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Abstract

In a bounded domain Ω ⊂ R
2, we consider the the chemotaxis-Stokes system











nt + u · ∇n = ∆n−∇ ·
(

nS(x, n, c) · ∇c
)

, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nf(c), x ∈ Ω, t > 0,

ut = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

(⋆)

which arises as a model for populations of aerobic bacteria swimming in a sessile water drop.
In accordance with refined modeling approaches, we do not necessarily assume the chemotactic
sensitivity S herein to be a scalar function, but rather allow S to attain values in R

2×2.

As compared to the well-studied case of scalar-valued sensitivities in which an analysis can be based
on favorable energy-type inequalities, this modification brings about significant new challenges
which require to adequately cope with only little a priori information on regularity of solutions of
(⋆). The present work creates a functional setup which despite this allows for the construction of
certain global mass-preserving generalized solutions to an associated initial-boundary value problem
in planar convex domains with smooth boundary, provided that the initial data and the parameter
functions S, f and φ are sufficiently smooth, and that S is bounded and f is nonnegative with
f(0) = 0.
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1 Introduction

We consider a model for the spatio-temporal evolution in populations of microscopic organisms, sur-
rounded by a liquid medium, which partially orient their movement according to concentration gra-
dients of a chemical that they consume upon contact. As indicated by striking experimental findings,
even in quite primitive setups such types of interplay may be sufficient to generate considerably com-
plex forms of collective behavior, inter alia enforcing phenomena of self-concentration and large-scale
dynamic coherence ([9]). In particular, it can be observed that in populations of Bacillus subtilis,
bacterial aggregates spontaneously emerge, and that these may move at speeds considerably higher
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than the speeds of the individual organisms, leading to Péclet numbers significantly greater than 1.

Accordingly, a fundamental modeling approach presented in [31] postulates that for understanding
such phenomena it is essential to consider the mutual interaction between cells and the surrounding
water, rather than merely the motion of bacteria in an otherwise passive fluid such as in standard
descriptions of cell movement, even in complex processes e.g. involving bioconvection (cf. [16] and also
[19], for instance). Thus, besides the hypothesis that the motion of individual cells is chemotactically
biased by concentration gradients of dissolved oxygen which they consume, constitutive modeling as-
sumptions in [31] are that moreover cells and oxygen are transported through water via convection,
and that the swimming bacteria, having a slightly higher density than water, affect the fluid motion
through bouyant forces.

In cases of low Reynolds numbers when nonlinear convection can be disregarded, these suppositions
lead to systems of evolution equations which upon convenient parameter normalization take the form











nt + u · ∇n = ∆n−∇ ·
(

nS(x, n, c) · ∇c
)

, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nf(c), x ∈ Ω, t > 0,

ut = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

(1.1)

in the physical domain Ω ⊂ R
N ([31], [24]). Here, n = n(x, t), c = c(x, t), u = u(x, t) and P = P (x, t)

represent the population density, the oxygen concentration, the fluid velocity field and the associated
pressure, respectively, and the chemotactic sensitivity S, the oxygen consumption rate f and the
gravitational potential φ are supposed to be given functions.

In particular, the original version of the model (1.1) proposed in [31] adapts to the classical Keller-Segel
system of chemotaxis in supposing S to be a scalar function, thus assuming that chemotactic cross-
diffusion is exclusively directed toward increasing signal concentrations. In this setting, analytical
approaches address issues of global well-posedness in appropriate initial-boundary value problems for
(1.1) in various functional frameworks, either in bounded two- or three-dimensional domains, or in
the respective entire spaces, and under diverse, more or less restrictive assumptions on the parameter
functions S, f and φ ([10], [5], [20], [39]; cf. also [7], [32], [11], [33] and [29] for results on related
models with nonlinear diffusion). The knowledge in this respect has become quite comprehensive in
the spatially two-dimensional setting in which even Navier-Stokes fluid evolution may lead to global
existence of uniquely determined classical solutions ([23], [39]); in the case N = 3, after all, certain
global weak and at least eventually smooth solutions can be constructed under mild hypotheses on
the respective model ingredients ([39], [44], [45]; see also [21] for a related study including effects of
logistic sources).

Chemotaxis with rotational flux: Loss of energy structure – and of mass conservation?

With regard to structure generation, the above results in particular indicate that in sharp contrast
to the classical Keller-Segel model in which cells produce the signal instead of consuming it ([15],
[40]), phenomena of finite-time blow-up, typifying the apparently most extreme facet of bacterial
aggregation, do not occur in (1.1). Going beyond this, known results suggest that in both its two- and
three-dimensional version, (1.1) may not even be able to describe structure formation on large time
scales. Indeed, under certain conditions on the the parameter functions, weak enough so as to allow
for the prototypical choices S ≡ const., f(c) = c for c ≥ 0 and ∇φ ≡ const., it has been shown in
[41] and [48] that in bounded convex planar domains, all solutions emanating from reasonably smooth
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nontrivial initial data remain globally bounded and approach the spatially homogeneous equilibrium
(−
∫

Ω n0, 0, 0) at an exponential rate in the large time limit, even in the more complex variant of (1.1)
obtained on replacing the Stokes by the Navier-Stokes system; in the three-dimensional version of the
latter problem, a corresponding result on asymptotic homogeneization has recently been established
in [45].

Taking into account the experimental observation that spatial inhomogeneities typically originate
from regions near the boundary of the fluid ([9]), in this work we shall follow a more recent modeling
approach which assumes that bacterial chemotaxis in such boundary regions is not precisely oriented
along signal gradients, but rather involves rotational flux components. According to the detailed
model derivation in [47] and [46], this requires the sensitivity function S in (1.1) to be a general 2× 2
matrix which at positions x close to ∂Ω possibly contains nontrivial off-diagonal entries such as in the
prototype

S = a
( 1 0

0 1

)

+ b
( 0 −1

1 0

)

, a > 0, b ∈ R.

As compared to the above case of scalar sensitivities, this generalization brings about considerable
mathematical challenges resulting from the fact that thereby (1.1) apparently loses a favorable quasi-
energy structure. In fact, large bodies of the analysis for scalar-valued S are based on corresponding
inequalities which e.g. in the case when S ≡ 1 and f(c) = c for c ≥ 0 take the form

d

dt

{
∫

Ω
n lnn+

1

2

∫

Ω

|∇c|2
c

}

+

∫

Ω

|∇n|2
n

+

∫

Ω
c|D2 ln c|2 ≤ C

∫

Ω
|u|4, t > 0, (1.2)

with some C > 0 ([39]). Combined with appropriate regularization properties of the fluid flow, these
may be used to derive a priori estimates which may form the starting point for global existence
theories (see [10], [49], [39]) and also [29], for instance) as well as for the description of the large time
asymptotics of solutions ([41], [45]).

The lack of appropriate analogues of (1.2) in presence of general tensor-valued sensitivities significantly
complicates the analysis even in pure chemotaxis systems without any fluid interaction. In the case of
scalar-valued S, energy-based arguments can be applied to the variant of (1.1) obtained on letting u ≡ 0
([28]); likewise, the current knowledge also on the classical parabolic Keller-Segel system, in contrast to
(1.1) accounting for signal production rather than consumption through cells, to a considerable extent
relies on the use of a corresponding energy functional ([25], [17], [40]), and accordingly in this latter
context only few results, exclusively relying on quite strong assumptions on the system ingredients,
address situations the sensitivity is allowed to be tensor-valued ([1], [4], [36], [37], [26]). A similar
shortfall in knowledge can be observed in chemotaxis systems with signal consumption as soon as
tensor-valued sensitivities are involved: Even in the case N = 2, global bounded smooth solutions
to the fluid-free version of (1.1) so far have only been constructed under an additional smallness
assumption on c in L∞(Ω) ([22]), or if diffusion is nonlinear and enhanced at large densities ([3]; cf. also
[4], [2], [34], [35] and [43] for extensions involving fluid interaction and addressing three-dimensional
settings). For arbitrarily large data in the original chemotaxis model with linear diffusion, at least
certain global generalized solutions are known to exist for any choice of N ≥ 1, but their regularity
properties may be rather poor ([42]); in particular, it seems not even known whether these solutions
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describe mass conservation in the flavor of the identity

∫

Ω
n(·, t) =

∫

Ω
n0 for t > 0, (1.3)

constituting a property which, although very basic, apparently is of fundamental biological importance.

Main results. It is the goal of the present work to develop a method which in the spatially
two-dimensional case and under essentially minimal assumptions, in particular involving basically no
structural hypothesis on the matrix-valued sensitivity S, allows for establishing a basic theory on
global existence of solutions to (1.1) which do conserve mass, even when fluid interaction is accounted
for. In order to formulate our main results in this respect, let us specify the precise problem setting
by considering (1.1) in a bounded convex domain Ω ⊂ R

2 along with the boundary conditions

∇n · ν = n
(

S(x, n, c)∇c
)

· ν, ∇c · ν = 0, u = 0, x ∈ ∂Ω, t > 0, (1.4)

and the initial conditions

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω. (1.5)

Throughout this paper, we shall assume that

f ∈ C1([0,∞)) is nonnegative with f(0) = 0 (1.6)

and that
φ ∈W 2,∞(Ω), (1.7)

and we shall suppose that S = (Sij)i,j∈{1,2} is such that

Sij ∈ C2(Ω̄× [0,∞)× [0,∞)) for i, j ∈ {1, 2} (1.8)

and that

|S(x, n, c)| ≤ S0(c) for all (x, n, c) ∈ Ω̄× [0,∞)2 with some nondecreasing S0 : [0,∞) → R.

(1.9)
Concerning the initial data, our standing assumptions will be that







n0 ∈ Cι(Ω̄) for some ι > 0 with n0 ≥ 0 in Ω, that
c0 ∈W 1,∞(Ω) satisfies c0 ≥ 0 in Ω, and that
u0 ∈ D(Aϑ2 ) for some ϑ ∈ (12 , 1),

(1.10)

where A2 denotes the Stokes operator in the Hilbert space L2
σ(Ω) := {ϕ ∈ L2(Ω) | ∇ · ϕ = 0} of all

solenoidal functions in L2(Ω), with the natural domain of A2 given by D(A2) :=W 2,2(Ω)∩W 1,2
0 (Ω)∩

L2
σ(Ω) (cf. also Section 3.2 below).

We shall see that under these assumptions, (1.1) indeed is globally solvable by mass-conserving func-
tions:
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Theorem 1.1. Suppose that f , φ and S satisfy (1.6), (1.7), (1.8) and (1.9), and that n0, c0 and u0
comply with (1.10). Then there exists at least one triple of functions











n ∈ L∞([0,∞);L1(Ω)),

c ∈ L∞(Ω× (0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω)) and

u ∈ L2
loc(Ω̄× [0,∞)) ∩⋂

p∈[1,2) L
p
loc([0,∞);W 1,p

0 (Ω)),

such that (n, c, u) is a global mass-preserving generalized solution of (1.1), (1.4), (1.5) in the sense of
Definition 2.1 below; in particular,

∫

Ω
n(·, t) =

∫

Ω
n0 for a.e. t > 0. (1.11)

Main ideas. One particular technical challenge will stem from the observation that with re-
gard to the crucial solution component n, standard testing procedures to track the time evolution of
e.g.

∫

ΩΦ(n(·, t)), constitutive of basically any known method in the analysis of chemotaxis systems,
apparently fail for all reasonable choices of superlinearly growing Φ in the present general situation.
On the other hand, an estimate for n in L∞((0,∞);L1(Ω)), as resulting from the formally evident
mass conservation property (1.3), is apparently insufficient to provide adequate compactness proper-
ties in any reasonable approximation process, allowing e.g. for the conclusion that the limit would in
fact satisfy (1.3).

Of fundamental importance for our approach will thus be an inequality of the form

∫ ∞

0

∫

Ω

|∇n|2
(n+ 1)2

≤ C (1.12)

(Lemma 3.1), which upon an application of the Moser-Trudinger inequality can be turned into an
estimate for

∫ t+1
t

ln ‖n(·, s) + 1‖p
Lp(Ω)ds, t > 0, with some conveniently chosen p > 2 in the present

two-dimensional context (Lemma 4.1). Along with appropriate compactness properties for c and
u, essentially resulting from (1.3) due to the smoothing effects of the heat and Stokes semigroups
(cf. Sections 3.1 and 3.2), this additional integrability information will be used in the important
Lemma 4.2 to establish strong compactness in L1

loc(Ω̄× [0,∞)) of the first component in a sequence of
solutions to suitably regularized problems (cf. (2.8)). This in turn will entail a corresponding strong
compactness property also for ∇c in L2

loc(Ω̄× [0,∞)) (Section 4.2) and thereby allow for constructing
a solution fulfilling (1.11) through a standard extraction procedure (Section 5).

2 A generalized solution concept, regularization and basic estimates

In the sequel we shall pursue the following solution concept which is very weak, especially with
regard to the solution properties of the first component, and which partially resembles the notion
of renormalized solutions ([8]) but differs from the latter in decisive details (cf. e.g. the inequality
appearing in (2.4)). This non-standard choice is due to our sparse knowledge on regularity features
of solutions; in particular, we will not be able to decide whether for the solution we shall construct
below, the corresponding cross-diffusive flux nS(x, n, c) ·∇c in the first equation in (1.1) is integrable.
After all, our concept complies with the basic requirement that smooth functions which solve (1.1) in
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our generalized sense are also classical solutions, cf. the remark subsequent to the following definition.
All this partly parallels the situation in the pure chemotaxis system obtained when u ≡ 0, as studied
in [42] in the general N -dimensional framework with a similar notion of solution. As compared to the
latter, an important improvement that can and will be gained in the present two-dimensional case will
be that our solutions will satisfy the natural mass conservation identity (2.3), rather than merely an
inequality as in [42].

Definition 2.1. Suppose that

n ∈ L∞((0,∞);L1(Ω)),

c ∈ L∞
loc(Ω̄× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω)) and

u ∈ L1
loc([0,∞); (W 1,1

0 (Ω))2) (2.1)

are such that n ≥ 0 and c ≥ 0 a.e. in Ω× (0,∞) and

ln(n+ 1) ∈ L2
loc([0,∞);W 1,2(Ω)), (2.2)

that
∫

Ω
n(x, t)dx =

∫

Ω
n0(x) for a.e. t > 0, (2.3)

and that ∇ · u = 0 a.e. in Ω× (0,∞). Then the triple (n, c, u) will be called a global mass-preserving
generalized solution of (1.1), (1.4), (1.5) if the inequality

−
∫ ∞

0

∫

Ω
ln(n+ 1)ϕt −

∫

Ω
ln(n0 + 1)ϕ(·, 0) ≥

∫ ∞

0

∫

Ω
ln(n+ 1)∆ϕ+

∫ ∞

0

∫

Ω
|∇ ln(n+ 1)|2ϕ

−
∫ ∞

0

∫

Ω

n

n+ 1
∇ ln(n+ 1) ·

(

S(x, n, c) · ∇c
)

ϕ

+

∫ ∞

0

∫

Ω

n

n+ 1

(

S(x, n, c) · ∇c
)

· ∇ϕ

+

∫ ∞

0

∫

Ω
ln(n+ 1)(u · ∇ϕ) (2.4)

holds for each nonnegative ϕ ∈ C∞
0 (Ω̄× [0,∞)) with ∂ϕ

∂ν
= 0 on ∂Ω× (0,∞), if moreover

∫ ∞

0

∫

Ω
cϕt +

∫

Ω
c0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇c · ∇ϕ+

∫ ∞

0

∫

Ω
nf(c)ϕ−

∫ ∞

0

∫

Ω
c(u · ∇ϕ) (2.5)

for any ϕ ∈ L∞(Ω × (0,∞)) ∩ L2((0,∞);W 1,2(Ω)) having compact support in Ω̄ × [0,∞) with ϕt ∈
L2(Ω× (0,∞)), and if finally

−
∫ ∞

0

∫

Ω
u · ϕt −

∫

Ω
u0 · ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇u · ∇ϕ+

∫ ∞

0

∫

Ω
n∇φ · ϕ (2.6)

for all ϕ ∈ C∞
0 (Ω× [0,∞);R2) with ∇ · ϕ ≡ 0.
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Remark. i) As can readily be seen, the regularity requirements in (2.1) and (2.2) along with (1.6)
and (1.9) indeed ensure that all integrals appearing in (2.4), (2.5) and (2.6) are well-defined.

ii) It is well-known ([30]) that under the assumptions of Definition 2.1 there exists a distribution P
on Ω× (0,∞) such that ut = ∆u+∇P + n∇φ holds in D′(Ω× (0,∞)).

iii) Evidently, the inequality (2.4) expresses a supersolution property of n with regard to the first
equation in (1.1) only, rather than a solution property. In conjunction with the mass conservation
identity (2.3), however, this in fact constitutes a proper, albeit quite weak, solution concept for the
respective sub-problem of (1.1), (1.4), (1.5): Namely, whenever n and c are nonnegative functions
from C0(Ω̄ × [0,∞)) ∩ C2,1(Ω̄ × (0,∞)) and u ∈ C0(Ω̄ × [0,∞);R2) ∩ C2,1(Ω × (0,∞)) such that
∇ · u ≡ 0 and such that (n, c, u) is a global mass-preserving generalized solution of (1.1), (1.4), (1.5)
in the sense of Definition 2.1, there exists P ∈ C1,0(Ω× (0,∞)) such that (n, c, u, P ) also is a classical
solution of (1.1), (1.4), (1.5) in Ω× (0,∞). In fact, this can be shown using the fact that the function
[0,∞) ∋ ξ 7→ ln(ξ + 1) has its derivative strictly positive throughout [0,∞), following the proof of a
corresponding statement in the special case u ≡ 0 which is detailed in [42, Lemma 2.1].

In order to construct a generalized solution of (1.1), (1.4), (1.5) in the above sense, following the
approaches in [22] and [42] our initial step consists in approximating (1.1), (1.4), (1.5) by problems
which firstly are globally solvable, and in which secondly the no-flux boundary condition for the
first solution component, in (1.4) being coupled to c in quite a complicated manner, reduces to a
homogeneous Neumann condition. To achieve this, we fix families (ρε)ε∈(0,1) and (χε)ε∈(0,1) of cut-off
functions in Ω and [0,∞), respectively, having the properties that

ρε ∈ C∞
0 (Ω) is such that 0 ≤ ρε ≤ 1 in Ω and ρε ր 1 in Ω as εց 0

and

χε ∈ C∞
0 ([0,∞)) is such that 0 ≤ χε ≤ 1 in [0,∞) and χε ր 1 in [0,∞) as εց 0.

For ε ∈ (0, 1), we then define

Sε(x, n, c) := ρε(x) · χε(n) · S(x, n, c), (x, n, c) ∈ Ω̄× [0,∞)2, (2.7)

and thereupon consider the regularized problems











































nεt + uε · ∇nε = ∆nε −∇ ·
(

nεSε(x, nε, cε)∇cε
)

, x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − nεf(cε), x ∈ Ω, t > 0,

uεt = ∆uε +∇Pε + nε∇φ, x ∈ Ω, t > 0,

∇ · uε = 0, x ∈ Ω, t > 0,
∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.8)

each of which is indeed globally solvable in the classical sense:
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Lemma 2.2. Let ε ∈ (0, 1). Then there exist functions

nε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

cε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

uε ∈ C0(Ω̄× [0,∞);R2) ∩ C2,1(Ω̄× (0,∞);R2),

Pε ∈ C1,0(Ω× (0,∞)),

such that nε and cε are nonnegative, and such that (nε, cε, uε, Pε) is a classical solution of (2.8).

Proof. By a straightforward application of the contraction mapping principle in an appropriate
framework, (2.8) can be seen to possess a classical solution in a cylinder Ω × (0, Tmax,ε) with some
maximal Tmax,ε ∈ (0,∞] which satisfies either Tmax,ε = ∞, or

lim sup
tրTmax,ε

(

‖nε(·, t)‖C2(Ω̄) + ‖cε(·, t)‖C2(Ω̄) + ‖uε(·, t)‖C2(Ω̄)

)

= ∞

(cf. e.g. [39, Lemma 2.1] for details). But here we actually must have Tmax,ε = ∞, because the fact
that Sε(x, n, c) = 0 for all suitably large n > 0 enables us to perform standard a priori estimation
procedures ([39, Sect. 5], [18]) to show that for each ε ∈ (0, 1) and any T > 2 one can find C(ε, T ) > 0
fulfilling

‖nε(·, t)‖C2(Ω̄) + ‖cε(·, t)‖C2(Ω̄) + ‖uε(·, t)‖C2(Ω̄) ≤ C(ε, T )

for all t ∈
(

min
{

1,
1

2
Tmax,ε

}

,min
{

T, Tmax,ε

})

.

Therefore, (nε, cε, uε, Pε) in fact is a global classical solution of (2.8). �

Some basic properties of these approximate solutions can be summarized as follows.

Lemma 2.3. Let ε ∈ (0, 1). Then

∫

Ω
nε(x, t)dx =

∫

Ω
n0 for all t > 0, (2.9)

and for each p ∈ [1,∞] we have

‖cε(·, t)‖Lp(Ω) ≤ ‖cε(·, s)‖Lp(Ω) for all s ≥ 0 and each t ≥ s. (2.10)

Moreover,
∫ ∞

0

∫

Ω
|∇cε|2 ≤

1

2

∫

Ω
c20 (2.11)

and
∫ ∞

0

∫

Ω
nεf(cε) ≤

∫

Ω
c0 (2.12)

as well as
|Sε(x, nε, cε)| ≤ S1 := S0(‖c0‖L∞(Ω)) for all x ∈ Ω and t ≥ 0. (2.13)
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Proof. The identity (2.9) immediately results upon integration in the first equation in (2.8). We
next fix p ∈ [1,∞) and then obtain from the second equation in (2.8) that

1

p

∫

Ω
cpε + (p− 1)

∫ t

0

∫

Ω
cp−2
ε |∇cε|2 +

∫ t

0

∫

Ω
nεc

p−1
ε f(cε) =

1

p

∫

Ω
c
p
0 for all t > 0, (2.14)

which for any such p establishes downward monotonicity of ‖cε(·, t)‖Lp(Ω). The proof of (2.10) thus
becomes complete on taking p→ ∞, and thereupon (2.13) is an immediate consequence of this, (2.7)
and (1.9). Finally, the specific choices p = 2 and p = 1 in (2.14) yield the inequalities (2.11) and
(2.12), respectively. �

3 Further ε-independent estimates. Construction of a limit (n, c, u)

3.1 Estimates for nε

Let us first establish an estimate on the spatial gradient of ln(nε + 1) which will be fundamental for
our existence theory. Its derivation is almost identical to that of the corresponding statement in the
fluid-free case, as addressed in [42, Lemma 4.1], and therefore we may confine ourselves to sketching
a proof here only.

Lemma 3.1. Writing C := 2
∫

Ω n0 +
S2
1
2 ·

∫

Ω c
2
0 with S1 taken from (2.13), we have

∫ ∞

0

∫

Ω

|∇nε|2
(nε + 1)2

≤ C for all ε ∈ (0, 1). (3.1)

Proof. We test the first equation in (2.8) against 1
nε+1 . Since∇·uε ≡ 0 entails that

∫

Ω uε ·
∇nε

nε+1 = 0,
on applying Young’s inequality and (2.13) we thereby obtain that

d

dt

∫

Ω
ln(nε + 1) =

∫

Ω

|∇nε|2
(nε + 1)2

−
∫

Ω

nε

(nε + 1)2
∇nε ·

(

Sε(x, nε, cε) · ∇cε
)

≥ 1

2

∫

Ω

|∇nε|2
(nε + 1)2

− S2
1

2

∫

Ω
|∇cε|2 for all t > 0.

Integrating with respect to time and using that

∫

Ω
ln
(

nε(x, t) + 1
)

dx−
∫

Ω
ln
(

n0(x) + 1
)

dx ≤
∫

Ω
nε(x, t)dx =

∫

Ω
n0 for all t > 0

due to (2.9) and the validity of 0 ≤ ln(ξ + 1) ≤ ξ for all ξ ≥ 0, recalling that
∫∞
0

∫

Ω |∇cε|2 ≤ 1
2

∫

Ω c
2
0

by (2.11), we readily end up with (3.1). �

3.2 Estimates for uε

We next plan to derive appropriate estimates for uε. To prepare our arguments in this direction, let us
recall some well-known facts from the context of the Stokes operator when considered in the subspaces
L
p
σ(Ω) = {ϕ ∈ Lp(Ω) | ∇ ·ϕ = 0} of all solenoidal vector fields in Lp(Ω) for arbitrary p ∈ (1,∞) ([13],
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[12], [27]). Indeed, for any such p the Helmholtz projection acts as a bounded linear operator Pp
from Lp(Ω) onto Lpσ(Ω), and the corresponding realization Ap := −Pp∆ of the Stokes operator with

domain D(Ap) = W 2,p(Ω) ∩ W
1,p
0 (Ω) ∩ L

p
σ(Ω) is sectorial in L

p
σ(Ω). In particular, for any β ∈ R

this operator possesses closed fractional powers Aβp with dense domains D(Aβp ), and Ap generates an

analytic semigroup (e−tAp)t≥0 in Lpσ(Ω). Since Pp and Aβp as well as e−tAp are actually independent
of p ∈ (1,∞) whenever applied to smooth functions, we may and will omit an explicit inclusion of the
index p whenever there is no danger of confusion.

The inequality in the following auxiliary lemma may be interpreted as an estimate which, loosely
speaking, indicates that up to projection to divergence-free vector fields, functions from L1(Ω) can
be viewed as elements of D(A−α

p ) for p > 1 and suitably large α > 0. A similar statement in the
three-dimensional context can be found in [43, Lemma 3.3].

Lemma 3.2. Let p > 1 and α > p−1
p
. Then there exists C > 0 such that

‖A−αPϕ‖Lp(Ω) ≤ C‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω). (3.2)

Proof. Let χ ∈ C∞
0 (Ω). Then since A−αPϕ ∈ L

p
σ(Ω) and A−α is symmetric, we have

∫

Ω
A−αPϕ · χ =

∫

Ω
A−αPϕ · Pχ =

∫

Ω
Pϕ ·A−αPχ =

∫

Ω
ϕ ·A−αPχ.

Since writing p′ := p
p−1 we know that 2α− 2

p′
is positive by assumption on α, we have D(Aαp′) →֒ L∞(Ω)

([12], [14]), and hence
∣

∣

∣

∣

∫

Ω
A−αPϕ · χ

∣

∣

∣

∣

≤ ‖ϕ‖L1(Ω)‖A−αPχ‖L∞(Ω)

≤ C1‖ϕ‖L1(Ω)‖Pχ‖Lp′ (Ω)

≤ C2‖ϕ‖L1(Ω)‖χ‖Lp′ (Ω) for all χ ∈ C∞
0 (Ω)

with some C1 > 0 and C2 > 0, because P is continuous in Lp
′

(Ω). By a standard duality and
completion argument, this implies (3.2). �

Based on the latter and the projected version uεt +Auε = P[nε∇φ] of the Stokes system in (2.8), we
can establish some consequences of the mass conservation property (2.9) on the regularity of uε.

Lemma 3.3. i) Given p ∈ (1,∞), one can find C(p) > 0 such that whenever ε ∈ (0, 1),

‖uε(·, t)‖Lp(Ω) ≤ C(p) for all t > 0. (3.3)

ii) Let p ∈ (1, 2). Then for all δ > 0 there exists C(p, δ) > 0 such that for each ε ∈ (0, 1) we have

‖uε(·, t)‖W 1,p(Ω) ≤ C(p, δ) ·
(

1 + t−
1
2
−δ

)

for all t > 0. (3.4)

Proof. We only detail the derivation of (3.4), because (3.3) can thereafter easily be proved by
obvious modifications of the reasoning which thereby actually even becomes slightly simpler.
In order to estimate uε on the basis of its variation-of-constants representation,

uε(·, t) = e−tAu0 +

∫ t

0
e−(t−s)AP[nε(·, s)∇φ]ds, t ≥ 0, (3.5)

10



let us first fix some α > 0 such that
p− 1

p
< α <

1

2
, (3.6)

which is possible since p < 2, and then choose η ∈ (0, δ] small fulfilling

1

2
+ η + α < 1. (3.7)

Since this ensures that D(A
1
2
+η

p ) →֒W 1,p(Ω) ([12], [14]), we can find C1 > 0 such that

‖ϕ‖W 1,p(Ω) ≤ C1‖A
1
2
+ηϕ‖Lp(Ω) for all ϕ ∈ D(Ap), (3.8)

and recalling Lemma 3.2 we can fix C2 > 0 satisfying

‖A−αPϕ‖Lp(Ω) ≤ C2‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω), (3.9)

because α > p−1
p
. Moreover, known smoothing and decay properties of that Stokes semigroup ([14])

assert the existence of λ > 0 such that for all β ≥ 0 one can find C3(β) > 0 fulfilling

‖Aβe−tAϕ‖Lp(Ω) ≤ C3(β)t
−βe−λt‖ϕ‖Lp(Ω) for all ϕ ∈ Lpσ(Ω). (3.10)

Therefore,

‖e−tAu0‖W 1,p(Ω) ≤ C1 · C3

(1

2
+ η

)

· t− 1
2
−η e−λt‖u0‖Lp(Ω)

≤ C4t
− 1

2
−δ for all t > 0 (3.11)

with some C4 > 0, because η ≤ δ and u0 ∈ L
p
σ(Ω) as a consequence of (1.10). Furthermore, (3.8),

(3.10) and (3.9) yield

∥

∥

∥

∥

∫ t

0
e−(t−s)AP[nε(·, s)∇φ]ds

∥

∥

∥

∥

W 1,p(Ω)

=

∥

∥

∥

∥

∫ t

0
Aαe−(t−s)AA−αP[nε(·, s)∇φ]ds

∥

∥

∥

∥

W 1,p(Ω)

≤ C1

∥

∥

∥

∥

∫ t

0
A

1
2
+η+αe−(t−s)AA−αP[nε(·, s)∇φ]ds

∥

∥

∥

∥

Lp(Ω)

≤ C1C3

(1

2
+ η + α

)

·
∫ t

0
(t− s)−

1
2
−η−α e−λ(t−s)‖A−αP[nε(·, s)∇φ]‖Lp(Ω)ds

≤ C1C2C3

(1

2
− η + α

)

·
∫ t

0
(t− s)−

1
2
−η−α e−λ(t−s)‖nε(·, s)∇φ‖L1(Ω)ds

≤ C1C2C3

(1

2
− η + α

)

· ‖n0‖L1(Ω) · ‖∇φ‖L∞(Ω) ·
∫ ∞

0
σ−

1
2
−η−α e−λσdσ for all t > 0.

Combining this with (3.11) and (3.5) proves (3.4). �
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3.3 Estimates of time derivatives. Construction of limit functions

In our limit procedure below it will be important to achieve certain pointwise convergence properties
at least for the first two solution components. We therefor derive bounds for the respective time
derivatives in L1

loc([0,∞);H⋆) with some Hilbert space H, thus preparing a standard argument based
on a corresponding version of the Aubin-Lions lemma ([30, Theorem 2.3]).

Lemma 3.4. For all T > 0 there exists C(T ) > 0 such that for all ε ∈ (0, 1) we have

∫ T

0
‖∂t ln(nε(·, t) + 1)‖

(W 2,2
0 (Ω))⋆

dt ≤ C(T ) (3.12)

and
∫ T

0
‖cεt(·, t)‖(W 2,2

0 (Ω))⋆
dt ≤ C(T ). (3.13)

Proof. In order to establish (3.12), we fix t > 0 and multiply the first equation in (2.8) by ψ(x)
nε(x,t)+1

for ψ ∈ C∞
0 (Ω). On integrating by parts this yields
∫

Ω
∂t ln(nε(x, t) + 1) · ψ(x)dx = −

∫

Ω

1

nε + 1
∇nε · ∇ψ +

∫

Ω

1

(nε + 1)2
|∇nε|2ψ

+

∫

Ω

nε

nε + 1

(

Sε(x, nε, cε) · ∇cε
)

· ∇ψ

−
∫

Ω

nε

(nε + 1)2
∇nε ·

(

Sε(x, nε, cε) · ∇cε
)

ψ

−
∫

Ω
uε ·

∇nε
nε + 1

ψ.

Here making repeated use of the Cauchy-Schwarz inequality and (2.13), we can estimate each of the
integrals on the right in a straightforward manner so as to end up with

∣

∣

∣

∣

∫

Ω
∂t ln(nε(x, t) + 1) · ψ(x)dx

∣

∣

∣

∣

≤
{

(
∫

Ω

|∇nε|2
(nε + 1)2

)
1
2

+

∫

Ω

|∇nε|2
(uε + 1)2

+ S1 ·
(
∫

Ω
|∇cε|2

)
1
2

+S1 ·
(
∫

Ω

|∇nε|2
(nε + 1)2

)
1
2

·
(
∫

Ω
|∇cε|2

)
1
2

+

(
∫

Ω
|uε|2

)
1
2

·
(
∫

Ω

|∇nε|2
(nε + 1)2

)
1
2

}

×

×
(

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω)

)

for all ψ ∈ C∞
0 (Ω).

Since in the present two-dimensional context we have W 2,2
0 (Ω) →֒ L∞(Ω), after some applications of

Young’s inequality and taking the supremum over all ψ ∈ C∞
0 (Ω) with ‖ψ‖W 2,2(Ω) ≤ 1 this shows that

with some C1 > 0 we have

∥

∥

∥
∂t ln(nε(·, t) + 1)

∥

∥

∥

(W 2,2
0 (Ω))⋆

≤ C1 ·
{

1 +

∫

Ω

|∇nε|2
(nε + 1)2

+

∫

Ω
|∇cε|2 +

∫

Ω
|uε|2

}

for all t > 0.
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On integration in time, in view of the estimates provided by Lemma 3.1, Lemma 2.3 and Lemma 3.3
this readily implies (3.12).

Next, (3.13) can be derived quite similarly: For ψ ∈ C∞
0 (Ω) and t ∈ (0, T ), the second equation in

(2.8) along with Lemma 2.3 and (1.6) yields
∣

∣

∣

∣

∫

Ω
cεt(x, t)ψ(x)dx

∣

∣

∣

∣

=

∣

∣

∣

∣

−
∫

Ω
∇cε · ∇ψ −

∫

Ω
nεf(cε)ψ −

∫

Ω
(uε · ∇cε)ψ

∣

∣

∣

∣

≤
{

(
∫

Ω
|∇cε|2

)
1
2

+ C2 +

(
∫

Ω
|uε|2

)
1
2

·
(
∫

Ω
|∇cε|2

)
1
2

}

×

×
(

‖∇ψ‖L2(Ω) + ‖ψ‖L∞(Ω)

)

with C2 := ‖n0‖L1(Ω) · ‖f‖L∞((0,‖c0‖L∞(Ω))). Again since W 2,2
0 (Ω) →֒ L∞(Ω), using Young’s inequality

we thus find C3 > 0 such that

∫ T

0
‖cεt(·, t)‖(W 2,2

0 (Ω))⋆
dt ≤ C3

∫ T

0

{

1 +

∫

Ω
|∇cε|2 +

∫

Ω
|uε|2

}

dt,

which together with Lemma 2.3 and Lemma 3.3 implies (3.13). �

Collecting compactness properties of (nε, cε, uε) implied by the estimates gathered so far, we are
now ready to construct a limit object (n, c, u) through a limit process along an appropriate sequence
(εj)j∈N ⊂ (0, 1), and to show that the second equation in (1.1) is satisfied in the spirit of Definition
2.1. However, the respective convergence properties of nε and ∇cε asserted in (3.14) seem yet too
weak to allow for a verification of the corresponding weak relations in Definition 2.1 concerning n and
u; in particular, (3.14) is apparently even insufficient to warrant conservation of mass for the limit
(n, c, u), as required in (2.3).

Lemma 3.5. There exists (εj)j∈N ⊂ (0, 1) such that εj ց 0 as j → ∞ and


















































nε → n a.e. in Ω× (0,∞),

ln(nε + 1)⇀ ln(n+ 1) in L2
loc([0,∞);W 1,2(Ω)),

cε → c in L2
loc(Ω̄× [0,∞)) and a.e. in Ω× (0,∞),

cε(·, t) → c(·, t) in L2(Ω) for a.e. t > 0,

cε ⇀ c in L2
loc([0,∞);W 1,2(Ω)) and

uε ⇀ u in L2
loc(Ω̄× [0,∞))

and in Lploc([0,∞);W 1,p
0 (Ω)) for all p ∈ (1, 2)

(3.14)

as ε = εj ց 0 with some limit functions n, c and u defined on Ω × (0,∞) and satisfying n ≥ 0 and
c ≥ 0 as well as ∇ · u = 0 a.e. in Ω× (0,∞).
Moreover, these limit functions satisfy the identity (2.5) in Definition 2.1 for all test functions from
the class indicated there.

Proof. According to Lemma 3.1, Lemma 3.4 and the Aubin-Lions lemma ([30]), the family
(ln(nε + 1))ε∈(0,1) is relatively compact in L2

loc([0,∞);W 1,2(Ω)) with respect to weak convergence,
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and relatively compact in L2
loc(Ω̄ × [0,∞)) with respect to the strong topology therein. Likewise,

Lemma 2.3 combined with Lemma 3.4 warrants relative compactness of (cε)ε∈(0,1) with respect to the
weak topology in L2

loc([0,∞);W 1,2(Ω)), and with respect to the strong topology in L2
loc(Ω̄ × [0,∞)).

Finally, in light of Lemma 3.3 and Lemma 3.4 we know that (uε)ε∈(0,1) is bounded, and hence relatively

compact with respect to weak convergence, in L2
loc(Ω̄ × [0,∞)) and also in Lploc([0,∞);W 1,p

0 (Ω)) for

each p ∈ (1, 2), because given any such p, on choosing δ > 0 small enough such that δ < 2−p
2p , we can

achieve that the expression on the right of (3.4) belongs to Lploc([0,∞)).
By means of standard extraction procedures, these compactness properties allow for choosing a se-
quence (εj)j∈N such that (3.14) holds for some limit triple (n, c, u), where clearly n and c inherit
nonnegativity from nε and cε, and where ∇ · u = 0 a.e. in Ω× (0,∞) due to the fact that ∇ · uε ≡ 0.
Based on (3.14), the verification of the integral identity in (2.5) is now straightforward, so that we
may omit giving details here. �

4 Strong precompactness of (nεj)j∈N in L1 and of (∇cεj)j∈N in L2

4.1 Strong convergence of (nεj)j∈N

In order to prepare Lemma 4.2 on strong L1 convergence of the sequence (nεj )j∈N, we draw the
following consequence of the spatio-temporal L2 estimate on the gradient of ln(nε + 1) gained in
Lemma 3.1. Being based on the Moser-Trudinger inequality, our argument essentially relies on the
fact that the considered space dimension is two.

Lemma 4.1. Let p > 0. Then there exists C = C(p) > 0 such that for all ε ∈ (0, 1) we have

∫ T

0
ln

{

1

|Ω|

∫

Ω

(

nε(x, s) + 1
)p

dx

}

ds ≤ C · (T + 1) for all T > 0. (4.1)

Proof. According to the Moser-Trudinger inequality ([6]), we can find C1 > 0 and C2 > 0 such
that

∫

Ω
e|ϕ(x)|dx ≤ C1e

C2‖ϕ‖2
W1,2(Ω) for all ϕ ∈W 1,2(Ω), (4.2)

and since Ω is bounded, the Poincaré inequality yields C3 > 0 fulfilling

‖ϕ‖2W 1,2(Ω) ≤ C3 ·
{
∫

Ω
|∇ϕ|2 +

(

∫

Ω
|ϕ|

)2
}

for all ϕ ∈W 1,2(Ω). (4.3)

Therefore, given any ε ∈ (0, 1) and t > 0 we can estimate

∫

Ω

(

nε(·, t) + 1
)p

dx =

∫

Ω
e|p ln(nε(x,t)+1)|dx

≤ C1 exp

{

p2C2‖ ln(nε(·, t) + 1)‖2W 1,2(Ω)

}

≤ C1 exp

{

p2C2C3

{
∫

Ω

|∇nε(x, t)|2
(nε(x, t) + 1)2

dx+
(

∫

Ω
ln(nε(x, t) + 1)dx

)2
}

}

, (4.4)
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where from (2.9) we know that with m :=
∫

Ω n0 we have

∫

Ω
ln(nε(x, t) + 1)dx ≤

∫

Ω
(nε(x, t) + 1)dx = m+ |Ω|,

because ln(ξ + 1) ≤ ξ for all ξ ≥ 0. Hence, (4.4) implies that

∫ T

0
ln

{

1

|Ω|

∫

Ω

(

nε(x, s) + 1
)p

dx

}

ds ≤
(

ln
C1

|Ω|
)

· T + p2C2C3

∫ T

0

∫

Ω

|∇nε(x, t)|2
(nε(x, s) + 1)2

dxds

+p2C2C3 · (m+ |Ω|)2 · T for all T > 0,

which upon invoking Lemma 3.1 entails (4.1). �

Now by means of the Vitali convergence theorem, the pointwise convergence property of (nεj )j∈N in
(3.14) can be combined with Lemma 4.1 so as to yield the desired statement on strong convergence.

Lemma 4.2. Let (εj)j∈N ⊂ (0, 1) be as provided by Lemma 3.5. Then

nε → n in L1
loc(Ω̄× [0,∞)) as ε = εj ց 0. (4.5)

Proof. Since we already know from Lemma 3.5 that nε → n a.e. in Ω × (0,∞) as ε = εj ց 0, in
view of the Vitali convergence theorem it is sufficient to show that for all T > 0, given any η > 0 we
can find δ = δ(η, T ) > 0 with the property that for measurable E ⊂ Ω× (0, T ) we can conclude that

whenever |E| < δ, we have

∫ ∫

E

nε < η. (4.6)

To verify this, we let T > 0 and η > 0 be given and then obtain from Lemma 4.1 that there exists
C1 = C1(T ) > 0 fulfilling

∫ T

0
ln

{

1

|Ω|

∫

Ω

(

nε(x, s) + 1
)3
dx

}

ds ≤ C1, (4.7)

for all ε ∈ (0, 1), whence it is possible to fix N = N(T, η) > 1 large enough such that with m :=
∫

Ω n0
we have

C1

ln N
|Ω|

·m <
η

2
. (4.8)

For each ε ∈ (0, 1), we thereupon decompose (0, T ) by introducing

SN,ε :=
{

t ∈ (0, T )
∣

∣

∣

∫

Ω
n2ε(x, t)dx ≤ N

}

and

RN,ε :=
{

t ∈ (0, T )
∣

∣

∣

∫

Ω
n2ε(x, t)dx > N

}

.
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Then indeed (0, T ) = SN,ε ∪RN,ε, and Lemma 4.1 allows us to estimate the size of RN,ε: Namely, by
(4.7) we have

C1 ≥
∫

RN,ε

ln

{

1

|Ω|

∫

Ω

(

nε(x, t) + 1
)3
dx

}

dt

≥
∫

RN,ε

ln

{

1

|Ω|

∫

Ω
n2ε(x, t)dx

}

dt

≥ |RN,ε| · ln
N

|Ω|

and hence

|RN,ε| ·m ≤ C1

ln N
|Ω|

·m <
η

2
for all ε ∈ (0, 1) (4.9)

by (4.8). We now choose µ = µ(T, η) > 0 small enough satisfying

√
NµT <

η

4
, (4.10)

and finally fix δ = δ(T, η) > 0 suitably small such that

√
N

4µ
· δ < η

4
, (4.11)

and to see that then the implication in (4.6) is valid, we suppose that E ⊂ Ω × (0, T ) is measurable
with |E| < δ, and let E(t) := {x ∈ Ω | (x, t) ∈ E} for t ∈ (0, T ). Then E(t) is measurable for
a.e. t ∈ (0, T ), and for all ε ∈ (0, 1) we have

∫ ∫

E

nε =

∫ T

0

∫

E(t)
nε(x, t)dxdt

=

∫

SN,ε

∫

E(t)
nε(x, t)dxdt+

∫

RN,ε

∫

E(t)
nε(x, t)dxdt

=: I1(ε) + I2(ε). (4.12)

Here, (4.9) along with (2.9) asserts that

|I2(ε)| ≤
∫

RN,ε

∫

Ω
nε(x, t)dxdt =

∫

RN,ε

mdt = |RN,ε| ·m <
η

2
for all ε ∈ (0, 1). (4.13)

In estimating I1(ε), we first use the Cauchy-Schwarz inequality, the definition of SN,ε and Young’s
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inequality to obtain

|I1(ε)| ≤
∫

SN,ε

(

∫

E(t)
n2ε(x, t)dx

)
1
2 · |E(t)| 12dt

≤
√
N

∫

RN,ε

|E(t)| 12dt

≤
√
N

∫

SN,ε

(

µ+
1

4µ
|E(t)|

)

dt

=
√
Nµ|SN,ε|+

√
N

4µ

∫

SN,ε

|E(t)|dt for all ε ∈ (0, 1).

Since |SN,ε| ≤ T and
∫

SN,ε
|E(t)|dt = |E| < δ, we may thus apply (4.10) and (4.11) to infer that

|I1(ε)| ≤
√
NµT +

√
N

4µ
· δ < η

4
+
η

4
=
η

2
for all ε ∈ (0, 1).

Combined with (4.13) and (4.12), this shows (4.6). �

4.2 Strong convergence of (∇cεj)j∈N

In order to pass to the limit in the cross-diffusive term in the first equation of (2.8), in view of Lemma
3.5 it will be convenient to know that the family (∇cε)ε∈(0,1), by Lemma 2.3 known to be bounded
and hence relatively compact in L2

loc(Ω̄× [0,∞)) with respect to weak convergence, is actually strongly
precompact in this space. That this indeed is true can be verified by an argument identical to that
presented in [42, Section 8] for the fluid-free case u ≡ 0. We therefore may confine ourselves to sketching
the main ideas here only, the first of which is contained in the following lemma that generalizes Lemma
8.1 in [42] to the present framework.

Lemma 4.3. There exists a null set N ⊂ (0,∞) such that for n, c and u as given by Lemma 3.5 we
have the inequality

1

2

∫

Ω
c2(·, T )− 1

2

∫

Ω
c20 +

∫ T

0

∫

Ω
|∇c|2 ≥ −

∫ T

0

∫

Ω
ncf(c) for all T ∈ (0,∞) \N. (4.14)

Proof. We define N := (0,∞) \L, where L denotes the set of all Lebesgue points of (0,∞) ∋ t 7→
∫

Ω c
2(x, t)dx, t > 0. Then given T > 0, δ ∈ (0, 1), h ∈ (0, 1) and k ∈ N, we let

ϕ(x, t) := ζδ(t) · (Ahc̃k)(x, t), (x, t) ∈ Ω× (0,∞),

where ζδ denotes the continuous piecewise linear function on [0,∞) satisfying ζ ≡ 1 on [0, T ] and
ζ ≡ 0 on [T + δ,∞), where

c̃k(x, t) :=

{

c(x, t), (x, t) ∈ Ω× (0,∞),

c0k(x), (x, t) ∈ Ω× (−1, 0],
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for k ∈ N, with (c0k)k∈N ⊂ C1(Ω̄) satisfying c0k → c0 in L2(Ω), and where

(Ahc̃k)(x, t) :=
1

h

∫ t

t−h
c̃k(x, s)ds, (x, t) ∈ Ω× (0,∞).

Then since Lemma 3.5 along with Lemma 2.3 ensures that c ∈ L∞(Ω× (0,∞))∩L2((0,∞);W 1,2(Ω)),
it follows that ϕ has the regularity properties required for (2.5) in Definition 2.1. In view of the
solution property of (n, c, u) with regard to the second equation in (1.1), as asserted by Lemma 3.5,
we may thus evaluate (2.5) for this particular choice of ϕ. In one of the resulting integrals containing
ϕt, we use Young’s inequality to estimate

1

h

∫ ∞

0

∫

Ω
ζδ(t)c̃k(v, t)c̃k(x, t− h)dxdt ≤ 1

2h

∫ ∞

0

∫

Ω
ζδ(t)c̃

2
k(x, t)dxdt

+
1

2h

∫ ∞

0

∫

Ω
ζδ(t)c̃

2
k(x, t− h)dxdt,

and thereupon consecutively take h ց 0, then k → ∞ and finally δ ց 0. Using known properties
of the averaging operators Ah with respect to the convergence process h ց 0, (2.5) thereby implies
(4.14); for more details, we may refer to [42, Lemma 8.1]. �

The strong compactness feature in question thereby becomes a consequence of the strong convergence
property of (nεj )j∈N asserted by Lemma 4.2.

Lemma 4.4. With c and (εj)j∈N as given by Lemma 3.5, we have

∇cε → ∇c in L2(Ω× (0, T )) as ε = εj ց 0. (4.15)

Proof. We take N ⊂ (0,∞) from Lemma 4.3 and apply Lemma 3.5 to find that there exists a
null set Ñ ⊂ (0,∞) such that Ñ ⊃ N and

∫

Ω c
2
ε(·, t) →

∫

Ω c
2(·, T ) for all T ∈ (0,∞) \ Ñ . Fixing

any such T , we note that as ε = εj ց 0, we have nε → n in L1(Ω × (0, T )) by Lemma 4.2, and

that clearly cεf(cε)
⋆
⇀ cf(c) in L∞(Ω × (0, T )) due to (2.10) and Lemma 3.5. Since consequently

∫ T

0

∫

Ω nεcεf(cε) →
∫ T

0

∫

Ω ncf(c) as ε = εj ց 0, using Lemma 4.3 and testing the second equation in
(2.8) by cε we obtain that

∫ T

0

∫

Ω
|∇c|2 ≥ lim

ε=εjց0

{

− 1

2

∫

Ω
c2ε(·, T ) +

1

2

∫

Ω
c20 −

∫ T

0

∫

Ω
nεcεf(cε)

}

= lim
ε=εjց0

∫ T

0

∫

Ω
|∇cε|2.

Since on the other hand
∫ T

0

∫

Ω |∇c|2 ≤ lim infε=εjց0

∫ T

0

∫

Ω |∇cε|2 by Lemma 3.5 and lower semiconti-
nuity of the norm in L2(Ω× (0, T )), this implies (4.15) and thereby completes the proof. �

5 Solution properties of (n, c, u). Proof of Theorem 1.1

With the above preparations at hand, we are now in the position to verify (2.3), (2.4) and (2.6), and
thereby to complete the proof of the fact that (n, c, u) is a global mass-preserving generalized solution
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in the sense of Definition 2.1.

Proof of Theorem 1.1. The regularity properties in (2.1) and (2.2) are immediate consequences
of Lemma 3.5. Moreover, using that

nε → n in L1
loc(Ω̄× [0,∞)) as ε = εj ց 0 (5.1)

and that
uε ⇀ u in L1

loc([0,∞);W 1,1
0 (Ω)) as ε = εj ց 0 (5.2)

by Lemma 4.2 and Lemma 3.5, respectively, we immediately obtain from (2.9) and the fact that
∇ · uε ≡ 0 that (2.3) holds, and that ∇ · u = 0 a.e. in Ω× (0,∞).
Since the validity of (2.5) has been asserted by Lemma 3.5 already, we are left with the verification
of (2.4) and (2.6), where we note that the latter directly results on taking ε = εj ց 0 in the third
equation in (2.8) and again making use of (5.1) and (5.2).
To derive the inequality in (2.4) for all nonnegative ϕ ∈ C∞

0 (Ω̄× [0,∞)) with ∂ϕ
∂ν

= 0 on ∂Ω× (0,∞),
given any such ϕ we multiply the first equation in (2.8) by ϕ

nε+1 to obtain on integrating by parts that

∫ ∞

0

∫

Ω
|∇ ln(nε + 1)|2ϕ = −

∫ ∞

0

∫

Ω
ln(nε + 1)ϕt −

∫

Ω
ln(n0 + 1)ϕ(·, 0)−

∫ ∞

0

∫

Ω
ln(nε + 1)∆ϕ

+

∫ ∞

0

∫

Ω

nε

nε + 1
∇ ln(nε + 1) ·

(

S(x, nε, cε) · ∇cε
)

ϕ

−
∫ ∞

0

∫

Ω

nε

nε + 1

(

S(x, nε, cε) · ∇cε
)

· ∇ϕ

−
∫ ∞

0

∫

Ω
ln(nε + 1)(uε · ∇ϕ) (5.3)

for each ε ∈ (0, 1). Here we note that (5.1) combined with the Lipschitz continuity of [0,∞) ∋ ξ 7→
ln2(ξ + 1) entails that

∫ T

0

∫

Ω ln2(nε + 1) →
∫ T

0

∫

Ω ln2(n+ 1), and that according to Lemma 3.5 hence

ln(nε + 1) → ln(n+ 1) in L2
loc(Ω̄× [0,∞))

as ε = εj ց 0. Since the pointwise convergence properties in (3.14) combined with the strong
convergence in Lemma 4.4 and (1.9) ensure that

nε

nε + 1

(

S(·, nε, cε) · ∇cε
)

→ n

n+ 1

(

S(·, n, c) · ∇c
)

in L2
loc(Ω̄× [0,∞))

(cf. [42, Lemma 10.4]), and since Lemma 3.5 moreover warrants that ∇(nε + 1) ⇀ ∇(n + 1) in
L2
loc(Ω̄× [0,∞)) and that uε ⇀ u in L2

loc(Ω̄× [0,∞)) as ε = εj ց 0, it follows that each of the integrals
on the right of (5.3) has the respective limit with (nε, cε, uε) replaced by (n, c, u) as ε = εj ց 0.
Since

∫∞
0

∫

Ω |∇ ln(n+1)|2 ≤ lim infε=εjց0

∫∞
0

∫

Ω |∇ ln(nε+1)|2 by nonnegativity of ϕ and a standard
argument involving lower semicontinuity of norms with respect to weak convergence in Hilbert spaces,
this establishes (2.4) and thereby completes the proof. �
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