accordingly, (4.26) shows that y(t) :=
∫ a

x0−1(A+ x)−κ · u−β
M (x, t)dx, t ∈ [ t02 , t0], satisfies

y′(t) ≤ −c9 ·K(a) · y−δ(t) + c10 for all t ∈
( t0

2
, t0

)

(4.27)
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with K(a) := (ln(A+ a))
p

β , δ := p−β
β

and positive constants c9 and c10 possibly depending on t0 and
x0 but neither on M nor on a.
In order to control the value of y at t = t0

2 , we recall (4.21) in estimating

∫ a

x0−1
(A+ x)−κ · u−β

(

x,
t0

2

)

dx ≤ c
−β
4

∫ a

x0−1
(A+ x)−κ · (x− x0 + 3)−αβdx

≤ c
−β
4

∫ ∞

x0−1
(A+ x)−κ−αβdx

=: c11

and observe that c11 is finite, because α > 2
p
implies

κ+ αβ = 1− 2β

p
+ αβ = 1+β ·

(

α− 2

p

)

> 1.

Consequently, for all a > x0 − 1 we can pick some Ma ≥M such that whenever M ≥Ma we have

y
( t0

2

)

≤ 2c11. (4.28)

Now since K(a) → +∞ as a→ ∞, we can choose some a large enough fulfilling

K(a) ≥ 2c10 · (2c11)δ
c9

and K(a) >
4 · (2c11)δ+1

(δ + 1)c9t0

and thus easily obtain that for any M ≥Ma,

−c9K(a) · y−δ
( t0

2

)

+ c10 ≤ −1

2
c9K(a) · y−δ

( t0

2

)

< 0. (4.29)

Thus, a standard ODE argument ensures that for such a and M , y decreases on [ t02 , t0] and moreover
satisfies

y′(t) ≤ −1

2
c9K(a) · y−δ(t) for all t ∈

( t0

2
, t0

)

,

so that an explicit integration yields

yδ+1(t) ≤ yδ+1
( t0

2

)

− (δ + 1)c9K(a)

2
·
(

t− t0

2

)

for all t ∈
[ t0

2
, t0

]

.

Using the second inequality in (4.29), from (4.28) we arrive at the absurd conclusion

y(t0) < 0

and thereby infer that our assumption that u(x0, t0) be bounded must have been impossible. This
establishes (4.19) and thereby completes the proof in view of Corollary 3.4. �

The above statement precisely establishes the statement in Theorem 1.1:
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Proof of Theorem 1.1. In view of (2.1), this part is an immediate consequence of Lemma 4.4
applied to p = 1−m

−m
∈ (1, 2). �

Remark 1. We note that Lemma 4.4 actually addresses the full range p ∈ (0, 2), and so one may
consider its respective conclusions in the cases p ∈ (0, 1) and p = 1 not referred to in Theorem 1.1.
i) Since p < 1 if and only if m = 1

1−p
> 1, Lemma 4.4 says that for any m > 1 the corresponding

proper solution v of the porous medium equation (1.1) satisfies v ≡ +∞ in R × (0,∞) whenever the

initial data v0 satisfy v0(x) ≥ c|x| 2
m−1

+δ for all x > 0 and some c > 0 and δ > 0. However, this
is essentially no novelty, because it is known ([10]) that any continuous weak solution v of (1.1) in

R × (0, T ), T > 0, must satisfy v(x, t) ≤ C(t)(1 + |x|) 2
m−1 for all x ∈ R and t ∈ (0, T ) with some

C(t) > 0.
ii) Accordingly, in the borderline case p = 1 Lemma 4.4 says that in the equation vt = (evvx)x, the
proper solution evolving from v0 will immediately blow up everywhere if v0(x) ≥ (2 + δ) lnx − C for
x > 0 with positive δ and C.

4.2 Local and global finiteness for slowly growing data

In contrast to the above situation, when u0 grows at most as fast as a multiple of x
2
p as x→ +∞, we

will be able to compare our solution from above by certain – accordingly transformed – relatives of
(1.2) which are regular in the sense that they are everywhere positive. By quite an elementary ODE
analysis, it can be seen that these exhibit a similar growth:

Lemma 4.5 Let p ∈ (0, 2), and let h denote the solution of the initial value problem

{

h′′ = h1−p, y > 0,

h(0) = 1, h′(0) = 0.
(4.30)

Then h exists globally with h′ > 0 on (0,∞), and there exist positive constants k0 and k1 such that

k0(1 + y)
2
p ≤ h(y) ≤ k1(1 + y)

2
p for all y ≥ 0. (4.31)

Proof. Since p > 0, it can easily be checked that h exists in the whole interval (0,∞) and satisfies
h′′ > 0 and h′ > 0 throughout (0,∞). Thus, a multiplication of h′′ = h1−p by h′ upon integration
yields

h′ =

√

2

2− p
·
√

h2−p − 1, y > 0. (4.32)

On the one hand, this shows that h′ ≤
√

2
2−p

h
2−p

2 on (0,∞), whence the right inequality in (4.31)

results from another integration.
To prove the left one, we let y0 := sup{y > 0 | h(y) ≤ 2} and observe that y0 must be finite since
evidently h cannot be bounded. For y ≥ y0, however, (4.32) entails that

h′ ≥
√

2

2− p
·
√

h2−p −
(h

2

)2−p

= c1h
2−p

2 , y > y0,
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with c1 :=
√

2
2−p

·
√
1− 2p−2 > 0. Accordingly,

h(y) ≥
(

2
p

2 +
pc1

2
(y − y0)

)
2
p

for all y ≥ y0,

which in view of the monotonicity of h completes the proof of (4.31). �

Now a straightforward comparison allows us to derive boundedness of u(x, t) for each fixed x ∈ R and

small t > 0, provided that u0 does not grow faster than a multiple of |x|
2
p as x→ ±∞.

Lemma 4.6 Let p ∈ (0, 2), and suppose that u0 ∈ C3(R) is positive and such that

u0(x) ≤ c(1 + |x|)
2
p for all x ∈ R (4.33)

with some c > 0. Then there exists T > 0 such that the proper solution of (2.2) satisfies

u(x, t) <∞ for all x ∈ R and t ∈ (0, T ), (4.34)

and u is a classical solution of (2.2) in R× (0, T ).

Proof. With c as in (4.33) and k0 taken from Lemma 4.5, we let y = y(t) denote the solution of
{

y′ = yp+1, t > 0,

y(0) = c
k0
,

that is, we set

y(t) :=

{

(k0

c

)p

− pt

}− 1
p

, t ∈ [0, T ),

where T :=
k
p
0

pcp
. Then

u(x, t) := y(t) · h(|x|), x ∈ R, t ∈ [0, T ),

with h as in Lemma 4.5, satisfies

u(x, 0) =
c

k0
· h(|x|) ≥ c

k0
· k0(1 + |x|)

2
p ≥ u0(x) for all x ∈ R

by (4.31), which means that u(·, 0) ≥ u
(0)
0MR on BR(0) for all M > 0 and R > 0, because u

(0)
0MR ≤ u0

in BR(0) by (3.5) and (3.2). Since moreover

ut − upuxx = y′ · h(|x|)− yp+1 · hp(|x|) · h′′(|x|) = (y′ − yp+1) · h(|x|) = 0 in R× (0, T ),

we may invoke the comparison principle to obtain that

u
(0)
MR ≤ u in BR(0)× (0, T ) (4.35)

for allM > 0 and R > 0. Upon taking R→ ∞ and thenM → ∞, this easily yields u ≤ u in R×(0,∞)
and thereby proves (4.34). According to parabolic regularity theory, (4.35) in conjunction with the

monotonicity properties of (u
(0)
MR)R>0 and (u

(0)
M )M>0 also implies that u indeed classically solves (2.2)

in R× (0, T ). �

Under a slightly stronger growth restriction we obtain finiteness of u globally rather than locally in
time.
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Lemma 4.7 Suppose that p ∈ (0, 2), and that u0 ∈ C3(R) is a positive function fulfilling

|x|−
2
p · u0(x) → 0 as |x| → ∞. (4.36)

Then the proper solution u of (2.2) satisfies

u(x, t) <∞ for all x ∈ R and t > 0, (4.37)

and u is a classical solution of (2.2) in R× (0,∞).

Proof. We fix T > 0 and pick δ < 0 small such that

δ <
1

pT
. (4.38)

According to (4.36), it is then possible to fix R0 > 0 large such that

u0(x) ≤ k0δ
1
p · |x|

2
p for all x ∈ R \BR0(0) (4.39)

holds with k0 as in Lemma 4.5. We finally choose A > 0 large fulfilling

u0(x) ≤ A for all x ∈ BR0(0) (4.40)

and define

u(x, t) := y(t) · w(x), x ∈ R, t ∈ [0, T ],

where

y(t) := (1− pδt)
− 1

p , t ∈ [0, T ],

and

w(x) := A · h
(

δ
1
2A− p

2 · |x|
)

, x ∈ R,

with h as provided by Lemma 4.5. Here we observe that indeed y is well-defined and bounded on
[0, T ] because of (4.38), and it can easily be checked that y′ = δyp+1 on (0, T ). Since moreover

wxx(x) = δA1−p · h′′
(

δ
1
2A− p

2 · |x|
)

= δA1−p · h1−p
(

δ
1
2A− p

2 · |x|
)

= δA1−p ·
(w(x)

A

)1−p

= δw1−p(x) for all x ∈ R

by (4.30), we obtain that ut = upuxx in R× (0, T ). Furthermore, at t = 0, for large |x| we have

u(x, 0) = w(x)

≥ A · k0
(

1 + δ
1
2A− p

2 · |x|
)

2
p

≥ k0δ
1
p · |x|

2
p

≥ u0(x) for all x ∈ R \BR0(0)
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thanks to (4.31) and (4.39), whereas near the origin we use (4.40) in estimating

u(x, 0) ≥ A ≥ u0(x) for all BR0(0),

because the monotonicity of h ensures that h ≥ 1 on (0,∞). Having thereby asserted that u dominates

u0 at t = 0, by comparison we infer that u ≥ u
(0)
MR in BR × (0, T ) for all R > 0 and M > 0. This

yields u ≥ u in R× (0, T ) and thus proves (4.37), because T > 0 was arbitrary. The pointwise solution
properties of u follow as in Lemma 4.6. �

Remark 2. In the next section (cf. (5.1) and Theorem 5.2) we shall see several examples which
indicate that in presence of critical growth of u0, blow-up in a finite but positive time may occur. This
will justify the separate consideration of Lemma 4.6 and Lemma 4.7.
An open problem is to classify the set of initial data leading to finite-time blow-up in (2.2) in the
above sense. We conjecture, but cannot prove here, that in fact u(·, T ) ≡ +∞ holds for some T > 0

whenever x
− 2

pu0(x) → L > 0 as x→ +∞ for some L > 0 and u0(x) does not decay too fast as x→ −∞.

We proceed to prove Proposition 1.2.

Proof of Proposition 1.2. The assertion on local-in-time positivity is provided by Lemma 4.6,
whereas translating Lemma 4.7 to the original variables yields the statement on global positivity. �

Remark 3. i) Again, in the porous medium case p ∈ (0, 1), the results given in Lemma 4.6 and
Lemma 4.7 are well-known ([5]).
ii) When p = 1, Lemma 4.6 guarantees local existence of a classical solution for vt = (evvx)x, provided
that the data satisfy v0(x) ≤ 2 ln(1 + |x|) +C for some C > 0 and all x ∈ R, while Lemma 4.7 asserts
global solvability under the additional requirement that v0(x)− 2 ln |x| → −∞ as |x| → ∞.

5 Accelerating waves blowing up at spatial inifinity. Proof of The-

orem 1.3

Our goal in this section is to investigate how mass transport occurs when the initial data u0 in (2.2)
exhibit critical growth as x→ +∞. One rather explicit example can be constructed by separation of
variables, which leads to the family (uaT )a>0,T>0 of solutions of (2.2) given by

uaT (x, t) = (pa2)
− 1

p (T − t)
− 1

p z(ax), x ∈ R, t ∈ [0, T ), (5.1)

where

zyy = z1−p, y ∈ R with zy(0) = 0 and z(0) = 1,

that is, z(y) is implicitly defined by

∫ z(y)

1

ds√
s2−p − 1

=

√

2

2− p
|y|, y ∈ R.
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In order to establish a link to previous material, let us observe that setting v = u
1
m yields a corre-

sponding family of separated smooth solutions of (1.1), and in the limit a→ ∞ we rediscover the fully
explicit example in (1.2).

Clearly, uaT blows up everywhere in R at time t = T , with its blow-up set B(uaT ) := {x ∈
R | ∃(xk, tk)k∈N ⊂ R × (0, T ) such that xk → x, tk → T and uaT (xk, tk) → +∞ as k → ∞} coin-
ciding with all of R.

We shall see that the latter need no longer be true when critical growth of the initial data is merely
prescribed as x → +∞, possibly complemented by boundedness, or even some decay, as x → −∞.
We shall obtain some examples of solutions u emanating from such initial data, and one particular
conclusion will be that the solution still may blow up, but with empty blow-up set B(u) = ∅. In fact,
in Theorem 5.2 below for any γ > 0 we shall find some u blowing up at time t = T but satisfying an
estimate of the form u(x, t) ≤ ceγx for all x ∈ R and t ∈ (0, T ) and some c > 0.

Our approach will be based on wave-like solutions of the form

u(x, t) = (T − t)
− 1

p · f
(

x+ k · ln(T − t)
)

, x ∈ R, t ∈ [0, T ), (5.2)

having their speed increasing with time and blowing up at time T , where k > 0 is a parameter. In
fact, for p > 2 such solutions have been found to exist and to be extensible to all of R × R so as
to become a homclinic orbit of (2.2) connecting the trivial equilibrium to itself ([35]). Inserting this
ansatz into (2.2) suggests to solve

fp(ξ)f ′′(ξ) =
1

p
f(ξ)− kf ′(ξ), ξ ∈ R, (5.3)

and we shall see that this problem has positive classical solutions actually for any value of k > 0 and
p > 0.

Lemma 5.1 Let p > 0. Then for all k > 0, (5.3) possesses a positive solution f = fk ∈ C∞(R). This
solution increases on R and satisfies

c0e
1
pk

ξ ≤ f(ξ) ≤ c1e
1
pk

ξ
for all ξ ≤ 0, (5.4)

and










d0ξ
2
p ≤ f(ξ) ≤ d1ξ

2
p for all ξ ≥ 2 if p < 2,

d0ξ
√
ln ξ ≤ f(ξ) ≤ ξ

√
ln ξ for all ξ ≥ 2 if p = 2,

d0ξ ≤ f(ξ) ≤ d1ξ for all ξ ≥ 2 if p > 2

(5.5)

with certain positive constants c0, c1, d0 and d1.

Proof. We normalize (5.3) by setting

f(ξ) = (pk2)
1
p · g

( 1

pk
· ξ
)

, ξ ∈ R, (5.6)

and are thereby lead to studying

gp(σ)g′′(σ) = g(σ)− g′(σ), σ ∈ R. (5.7)
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In order to solve the latter first on (−∞, 0], we will rely on a comparison argument anticipating a

behavior of the form described in (5.4), suggesting that g′′(σ)
g(σ) ≃ 1 as σ → −∞. Indeed, we recall from

[35, Lemma 2.1] that for a+ := 1, a− := 1
2 , s+ := 1

2 and all sufficiently small s− ∈ (0, s+), the solutions
of the Bernoulli-type problem

{

g′±(σ) = g±(σ)− a±g
p+1
± (σ), σ < 0,

g±(0) = s±,
(5.8)

can be seen to satisfy g− < g+ on (−∞, 0] and

−gp−g′′− − g′− + g− < 0 < −gp+g′′+ − g′+ + g+ on (−∞, 0].

Using standard elliptic existence results ([30]), we thus infer that on the left half-line, (5.7) admits
a solution g1 ∈ C∞((−∞, 0]) which fulfills g− ≤ g1 ≤ g+ on (−∞, 0]. Since (5.8) can explicitly be
solved, we can therefore easily verify that with certain constants c2 > 0 and c3 > 0,

c2e
σ ≤ g1(σ) ≤ c3e

σ for all σ ∈ (−∞, 0] (5.9)

holds for this solution, and that accordingly g′1 > 0 on (−∞, 0], because at each point where g1 is
positive and g′1 = 0 we must have g′′1 > 0 by (5.7).
In order to extend g1 to a solution of (5.7) on all of R, we let A := g1(0) > 0 and B := g′1(0) > 0 and
consider the solution g of the initial-value problem

{

gp(σ)g′′(σ) = g(σ)− g′(σ), σ ∈ J,

g(0) = A, g′(0) = B,
(5.10)

defined on its maximal existence interval J ⊂ R such that 0 ∈ J . Then clearly, by a uniqueness
argument, (−∞, 0] ⊂ J and g ≡ g1 on (−∞, 0]. Moreover, the fact that B > 0 ensures that g′ > 0 on
J and hence g ≥ A on J ∩ (0,∞). Thus, −A−pg′ ≤ g′′ ≤ A−pg on J ∩ (0,∞), which implies that in
fact J = R.
Now in the case p < 2, multiplying the inequality g′′ = g1−p − g−pg′ ≤ g1−p by g′ > 0 shows that

1

2
g′2(σ)− 1

2
B2 ≤ 1

2− p
(g2−p(σ)−A2−p) for all σ > 0,

and hence we have

g′(σ) ≤
√

2

2− p
g2−p(σ) +B2 ≤ c4

√

g2−p(σ) for all σ > 0 (5.11)

with c4 :=
√

2
2−p

+Ap−2B2. Upon another integration, this gives

g(σ) ≤
(pc4

2
σ +A

p

2

)
2
p

for all σ > 0. (5.12)

In particular, the latter entails that for some large σ0 > 0 we must have g(σ0) ≥ g′(σ0), because the
contrary assumption that g′ > g be valid throughout (0,∞) would evidently contradict (5.12). Since
ψ := g − g′ satisfies

ψ′ = g′ − g − g′

gp
= g − ψ − ψ

gp
> −

(

1 +
1

gp

)

· ψ on (σ0,∞),
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by comparison we conclude that ψ ≥ 0 and hence g′′ ≥ 0 on [σ0,∞). Using that g′(σ0) > 0, we thus
obtain that g(σ) → +∞ as σ → +∞, so that for some σ1 > 0 we have

c4g
− p

2 (σ) ≤ 1

2
for all σ ≥ σ1.

Consequently, by (5.11) and (5.10) we see that

gp(σ)g′′(σ) ≥ g(σ) ·
(

1− c4g
− p

2 (σ)
)

≥ 1

2
g(σ) for all σ ≥ σ1,

which upon multiplication by g′(σ)
gp(σ) yields

1

2
g′2(σ)− 1

2
g′2(σ1) ≥

1

2− p

(

g2−p(σ)− g2−p(σ1)
)

for all σ ≥ σ1

and therefore

g′(σ) ≥
√

2

2− p

(

g2−p(σ)− g2−p(σ1)
)

≥ c5
√

g2−p(σ) for all σ ≥ σ1 + 1

is valid with c5 :=

√

2
2−p

(

1− g2−p(σ1)
g2−p(σ1+1)

)

> 0. Integrating this, we obtain

g(σ) ≥
(pc5

2
(σ − σ1 − 1) + g

p

2 (σ1 + 1)
)

2
p

for all σ ≥ σ1 + 1. (5.13)

We finally define f via (5.6) and collect (5.9), (5.12) and (5.13) to easily end up with (5.4) and (5.5)
in the case p < 2.

If p = 2 we proceed similarly and instead of (5.11) now obtain

g′(σ) ≤ c6

√

ln
g(σ)

A
for all σ > 0 (5.14)

with some c6 > 0. In order to convert this into an estimate from above for g, we fix any σ2 > 1 and
then pick c7 > c6 large enough fulfilling

c7σ2
√

lnσ2 ≥ g(σ2) (5.15)

and

(c27 − c26) lnσ ≥ c26 ln
c7

A
+
c26
2
ln lnσ for all σ > σ2. (5.16)

Then

g(σ) := c7σ
√
lnσ, σ ≥ σ2,

satisfies g(σ2) ≥ g(σ2) by (5.15), and since g′(σ) ≥ c7
√
lnσ > 0, we have

g′2(σ)−
(

c6

√

ln
g(σ)

A

)2
≥ c27 lnσ − c26 ln

c7

A
− c26 lnσ − c26

2
ln lnσ

≥ 0 for all σ ≥ σ2
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in view of (5.16). Thus, by comparison we obtain g ≤ g in [σ2,∞) and thereby verify the right
inequality in (5.5). As before, this entails that g′′(σ) ≥ 0 for all suitably large σ, so that with some
c8 ∈ (0, 1) we have

g(σ) ≥ c8σ for all σ ≥ 0. (5.17)

In particular, this again implies that g(σ) → +∞ as σ → +∞, whence using (5.14) we infer that
g2(σ)g′′(σ) = g(σ)− g′(σ) ≥ 1

2g(σ) for all large σ. By integration, we therefore derive the inequality

g′(σ) ≥
√

ln
g(σ)

Ã
for all σ > σ3

with some σ3 > 0 and Ã := g(σ3). Let us now fix a large number σ4 > σ3 fulfilling

σ4 ≥ e and (1− c28) lnσ4 ≥ − ln
c8

Ã
+

5

4
c28 (5.18)

and set

g(σ) := c8σ

√

ln
eσ

σ4
, σ ≥ σ4.

Then g(σ4) = c8σ4 ≤ g(σ4) thanks to (5.17), and (5.18) implies that ln e
σ4

≤ 0. As clearly ln ln eσ
σ4

≥ 0
for all σ > σ4, we accordingly obtain that

g′2(σ)−
(

√

ln
g(σ)

Ã

)2

= c28

(

lnσ + ln
e

σ4
+ 1 +

1

4 ln eσ
σ4

)

− ln
c8

Ã
− lnσ − 1

2
ln ln

eσ

Ã

≤ −(1− c28) lnσ + c28 +
c28
4

− ln
c8

Ã
≤ 0 for all σ > σ4

by the second requirement in (5.18), so that by comparison we conclude that g ≥ g in [σ4,∞), from
which the left inequality in (5.5) easily follows in the case p = 2.

Finally, in the case p > 2 the statement of the lemma is precisely covered by [35, Lemma 2.1, Lemma
2.2]. �

As an immediate consequence for (2.2), we obtain the following.

Theorem 5.2 Let p > 0. Then for each k > 0 and all T > 0 there exists a positive classical solution
u ∈ C∞(R × [0, T )) of (2.2) of the form (5.2), where f = fk ∈ C∞(R) is the increasing positive
solution of (5.3) provided by Lemma 5.1.
In particular, for the initial data u0 := u(·, 0) we have u0x > 0 on R,

c0e
1
pk

x ≤ u0(x) ≤ c1e
1
pk

x
for all x ≤ 0 (5.19)

and










d0x
2
p ≤ u0(x) ≤ d1x

2
p for all x ≥ 2 if p < 2,

d0x
√
lnx ≤ u0(x) ≤ d1x

√
lnx for all x ≥ 2 if p = 2,

d0x ≤ u0(x) ≤ d1x for all x ≥ 2 if p > 2,

(5.20)
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and the solution satisfies

u(x, t) ≤ Ce
1
pk

x
for all x ∈ R and t ∈ (0, T ) (5.21)

as well as
lim inf
tրT

u(x, t) ≥ c e
1
pk

x
for all x ∈ R. (5.22)

with some positive constants c0, c1, d0, d1, c and C.

Moreover, if p < 2 then u blows up at t = T in the sense that for any T̃ > T , there is no positive
classical solution of (2.2) in R× (0, T̃ ) which coincides with u in R× (0, T ).
On the other hand, if p > 2 then u can be continued for all times so as to exist as a classical solution
of (2.2) in R× [0,∞).

Proof. The solution properties of u and the estimates (5.19) and (5.20) are immediate consequences
of the properties of fk. Furthermore, the right inequalities in (5.4) and (5.5) imply that actually

fk(ξ) ≤ Ce
1
pk

ξ
holds for all ξ ∈ R with some C > 0, so that (5.2) shows that

u(x, t) ≤ (T − t)
− 1

p · Ce
1
pk

(x+k·ln(T−t))
= Ce

1
pk

x
for all x ∈ R and t ∈ (0, T ).

Similarly, since for each fixed x ∈ R we have x+ k · ln(T − t) ≤ 0 for all t ∈ (t0(x), T ) with some t0(x)
sufficiently close to T , from the left inequality in (5.4) we obtain that

u(x, t) ≥ (T − t)
− 1

p · c0e
1
pk

(x+k·ln(T−t))
= c0e

1
pk

x

holds for all t ∈ (t0(x), T ) and some c > 0, which yields (5.22).
Let us now assume that p < 2, and that there exist T̃ > T and a positive classical solution ũ of (2.2)
on R × (0, T̃ ) fulfilling ũ ≡ u in R × (0, T ). Since ũ is continuous, by (5.22) we then would have

ũ(x, T ) ≥ ce
1
pk

x
for all x ∈ R, and hence an application of Corollary 3.4 along with Lemma 4.4 would

assert that ũ(x, t) = +∞ for all x ∈ R and t ∈ (T, T̃ ), which is absurd. Therefore, u indeed ceases to
exist at time T .
Finally, if p > 2 then due to (5.21), (5.22) and parabolic regularity theory, for each x ∈ R the limit
u(x, T ) := limtրT u(x, t) exists and defines a smooth positive function on R which is dominated by

some multiple of e
1
pk

x
throughout R. According to known results ([29], [35]), (2.2) therefore possesses

a classical solution ũ in R× [T,∞) with ũ(·, T ) = u(·, T ), which glued together with u evidently yields
a global extension of u, as desired. �

Proof of Theorem 1.3. We only need to consider p ∈ (1, 2) in the above theorem and transform
(5.2) and (5.3) to the original variables. �

Remark 4. Theorem 5.2 again goes slightly beyond our original purpose in that it applies to any
p > 0. Via (2.1), as a by-product this provides examples of mass transport for the porous medium
equation (1.1) when p ∈ (0, 1), for the equation vt = (evvx)x when p = 1 and for the super-fast
diffusion equations (1.1) in the intermediate regime m ∈ [−1, 0) when p ≥ 2.
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[14] daskalopoulos, P., Sesum, N.: On the extinction profile of solutions to fast diffusion. J. Reine
Angew. Math. 622, 95-119 (2008)

[15] Diaz, G., Diaz, J.I.: Finite extinction time for a class of non-linear parabolic equations.
Comm. Part. Diff. Eq. 4, 1213-1231 (1979)

28



[16] Esteban, J.R., Rodriguez, A., Vázquez, J.L.: A nonlinear heat equation with singular
diffusivity. Comm. Part. Diff. Eq. 13, 985-1039 (1988)

[17] Fila, M., King, J.R., Winkler, M.: Rate of convergence to Barenblatt profiles for the fast
diffusion equation with a critical exponent. J. London Math. Soc. 90, 167-183 (2014)

[18] Fila, M., Vázquez, J.L., Winkler, M.: A continuum of extinction rates for the fast diffusion
equation. Comm. Pure Appl. Anal. 10 1129-1147 (2011)

[19] Fila, M., Vázquez, J.L., Winkler, M., Yanagida, E.: Rate of convergence to Barenblatt
profiles for the fast diffusion equation. Arch. Rat. Mech. Anal. 204 599-625 (2012)

[20] Fila, M., Winkler, M.: Optimal rates of convergence to the singular Barenblatt profile for the
fast diffusion equation. Proc. Roy. Soc. Edinburgh Sect. A 146, 309-324 (2016)

[21] Galaktionov, V.A., Peletier, L.A.: Asymptotic behaviour near finite-time extinction for
the fast diffusion equation. Arch. Rat. Mech. Anal. 139, 83-98 (1997)

[22] Galaktionov, V.A., Vázquez, J.L.: Continuation of blowup solutions of nonlinear heat equa-
tions in several space dimensions. Comm. Pure Appl. Math. 50 (1), 1-67 (1997)

[23] Grillo, G., Muratori, M., Punzo, F.: The porous medium equation with large initial data
on negatively curved Riemannian manifolds. ⁀arXiv: https://arxiv.org/abs/1609.06498

[24] King, J. R.: Self-similar behaviour for the equation of fast nonlinear diffusion.
Phil. Trans. Roy. Soc. London A 343, 337-375 (1993)

[25] Ladyzenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasi-linear Equa-
tions of Parabolic Type. AMS, Providence, 1968

[26] Luckhaus, S., Dal Passo, R.: A Degenerate Diffusion Problem Not in Divergence Form. J.
Differential Eq. 69, 1-14 (1987)

[27] Peletier, M.A., Zhang, H.: Self-similar solutions of a fast diffusion equation that do not
conserve mass. Diff. Int. Eq. 8, 2045-2064 (1995)

[28] Pierre, M.: Nonlinear fast diffusion with measures as data. In: Nonlinear parabolic equations:
qualitative properties of solutions (Rome, 1985). Pitman Res. Notes Math. Ser. 149, Longman
Sci. Tech., Harlow, 179-188 (1987)

[29] Rodriguez, A., Vázquez, J.L.: A well-posed problem in singular Fickian diffusion.
Arch. Rat. Mech. Anal. 110 (2), 141-163 (1990)
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