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Abstract

We consider the spatially two-dimensional version of the model





nt + u · ∇n = ∆n−∇ ·
(
nS(x, n, c) · ∇c

)
, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nf(c), x ∈ Ω, t > 0,

ut = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

(⋆)

for nutrient taxis processes, possibly interacting with liquid environments. Here the particular
focus is on the situation when the chemotactic sensitivity S is not a scalar function but rather
attains general values in R

2×2, thus accounting for rotational flux components in accordance with
experimental findings and recent modeling approaches.

Reflecting significant new challenges which mainly stem from an apparent loss of energy-like struc-
tures, especially for initial data with large size the knowledge on (⋆) so far seems essentially re-
stricted to results on global existence of certain generalized solutions with possibly quite poor
boundedness and regularity properties; widely unaddressed seem aspects related to possible effects
of such non-diagnonal taxis mechanisms on the qualitative solution behavior, especially with regard
to the fundamental question whether spatial structures may thereby be supported.

The present work answers the latter in the negative in the following sense: Under the assumptions
that the initial data (n0, c0, u0) and the parameter functions S, f and φ are sufficiently smooth,
and that S is bounded and f is positive on (0,∞) with f(0) = 0, it is shown that any nontrivial of
these solutions eventually becomes smooth and satisfies

n(·, t) → −
∫

Ω

n0, c(·, t) → 0 and u(·, t) → 0 as t → ∞,

uniformly with respect to x ∈ Ω. By not requiring any smallness condition on the initial data, the
latter seems new even in the corresponding fluid-free version obtained on letting u ≡ 0 in (⋆).
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1 Introduction

Understanding causal nexus leading to the emergence of structures in living systems has provided en-
during motivation for theoretical biologists and applied mathematicians for decades ([33]). Identifying
the respectively responsible mechanisms seems particularly challenging in situations when the consid-
ered system consists of exceptionally primitive individuals. In experimental contexts, a paradigmatic
role in this regard is played by the bacterial species Bacillus subtilis, about which it is known that cells
are well able to actively move toward a present nutrient which they consume upon contact, but that
beyond this their movement occurs essentially at random. Nevertheless, populations of this species
have been observed to form quite complex spatial patterns either on thin agar plates in absence of
further components ([32], [11]), or also when suspended to sessile drops of water ([6], [40]). Phenomena
of structure generation in connection with such nutrient taxis mechanisms have also been found in
various other primitive bacterial species, including Proteus mirabilis and Bacillus cereus ([11], [19]).

In their apparently simplest form, macroscopic models for such processes concentrate on describing
the cell population density n = n(x, t) and the nutrient concentration c = c(x, t), e.g. by means of
chemotaxis systems of the form {

nt = ∆n−∇ · (n∇c),

ct = ∆c− nc,
(1.1)

thus consituting a derivate of the classical Keller-Segel system, differing from (1.1) in its second
equation ct = ∆c− c+n and thus accounting for signal production through cells, with its well-known
ability to enforce the emergence of structures even in the extreme sense of finite-time singularity
formation ([15], [16], [48]). In comparison to the latter, however, (1.1) has been found to exhibit
a substantially stronger tendency toward supporting spatial homogeneity: Namely, when considered
along with no-flux boundary conditions in smoothly bounded planar domains, then for any reasonably
regular nontrivial initial data (1.1) possesses a bounded global classical solution which asymptotically
becomes spatially constant in the sense that

n(·, t) → n∞ and c(·, t) → 0 in L∞(Ω) as t → ∞ (1.2)

with n∞ ≡ −
∫
Ω n0 ([37]). For the three-dimensional analogue, it is known that after all certain global

weak solutions exist, and that these at least after some initial waiting time become smooth and clas-
sical and satisfy (1.2) ([37]).

Similar trends toward homogeneity have been found to dominate the qualitative behavior also in sev-
eral generalizations of (1.1), even in some cases in which an additional buoyancy-induced coupling
to the surrounding fluid, described through its velocity field u = u(x, t) and the associated pressure
P = P (x, t), is accounted for. Indeed, numerical ([30]) and also recent analytical studies ([20], [21],
[22]) have revealed remarkable effects of fluid interaction on chemotaxis systems, inter alia concerning
prevention of blow-up and efficiency of mixing, at least in cases involving signal production. How-
ever, corresponding Neumann-Neumann-Dirichlet initial-boundary value problems in N -dimensional
domains for the general nutrient taxis(-fluid) system





nt + u · ∇n = ∆n−∇ ·
(
nS(c)∇c

)
+ g(n, c),

ct + u · ∇c = ∆c− nf(c),

ut + κ(u · ∇)u = ∆u+∇P + n∇φ, ∇ · u = 0,

(1.3)
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have been found to possess global solutions satisfying (1.2) with some constant n∞ for various choices
of the nonnegative chemotactic sensitivity function S, under mild assumptions on the gravitational
potential φ, and in either of the cases κ = 0 and κ = 1 in which the fluid flow is governed by the Stokes
or the full Navier-Stokes system. When g ≡ 0, for instance, global classical solutions fulfilling (1.2)
with n∞ = −

∫
Ω n0 are known to exist when N = 2, even in the case κ = 1, under appropriate structural

assumptions on S, including the prototypical choice S(c) = c ([7], [47], [49], [57], [18]; cf. also [9]). For
the three-dimensional counterpart, global weak solutions have been constructed in [52], and in [53] it
has recently been shown that any such solution becomes eventually smooth and again satisfies (1.2)
with n∞ = −

∫
Ω n0.

Even the inclusion of logistic-type cell proliferation terms of the form g(n, c) = ρn − µn2 in the
latter three-dimensional chemotaxis-Navier-Stokes system does not substantially affect this property
of allowing for eventually smooth global weak solutions which stabilize in the flavor of (1.2) ([26], see
also [41]). Some additional results on further particular versions of (1.3), albeit yet far from creating a
complete picture, indicate that neither purely productive nutrient-supported cell kinetics, as modeled
in the simplest case by the source term g(n, c) = nc, nor singular behavior of S, such as present in
the classical logarithmic sensitivity given by S(c) = χ0

c
with some χ0 > 0, substantially reduce this

large-time prevalence of spatial flatness ([1]). For related results on global existence and asymptotic
homogenization in variants of (1.3), inter alia accounting for nonlinear cell diffusion mechanisms, the
reader may consult [4], [23], [3], [29], [5], [8], [58] and [38], for instance.

Chemotaxis(-fluid) systems with rotational fluxes. The above results may be viewed as
reflecting a certain dominance of the dissipative signal absorption mechanism in (1.3), together with
diffusion, over any destabilizing action of the cross-diffusion process described therein. Mathematically,
this becomes manifest in certain entropy-like structures which in an appropriate manner supplement
the basic decay properties

∫ ∞

0

∫

Ω
nf(c) ≤

∫

Ω
c0 and

∫ ∞

0

∫

Ω
|∇c|2 ≤ 1

2

∫

Ω
c20 (1.4)

formally associated with (1.3) (see also Lemma 2.1 below). When S ≡ 1, f(c) = c and g ≡ 0, for
instance, inequalities of the form

d

dt

{∫

Ω
n lnn+

1

2

∫

Ω

|∇c|2
c

+a

∫

Ω
|u|2

}
+

1

C
·
{∫

Ω

|∇n|2
n

+

∫

Ω

|∇c|4
c3

+

∫

Ω
|∇u|2

}
≤ C t > 0, (1.5)

have been found to hold with some a > 0 and C > 0, and to thereby provide additional regularity
information sufficient to turn (1.4) into (1.2) even in the full three-dimensional Navier-Stokes version
of (1.3) ([53], see also [49]).

Favorable complementary structures of this form are apparently lost when the chemotactic sensitiv-
ity S in (1.3) is no longer assumed to be a scalar function but rather allowed to be matrix-valued.
Indeed, more recent modeling approaches ([56], [55]) suggest to describe chemotactic bacterial mo-
tion near surfaces by means of certain tensor-valued sensitivities S = S(x, n, c) ∈ R

N×N which in
particular involve rotational flux components, in the most prototypical case near boundary points of
two-dimensional domains taking the form

S = a
( 1 0

0 1

)
+ b

( 0 −1
1 0

)
, a > 0, b ∈ R. (1.6)

3



By impeding the derivation of appropriate a priori estimates e.g. from inequalities of type (1.5), even at
the level of mere existence theory such generalizations bring about significant analytical challenges, and
accordingly very little is known beyond quite basic aspects, unless additional regularizing mechanisms
such as nonlinear diffusion enhancement or saturation of cross-diffusive fluxes at large cell densities
are introduced (see e.g. [2], [43], [42] and [51], but also [44] and [45] for some examples). Without
such changes in the system, only under appropriate smallness assumptions on the initial data global
smooth solutions have been found to exist both in the corresponding fluid-free variant of (1.3) when
N = 2, u ≡ 0, f(c) = c, g ≡ 0 and S is suitably smooth and bounded ([27]), as well as in the Stokes
counterpart for N ∈ {2, 3} with nontrivial u and κ = 0 ([3]). For initial data of arbitrary size, only
certain generalized solutions have been found to exist globally when either N ≥ 1 and u ≡ 0 ([50]), or
when N = 2 and the nontrivial fluid is governed by the Stokes equations ([54]).

Main results. The purpose of the present work consists in examining qualitative properties of the
latter solutions in spatially planar frameworks, with a particular focus on the question how far off-
diagonal flux components such as in (1.6) may affect the tendency toward asymptotic honogenization.
For this purpose, including both the corresponding fluid-free chemotaxis-only system addressed in [50]
as well as the associated chemotaxis-Stokes model studied in [54], we shall subsequently be concerned
with the initial-boundary value problem





nt + u · ∇n = ∆n−∇ ·
(
nS(x, n, c) · ∇c

)
, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nf(c), x ∈ Ω, t > 0,

ut = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

∇n · ν = n
(
S(x, n, c) · ∇c

)
· ν, ∇c · ν = 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω.

(1.7)

in a bounded convex domain Ω ⊂ R
2. Here in order to make the existence theory from [54] applicable

we will assume that
f ∈ C1([0,∞)) is nonnegative with f(0) = 0, (1.8)

that
φ ∈ W 2,∞(Ω), (1.9)

and that S = (Sij)i,j∈{1,2} satisfies

Sij ∈ C2(Ω̄× [0,∞)× [0,∞)) for i, j ∈ {1, 2} (1.10)

as well as

|S(x, n, c)| ≤ S0(c) for all (x, n, c) ∈ Ω̄× [0,∞)2 with some nondecreasing S0 : [0,∞) → R.

(1.11)
As for the initial data in (1.7), we shall suppose that





n0 ∈ Cι(Ω̄) for some ι > 0 with n0 ≥ 0 in Ω, that
c0 ∈ W 1,∞(Ω) satisfies c0 ≥ 0 in Ω, and that
u0 ∈ D(Aϑ) for some ϑ ∈ (12 , 1),

(1.12)
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where with P : L2(Ω;R2) → L2
σ(Ω) denoting the Helmholtz projection of L2(Ω;R2) onto its solenoidal

subspace L2
σ(Ω) := {ϕ ∈ L2(Ω;R2) | ∇ · ϕ = 0}, A represents the realization of the Stokes operator

−P∆ in L2
σ(Ω) with its natural domain given by D(A) := W 2,2(Ω;R2) ∩W

1,2
0 (Ω;R2) ∩ L2

σ(Ω) ([36]).

Indeed, in this setting me may recall the following result on global solvability from [54, Theorem
1.1], referring to a concept of solvability that will explicitly be recalled in Definition 6.1 below for
completeness.

Theorem A. Suppose that f , φ and S satisfy (1.8), (1.9), (1.10) and (1.11), and that n0, c0 and u0
comply with (1.12). Then there exists at least one triple of functions





n ∈ L∞([0,∞);L1(Ω)),

c ∈ L∞(Ω× (0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω)) and

u ∈ L2
loc(Ω̄× [0,∞);R2) ∩⋂

p∈[1,2) L
p
loc([0,∞);W 1,p

0 (Ω;R2)),

(1.13)

such that (n, c, u) is a global mass-preserving generalized solution of (1.7) in the sense of [54, Definition
2.1].

The information (1.13) on the regularity properties of the above solution is rather sparse, falling far
short of corresponding knowledge in typical cases of scalar-valued S ([37]). In particular, the inclusions
in (1.13) seem insufficient to warrant uniqueness of the obtained generalized solutions through any of
the approaches used in corresponding previous analysis of chemotaxis-fluid systems (see e.g. [23] or also
[47]). Yet more drastically, even finite-time blow-up e.g. of the first solution component n with respect
to the norm in L∞(Ω) is by no means ruled out through Theorem A; after all, (1.13) precludes any
collapse of n into an afterwards persisting Dirac-type measure, as known to occur in two-dimensional
parabolic-elliptic Keller-Segel systems ([31], [39]). It remains an interesting open issue to clarify how
far the occurrence of weaker types of blow-up phenomena may be enforced by non-scalar chemotactic
sensitivities.

Anyhow, the first of our main results states that each individual nontrivial solution from Theorem A
will become smooth eventually, provided that f satisfies an additional mild positivity assumption:

Theorem 1.1. Assume (1.8), (1.9), (1.10) and (1.11), and suppose that moreover

f > 0 on (0,∞). (1.14)

Then whenever n0, c0 and u0 are such that (1.12) holds and n0 6≡ 0, one can find T > 0 such that the
global generalized solution (n, c, u) constructed in Theorem A satisfies

(n, c, u) ∈ C2,1(Ω̄× [T,∞))× C2,1(Ω̄× [T,∞))× C2,1(Ω̄× [T,∞);R2), (1.15)

and such that there exists P ∈ C1,0(Ω̄× [T,∞)) with the property that (n, c, u, P ) is a classical solution
of the boundary value problem in (1.7) in Ω̄× [T,∞).

The second among our main results asserts that under the same hypotheses, each of the above solutions
stabilizes toward the unique spatially constant steady state at the respective mass level, similar to the
case of scalar S ([49]).
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Theorem 1.2. Let (1.8), (1.9), (1.10), (1.11) and (1.14) hold, and assume that (n0, c0, u0) satisfies
(1.12) with n0 6≡ 0. Then the solution (n, c, u) of (1.7) from Theorem A satisfies

n(·, t) → n0 in L∞(Ω) (1.16)

and
c(·, t) → 0 in L∞(Ω) (1.17)

as well as
u(·, t) → 0 in L∞(Ω) (1.18)

as t → ∞, where n0 := −
∫
Ω n0.

In conclusion, even matrix-valued bounded S will not enforce the large-time formation of structures in
the two-dimensional version (1.7) and thus, in particular, neither in its two-dimensional chemotaxis-
only counterpart; however, our results do not exclude the possibility of relevant nontrivial dynamical
effects on intermediate time scales such as, for instance, transient growth or oscillation phenomena as
detected for some particular chemotaxis systems without evident energy structure ([34], [25]).

Main ideas. The challenge of coping with poor regularity information. Due to the su-
perlinear structure of the nonlinearities in (1.7), the proofs of Theorem 1.1 and Theorem 1.2 will be
closely linked to each other. Especially in view of precedent derivations of similar results for simpler
problems, it may already be expected that a key role will be played by the decay property (1.17)
of c. Indeed, in cases exclusively involving diagonal fluxes such as in (1.3), this could be achieved
on the basis of some (temporally integral) regularity information on

√
n in W 1,2(Ω) and on ∇ 4

√
c in

W 1,4(Ω), as gained from the dissipation process expressed in inequalities of the form (1.5); inter alia by
essentially relying on the compact embedding of W 1,4(Ω) into L∞(Ω), through suitable interpolation
this can indeed be used to turn the basic decay information contained in (1.4) into the uniform decay
statement in (1.17) in such cases ([37], [49]).

In stark contrast to this apparently lacking any global property as convenient as (1.5), the present
situation will require to adequately make use of regularity information which, at a first stage, will be
substantially weaker in actually reducing to the poor features described in (1.4). After all, as already
observed in [54], this entails a further dissipative property which is formally expressed in the inequality

∫ ∞

0

∫

Ω

|∇n|2
(n+ 1)2

≤ 2

∫

Ω
n0 +

S2
1

2
·
∫

Ω
c20 (1.19)

(Lemma 2.2), and which will serve as a crucial fundament for our analysis. In the present two-
dimensional setting, namely, this can firstly be turned into a basic statement on decay of

∫
Ω |n(·, t)−

κ(t)| with some appropriate κ(t) > 0 (Lemma 3.1). Since, secondly, the Moser-Trudinger inequality
allows us to infer from (1.19) a certain integrability property of n involving arbitrary spatial Lp norms
(Lemma 2.3), together with (1.4) and suitable interpolation this can be seen to warrant smallness of
the functional y(t) :=

∫
Ω |∇c(·, t)|2 +

∫
Ω |n(·, t)− κ(t)|2 at some particular but arbitrarily large times

(Lemma 4.2). By means of appropriate testing techniques, in Section 4.2 we shall derive an ODI for
y which ensures that such a smallness property is essentially maintained throughout a time interval
of fixed length (Lemma 4.5). Since this ODI (4.31) additionally contains

∫
Ω |∆c|2 and

∫
Ω |∇n|2 as

absorptive terms, correspondingly obtained bounds for the latter provide sufficient regularity, inter
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alia for c in a space now again compactly sitting in L∞(Ω), so as to allow for the claimed conclusion
on decay of c in Section 4.3. This knowledge on eventual uniform smallness of c will enable us to
assert suitable prevalence of diffusion in the first two equations in (1.7), which will finally yield both
Theorem 1.1 (Section 4.4) and Theorem 1.2 (Section 5).

2 Preliminary results from existence theory

To begin with, let us recall the particular construction through which the solution (n, c, u) from
Theorem A has been obtained in [54]; indeed, all our results for (n, c, u) will be derived on the basis
of arguments referring to approximate solutions of appropriately regularized problems, upon taking
limits. Following [54, Definition 2.1], for ε ∈ (0, 1) let us accordingly consider





nεt + uε · ∇nε = ∆nε −∇ ·
(
nεSε(x, nε, cε)∇cε

)
, x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − nεf(cε), x ∈ Ω, t > 0,

uεt = ∆uε +∇Pε + nε∇φ, ∇ · uε = 0, x ∈ Ω, t > 0,
∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.1)

with
Sε(x, n, c) := ρε(x) · χε(n) · S(x, n, c), (x, n, c) ∈ Ω̄× [0,∞)2, (2.2)

where

ρε ∈ C∞
0 (Ω) is such that 0 ≤ ρε ≤ 1 in Ω and ρε ր 1 in Ω as ε ց 0

and where

χε ∈ C∞
0 ([0,∞)) is such that 0 ≤ χε ≤ 1 in [0,∞) and χε ր 1 in [0,∞) as ε ց 0.

According to [54, Lemma 2.2], each of these problems possesses a global classical solution (nε, cε, uε, Pε)
such that





nε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

cε ∈ C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)),

uε ∈ C0(Ω̄× [0,∞);R2) ∩ C2,1(Ω̄× (0,∞);R2) and

Pε ∈ C1,0(Ω× (0,∞)),

and such that nε and cε are nonnegative. Moreover, Lemma 3.5, Lemma 4.2 and Lemma 4.4 in [54]
ensure the existence of (εj)j∈N ⊂ (0, 1) such that εj ց 0 as j → ∞, and such that with (n, c, u) as in
Theorem A we have





nε → n in L1
loc(Ω̄× [0,∞)) and a.e. in Ω× (0,∞),

cε → c in L2
loc([0,∞);W 1,2(Ω)) and a.e. in Ω× (0,∞) and

uε ⇀ u in L2
loc(Ω̄× [0,∞))

(2.3)

as ε = εj ց 0. Some basic properties of these approximate solutions, inter alia containing a rigorous
counterpart of (1.4), are immediate from (2.1) (cf. [54, Lemma 2.3]).
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Lemma 2.1. Let ε ∈ (0, 1). Then

∫

Ω
nε(x, t)dx =

∫

Ω
n0 for all t > 0, (2.4)

and for each p ∈ [1,∞] we have

‖cε(·, t)‖Lp(Ω) ≤ ‖cε(·, s)‖Lp(Ω) for all s ≥ 0 and each t ≥ s. (2.5)

Moreover, ∫ ∞

0

∫

Ω
|∇cε|2 ≤

1

2

∫

Ω
c20 (2.6)

and ∫ ∞

0

∫

Ω
nεf(cε) ≤

∫

Ω
c0 (2.7)

as well as
|Sε(x, nε, cε)| ≤ S1 := S0(‖c0‖L∞(Ω)) for all x ∈ Ω and t ≥ 0. (2.8)

The following consequence of (2.6) on the spatial gradient of ln(nε+1) has already played an important
role in the development of the existence theory in [54]. Since it involves an integral over the whole
infinite time interval (0,∞), together with (2.6) and (2.7) it will moreover form the basis for our
derviation of Theorem 1.1 and Theorem 1.2.

Lemma 2.2. With S1 taken from (2.8), we have

∫ ∞

0

∫

Ω

|∇nε|2
(nε + 1)2

≤ 2

∫

Ω
n0 +

S2
1

2
·
∫

Ω
c20 for all ε ∈ (0, 1). (2.9)

By means of the Moser-Trudinger inequality, and hence essentially relying on the planarity of the
current setting, the latter can readily be seen to imply the following ([54, Lemma 4.1]).

Lemma 2.3. Let p > 0. Then there exists C = C(p) > 0 such that for all ε ∈ (0, 1) we have

∫ T

0
ln

{
1

|Ω|

∫

Ω

(
nε(x, s) + 1

)p

dx

}
ds ≤ C · (T + 1) for all T > 0. (2.10)

As a last preliminary, let us furthermore recall from [54, Lemma 3.3] a consequence of the mass
conservation property (2.4) on the regularity of uε, emphasizing that this conclusion strongly relies
on the Stokes simplification underlying (1.7); in fact, the main reason for not addressing here the
associated full chemotaxis-Navier-Stokes system, as e.g. corresponding to the choice κ = 1 in (1.3),
consists in an apparent lack of any appropriate similar regularity feature in the latter.

Lemma 2.4. Let p ∈ (1,∞). Then there exists C = C(p) > 0 such that whenever ε ∈ (0, 1),

‖uε(·, t)‖Lp(Ω) ≤ C for all t > 0. (2.11)
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3 Further basic estimates

3.1 Weak decay properties

An important consequence of Lemma 2.2 is a first quantitative information, albeit yet quite weak, on
asymptotic homogenization of nε.

Lemma 3.1. Given ε ∈ (0, 1), we let

wε(t) := −
∫

Ω

√
nε(x, t) + 1 dx and κε(t) := w2

ε(t)− 1 for t ≥ 0. (3.1)

Then
κε(t) ≤ n0 for all t ≥ 0 and each ε ∈ (0, 1), (3.2)

and there exists C > 0 such that
∫ ∞

0

(∫

Ω
|nε(x, t)− κε(t)|dx

)2

dt ≤ C for all ε ∈ (0, 1). (3.3)

Proof. In order to verify (3.2), we only need to apply the Cauchy-Schwarz inequality in estimating

κε(t) =
( 1

|Ω|

∫

Ω

√
nε(x, t) + 1dx

)2
− 1

≤ 1

|Ω|

∫

Ω

(
nε(x, t) + 1

)
dx− 1 for all t ≥ 0 and each ε ∈ (0, 1),

and observe that here the right-hand side indeed coincides with n0 thanks to (2.4).

To prove (3.3), according to Lemma 2.2 we first pick C1 > 0 fulfilling

∫ ∞

0

∫

Ω

|∇nε|2
(nε + 1)2

dxdt ≤ C1 for all ε ∈ (0, 1). (3.4)

In order to make appropriate use of this, we again invoke the Cauchy-Schwarz inequality and (2.4) to
estimate

∫

Ω
|∇

√
nε + 1| =

1

2

∫

Ω

|∇nε|√
nε + 1

≤ 1

2

(∫

Ω

|∇nε|2
(nε + 1)2

) 1
2

·
(∫

Ω
(nε + 1)

) 1
2

= C2

(∫

Ω

|∇nε|2
(nε + 1)2

) 1
2

for all t > 0 (3.5)

with C2 := 1
2

√∫
Ω n0 + |Ω|. Now thanks to the continuity of the embedding W 1,1(Ω) →֒ L2(Ω) in the

present two-dimensional setting, by the corresponding Poincaré-Sobolev inequality we can fix C3 > 0
such that

∫

Ω

∣∣∣ϕ(x)−−
∫

Ω
ϕ
∣∣∣
2
dx ≤ C3

(∫

Ω
|∇ϕ(x)|dx

)2

for all ϕ ∈ W 1,1(Ω).
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Therefore, (3.5) and (3.4) show that
∫ ∞

0

∫

Ω

∣∣∣
√
nε(x, t) + 1− wε(t)

∣∣∣
2
dxdt ≤ C3C

2
2

∫ ∞

0

∫

Ω

|∇nε|2
(nε + 1)2

≤ C1C
2
2C3 for all ε ∈ (0, 1). (3.6)

Again due to the Cauchy-Schwarz inequality,
∫

Ω

∣∣∣(nε(x, t) + 1)− w2
ε(t)

∣∣∣dx =

∫

Ω

∣∣∣
√

nε(x, t) + 1− wε(t)
∣∣∣ ·

∣∣∣
√
nε(x, t) + 1 + wε(t)

∣∣∣dx

≤
(∫

Ω

∣∣∣
√
nε(x, t) + 1− wε(t)

∣∣∣
2
dx

) 1
2

×

×
(∫

Ω

∣∣∣
√

nε(x, t) + 1 + wε(t)
∣∣∣
2
dx

) 1
2

for all t > 0,

where by the same token and (2.4) we have
∫

Ω

∣∣∣
√
nε(x, t) + 1 + wε(t)

∣∣∣
2
dx ≤ 2

∫

Ω

(
nε(x, t) + 1 + w2

ε(t)
)
dx

= 2

∫

Ω
n0 + 2|Ω|+ 2w2

ε(t)|Ω|

= 2

∫

Ω
n0 + 2|Ω|+ 2

|Ω|

(∫

Ω

√
nε(x, t) + 1dx

)2

≤ 2

∫

Ω
n0 + 2|Ω|+ 2

(∫

Ω

(
nε(x, t) + 1

)
dx

)

= C4 := 4

∫

Ω
n0 + 4|Ω| for all t > 0.

From (3.6) we thus infer that

∫ ∞

0

(∫

Ω

∣∣∣nε(x, t) + 1− w2
ε(t)

∣∣∣dx
)2

dt ≤ C1C
2
2C3C4 for all ε ∈ (0, 1)

and conclude. �

We next derive from Lemma 3.1 a decay property of uε in some integral sense, involving certain
fractional powers of the Stokes operator A as introduced in the context of (1.12) above.

Lemma 3.2. Let α > 0. Then there exists C > 0 such that for any ε ∈ (0, 1) we have
∫ ∞

0

∫

Ω

∣∣A 1
2
−αuε(x, t)

∣∣2dxdt ≤ C. (3.7)

Proof. Upon applying the Helmholtz projection, from the third equation in (2.1) we obtain that
uεt +Auε = P[nε∇φ] in Ω× (0,∞), so that according to the projection property of P, taking κε from
(3.1) we can herein decompose

P[nε(·, t)∇φ] = P
[
(nε(·, t)− κε(t))∇φ

]
+ κε(t)P[∇φ] = P

[
(nε(·, t)− κε(t))∇φ

]
in Ω

10



for all t > 0, whence actually

uεt +Auε = P
[
(nε(·, t)− κε(t))∇φ

]
in Ω× (0,∞).

Given α > 0, we multiply this by A−2αuε and integrate over Ω to see using the symmetry of the
operators A−β , β > 0, that

1

2

d

dt

∫

Ω
|A−αuε|2 +

∫

Ω
|A 1−2α

2 uε|2 =

∫

Ω
A−2αuε · uεt +

∫

Ω
A−2αuε ·Auε

=

∫

Ω
A−2αuε · P

[
(nε(·, t)− κε(t))∇φ

]

=

∫

Ω
A−2αuε · (nε(·, t)− κε(t))∇φ for all t > 0, (3.8)

again because of the fact that P is a projector.
Now if we let B denote the realization of −∆ in L2(Ω) under homogeneous Dirichlet boundary con-
ditions on Ω, then it is well-known that for the respective domains we have D(Aβ) = D(Bβ) ∩ L2

σ(Ω)
for all β > 0 ([12]). Correspondingly, in the presently considered two-dimensional case we have
D(Aβ) →֒ L∞(Ω;R2) whenever β > 1

2 ([14]), so that in particular we can fix C1 > 0 satisfying

‖ϕ‖L∞(Ω) ≤ C1‖A
1+2α

2 ϕ‖L2(Ω) for all ϕ ∈ D(A
1+2α

2 ).

Applying this to ϕ := A−2αuε(·, t), we can estimate the integral on the right of (3.8) according to
∫

Ω
A−2αuε · (nε(·, t)− κε(t))∇φ ≤ ‖A−2αuε(·, t)‖L∞(Ω)‖nε(·, t)− κε(t)‖L1(Ω)‖∇φ‖L∞(Ω)

≤ C2‖A
1−2α

2 uε(·, t)‖L2(Ω)‖nε(·, t)− κε(t)‖L1(Ω) for all t > 0

with C2 := C1‖∇φ‖L∞(Ω). By means of Young’s inequality, (3.8) thus implies that

1

2

d

dt

∫

Ω
|A−αuε|2 +

1

2

∫

Ω
|A 1−2α

2 uε|2 ≤
C2
2

2

(∫

Ω
|nε(·, t)− κε(t)|

)2

for all t > 0,

which upon integration yields
∫

Ω
|A−αuε(x, t)|2dx+

∫ t

0

∫

Ω
|A 1−2α

2 uε(x, s)|2dxds

≤
∫

Ω
|A−αu0(x)|2dx+ C2

2

∫ t

0

(∫

Ω
|nε(x, s)− κε(s)|dx

)2
ds for all t > 0

and thereby implies (3.7) in view of Lemma 3.1. �

3.2 A further boundedness property of ∇cε

Let us next interpret the second equation in (2.1) as an inhomogeneous heat equation cεt = ∆cε +
hε(x, t), and turn the regularity information on nε and uε collected so far into an estimate for ∇cε.
With (2.4) apparently being the only relevant information for nε that is currently available, the range
[1, 2) admissible for q in the following lemma seems natural in the two-dimensional context. The fact
that here hε = −nεf(cε) − uε · ∇cε itself contains ∇cε gives rise to an argument more involved than
in related cases without such a dependence on the estimated quantity (see e.g. [17, Lemma 4.1]).
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Lemma 3.3. Let q ∈ [1, 2). Then there exists C > 0 such that for all ε ∈ (0, 1) we have

‖∇cε(·, t)‖Lq(Ω) ≤ C for all t > 0. (3.9)

Proof. We may assume that q > 1, and we represent cε according to

cε(·, t) = cε1(·, t) + cε2(·, t) + cε3(·, t), t > 0,

where

cε1(·, t) := et∆c0,

cε2(·, t) := −
∫ t

0
e(t−s)∆nε(·, s)f(cε(·, s))ds and

cε3(·, t) := −
∫ t

0
e(t−s)∆(uε · ∇cε)(·, s)ds

for t > 0, with (eτ∆)τ≥0 denoting the Neumann heat semigroup over Ω. We moreover fix any µ ∈
(0, λ1), where λ1 denotes the first nonzero eigenvalue of the Neumann Laplacian in Ω. Then it is
known ([14]) that the realization Bq of the operator −∆+ µ under homogeneous Neumann boundary
conditions in Ω is sectorial in Lq(Ω), and that the domains of the associated fractional powers satisfy

D(Bγ
q ) →֒ W 1,r(Ω) whenever r ≥ 1 and γ >

1

2
+

1

q
− 1

r
. (3.10)

In particular, applying this to r := q shows that in order to prove (3.9) it is sufficient to pick α ∈ (12 ,
1
q
)

and then verify the existence of C1 > 0 such that

‖∇cε1(·, t)‖Lq(Ω) ≤ C1, ‖∇cε2(·, t)‖Lq(Ω) ≤ C1 and ‖Bα
q cε3(·, t)‖Lq(Ω) ≤ C1 for all t > 0.

(3.11)
To achieve this, let us choose p ∈ (q, 2) close enough to q such that

1

2
+

1

q
− 1

p
< α, (3.12)

and thereupon fix β > 0 such that
1

2
+

1

q
− 1

p
< β < α. (3.13)

Then from (3.10) and (3.13) we infer that there exists C2 > 0 satisfying

‖∇ϕ‖Lp(Ω) ≤ C2‖Bβ
q ϕ‖Lq(Ω) for all ϕ ∈ C2(Ω̄) such that ∂ϕ

∂ν
= 0 on ∂Ω, (3.14)

and since α > β, by interpolation ([10]) we can find C3 > 0 such that

‖Bβ
q ϕ‖Lq(Ω) ≤ C3‖Bα

q ϕ‖
β

α

Lq(Ω) · ‖ϕ‖
α−β

α

Lq(Ω) for all ϕ ∈ C2(Ω̄) such that ∂ϕ
∂ν

= 0 on ∂Ω. (3.15)

Moreover, in view of the fact that µ < λ1, known smoothing estimates for the Neumann heat semigroup
([10], [35], [46]) provide positive constants δ, C4 and C5 such that for all t > 0 we have

‖Bα
q e

t∆ϕ‖Lq(Ω) ≤ C4t
−αe−δt‖ϕ‖Lq(Ω) for all ϕ ∈ Lq(Ω) fulfilling

∫

Ω
ϕ = 0 (3.16)

12



and
‖∇et∆ϕ‖Lq(Ω) ≤ C5t

− 3
2
+ 1

q e−δt‖ϕ‖L1(Ω) for all ϕ ∈ Lq(Ω). (3.17)

Since p < 2, we can now use the Hölder inequality and our assumption that c0 ∈ W 1,2(Ω) implied by
(1.12) to find C6 > 0 and C7 > 0 such that

‖∇cε1(·, t)‖Lp(Ω) ≤ C6‖∇et∆c0‖L2(Ω) ≤ C6‖∇c0‖L2(Ω) ≤ C7 for all t > 0, (3.18)

because it is clear that d
dt

∫
Ω |∇et∆ϕ|2 ≤ 0 for all t > 0 and each ϕ ∈ W 1,2(Ω). As p > q, (3.18) in

particular entails the first inequality in (3.11).
Similarly, a sharper variant of the second estimate in (3.11) can be obtained using (3.17), (2.4) and
(2.5), which show that

‖∇cε2(·, t)‖Lp(Ω) ≤
∫ t

0
‖∇e(t−s)∆nε(·, s)f(cε(·, s))‖Lp(Ω)ds

≤ C5

∫ t

0
(t− s)

− 3
2
+ 1

q e−δ(t−s)‖nε(·, s)f(cε(·, s))‖L1(Ω)ds

≤ C5‖n0‖L1(Ω) · ‖f‖L∞((0,‖c0‖L∞(Ω))) ·
∫ t

0
σ
− 3

2
+ 1

q e−δσdσ for all t > 0,

and that hence for some C8 > 0 we have

‖∇cε2(·, t)‖Lp(Ω) ≤ C8 for all t > 0, (3.19)

because −3
2 + 1

q
> −1 thanks to our hypothesis q < 2.

Having thereby also proved the second inequality in (3.11), we again make use of (3.18) and (3.19) in
verifying the third: Namely, for each ε ∈ (0, 1) let us set

Mε(T ) := sup
t∈(0,T )

‖Bα
q cε3(·, t)‖Lq(Ω), T > 0.

Then given any T > 0 and t ∈ (0, T ) we can substitute cε = cε1 + cε2 + cε3 in the definition of cε3 to
estimate

‖Bα
q cε3(·, t)‖Lq(Ω) ≤

3∑

i=1

∥∥∥∥B
α
q

∫ t

0
e(t−s)∆

(
uε(·, s) · ∇cεi(·, s)

)
ds

∥∥∥∥
Lq(Ω)

≤
3∑

i=1

∫ t

0
(t− s)−αe−δ(t−s)

∥∥∥uε(·, s) · ∇cεi(·, s)
∥∥∥
Lq(Ω)

ds (3.20)

for all t > 0 by means of (3.16), noting that
∫
Ω uε · ∇cεi = 0 thanks to the solenoidality of uε. Here in

view of the fact that C9 := supε∈(0,1) ‖uε‖
L∞((0,∞);L

pq
p−q (Ω))

is finite due to Lemma 2.4, upon applying

the Hölder inequality we find that
∥∥∥uε(·, s) · ∇cεi(·, s)

∥∥∥
Lq(Ω)

≤ ‖uε(·, s)‖
L

pq
p−q (Ω)

‖∇cεi(·, s)‖Lp(Ω)

≤ C9‖∇cεi(·, s)‖Lp(Ω)

for all s > 0 and i ∈ {1, 2, 3}, (3.21)
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where in the case i = 3 we recall (3.14) and interpolate on the basis of (3.15) to see that according to
(2.5),

‖∇cε3(·, s)‖Lp(Ω) ≤ C2‖Bβ
q cε3(·, s)‖Lq(Ω)

≤ C2C3‖Bα
q cε3(·, s)‖

β

α

Lq(Ω)‖cε3(·, s)‖
α−β

α

Lq(Ω)

≤ C10‖Bα
q cε3(·, s)‖

β

α

Lq(Ω)

≤ C10M
β

α
ε (T ) for all s ∈ (0, T )

with C10 := C2C3‖c0‖
α−β

α

Lq(Ω).

Therefore, (3.20) and (3.21) combined with (3.18) and (3.19) yield

‖Bα
q cε3(·, t)‖Lq(Ω) ≤ C9 ·

(
C7 + C8 + C10M

β

α
ε (T )

)
·
∫ t

0
σ−αe−δσdσ for all t ∈ (0, T ).

Since α < 1, this shows that with some C11 > 0 we have

Mε(T ) ≤ C11 ·
(
1 +M

β

α
ε (T )

)
for all T > 0 and ε ∈ (0, 1).

As β < α ensures that β
α
< 1, from this we obtain C12 > 0 such that

Mε(T ) ≤ C12 for all T > 0 and ε ∈ (0, 1),

which implies the third inequality in (3.11) and hence completes the proof. �

4 Eventual smoothness. Proof of Theorem 1.1

We shall now turn our attention to the regularity and convergence properties of (n, c, u) claimed in
Theorem 1.1 and Theorem 1.2. Accordingly, we shall tacitly assume that the additional hypotheses
made therein are satisfied; that is, throughout the sequel we shall require that

f > 0 on (0,∞) and n0 6≡ 0,

noting that this will actually be necessary only from Section 4.3 on.

4.1 Basic decay properties of n− n0, c and u

Let us list some essentially direct consequences of the spatio-temporal integrability properties in
Lemma 2.1, Lemma 3.1 and Lemma 3.2, which may be viewed as providing some first asymptotic
properties of the limit (n, c, u). The estimates (4.2) and (4.3) will be used in Lemma 4.7 to prove de-
cay of c, whereas (4.4) and (4.5) will imply the claimed convergence properties of n and u in Theorem
1.2.
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Lemma 4.1. Let

w(t) := −
∫

Ω

√
n(x, t) + 1 dx and κ(t) := w2(t)− 1 for t > 0. (4.1)

Then ∫ ∞

0

∫

Ω
|∇c|2 < ∞ (4.2)

and ∫ ∞

0

∫

Ω
nf(c) < ∞, (4.3)

and moreover we have ∫ ∞

0

(∫

Ω

∣∣∣n(x, t)− κ(t)
∣∣∣dx

)2

dt < ∞ (4.4)

as well as ∫ ∞

0

∫

Ω
|u|2 < ∞. (4.5)

Proof. Since thanks to (2.3) we know that as ε = εj ց 0 we have nε → n, f(cε) → f(c) and
∇cε → ∇c a.e. in Ω× (0,∞), (4.2) and (4.3) are immediate from Lemma 2.1 in view of Fatou’s lemma.
Moreover, the strong convergence nε → n in L1

loc(Ω̄ × [0,∞)) entails that for a.e. t > 0 we have
nε(·, t) → n(·, t) in L1(Ω) and hence clearly also

∫
Ω

√
nε(x, t) + 1dx →

∫
Ω

√
n(x, t) + 1dx as ε = εj ց

0. Accordingly, with wε and κε as defined in Lemma 3.1 we see that wε(t) → w(t) and κε(t) → κ(t)
for a.e. t > 0 as ε = εj ց 0, so that (4.4) again becomes a consequence of Fatou’s lemma when applied
to (3.3).
Finally, invoking Lemma 3.2 with α := 1

2 we obtain C1 > 0 fulfilling

∫ ∞

0

∫

Ω
|uε(x, t)|2dxdt ≤ C1 for all ε ∈ (0, 1),

which allows us to pick another subsequence of (εj)j∈N along which uε ⇀ z in L2(Ω × (0,∞)) with
some z ∈ L2(Ω× (0,∞);R2) which due to (2.3) clearly must coincide with u. By lower semicontinuity
of the norm in L2(Ω× (0,∞);R2) with respect to weak convergence, this entails (4.5). �

4.2 Eventual smallness of ∇nε and ∆cε

The purpose of this section will be to prove that both gε(t) :=
∫
Ω |∇nε(·, t)|2 and hε(t) :=

∫
Ω |∆cε(·, t)|2

eventually become small in the sense that for some suitably large T > 0, given any t0 ≥ 1 one can
pick tε ∈ (t0, t0 + T ) such that

∫ tε+T

tε
(gε(t) + hε(t))dt lies below the arbitrarily prescribed number 1.

This result, to be established in Lemma 4.5, will be prepared by three lemmata, the first of which
encounters the challenge of turning the inequalities (4.8) and (4.9) gained from Lemma 2.1 and Lemma
3.1 into some quantitative decay information which is essentially independent of ε ∈ (εj)j∈N. Here in
order to achieve an estimate involving nε in the space L2(Ω), rather than merely in L1(Ω) as suggested
by (3.3), we make use of the inequality (4.10) implied by Lemma 2.3.
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Lemma 4.2. Let δ > 0. Then there exists T > 1 with the property that for all t0 > 0 and each
ε ∈ (εj)j∈N one can find tε ∈ (t0, t0 + T ) fulfilling

∫

Ω
|∇cε(x, tε)|2dx <

δ

2
(4.6)

and ∫

Ω

∣∣∣nε(x, tε)− κε(tε)
∣∣∣
2
dx <

δ

2
, (4.7)

where κε is as defined in (3.1).

Proof. According to Lemma 2.1, writing C1 :=
1
2

∫
Ω c20 we know that

∫ ∞

0

∫

Ω
|∇cε(x, t)|2dxdt ≤ C1 for all ε ∈ (0, 1), (4.8)

and Lemma 3.1 provides C2 > 0 such that

∫ ∞

0

(∫

Ω

∣∣∣nε(x, t)− κε(t)
∣∣∣dx

)2

dt ≤ C2 for all ε ∈ (0, 1), (4.9)

whereas from Lemma 2.3 we obtain C3 > 0 satisfying

∫ t+1

t

ln

{
1

|Ω|

∫

Ω

(
nε(x, t) + 1

)3
dx

}
dt ≤ C3 for all ε ∈ (0, 1) and each t ≥ 0. (4.10)

We thereupon abbreviate

C4 :=
(
e

4C3
3 · |Ω| 13 + n0 · |Ω|

1
3

) 3
2

(4.11)

with n0 := −
∫
Ω n0, choose l ∈ N such that

l ≥ 8C1

δ
and l ≥ 64C2C

4
4

δ4
, (4.12)

and we shall see that the desired conclusion holds if we let

T := 2l + 2. (4.13)

To this end, given t0 > 0 we fix k0 ∈ N such that

t0 < k0 ≤ t0 + 1 (4.14)

and introduce the numbers

ak,ε :=

∫ k+1

k

∫

Ω
|∇cε(x, t)|2dxdt

and

bk,ε :=

∫ k+1

k

(∫

Ω

∣∣∣nε(x, t)− κε(t)
∣∣∣dx

)2

dt
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for ε ∈ (εj)j∈N and nonnegative integers k, where again κε has been taken from (3.1).
We then claim that

for all ε ∈ (εj)j∈N there exists kε ∈ {k0, ..., k0 + 2l} such that

akε,ε <
δ

8
and bkε,ε <

δ4

64C4
4

. (4.15)

Indeed, if this was false then there would exist some ε ∈ (εj)j∈N such that for each k ∈ {k0, ..., k0+2l}
we would either have ak,ε ≥ δ

8 or bk,ε ≥ δ4

64C4
4
. Since the index set I := {k0, ..., k0 + 2l} has more than

2l elements, this would mean that either

Ia :=
{
k ∈ I

∣∣∣ ak,ε ≥
δ

8

}

or

Ib :=
{
k ∈ I

∣∣∣ bk,ε ≥
δ4

64C4
4

}

would contain more than l elements. In the former case, this would contradict (4.8), because by
definition of Ia and the left inequality in (4.12) we then would have

C1 ≥
∫ ∞

0

∫

Ω
|∇cε|2 =

∞∑

k=0

ak,ε ≥
∑

k∈Ia
ak,ε ≥

δ

8
· |Ia| >

δ

8
· l ≥ C1.

Likewise, if |Ib| > l then by (4.9) and the right inequality in (4.12),

C2 ≥
∫ ∞

0

(∫

Ω

∣∣∣nε(x, t)− κε(t)
∣∣∣dx

)2

dt =

∞∑

k=0

bk,ε ≥
∑

k∈Ib
bk,ε ≥

δ4

64C4
4

· |Ib| >
δ4

64C4
4

· l ≥ C2,

which again is absurd.

Having thereby proved (4.15), we introduce the sets

Qε :=

{
t ∈ (kε, kε + 1)

∣∣∣∣
∫

Ω
|∇cε(x, t)|2dx <

δ

2

}

and

Rε :=

{
t ∈ (kε, kε + 1)

∣∣∣∣∣

( ∫

Ω

∣∣∣nε(x, t)− κε(t)
∣∣∣dx

)2

<
δ4

16C4
4

}

as well as

Sε :=

{
t ∈ (kε, kε + 1)

∣∣∣∣∣ ln

{
1

|Ω|

∫

Ω

(
nε(x, t) + 1

)3
dx

}
< 4C3

}
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for ε ∈ (εj)j∈N. Then the first inequality in (4.15) implies that

δ

8
> akε,ε

=

∫ kε+1

kε

∫

Ω
|∇cε(x, t)|2dxdt

≥
∫

(kε,kε+1)\Qε

∫

Ω
|∇cε(x, t)|2dxdt

≥ δ

2
·
∣∣∣(kε, kε + 1) \Qε

∣∣∣

=
δ

2
·
(
1− |Qε|

)
,

from which we conclude that

|Qε| >
3

4
. (4.16)

Likewise, from the second inequality in (4.15) we obtain that

δ4

64C4
4

> bkε,ε

=

∫ kε+1

kε

(∫

Ω

∣∣∣nε(x, t)− κε(t)
∣∣∣dx

)2

dt

≥
∫

(kε,kε+1)\Rε

(∫

Ω

∣∣∣nε(x, t)− κε(t)
∣∣∣dx

)2

dt

≥ δ4

16C4
4

·
∣∣∣(kε, kε + 1) \Rε

∣∣∣

=
δ4

16C4
4

·
(
1− |Rε|

)
,

that is,

|Rε| >
3

4
. (4.17)

Finally, (4.10) ensures that

C3 ≥
∫ kε+1

kε

ln

{
1

|Ω|

∫

Ω

(
nε(x, t) + 1

)3
dx

}
dt

≥
∫

(kε,kε+1)\Sε

ln

{
1

|Ω|

∫

Ω

(
nε(x, t) + 1

)3
dx

}
dt

≥ 4C3 ·
∣∣∣(kε, kε + 1) \ Sε

∣∣∣

≥ 4C3 ·
(
1− |Sε|

)
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and hence also

|Sε| >
3

4
. (4.18)

Combining (4.16)-(4.18), we see that |Qε ∩ Rε ∩ Sε| > 1
4 , so that for each ε ∈ (εj)j∈N we can find at

least one tε belonging to Qε ∩Rε ∩ Sε.

Thereupon, (4.6) is an evident consequence of the inclusion tε ∈ Qε and the definition of Qε. In order
to show that also (4.7) holds, we first invoke the Hölder inequality to estimate

∫

Ω

∣∣∣nε(x, tε)− κε(tε)
∣∣∣
2
dx ≤ ‖nε(·, tε)− κε(tε)‖

3
2

L3(Ω)
· ‖nε(·, tε)− κε(tε)‖

1
2

L1(Ω)

≤
(
‖nε(·, tε)‖L3(Ω) + κε(tε) · |Ω|

1
3

) 3
2 ·

(∫

Ω

∣∣∣nε(x, tε)− κε(tε)
∣∣∣dx

) 1
2

.

Thus, using that κε(t) ≤ n0 for all t ≥ 0 and ε ∈ (0, 1) by (3.2), from the fact that tε ∈ Rε ∩ Sε and
the definition of C4 we infer that indeed

∫

Ω

∣∣∣nε(x, tε)− κε(tε)
∣∣∣
2
dx <

(
e

4C3
3 · |Ω| 13 + n0 · |Ω|

1
3

) 3
2 ·

( δ4

16C4
4

) 1
4

= C4 ·
δ

2C4
=

δ

2
.

Finally, from the construction of kε, (4.14) and the fact that tε ∈ (kε, kε + 1) it follows that

tε > kε ≥ k0 > t0

and, by (4.13), that moreover

tε < kε + 1 ≤ k0 + 2l + 1 ≤ t0 + 2l + 2 = t0 + T,

so that in fact tε ∈ (t0, t0 + T ), as claimed. �

Our goal will be to use the above inequalities (4.6) and (4.7) to control, for a certain µ ≥ 0, the initial
size of yε(t) :=

∫
Ω |∇cε|2+

∫
Ω |nε−µ|2 when considered as a function for t ≥ tε. Indeed, in Lemma 4.5 we

shall see that an appropriately small initial bound on yε will remain essentially unchanged throughout
some time interval with small but ε-independent size. This will be accomplished in Lemma 4.5 on
the basis of a suitable ODI for yε which will be prepared by separately tracking the time evolution of
the two summands making up yε. Let us begin by deriving an inequality for the time derivative of∫
Ω |∇cε|2 by means of a standard testing procedure.

Lemma 4.3. There exists C > 0 such that for all ε ∈ (0, 1) we have

d

dt

∫

Ω
|∇cε|2 +

∫

Ω
|∆cε|2 ≤

1

2

∫

Ω
|∇nε|2 + C

∫

Ω
|∇cε|2 for all t > 1. (4.19)

Proof. We multiply the second equation in (2.1) by −∆cε to see upon integrating by parts that

1

2

d

dt

∫

Ω
|∇cε|2 +

∫

Ω
|∆cε|2 =

∫

Ω
nεcε∆cε +

∫

Ω
(uε · ∇cε)∆cε

= −
∫

Ω
nε|∇cε|2 −

∫

Ω
cε∇nε · ∇cε +

∫

Ω
(uε · ∇cε)∆cε (4.20)
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for all t > 0. Here by Young’s inequality and (2.5) we obtain

−
∫

Ω
cε∇nε · ∇cε ≤ 1

4

∫

Ω
|∇nε|2 +

∫

Ω
c2ε|∇cε|2

≤ 1

4

∫

Ω
|∇nε|2 + ‖c0‖2L∞(Ω)

∫

Ω
|∇cε|2 for all t > 0. (4.21)

Moreover, using the Hölder inequality we find that

∫

Ω
(uε · ∇cε)∆cε ≤

(∫

Ω
|uε|4

) 1
4 ·

(∫

Ω
|∇cε|4

) 1
4 ·

(∫

Ω
|∆cε|2

) 1
2

for all t > 0, (4.22)

where an application of the Gagliardo-Nirenberg inequality along with standard elliptic regularity
theory provides C1 > 0 fulfilling

(∫

Ω
|∇cε|4

) 1
4 ≤ C1

(∫

Ω
|∆cε|2

) 1
4 ·

(∫

Ω
|∇cε|2

) 1
4

for all t > 0. (4.23)

The integral involving uε can be controlled using Lemma 2.4, which yields C2 > 0 such that

‖uε(·, t)‖L4(Ω) ≤ C2 for all t > 0, (4.24)

so that combining this with (4.22) and (4.23), once more by Young’s inequality we obtain C3 > 0
satisfying

∫

Ω
(uε · ∇cε)∆cε ≤ C1C2

(∫

Ω
|∆cε|2

) 3
4 ·

(∫

Ω
|∇cε|2

) 1
4

≤ 1

2

∫

Ω
|∆cε|2 + C3

∫

Ω
|∇cε|2 for all t > 1.

Inserting this together with (4.21) into (4.20), upon dropping a nonpositive term we readily arrive at
(4.19). �

The first integral on the right of (4.19), precluding the latter to become an autonomous ODI itself, can
fortunately be compensated by adding the result of a suitable testing procedure in the first equation
in (2.1). The appearance of the norm of nε − µ in L2(Ω) in the following lemma a posteriori explains
our choice of the norm in (4.7).

Lemma 4.4. Let µ0 > 0. Then there exists C > 0 such that whenever µ ∈ (0, µ0] and ε ∈ (0, 1), we
have

d

dt

∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
+

∫

Ω
|∇nε|2 ≤ C

∫

Ω
|∇cε|2 + C

+C

(∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
)
·
(∫

Ω
|∆cε|2

)
·
(∫

Ω
|∇cε|2

)
for all t > 0. (4.25)

20



Proof. Testing the first equation in (2.1) against nε − µ and using Young’s inequality and (2.8)
yields

1

2

d

dt

∫

Ω
|nε − µ|2 +

∫

Ω
|∇nε|2 =

∫

Ω
nε∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

=

∫

Ω
(nε − µ)∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

+µ

∫

Ω
∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

≤ 1

8

∫

Ω
|∇nε|2 + C1

∫

Ω
|nε − µ|2 · |∇cε|2

+
1

8

∫

Ω
|∇nε|2 + C2

∫

Ω
|∇cε|2 for all t > 0 (4.26)

with positive constants C1 and C2 possibly depending on µ0 and the number S1 in (2.8). By means
of the Hölder inequality and a Gagliardo-Nirenberg interpolation, again involving standard elliptic
regularity theory, we can further estimate

C1

∫

Ω
|nε − µ|2 · |∇cε|2 ≤ C1

(∫

Ω
|nε − µ|4

) 1
2 ·

(∫

Ω
|∇cε|4

) 1
2

≤ C3

(∫

Ω
|nε − µ|4

) 1
2 ·

(∫

Ω
|∆cε|2

) 1
2 ·

(∫

Ω
|∇cε|2

) 1
2

(4.27)

for all t > 0 with some C3 > 0, and once more invoking the Gagliardo-Nirenberg inequality and (2.4)
we find C4 > 0 and C5 > 0 fulfilling

(∫

Ω
|nε − µ|4

) 1
2

= ‖nε − µ‖2L4(Ω)

≤ C4‖∇nε‖L2(Ω) · ‖nε − µ‖L2(Ω) + C4‖nε − µ‖2L1(Ω)

≤ C4‖∇nε‖L2(Ω) · ‖nε − µ‖L2(Ω) + C5 for all t > 0.

Inserted into (4.27), in view of Young’s inequality this shows that there exists C6 > 0 such that

C1

∫

Ω
|nε − µ|2 · |∇cε|2 ≤

1

4

∫

Ω
|∇nε|2 + C6 + C6

(∫

Ω
|nε − µ|2

)
·
(∫

Ω
|∆cε|2

)
·
(∫

Ω
|∇cε|2

)

for all t > 0. Along with (4.26), this proves (4.25). �

Now combining the previous two lemmata, we can indeed derive a favorable differential inequality
for the coupled functional yε discussed above. According to (4.19) and (4.25), this inequality will in
addition contain some dissipated quantity, and the bound correspondingly obtained for the latter will
precisely yield (4.28) as the main outcome of this section.

Lemma 4.5. There exist T > 0 and τ ∈ (0, 1) with the following property: For each t0 ≥ 1 and all
ε ∈ (εj)j∈N one can find tε ∈ (t0, t0 + T ) fulfilling

∫ tε+τ

tε

∫

Ω
|∇nε(x, t)|2dxdt+

∫ tε+τ

tε

∫

Ω
|∆cε(x, t)|2dxdt ≤ 1. (4.28)
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Proof. We invoke Lemma 4.3 and apply Lemma 4.4 to µ0 := n0 := −
∫
Ω n0 to find C1 > 0 and

C2 > 0 such that for each ε ∈ (0, 1),

d

dt

∫

Ω
|∇cε|2 +

∫

Ω
|∆cε|2 ≤

1

2

∫

Ω
|∇nε|2 + C1

∫

Ω
|∇cε|2 for all t > 1, (4.29)

and such that if moreover µ ∈ [0, n0] then

d

dt

∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
+

∫

Ω
|∇nε|2 ≤ C2

∫

Ω
|∇cε|2 + C2

+C2

(∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
)
·
(∫

Ω
|∆cε|2

)
·
(∫

Ω
|∇cε|2

)
for all t > 0. (4.30)

Adding both these inequalities we see that for any such µ,

d

dt

{∫

Ω
|∇cε|2 +

∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
}
+

∫

Ω
|∆cε|2 +

1

2

∫

Ω
|∇nε|2

≤ (C1 + C2)

∫

Ω
|∇cε|2 + C2

+C2 ·
(∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
)
·
(∫

Ω
|∆cε|2

)
·
(∫

Ω
|∇cε|2

)
for all t > 1. (4.31)

We now apply Lemma 4.2 to δ := min
{

1√
2C2

, 1
}
and thereby obtain T > 0 such that for any choice

of t0 > 1 and ε ∈ (εj)j∈N we can find tε ∈ (t0, t0 + T ) such that the function yε defined by

yε(t) :=

∫

Ω
|∇cε(x, t)|2dx+

∫

Ω

∣∣∣nε(x, t)− κε(tε)
∣∣∣
2
dx, t > 0,

with κε as in (3.1), satisfies

yε(tε) ≤
δ

4
. (4.32)

We shall see that then the conclusion of the lemma is valid if we fix any τ ∈ (0, 1) satisfying

τ ≤ δ

4
{
(C1 + C2)δ + C2

} . (4.33)

To verify this, we note that due to (4.32),

τε := sup
{
τ̃ε ∈ [0, τ ]

∣∣∣ yε(t) < δ for all t ∈ [tε, tε + τ̃ε)
}

is a well-defined element of [0, τ ], and we first claim that that actually τε = τ for any ε ∈ (εj)j∈N.
Indeed, by definition of τε and continuity of yε we have

yε ≤ δ on [tε, tε + τε]. (4.34)
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Along with our choice of δ, this implies that writing µ := κε(tε) we have

C2 ·
(∫

Ω

∣∣∣nε(·, t)− µ
∣∣∣
2
)
·
(∫

Ω
|∆cε|2

)
·
(∫

Ω
|∇cε|2

)
≤ C2y

2
ε(t) ·

∫

Ω
|∆cε|2

≤ C2δ
2 ·

∫

Ω
|∆cε|2

≤ 1

2

∫

Ω
|∆cε|2 for all t ∈ [tε, tε + τε].

Since µ ≤ n0 according to (3.2), we can thus invoke (4.31) to derive, again using (4.34), that

y′ε(t) +
1

2

∫

Ω
|∆cε|2 +

1

2

∫

Ω
|∇nε|2 ≤ (C1 + C2) ·

∫

Ω
|∇cε|2 + C2

≤ (C1 + C2) · yε(t) + C2

≤ (C1 + C2) · δ + C2 for all t ∈ [tε, tε + τε].

An integration using (4.32) thus implies that

yε(t) +
1

2

∫ t

tε

∫

Ω
|∆cε|2 +

∫ t

tε

∫

Ω
|∇nε|2 ≤ yε(tε) +

{
(C1 + C2)δ + C2

}
· (t− tε)

≤ δ

4
+
{
(C1 + C2)δ + C2

}
· τε

<
δ

4
+
{
(C1 + C2)δ + C2

}
· τ

=
δ

2
for all t ∈ [tε, tε + τε]. (4.35)

In particular, assuming for contradiction that τε < τ for some ε ∈ (εj)j∈N, from (4.35) we could derive
the inequality yε(tε + τε) ≤ δ

2 which is incompatible with the continuity of yε, the latter in this case
implying that necessarily yε(tε + τε) = δ.
Hence knowing that in fact τε = τ , from (4.35) and the fact that δ ≤ 1 we easily obtain (4.28), because
yε is nonnegative. �

4.3 Doubly uniform decay of cε

We shall next make sure that under the extra assumptions f > 0 on (0,∞) and n0 6≡ 0, as made in
both Theorem 1.1 and Theorem 1.2, we have cε(·, t) → 0 as t → ∞, and it will be of crucial importance
for our proof of eventual smoothness that this convergence is not only uniform with respect to x ∈ Ω,
but in addition also uniform with respect to sufficiently small ε ∈ (εj)j∈N.
To this end, in Lemma 4.7 we shall first prove a decay statement in a weaker topology for the single
limit function c by combining the finiteness of the integrals in (4.2) and (4.3) with the following
additional regularity property implied by Lemma 4.5.

Corollary 4.6. Let τ ∈ (0, 1) be as given by Lemma 4.5. Then there exists (tk)k∈N ⊂ (1,∞) such
that ∫ tk+τ

tk

∫

Ω
|∇n(x, t)|2dxdt ≤ 1 for all k ∈ N. (4.36)
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Proof. This is an immediate consequence of Lemma 4.5. �

Indeed, we can thereby show the following statement on temporal decay of c.

Lemma 4.7. Let τ ∈ (0, 1) and (tk)k∈N be as given by Lemma 4.5 and Corollary 4.6, respectively.
Then ∫ tk+τ

tk

‖c(·, t)‖L1(Ω)dt → 0 as k → ∞. (4.37)

Proof. Let us define

nk(x, s) := n(x, tk + s) and ck(x, s) := c(x, tk + s) for (x, s) ∈ Ω× (0, τ) and k ∈ N

as well as

λ(t) :=

{ ∫
Ω c(x, t)dx if c(·, t) ∈ L1(Ω),

0 else,
(4.38)

and

λk(s) := λ(tk + s) for s ∈ (0, τ) and k ∈ N.

Then since [0,∞) ∋ t 7→ ‖cε(·, t)‖L1(Ω) in nonincreasing by Lemma 2.1, we know that
∫ tk+τ

tk
λ(t)dt is

nonincreasing with respect to k and thus

∫ tk+τ

tk

λ(t)dt ց λ∞ as k → ∞ (4.39)

with some some constant λ∞ ≥ 0. In order to show that actually λ∞ = 0, we first use the Poincaré
inequality to find C1 > 0 such that

∫ τ

0
‖ck(·, s)− λk(s)‖2L2(Ω)ds =

∫ tk+τ

tk

‖c(·, t)− λ(t)‖2L2(Ω)dt

≤ C1

∫ tk+τ

tk

‖∇c(·, t)‖2L2(Ω)dt for all k ∈ N,

whence recalling that tk → ∞ as k → ∞ and that
∫∞
0

∫
Ω |∇c|2 < ∞ by Lemma 4.1 we obtain

∫ τ

0
‖ck(·, s)− λk(s)‖2L2(Ω)ds → 0 as k → ∞. (4.40)

Since moreover λ(t) ≤ C2 :=
∫
Ω c0(x)dx for all t ≥ 0, (4.39) entails that

∫ tk+τ

tk

∫

Ω
|λ(t)− λ∞|2dxdt = |Ω| ·

∫ tk+τ

tk

(
λ(t) + λ∞

)
·
(
λ(t)− λ∞

)
dt

≤ 2C2|Ω| ·
{∫ tk+τ

tk

λ(t)dt− λ∞ · τ
}

→ 0 as k → ∞.
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Combined with (4.40), this shows that
∫ τ

0

∫

Ω

∣∣∣ck(x, s)− λ∞
∣∣∣
2
dxds ≤ 2

∫ τ

0

∫

Ω

∣∣∣ck(x, s)− λk(s)
∣∣∣
2
dxds+ 2

∫ τ

0

∫

Ω

∣∣∣λk(s)− λ∞
∣∣∣
2
dxds

→ 0 as k → ∞;

that is, we have
ck → λ∞ in L2(Ω× (0, τ)) as k → ∞, (4.41)

which clearly implies that also

f(ck) → f(λ∞) in L2(Ω× (0, τ)) as k → ∞, (4.42)

because ‖ck‖L∞(Ω×(0,τ)) ≤ ‖c0‖L∞(Ω) thanks to (2.5) and (2.3). Now according to our choice of (tk)k∈N,
Corollary 4.6 says that

∫ τ

0

∫

Ω
|∇nk(x, s)|2dxds =

∫ tk+τ

tk

∫

Ω
|∇n(x, t)|2dxdt ≤ 1 for all k ∈ N,

which combined with (6.3) entails that (nk)k∈N is bounded in L2(Ω× (0, τ)). Passing to a subsequence
if necessary we may thus assume that for some n∞ ∈ L2(Ω× (0, τ)) we have

nk ⇀ n∞ in L2(Ω× (0, τ)) as k → ∞. (4.43)

In particular, again using (6.3) we obtain that with m :=
∫
Ω n0 we have

mτ =

∫ τ

0

∫

Ω
nk(x, s)dxds →

∫ τ

0

∫

Ω
n∞(x, s)dxds as k → ∞,

and that hence
∫ τ

0

∫

Ω
n∞(x, s)dxds = mτ.

Therefore, (4.43) along with (4.42) implies that
∫ τ

0

∫

Ω
nk(x, s)f(ck)(x, s)dxds →

∫ τ

0
n∞(x, s) · f(λ∞)dxds

= f(λ∞) ·mτ as k → ∞. (4.44)

On the other hand, from Lemma 4.1 we also know that
∫∞
0

∫
Ω nf(c) < ∞, which entails that

∫ τ

0

∫

Ω
nk(x, s)f(ck(x, s))dxds =

∫ tk+τ

tk

∫

Ω
n(x, t)f(c(x, t))dxdt → 0 as k → ∞.

Combined with (4.44), this shows that f(λ∞) ·mτ = 0, which in light of our assumptions that n0 6≡ 0
and that f > 0 on (0,∞) means that in fact we must have λ∞ = 0. By definition (4.38) of λ, using
that c(·, t) ∈ L1(Ω) for a.e. t > 0 we thus infer that (4.37) holds. �

Now in view of the convergence properties of (cε)ε∈(0,1) as ε = εj ց 0, we can combine the above
decay statement with the ε-independent bound on ∆cε guaranteed by Lemma 4.5 to obtain by means
of an interpolation argument the main result of this section.
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Lemma 4.8. For each δ > 0 one can find Tδ > 0 and ε⋆ ∈ (0, 1) such that whenever ε ∈ (εj)j∈N
satisfies ε < ε⋆, then

‖cε(·, t)‖L∞(Ω) ≤ δ for all t ≥ Tδ. (4.45)

Proof. In order to prepare our choice of Tδ, let us first apply the Gagliardo-Nirenberg inequality
and elliptic estimates to find C1 > 0 satisfying

‖ϕ‖L∞(Ω) ≤ C1‖∆ϕ‖
2
3

L2(Ω)
‖ϕ‖

1
3

L1(Ω)
+ C1‖ϕ‖L1(Ω) for all ϕ ∈ C2(Ω̄) such that ∂ϕ

∂ν
= 0 on ∂Ω,

(4.46)
and take T > 0 and τ ∈ (0, 1) as provided by Lemma 4.5. Then given δ > 0, we can fix η > 0 small
enough such that

(2ητ)
1
3 · C1 + 2ηC1 ≤ δτ, (4.47)

and thereupon invoke Lemma 4.7 to obtain some t0 ∈ N fulfilling

∫ t0+τ

t0

‖c(·, t)‖L1(Ω)dt ≤ η. (4.48)

We claim that then (4.45) holds for all sufficiently small ε ∈ (εj)j∈N if we let

Tδ := t0 + T + τ. (4.49)

To verify this, we first note that as a consequence of the strong convergence statement concerning c

in (2.3) we know that cε → c in L1(Ω × (t0, t0 + τ)), whence (4.48) entails that if we fix ε⋆ ∈ (0, 1)
suitably small, then

∫ t0+τ

t0

‖cε(·, t)‖L1(Ω)dt ≤ 2η for all ε ∈ (εj)j∈N with ε < ε⋆. (4.50)

Next, an application of Lemma 4.5 yields some tε ∈ (t0, t0 + T ) such that

∫ tε+τ

tε

‖∆cε(·, t)‖2L2(Ω)dt ≤ 1 for all ε ∈ (εj)j∈N. (4.51)

Now since (4.46) combined with the Hölder inequality shows that

∫ tε+τ

tε

‖cε(·, t)‖L∞(Ω)dt ≤ C1

∫ tε+τ

tε

‖∆cε(·, t)‖
2
3

L2(Ω)
‖cε(·, t)‖

1
3

L1(Ω)
dt

+C1

∫ tε+τ

tε

‖cε(·, t)‖L1(Ω)dt

≤ C1 ·
(∫ tε+τ

tε

‖∆cε(·, t)‖2L2(Ω)dt

) 1
3

·
(∫ tε+τ

tε

‖cε(·, t)‖L1(Ω)dt

) 1
3

· t 1
3

+C1

∫ tε+τ

tε

‖cε(·, t)‖L1(Ω)dt for all ε ∈ (εj)j∈N,
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from (4.50), (4.51) and (4.47) we obtain that

∫ tε+τ

tε

‖cε(·, t)‖L∞(Ω)dt ≤ C1 · 1 · (2η)
1
3 · τ 1

3 + C1 · 2η ≤ δτ

for all ε ∈ (εj)j∈N such that ε < ε⋆. By the mean value theorem, for any such ε this entails the
existence of some t̂ε ∈ (tε, tε + τ) satisfying

‖cε(·, t̂ε)‖L∞(Ω) ≤ δ

and hence, by the downward monotonicity of (0,∞) ∋ t 7→ ‖cε(·, t)‖L∞(Ω) asserted by Lemma 2.1,
shows that

‖cε(·, t)‖L∞(Ω) ≤ δ for all t ≥ t̂ε.

As the inclusions t̂ε ∈ (tε, tε + τ) and tε ∈ (t0, t0 + T ) imply that

t̂ε < tε + τ < t0 + T + τ,

recalling (4.49) we see that indeed (4.45) holds for all ε ∈ (εj)j∈N fulfilling ε < ε⋆. �

4.4 Proof of Theorem 1.1

Now knowing that cε is conveniently small beyond some waiting time which is independent of suitably
small ε ∈ (εj)j∈N, we see that proving Theorem 1.1 essentially reduces to deriving suitable higher-
order estimates for solutions of (2.1) emanating from initial data which are small in their second
component. To achieve this, we follow a strategy similar to that pursued in [27], where corresponding
estimates for such small-data solutions have been established for the associated chemotaxis-only model
with u 6≡ 0. In particular, at the core of our analysis in this direction we will study the evolution
of the functional

∫
Ω np +

∫
Ω |∇c|2p for arbitrarily large p > 2, making essential use of the following

interpolation inequality which has been proved in [27].

Lemma 4.9. Let r > 0, p ≥ 1 and s ≥ 2(p+ 1). Then there exists C > 0 such that the inequality

‖∇ϕ‖Ls(Ω) ≤ C

{∥∥∥|∇ϕ|p−1D2ϕ
∥∥∥

s−2
ps

L2(Ω)
+ ‖∇ϕ‖

s−2
s

Lr(Ω)

}
· ‖ϕ‖

2
s

L∞(Ω) (4.52)

holds for all ϕ ∈ C2(Ω̄) satisfying ∂ϕ
∂ν

= 0 on ∂Ω.

This enables us to prove the following regularity statement.

Lemma 4.10. Let p > 2. Then there exist δ = δ(p) > 0 and C = C(p) > 0 with the property that
whenever t0 ≥ 1 and ε ∈ (0, 1) are such that

‖cε(·, t0)‖L∞(Ω) ≤ δ, (4.53)

we have ∫

Ω
np
ε(x, t)dx+

∫

Ω
|∇cε(x, t)|2pdx ≤ C for all t ≥ t0 + 1. (4.54)
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Proof. With δ > 0 to be specified below, let us assume that (4.53) holds for some ε ∈ (0, 1) and
t0 ≥ 1. We then observe that according to Lemma 2.1,

‖cε(·, t)‖L∞(Ω) ≤ δ for all t ≥ t0, (4.55)

and that, moreover, testing the fist equation in (2.1) against np−1
ε and using (2.8) yields

1

p

d

dt

∫

Ω
np
ε + (p− 1)

∫

Ω
np−2
ε |∇nε|2 = (p− 1)

∫

Ω
np−1
ε ∇nε ·

(
Sε(x, nε, cε) · ∇cε

)

≤ p− 1

2

∫

Ω
np−2
ε |∇nε|2 +

p− 1

2
S1 ·

∫

Ω
np
ε|∇cε|2 for all t > 0. (4.56)

Here by Hölder’s and Young’s inequalities, the Gagliardo-Nirenberg inequality, Lemma 4.9 and (4.55),
we can find C1 > 0 and C2 > 0 such that

p− 1

2
S1 ·

∫

Ω
np
ε|∇cε|2 ≤ p− 1

2
S1

(∫

Ω
np+1
ε

) p

p+1 ·
(∫

Ω
|∇cε|2(p+1)

) 1
p+1

=
p− 1

2
S1‖n

p

2
ε ‖2

L
2(p+1)

p (Ω)
· ‖∇cε‖2L2(p+1)(Ω)

≤ C1 ·
(
‖∇n

p

2
ε ‖

2p
p+1

L2(Ω)
· ‖n

p

2
ε ‖

2
p+1

L
2
p (Ω)

+ ‖n
p

2
ε ‖2

L
2
p (Ω)

)
×

×
(∥∥∥|∇cε|p−1D2cε

∥∥∥
2

p+1

L2(Ω)
+ ‖∇cε‖

2p
p+1

L1(Ω)

)
· ‖cε‖

2
p+1

L∞(Ω)

≤ C2δ
2

p+1 ·
(∫

Ω
np−2
ε |∇nε|2 +

∫

Ω
|∇cε|2p−2|D2cε|2 + 1

)
(4.57)

for all t > t0, because ‖n
p

2
ε (·, t)‖

2
p

L
2
p (Ω)

=
∫
Ω n0 for all t > 0 by (2.4) and supε∈(0,1) ‖∇cε‖L∞((0,∞);L1(Ω)) <

∞ by Lemma 3.3.

Likewise, from the Gagliardo-Nirenberg inequality and (2.4) we obtain C3 > 0 and C4 > 0 fulfilling

∫

Ω
np
ε = ‖n

p

2
ε ‖2L2(Ω) ≤ C3‖∇n

p

2
ε ‖

2(p−1)
p

L2(Ω)
· ‖n

p

2
ε ‖

2
p

L
2
p (Ω)

+ C3‖n
p

2
ε ‖2

L
2
p (Ω)

≤ C4 ·
(
‖∇n

p

2
ε ‖2L2(Ω) + 1

) p−1
p

for all t > 0

and hence ∫

Ω
np−2
ε |∇nε|2 ≥ C5

(∫

Ω
np
ε

) p

p−1

− 1 for all t > 0 (4.58)

with some C5 > 0. Combining (4.56)-(4.58) and assuming that

C3δ
2

p+1 ≤ p− 1

4
, (4.59)
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we thus find C6 > 0 and C7 > 0 such that

d

dt

∫

Ω
np
ε + C6

∫

Ω
np−2
ε |∇nε|2 + C6

(∫

Ω
np
ε

) p

p−1

≤ C7δ
2

p+1 ·
∫

Ω
|∇cε|2p−2|D2cε|2 + C7 for all t > t0. (4.60)

We next multiply the differentiated version of the second equation in (2.1), that is, the identity

∂t|∇cε|2 = ∆|∇cε|2 − 2|D2cε|2 − 2∇cε · ∇(nεf(cε))− 2∇cε · (uε · ∇cε), x ∈ Ω, t > 0,

by |∇cε|2p−2 to see that

1

p

d

dt

∫

Ω
|∇cε|2p + (p− 1)

∫

Ω
|∇cε|2p−4

∣∣∣∇|∇cε|2
∣∣∣
2
+ 2

∫

Ω
|∇cε|2p−2|D2cε|2

≤ −2

∫

Ω
|∇cε|2p−2∇cε · ∇(nεf(cε))

−2

∫

Ω
|∇cε|2p−2∇cε · ∇(uε · ∇cε) for all t > 0. (4.61)

Here we note that the corresponding boundary integral is nonpositive, because due to the con-

vexity of Ω, the boundary condition ∂cε
∂ν

= 0 on ∂Ω implies that ∂|∇cε|2
∂ν

≤ 0 on ∂Ω ([28]). Since
supε∈(0,1) ‖f(cε)‖L∞(Ω×(0,∞)) is finite thanks to (1.8) and (2.5), integrating by parts and using the

pointwise inequality |∆cε| ≤
√
2|D2cε| we obtain C8 > 0 such that

−2

∫

Ω
|∇cε|2p−2∇cε · ∇(nεf(cε)) = 2

∫

Ω
nεf(cε)|∇cε|2p−2∆cε

+4(p− 1)

∫

Ω
nεf(cε)|∇cε|2p−4∇cε · (D2cε · ∇cε)

≤ C8

∫

Ω
nε|∇cε|2p−2|D2cε|2

≤ 1

4

∫

Ω
|∇cε|2p−p|D2cε|2 + C2

8

∫

Ω
n2
ε|∇cε|2p−2 (4.62)

for all t > t0. Here we again interpolate using Hölder’s and Young’s inequalities, the Gagliardo-
Nirenberg inequality and Lemma 4.9 as well as (2.4), (4.55) and Lemma 3.3 to find positive constants
C9 and C10 satisfying

C2
8

∫

Ω
n2
ε|∇cε|2 ≤ C2

8‖n
p

2
ε ‖

4
p

L
2(p+1)

p (Ω)

· ‖∇cε‖2(p−1)

L2(p+1)(Ω)

≤ C9 ·
(
‖∇n

p

2
ε ‖

4
p+1

L2(Ω)
· ‖n

p

2
ε ‖

4
p(p+1)

L
2
p (Ω)

+ ‖n
p

2
ε ‖

4
p

L
2
p (Ω)

)
×

×
(∥∥∥|∇cε|p−1D2cε

∥∥∥
2(p−1)
p+1

L2(Ω)
+ ‖∇cε‖

2p(p−1)
p+1

L1(Ω)

)
· ‖cε‖

2(p−1)
p+1

L∞(Ω)

≤ C10δ
2(p−1)
p+1 ·

(∫

Ω
np−2
ε |∇nε|2 +

∫

Ω
|∇cε|2p−2|D2cε|2 + 1

)
(4.63)
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for all t > t0. In the last integral in (4.61), we once more integrate by parts and proceed in a way
similar to that in (4.62) to obtain C11 > 0 such that

−2

∫

Ω
|∇cε|2p−2∇cε · ∇(uε · ∇cε) = 2

∫

Ω
(uε · ∇cε)|∇cε|2p−2∆cε

+4(p− 1)

∫

Ω
(uε · ∇cε)|∇cε|2p−4∇cε · (D2cε · ∇cε)

≤ 1

4

∫

Ω
|∇cε|2p−2|D2cε|2 + C11

∫

Ω
|uε|2|∇cε|2p for all t > 0,

where since t0 ≥ 1, and since Lemma 2.4 entails that supε∈(0,1) ‖uε‖L∞((1,∞);L2(p+1)(Ω) is finite, again
by means of the Hölder inequality, Lemma 4.9, Lemma 3.3 and (4.55) we can find C12 > 0 and C13 > 0
such that

C11

∫

Ω
|uε|2|∇cε|2p ≤ C11

(∫

Ω
|uε|2(p+1)

) 1
p+1

·
(∫

Ω
|∇cε|2(p+1)

) p

p+1

≤ C12 ·
(∥∥∥|∇cε|p−1D2cε

∥∥∥
2p
p+1

L2(Ω)
+ ‖∇cε‖

2p2

p+1

L1(Ω)

)
· ‖cε‖

2p
p+1

L∞(Ω)

≤ C13δ
2p
p+1 ·

(∫

Ω
|∇cε|2p−2|D2cε|2 + 1

)
for all t > t0. (4.64)

As moreover the Gagliardo-Nirenberg inequality and Lemma 3.3 provide positive constants C14, C15

and C16 such that
∫

Ω
|∇cε|2p =

∥∥∥|∇cε|p
∥∥∥
2

L2(Ω)
≤ C14

∥∥∥∇|∇cε|p
∥∥∥

2p−1
p

L2(Ω)
·
∥∥∥|∇cε|p

∥∥∥
1
p

L
1
p (Ω)

+ C14

∥∥∥|∇cε|p
∥∥∥
2

L
1
p (Ω)

≤ C15 ·
(∫

Ω

∣∣∣∇|∇cε|p
∣∣∣
2
+ 1

) 2p−1
2p

≤ C16 ·
(∫

Ω
|∇cε|2p−4

∣∣∣∇|∇cε|2
∣∣∣
2
+ 1

) 2p−1
2p

for all t > 0,

and since thus

∫

Ω
|∇cε|2p−4

∣∣∣∇|∇cε|2
∣∣∣
2
≥ C17

(∫

Ω
|∇cε|2p

) 2p
2p−1

− 1 for all t > 0

with some C17 > 0, the inequalities (4.61), (4.62), (4.63) and (4.64) ensure that under the assumptions

C10δ
2(p−1)
p+1 ≤ 1

2
and C13δ

2p
p+1 ≤ 1

2
, (4.65)

we can find C18 > 0 and C19 > 0 fulfilling

d

dt

∫

Ω
|∇cε|2p + C18

∫

Ω
|∇cε|2p−2|D2cε|2 + C18 ·

(∫

Ω
|∇cε|2p

) 2p
2p−1

≤ C19δ
2(p−1)p+ 1 ·

∫

Ω
np−2
ε |∇nε|2 + C19 for all t > t0.
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Adding this to (4.60), we infer that if furthermore

C7δ
2

p+1 ≤ C18 and C19δ
2(p−1)
p+1 ≤ C6,

then

d

dt

{∫

Ω
np
ε +

∫

Ω
|∇cε|2p

}
+ C6 ·

(∫

Ω
np
ε

) p

p−1

+ C18 ·
(∫

Ω
|∇cε|2p

) 2p
2p−1

≤ C7 + C19

for all t > t0, which implies that y(t) :=
∫
Ω nε(·, t) +

∫
Ω |∇cε(·, t)|2p, t ≥ t0, satisfies

y′(t) + C20 · yλ(t) ≤ C21 for all t > t0

with certain positive constants C20 and C21 and λ := min
{

p
p−1 ,

2p
2p−1

}
≡ 2p

2p−1 > 1. A straightforward

ODE comparison shows that therefore

y(t) ≤ max

{(2C21

C20

) 1
λ
,
((λ− 1)C20

2

)− 1
λ−1 · (t− t0)

− 1
λ−1

}
for all t > t0,

which immediately yields (4.54). �

Now higher regularity properties beyond an adequately large time can be obtained by standard argu-
ments.

Lemma 4.11. There exist T > 0, θ ∈ (0, 1) and C > 0 such that

‖n‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
+ ‖c‖

C2+θ,1+ θ
2 (Ω̄×[t,t+1])

+ ‖u‖
C2+θ,1+ θ

2 (Ω̄×[t,t+1])
≤ C for all t ≥ T. (4.66)

Proof. We fix any p > 2 and apply Lemma 4.10 to find δ > 0 with the property stated therein.
Then Lemma 4.8 provides T0 > 0 and ε⋆ ∈ (0, 1) such that ‖cε(·, T0)‖L∞(Ω) ≤ δ for all ε ∈ (εj)j∈N
such that ε < ε⋆. Then writing T1 := T0 + 1, from Lemma 4.10 we obtain C1 > 0 such that whenever
ε ∈ (εj)j∈N is such that ε < ε⋆, we have

‖nε(·, t)‖Lp(Ω) ≤ C1 for all t ≥ T1 (4.67)

and
‖∇cε(·, t)‖L2p(Ω) ≤ C1 for all t ≥ T1. (4.68)

In particular, using that p > 1, from the variation-of-constants representation

uε(·, t) = e−(t−T1)Auε(·, T1) +

∫ t

T1

e−(t−s)AP[nε(·, s)∇φ]ds, t > T1,

and standard regularity arguments involving well-known smoothing properties of the Stokes semigroup
([13, p.201]) one can readily derive the existence of θ1 ∈ (0, 1) and C2 > 0 such that for any such ε,

‖uε‖
Cθ1,

θ1
2 (Ω̄×[t,t+1])

≤ C2 for all t ≥ T2 := T1 + 1. (4.69)
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Along with (4.67) and (4.68), this provides a bound in L∞((T2,∞);Lp(Ω)) for the inhomogeneity
hε := nεf(cε) − uε · ∇cε in the equation cεt = ∆cε + hε, whence standard Lp − Lq estimates for the
Neumann heat semigroup (eτ∆)τ≥0 (see e.g. [46] for versions covering the present situation) allow for
using the identity

∇cε(·, t) = ∇e(t−T2)∆cε(·, T2) +

∫ t

T2

∇e(t−s)∆hε(·, s)ds, t > T2,

to gain θ2 ∈ (0, 1) and C3 > 0 such that

‖∇cε(·, t)‖
Cθ2,

θ2
2 (Ω̄×[t,t+1])

≤ C3 for all t ≥ T3 := T2 + 1 (4.70)

for all ε ∈ (εj)j∈N such that ε < ε⋆.
We may now use that ∇ · (nεuε) = uε · ∇nε thanks to the fact that ∇ · uε ≡ 0, and that hence

nε(·, t) = e(t−T3)∆nε(·, T3)−
∫ t

T3

e(t−s)∆∇ ·
{
nε

(
Sε(x, nε, cε) · ∇cε

)
+ nεuε

}
(·, s)ds, t > T3,

to obtain from (4.67), (4.70) and (4.69) that for some θ3 ∈ (0, 1) and C4 > 0 we have

‖nε‖
Cθ3,

θ3
2 (Ω̄×[t,t+1])

≤ C4 for all t ≥ T4 := T3 + 1. (4.71)

Together with (4.69), (4.70) and standard parabolic Schauder theory ([24]), this now guarantees a

bound for cε in C2+θ4,1+
θ4
2 (Ω̄ × [t, t + 1]) with some θ4 ∈ (0, 1) and all t ≥ T5 := T4 + 1, whereupon

by the same token we obtain an estimate for nε in C2+θ5,1+
θ5
2 (Ω̄× [t, t+ 1]) for t ≥ T6 := T5 + 1 and

some θ5 ∈ (0, 1). Finally, the regularizing effect of the Stokes semigroup thereafter implies a bound

for uε in C2+θ6,1+
θ6
2 (Ω̄ × [t, t + 1];R2) for t ≥ T7 := T6 + 1 and some θ6 ∈ (0, 1). Taking ε = εj ց 0,

we easily arrive at the desired conclusion. �

Our main result on eventual smoothness thereby becomes immediate.

Proof of Theorem 1.1. By means of (4.66) and an application of the Arzelà-Ascoli theorem, we
infer that the pointwise convergence processes in (2.3) actually take place in the respective spaces
indicated in (1.15). Along with a standard construction of an associated pressure function, this also
implies the claimed solution properties. �

5 Stabilization. Proof of Theorem 1.2

In light of the regularity estimates asserted by Lemma 4.11, the weak decay properties indicated by
the inequalities (4.4) and (4.5) in Lemma 4.1 can now easily be turned into uniform stabilization of n
and u toward the claimed constant limit functions in the large time limit:

Proof of Theorem 1.2. In view of (2.3), the statement (1.17) is an immediate consequence of
Lemma 4.8.
To prove (1.18), let us assume on the contrary that there exist C1 > 0 and (tk)k∈N ⊂ (0,∞) such that
tk → ∞ as k → ∞ and

‖u(·, tk)‖L∞(Ω) ≥ C1 for all k ∈ N,
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where we clearly may assume that tk+1 > tk + 1 for all k ∈ N. Then Lemma 4.11 combined with
the Arzelà-Ascoli theorem allows us to pick a nontrivial u∞ ∈ C0(Ω̄) and a subsequence of (tk)k∈N,
again denoted by (tk)k∈N for notational convenience, along which we have u(·, tk) → u∞ in L∞(Ω)
and hence also in L2(Ω). Writing C2 := ‖u∞‖L2(Ω), we thus obtain that ‖u(·, tk)‖L2(Ω) ≥ C2

2 for all
sufficiently large k ∈ N. Now using the temporal Hölder estimate contained in (4.66) we easily inter
the existence of τ ∈ (0, 1) and k0 ∈ N such that

‖u(·, t)‖L2(Ω) ≥
C2

4
for all t ∈ [tk, tk + τ ] and each k ≥ k0,

which in particular implies that for any k1 > k0 we have
∫ ∞

0
‖u(·, t)‖2L2(Ω)dt ≥

∫ tk1+1

0
‖u(·, t)‖2L2(Ω)dt

≥
k1∑

k=k0

∫ tk+τ

tk

‖u(·, t)‖2L2(Ω)dt

≥ C2
2

16
· τ · (k1 − k0). (5.1)

Taking k1 → ∞ yields a contradiction to the inclusion u ∈ L2(Ω× (0,∞);R2) asserted by Lemma 4.1
and thereby shows that actually (1.18) must be valid.

Similarly, (1.16) can be proved on combining Lemma 4.11 with the integrability property (4.4) in
Lemma 4.1: Indeed, if (1.16) was false then there would exist C3 > 0 and a sequence (t̃k)k∈N such
that t̃k+1 > t̃k + 1 for all k ∈ N and

‖n(·, t̃k)− n0‖L∞(Ω) ≥ C3 for all k ∈ N. (5.2)

By means of Lemma 4.11 we may extract a subsequence of (t̃k)k∈N, again denoted by (t̃k)k∈N, such
that

n(·, t̃k) → n∞ in L∞(Ω) as k → ∞ (5.3)

with some nonnegative n∞ ∈ C0(Ω̄). Here the uniformity of the convergence in (5.3) warrants that
firstly, with κ(t) = (−

∫
Ω

√
n(·, t) + 1)2 − 1 as in (4.1) we have

κ(t̃k) → κ∞ :=
(
−
∫

Ω

√
n∞ + 1

)2
− 1 as k → ∞, (5.4)

and that secondly

−
∫

Ω
n∞ = lim

k→∞
−
∫

Ω
n(·, tk) = n0 (5.5)

because of (6.3). Let us next make sure that

‖n(·, t̃k)− κ(t̃k)‖L1(Ω) → 0 as k → ∞. (5.6)

In fact, if this was false then for some C4 > 0 we could assume on passing to a further subsequence if
necessary that

‖n(·, t̃k)− κ(t̃k)‖L1(Ω) ≥ C4 for all k ∈ N.
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Relying on the temporal Hölder estimate for n implied by (4.66), we could then find τ̃ ∈ (0, 1) and
k̃0 ∈ N such that

‖n(·, t)− κ(t)‖L1(Ω) ≥
C4

2
for all t ∈ [t̃k, t̃k + τ̃ ] and any k ≥ k0,

which, by an argument similar to that in (5.1), would entail that
∫ ∞

0
‖n(·, t)− κ(t)‖2L1(Ω)dt = ∞

and thereby contradict the outcome of Lemma 4.1.

Having thereby verified (5.6), we may combine this with (5.3) and (5.4) to conclude that

n∞ ≡ κ∞ in Ω.

In light of (5.5), this identifies the constant κ∞ according to

κ∞ = −
∫

Ω
n0 = n0,

and thereby shows that n∞ ≡ n0, which is evidently incompatible with (5.2) and (5.3). The proof of
(1.16) is thus complete. �

6 Appendix: The underlying solution concept

Although nowhere explicitly referred to in our analysis, for completeness let us recall from [54, Definition 2.1]
the precise generalized solution concept underlying Theorem A, and hence also Theorem 1.1 and Theorem 1.2).

Definition 6.1. Suppose that

n ∈ L∞((0,∞);L1(Ω)),

c ∈ L∞

loc(Ω̄× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω)) and

u ∈ L1

loc([0,∞); (W 1,1
0

(Ω))2) (6.1)

are such that n ≥ 0 and c ≥ 0 a.e. in Ω× (0,∞) and

ln(n+ 1) ∈ L2

loc([0,∞);W 1,2(Ω)), (6.2)

that ∫

Ω

n(x, t)dx =

∫

Ω

n0(x) for a.e. t > 0, (6.3)

and that ∇·u = 0 a.e. in Ω× (0,∞). Then the triple (n, c, u) will be called a global mass-preserving generalized
solution of (1.7) if the inequality

−
∫

∞

0

∫

Ω

ln(n+ 1)ϕt −
∫

Ω

ln(n0 + 1)ϕ(·, 0) ≥
∫

∞

0

∫

Ω

ln(n+ 1)∆ϕ+

∫
∞

0

∫

Ω

|∇ ln(n+ 1)|2ϕ

−
∫

∞

0

∫

Ω

n

n+ 1
∇ ln(n+ 1) ·

(
S(x, n, c) · ∇c

)
ϕ

+

∫
∞

0

∫

Ω

n

n+ 1

(
S(x, n, c) · ∇c

)
· ∇ϕ

+

∫
∞

0

∫

Ω

ln(n+ 1)(u · ∇ϕ) (6.4)
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holds for each nonnegative ϕ ∈ C∞

0 (Ω̄× [0,∞)) with ∂ϕ
∂ν

= 0 on ∂Ω× (0,∞), if moreover

∫
∞

0

∫

Ω

cϕt +

∫

Ω

c0ϕ(·, 0) =
∫

∞

0

∫

Ω

∇c · ∇ϕ+

∫
∞

0

∫

Ω

nf(c)ϕ−
∫

∞

0

∫

Ω

c(u · ∇ϕ) (6.5)

for any ϕ ∈ L∞(Ω×(0,∞))∩L2((0,∞);W 1,2(Ω)) having compact support in Ω̄×[0,∞) with ϕt ∈ L2(Ω×(0,∞)),
and if finally

−
∫

∞

0

∫

Ω

u · ϕt −
∫

Ω

u0 · ϕ(·, 0) = −
∫

∞

0

∫

Ω

∇u · ∇ϕ+

∫
∞

0

∫

Ω

n∇φ · ϕ (6.6)

for all ϕ ∈ C∞

0 (Ω× [0,∞);R2) with ∇ · ϕ ≡ 0.
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[53] Winkler, M.: How far do chemotaxis-driven forces influence regularity in the Navier-Stokes
system? Trans. Amer. Math. Soc. 369, 3067-3125 (2017)

[54] Winkler, M.: Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system
with rotational flux components. J. Evol. Equ. 18, 1267-1289 (2018)

[55] Xue, C.: Macroscopic equations for bacterial chemotaxis: integration of detailed biochemistry of
cell signaling. J. Math. Biol. 70, 1-44 (2015)

[56] Xue, C., Othmer, H.G.: Multiscale models of taxis-driven patterning in bacterial populations.
SIAM J. Appl. Math. 70, 133-167 (2009)

[57] Zhang, Q., Li, Y.: Decay rates of solutions for a two-dimensional chemotaxis-Navier-Stokes
system. Discrete Contin. Dyn. Syst. Ser. B 20, 2751-2759 (2015)

[58] Zhang, Q., Li, Y.: Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes
system with nonlinear diffusion. J. Differential Equations 259, 3730-3754 (2015)

38


