
Boundedness and stabilization in a population model

with cross-diffusion for one species

Youshan Tao∗

School of Mathematical Sciences, Shanghai Jiao Tong University,

Shanghai 200240, P.R. China

Michael Winkler
#

Institut für Mathematik, Universität Paderborn,

33098 Paderborn, Germany

Abstract

This work studies the two-species Shigesada-Kawasaki-Teramoto model with cross-diffusion for one
species, as given by

{

ut = ∆[(d1 + a11u+ a12v)u] + µ1u(1− u− a1v),

vt = ∆[(d2 + a22v)v] + µ2v(1− v − a2u),
(⋆)

with positive parameters d1, d2 and a11, and nonnegative constants a12, a22, µ1, µ2, a1 and a2. Be-
yond some statements on global existence, the literature apparently provides only few results on
qualitative behavior of solutions; in particular, questions related to boundedness as well as to large
time asymptotics in (⋆) seem unsolved so far.

In the present paper it is inter alia shown that if n ≤ 9 and Ω ⊂ R
n is a bounded convex domain

with smooth boundary, then whenever u0 ∈ W 1,∞(Ω) and v0 ∈ W 1,∞(Ω) are nonnegative, the
associated Neumann initial-boundary value problem for (⋆) possesses a global classical solution
which in fact is bounded in the sense that

u ∈ L∞(Ω× (0,∞)) and v ∈ L∞((0,∞);W 1,p(Ω)) for all p > n. (⋆⋆)

Moreover, the asymptotic behavior of arbitrary nonnegative solutions enjoying the boundedness
property is studied in the general situation when n ≥ 1 is arbitrary and Ω no longer necessarily
convex. If a1 ∈ (0, 1), then in both of the cases a2 > 1 and a2 ∈ (0, 1), an explicit smallness
condition on a12 is identified as sufficient for stabilization of any nontrivial solutions toward a
corresponding unique nontrivial spatially homogeneous steady state. If a1 ≥ 1 and a2 ∈ (0, 1), then
without any further assumption all nonzero solutions are seen to approach the equilibrium (0, 1).
As a by product, this particularly improves previous knowledge on nonexistence of nonconstant
equilibria of (⋆).
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1 Introduction

We consider the initial-boundary value problem




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











ut = ∆[(d1 + a11u+ a12v)u] + µ1u(1− u− a1v), x ∈ Ω, t > 0,

vt = ∆[(d2 + a22v)v] + µ2v(1− v − a2u), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.1)

in a bounded domain Ω ⊂ R
n with smooth boundary, as initially proposed by Shigesada, Kawasaki and

Teramoto ([26]) to model processes of spatial segregation in populations of interacting species. In this
context, u = u(x, t) and v = v(x, t) stand for the densities of two competing species, d1, d2, a11 and
a22 represent their respective random diffusion and self-diffusion rates, and a12 measures the ability
of the first species to repulsively cross-diffuse; the parameters µ1, µ2, a1 and a2 indicate the rates of
logistic proliferation, as well as of interspecific competition, in the style of usual Lotka-Volterra-type
kinetics.

Since its introduction in 1979, along with several simplifications and also a slightly more general vari-
ant accounting for cross-diffusive movement also of the second species, (1.1) has received considerable
attention. In the case when a11 is merely assumed nonnegative but a12 and a22 are allowed to be
positive, the only available result addressing smooth solutions seems to go back to [18], where global
existence of classical solutions to (1.1) was proved in two-dimensional domains; for arbitrary n ≥ 1,
at least global weak solutions can be constructed ([4], [5]; cf. also [30] for some results on a variant
of (1.1) involving more general than logistic-type degradation terms, and [3] as well as [15] for ex-
amples of subtle approaches even capable of covering some multi-species cases in the presence of a
certain so-called detailed balance of system ingredients). In the case when a11 is positive, exploiting
a correspondingly present strongly dampening effect of self-diffusion lead to results on global classical
solvability firstly for n ≤ 5 ([6], [14]), and by a refined analysis thereafter for any n ≤ 9 ([31]), and
recently for arbitrary n ≥ 1 ([10]).

Focusing on issues of existence theory, the above works exclusively concentrate on questions of global
solvability, and in particular they do not provide any information on the large time behavior of so-
lutions, with the case µ1 = µ2 = 0 of trivial kinetics forming an exception ([5]). To the best of our
knowledge, even boundedness of solutions could be established only for very specific, and hence quite
non-generic, parameter constellations up to now ([11]).

It is the purpose of the present work to undertake a natural next step in the analsyis by providing
some information on the large time behavior of solutions to (1.1) under mild assumptions on the sys-
tem parameters. Our first particular objective consists in developing an approach which, relying on
the additional assumptions that Ω be convex and that, more essentially, the space dimension satisfies
n ≤ 9, asserts boundedness in suitable spaces; in fact, our analysis for its derivation will give an
independent proof of the global existence result already known from [31] and [10].

Theorem 1.1 Let n ≤ 9 and Ω ⊂ R
n be a bounded convex domain with smooth boundary, and suppose

that the parameters d1, d2 and a11 are positive and a12, a22, a1, a2, µ1 and µ2 nonnegative. Then for all
nonnegative functions u0 and v0 from W 1,∞(Ω), the problem (1.1) possesses a global classical solution

2



which for any ϑ > n is uniquely determined by the inclusion

(u, v) ∈
(

C0(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) ∩ L∞
loc([0,∞);W 1,ϑ(Ω))

)2
,

such that both u and v are nonnegative in Ω̄× (0,∞), and such that (u, v) is bounded in the sense that
given any p > 1 one can find K > 0 fulfilling

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,p(Ω) ≤ K for all t > 0. (1.2)

The boundedness property (1.2) discovered above will thereafter enable us to address the problem of
describing in more detail the large time behavior of the solutions constructed in Theorem 1.1, with
a particular focus on the question how far the presence of cross-diffusion may influence properties of
stabilization toward spatially homogeneous steady states which are well-known in the corresponding
semilinear case obtained on letting a11 = a12 = a22 = 0 in (1.1). Here the crucial role of (1.2) will
already become clear during the formulation of our results in this respect, which namely will apply to
any spatial dimension and widely arbitrary solutions of (1.1) that will merely be assumed to satisfy
(1.2) for some p > n.

Indeed, we firstly recall that in the latter situation, the additional assumption that

a1 ∈ (0, 1) and a2 > 1 (1.3)

ensures that for any choice of reasonably regular initial data 0 6≡ u0 ≥ 0 and v0 ≥ 0, the corresponding
version of (1.1) possesses a uniquely determined global classical solution satisfying u(·, t) → 1 and
v(·, t) → 0 in L∞(Ω) as t → ∞, hence reflecting complete invasion of the entire spatial habitat by the
species which more efficiently degrades the other (see [34] for an analysis of a generalized multi-species
case in absence of diffusion, and [28] for the diffusible two-species case as well as a generalization to
small chemotactic interaction).

Our main result in this direction asserts that with regard to the parameters a1 and a2, the sufficiency
of (1.3) for u to outcompete v remains unaffected also when cross-diffusion is introduced, provided
that the diffusivities in (1.1) are suitably large in comparison to cross-diffusion; more precisely:

Theorem 1.2 Suppose that n ≥ 1 is arbitrary, that a1 and a2 satisfy (1.3), and that d1 > 0, d2 > 0,
µ1 > 0, µ2 > 0 and a12 ≥ 0 are such that

a212
d1d2

≤ µ1

µ2
· 4(2− a1)(a2 − 1)

a2
. (1.4)

Let (u, v) ∈ (C2,1(Ω̄ × (0,∞)))2 be any classical solution of the boundary value problem in (1.1) for
which u and v are nonnegative with u 6≡ 0, and for which (1.2) holds with some p > n and some
K > 0. Then

u(·, t) → 1 in C2(Ω̄) as t → ∞ (1.5)

and
v(·, t) → 0 in C2(Ω̄) as t → ∞. (1.6)
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We will next be concerned with the corresponding question in the case when yet a1 ∈ (0, 1) but
in addition also a2 is suitably small, in which a flat coexistence state is known to determine the
asymptotics in the above semilinear situation (cf. e.g. [2] for a proof actually covering a more general
cross-diffusive generalization thereof). More precisely assuming that

a1 ∈ (0, 1) and a2 ∈ [0, 1), (1.7)

we shall reveal a global asymptotic stability property of the homogeneous equilibrium (u⋆, v⋆) given
by

u⋆ :=
1− a1

1− a1a2
and v⋆ :=

1− a2

1− a1a2
, (1.8)

again under an appropriate assumption on relative smallness of cross-diffusion:

Theorem 1.3 Let n ≥ 1 and a1 and a2 be such that (1.7) holds, and let d1, d2, µ1 and µ2 be positive
and a12 ≥ 0 fulfill

a212
d1d2

<
µ1

µ2
· 4a1(1− a2)

a2(1− a1)
. (1.9)

Then whenever (u, v) ∈ (C2,1(Ω̄ × (0,∞)))2 is a classical solution of the boundary value problem in
(1.1) such that 0 6≡ u ≥ 0 and 0 6≡ v ≥ 0 and that (1.2) is valid with some p > n and K > 0, we have

u(·, t) → u⋆ in C2(Ω̄) as t → ∞ (1.10)

and
v(·, t) → v⋆ in C2(Ω̄) as t → ∞, (1.11)

where u⋆ and v⋆ are given by (1.8).

The smallness conditions (1.4) and (1.9) on the ratio q :=
a212
d1d2

seem in very good accordance with
a well-known result from a corresponding steady-state analysis asserting nonexistence of nonconstant
equilibria for (1.1) whenever precisely this expression q is small ([17], [23]; cf. also some further
corresponding nonexistence results under alternative smallness assumptions on a12, as achieved in
[21]). On the other hand, under the hypothesis that the cross-diffusion coefficient a12 is sufficiently
large, a recent study shows that (1.1) does possesses nonconstant positive steady states at least when
a2 > 1, provided that the remaining parameters lie in a suitable range ([19]). This indicates that
appropriate smallness requirements on a12 may indeed be necessary for stabilization results of the
above form.

Surprisingly, no such further assumption on a12 will be necessary for the second species to outcompete
the first in the situation dual to that from Theorem 1.2. Namely, in the case when

a1 ≥ 1 and a2 ∈ (0, 1), (1.12)

we shall see that without any restriction on the size of a12 all nontrivial solutions will approach the
equilibrium (0, 1) in the large time limit:
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Theorem 1.4 Assume that n ≥ 1 and that a1 and a2 satisfy (1.12). Then for each solution (u, v) ∈
(C2,1(Ω̄ × (0,∞)))2 of the boundary value problem in (1.1) which is such that u ≥ 0 and 0 6≡ v ≥ 0
and that (1.2) is satisfied with some p > n and K > 0, we have

u(·, t) → 0 in C2(Ω̄) as t → ∞ (1.13)

and
v(·, t) → 1 in C2(Ω̄) as t → ∞. (1.14)

In summary, Theorem 1.2, Theorem 1.3 and Theorem 1.4 confirm asymptotic preference of the spa-
tially homogeneous equilibria dictated by the Lotka-Volterra kinetics in (1.1), in both the strongly
asymmetric and the weakly competitive situations determined by (1.3), (1.12) and (1.7), provided
that cross-diffusion is suitably small in the cases when u is not eventually outcompeted. With regard
to the creation of a yet more complete picture, e.g. for applications of (1.1) in spatial ecology, an
interesting open problem consists in deciding to which extent our above conditions on a12 can be
viewed as approaching optimality.

Without any further comment, as an immediate by-product of Theorem 1.2, Theorem 1.3 and The-
orem 1.4 let us furthermore state the following result on nonexistence of nonconstant steady-state
solutions to (1.1) which complements the recent findings gained in [21]; in particular, in the case when
a1 ≥ 1 and a2 ∈ (0, 1) this significantly extends the latter by not relying on any further assumption
such as d1 ≥ d2 or a12

d2
< 1

a2
required therein.

Corollary 1.5 Let n ≥ 1, and let d1 > 0, d2 > 0, a11 ≥ 0, a12 ≥ 0, a1 > 0 and a2 > 0, and suppose
that (u, v) ∈ (C1(Ω̄) ∩ C2(Ω))2 is a steady-state solution of (1.1) such that u and v are nonnegative.

i) If
a1 ∈ (0, 1) and a2 > 1, (1.15)

and if (1.4) holds, then unless u ≡ 0,
(u, v) ≡ (1, 0). (1.16)

ii) In the case when
a1 ∈ (0, 1) and a2 ∈ [0, 1), (1.17)

and when moreover (1.9) is valid and u 6≡ 0 6≡ v, we have

(u, v) ≡ (u⋆, v⋆). (1.18)

iii) If
a1 ≥ 1 and a2 ∈ (0, 1), (1.19)

then unless v ≡ 0,
(u, v) ≡ (0, 1). (1.20)

Since our analysis will strongly rely on the absence of cross-diffusion in the second equation in (1.1), nei-
ther of our results covers the case of doubly cross-diffusive systems. In fact, except for one-dimensional
settings where some results on global existence and boundedness are available ([12], [27]), even with
regard to a basic existence theory the understanding of such systems seems far from complete; beyond
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global existence within suitably generalized solution frameworks ([4], [5], [7], [3]), [15]), or for sys-
tems with suitably small cross-diffusion coefficients ([8]), fairly little seems known about the solution
behavior especially in multi-dimensional situations. Only in the special case when both diffusivities
coincide and self-diffusion is entirely neglected, the existence of global smooth solutions as well as
their uniform boundedness have recently been established ([22]).

Challenges and main ideas. The main intention in our strategy toward deriving the boundedness
result in Theorem 1.1 is to suitably control any possibly destabilizing effect of cross-diffusion by mak-
ing appropriate use of the strongly dampening properties of the nonlinear diffusion mechanism in the
first equation in (1.1) at large densities of u. A similar intuition has been pursued in numerous stud-
ies on various types of related cross-diffusive systems of chemotaxis type involving diffusivities D(u)
which become suitably strong at large values of u. In fact, some parallels to such taxis systems can be
drawn by observing that despite evident structural differences becoming transparent when expanding
∆(uv) = ∇ · (u∇v) +∇ · (v∇u), the cross-diffusive interaction in (1.1) can, heuristically, be guessed
to share essential features with chemotactic cross-diffusion, in classical Keller-Segel systems becoming
manifest in terms of the form ∇ · (u∇v), with regard to their strength as destabilizing nonlinearities
counteracting diffusion. Indeed, for several types of such systems an appropriately organized analysis
leads to the conclusion that linear growth of D(u) with respect to u warrants boundedness, within
large classes of the respective evolution equation for v, in particular containing the choice made in
(1.1) when a22 = 0 ([25], [20], [32]).

Unlike in the latter situation, however, in the case a22 > 0 when also v diffuses in a nonlinear manner,
a substantial technical obstacle seems to consist in a lack of appropriate knowledge on regularity prop-
erties of v in dependence on supposedly present regularity properties of u, especially in cases when the
latter are rather weak. In particular, this apparently obstructs any detection of energy-like properties
in (1.1) which involve coupled functionals of the form

∫

Ω
up +B

∫

Ω
|∇v|q (1.21)

for some B > 0 and p > 1 whenever q > 2, as playing a corresponding role when a22 = 0. This is due
to the circumstance that even with regard to the scalar equation vt = ∆φ(v)+ f(x, t) in Ω× (0, T ) for
given f and T > 0, in the case φ′ 6≡ const., the functional

∫

Ω |∇v|q for q > 2 seems to enjoy favorable
quasi-Lyapunov properties only along solutions for which (v(·, t))t∈(0,T ) is a priori known to be equi-
continuous in Ω̄; in consequence, tracking the time evolution thereof appears to be inadequate if in
accordance with basic properties of (1.1) (cf. Lemma 2.2) the function f herein is merely assumed to
belong to L∞((0, T );L1(Ω)) and hence insufficient to enforce estimates on the modulus of continuity
of v.

Nevertheless attempting to adequately respect the coupling in (1.1), in a first step of our a priori
estimation procedure we shall therefore restrict ourselves to the study of a functional related to the
choice q = 2, namely,

∫

Ω
up +B

∫

Ω
|∇φ(v)|2, (1.22)

with suitably chosen B > 0 and φ(s) := d2s + a22s
2, s ≥ 0 (Lemma 3.4). In view of the increasing

strength of cross-diffusive contributions at large values of p, this approach will in a natural manner be
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restricted to a bounded range for p (Lemma 3.5), but in the case n ≤ 9 this range will contain suitably
large values of p so as to allow for the conclusion that the regularity properties of u thereby gained are
sufficient to warrant bounds for v in some spaces of Hölder continuous functions (Lemma 4.1). Along
with an Ehrling-type interpolation lemma for such uniformly continuous functions (Lemma 10.1), this
will enable us to trace functionals of the form in (1.21) for some arbitrarily large p and q, resulting
in estimates for u and v with respect to norms in spatial Lp spaces for any finite p > 1 (Lemma
5.1). Straightforward bootstrap arguments relying on standard parabolic regularity theory (Lemma
5.2, Lemma 6.1, Lemma 6.2 and Lemma 6.3) will thereafter establish the claim of Theorem 1.1.

The proof of the stabilization result in Theorem 1.2 will be based on investigating functionals of the
form

∫

Ω
(u− 1− lnu) +

α

2

∫

Ω
v2 + β

∫

Ω
v,

which can be seen to constitute a genuine energy functional for (1.1) if the system coefficients satisfy
the hypotheses of Theorem 1.2 and the free parameters α > 0 and β > 0 are adjusted properly (Lemma
7.3, Lemma 7.4, Lemma 7.5 and Lemma 7.6).
Likewise, our derivation of the results on coexistence and outcompetition stated in Theorem 1.3 and
Theorem 1.4 will rely on corresponding Lyapunov properties of

∫

Ω

(

u− u⋆ − u⋆ ln
u

u⋆

)

+ α

∫

Ω

(

v − v⋆ − v⋆ ln
v

v⋆

)

and of
∫

Ω
u+ β

∫

Ω
(v − 1− ln v)

for suitably chosen α > 0 and β > 0, respectively (Section 8 and Section 9).

It is well conceivable that this basic strategy toward our asymptotic analysis of (1.1) can be adapted
so as to appropriately cover also variants of (1.1) involving several species, such as those addressed in
[3] and in [15], or also more general power law nonlinearities in the style of those considered in [30].
As a prerequitite forming an apparently necessary fundament of our approach, however, developing a
theory of global solvability by bounded functions, in the flavor of e.g. the results from Theorem 1.1,
seems to require substantial further efforts and thus goes beyond the scope of the present work.

2 Preliminaries

Let us recall the following local existence and extensibility result from the standard literature ([1]).

Lemma 2.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, let d1, d2, a11 be

positive and a12, a22, a1, a2, µ1 and µ2 be nonnegative, and assume that u0 and v0 are nonnegative
functions from W 1,∞(Ω). Then there exist Tmax ∈ (0,∞] and a classical solution (u, v) of (1.1) in
Ω× (0, Tmax), for each ϑ > n uniquely determined by the requirement that

(u, v) ∈
(

C0(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)) ∩ L∞
loc([0, Tmax);W

1,ϑ(Ω))
)2

,
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such that u and v are nonnegative in Ω× (0, Tmax), and such that

either Tmax = ∞, or

lim
tրTmax

sup
(

‖u(·, t)‖W 1,ϑ(Ω) + ‖v(·, t)‖W 1,ϑ(Ω)

)

= ∞ for all ϑ > n. (2.1)

Throughout the sequel, unless otherwise stated we shall assume that Ω, u0 and v0 are as specified in
Lemma 2.1, and let (u, v) denote the corresponding solution, defined up to its maximal existence time
Tmax ≤ ∞.

Some basic properties of any such solution are immediate.

Lemma 2.2 The solution of (1.1) satisfies

d

dt

∫

Ω
u = µ1

∫

Ω
u− µ1

∫

Ω
u2 − µ1a1

∫

Ω
uv for all t ∈ (0, Tmax), (2.2)

and in particular we have
∫

Ω
u(·, t) ≤ m := max

{

∫

Ω
u0, |Ω|

}

for all t ∈ (0, Tmax). (2.3)

Moreover,
‖v(·, t)‖L∞(Ω) ≤ M := max{‖v0‖L∞(Ω), 1} for all t ∈ (0, Tmax). (2.4)

Proof. From an integration of the first equation in (1.1) we immediately obtain (2.2). Since both
u and v are nonnegative, and since

∫

Ω u2 ≥ 1
|Ω|(
∫

Ω u)2 for all t ∈ (0, Tmax) by the Cauchy-Schwarz
inequality, this implies that

d

dt

∫

Ω
u ≤ µ1

∫

Ω
u− µ1

∫

Ω
u2

≤ µ1

∫

Ω
u− µ1

|Ω|
(

∫

Ω
u
)2

for all t ∈ (0, Tmax).

On an ODE comparison, this entails (2.3), whereas (2.4) is a direct consequence of the maximum
principle. �

In order to prepare our further analysis, and especially a suitable testing technique respecting the
structure of nonlinear diffusion in the second equation in (1.1), let us introduce the function φ :
[0,∞) → R defined by setting

φ(s) := d2s+ a22s
2 for s ∈ R, (2.5)

and fix the following elementary features thereof for frequent reference in the remaining part of the
paper.

Lemma 2.3 The function φ from (2.5) satisfies

φ(v(x, t)) ≤ d2M + a22M
2 for all x ∈ Ω and t ∈ (0, Tmax) (2.6)

and
d2 ≤ φ′(v(x, t)) ≤ d2 + 2a22M for all x ∈ Ω and t ∈ (0, Tmax), (2.7)

with M > 0 given by (2.4).

Proof. All three inequalities are evident consequences of (2.4) and the nonnegativity of v. �
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3 A spatio-temporal L2 bound on ∇u
p+1

2 for p < 3n
(n−2)+

The purpose of this section consists in deriving a space-time L2 for ∇uλ for suitable λ > 2, which will
appear as part of the dissipation rate in a quasi-energy inequality related to a coupled functional that
involves spatial Lp norms of u and a Dirichlet integral for φ(v) with φ as in (2.5).

As a first step toward this, let us perform two standard testing procedures to the first and second
equations in (1.1) separately. The result of the former is straighforward:

Lemma 3.1 Let p ≥ 2. Then for all t ∈ (0, Tmax), we have

1

p

d

dt

∫

Ω
up + (p− 1)a11

∫

Ω
up−1|∇u|2 ≤ (p− 1)a212

4a11

∫

Ω
up−1|∇v|2 + µ1

∫

Ω
up. (3.1)

Proof. We multiply the first equation in (1.1) by up−1 and integrate by parts to find on dropping
four nonpositive summands on the resulting right-hand side that

1

p

d

dt

∫

Ω
up = −(p− 1)d1

∫

Ω
up−2|∇u|2 − 2(p− 1)a11

∫

Ω
up−1|∇u|2

−(p− 1)a12

∫

Ω
up−2v|∇u|2 − (p− 1)a12

∫

Ω
up−1∇u · ∇v

+µ1

∫

Ω
up − µ1

∫

Ω
up+1 − µ1a1

∫

Ω
upv

≤ −2(p− 1)a11

∫

Ω
up−1|∇u|2 − (p− 1)a12

∫

Ω
up−1∇u · ∇v + µ1

∫

Ω
up

for all t ∈ (0, Tmax). Since by Young’s inequality we can estimate

−(p− 1)a12

∫

Ω
up−1∇u · ∇v ≤ (p− 1)a11

∫

Ω
up−1|∇u|2 + (p− 1)a212

4a11

∫

Ω
up−1|∇v|2

for all t ∈ (0, Tmax), this implies (3.1). �

In adaptation to the nonlinear diffusion mechanism in the second equation in (1.1), our second testing
procedure will involve, rather than v itself, the transformed variable φ(v) with φ taken from (2.5).

Lemma 3.2 Let φ be as in (2.5). Then for all t ∈ (0, Tmax), we have

d

dt

∫

Ω
|∇φ(v)|2 + d2

2

∫

Ω
|∆φ(v)|2 ≤ 6µ2

2a
2
2M

2(d2 + 2a22M)

∫

Ω
u2

+6µ2
2M

2(1 +M2)(d2 + 2a22M)|Ω|, (3.2)

with M > 0 as determined by (2.4).

Proof. Letting g(x, t) := µ2v(x, t)(1 − v(x, t) − a2u(x, t)) for (x, t) ∈ Ω × (0, Tmax), we test the
accordingly rewritten second equation in (1.1), that is, the identity

vt = ∆φ(v) + g(x, t), x ∈ Ω, t ∈ (0, Tmax), (3.3)
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by ∂tφ(v) ≡ φ′(v)vt to obtain

∫

Ω
φ′(v)v2t = −1

2

d

dt

∫

Ω
|∇φ(v)|2 +

∫

Ω
φ′(v)vt · g for all t ∈ (0, Tmax). (3.4)

Here invoking Young’s inequality we see that

∫

Ω
φ′(v)vt · g ≤ 1

2

∫

Ω
φ′(v)v2t +

1

2

∫

Ω
φ′(v)g2 for all t ∈ (0, Tmax),

and using the same token along with (3.3) we can estimate

1

2

∫

Ω
φ′(v)v2t =

1

2

∫

Ω
φ′(v)|∆φ(v)|2 +

∫

Ω
φ′(v)∆φ(v)g +

1

2

∫

Ω
φ′(v)g2

≥ 1

4

∫

Ω
φ′(v)|∆φ(v)|2 − 1

2

∫

Ω
φ′(v)g2 for all t ∈ (0, Tmax).

Therefore, (3.4) implies that

1

2

d

dt

∫

Ω
|∇φ(v)|2 + 1

4

∫

Ω
φ′(v)|∆φ(v)|2 =

1

4

∫

Ω
φ′(v)|∆φ(v)|2 −

∫

Ω
φ′(v)v2t +

∫

Ω
φ′(v)vt · g

≤
{

1

2

∫

Ω
φ′(v)v2t +

1

2

∫

Ω
φ′(v)g2

}

−
∫

Ω
φ′(v)v2t

+

{

1

2

∫

Ω
φ′(v)v2t +

1

2

∫

Ω
φ′(v)g2

}

=

∫

Ω
φ′(v)g2 for all t ∈ (0, Tmax). (3.5)

In view of (2.7), and since Young’s inequality and (2.4) imply that

g2 = µ2
2v

2(1− v − a2u)
2 ≤ 3µ2

2v
2(1 + v2 + a22u

2) ≤ 3µ2
2a

2
2M

2u2 + 3µ2
2M

2(1 +M2)

in Ω× (0, Tmax), from (3.5) we readily infer that (3.2) holds. �

In order to suitably estimate the first term on the right of (3.1), we shall make use of the following
basic interpolation property. As the elementary proof will show, the inequality (3.6) continues to hold
also in the case n ≥ 4 when the requirements that W 2,2(Ω) →֒ W 1,4(Ω) →֒ L∞(Ω), as usually made
in the framework of standard Gagliardo-Nirenberg inequalities, are not met.

Lemma 3.3 Suppose that n ≥ 1, and that Ω ⊂ R
n is s bounded domain with smooth boundary. Then

there exists C > 0 such that for all ϕ ∈ C2(Ω̄) fulfilling ∂ϕ
∂ν

= 0 on ∂Ω we have

‖∇ϕ‖4L4(Ω) ≤ C‖∆ϕ‖2L2(Ω)‖ϕ‖2L∞(Ω). (3.6)

Proof. We integrate by parts to see that

∫

Ω
|∇ϕ|4 =

∫

Ω
|∇ϕ|2∇ϕ · ∇ϕ = −

∫

Ω
ϕ|∇ϕ|2∆ϕ−

∫

Ω
ϕ∇ϕ · ∇|∇ϕ|2, (3.7)

10



where by the Cauchy-Schwarz inequality,

−
∫

Ω
ϕ|∇ϕ|2∆ϕ ≤ ‖ϕ‖L∞(Ω)‖∇ϕ‖2L4(Ω)‖∆ϕ‖L2(Ω), (3.8)

and where since ∇|∇ϕ|2 = 2D2ϕ · ∇ϕ we can similarly estimate

−
∫

Ω
ϕ∇ϕ · ∇|∇ϕ|2 ≤ 2‖ϕ‖L∞(Ω)‖∇ϕ‖2L4(Ω)‖D2ϕ‖L2(Ω). (3.9)

As herein standard elliptic regularity ([9]) provides c1 > 0 fulfilling

‖D2ϕ‖L2(Ω) ≤ c1‖∆ϕ‖L2(Ω),

from (3.7)-(3.9) it follows that

‖∇ϕ‖2L4(Ω) ≤ (1 + 2c1)‖ϕ‖L∞(Ω)‖∆ϕ‖L2(Ω),

which implies (3.6) with C := (1 + 2c1)
2. �

Now the key to our first regularity statement on u beyond (2.3) will consist in the following implication,
to be achieved through the analysis of an energy-like functional on the basis of Lemma 3.1 and Lemma
3.2, which will form the core of an recursive argument in Lemma 3.5.

Lemma 3.4 Suppose that p0 ≥ 1 is such that (n− 4)p0 ≤ 4n and

sup
t∈(0,Tmax)

‖u(·, t)‖Lp0 (Ω) < ∞. (3.10)

Then there exists C > 0 such that with p := 2p0
n

+ 3 and τ := min{1, 12Tmax} we have

∫ t+τ

t

∫

Ω
up−1|∇u|2 ≤ C for all t ∈ (0, Tmax − τ). (3.11)

Proof. In order to prepare the construction of an entropy-like functional, according to (3.10) let
us fix c1 > 0 such that

∫

Ω
up0(·, t) ≤ c1 for all t ∈ (0, Tmax) (3.12)

and apply the Gagliardo-Nirenberg inequality to find c2 > 0 fulfilling

‖ϕ‖
4p0+4n
p0+2n

L
4p0+4n
p0+2n (Ω)

≤ c2‖∇ϕ‖2L2(Ω)‖ϕ‖
2p0

p0+2n

L
np0

p0+2n (Ω)
+ c2‖ϕ‖

4p0+4n
p0+2n

L
np0

p0+2n (Ω)
for all ϕ ∈ W 1,2(Ω), (3.13)

where we note that our assumption (n− 4)p0 ≤ 4n warrants that

np0

p0 + 2n
≤ 4p0 + 4n

p0 + 2n
≤ 2n

(n− 2)+

11



and that hence W 1,2(Ω) →֒ L
4p0+4n
p0+2n (Ω) ⊂ L

np0
p0+2n (Ω).

Moreover, we abbreviate c3 :=
(p−1)a212

a11
as well as

c4 := d2M + a22M
2 (3.14)

with M as in (2.4), and invoke Lemma 3.3 to pick c5 > 0 such that

‖∇ϕ‖4L4(Ω) ≤ c5‖∆ϕ‖2L2(Ω)‖ϕ‖2L∞(Ω) for all ϕ ∈ C2(Ω̄) such that ∂ϕ
∂ν

= 0 on ∂Ω. (3.15)

We then choose η > 0 small enough fulfilling

(p+ 1)2

2
c

2
n

1 c2η ≤ (p− 1)a11
2

(3.16)

and thereafter fix b > 0 suitably large such that

c23c
2
4c5

4d42η
≤ bd2

4
. (3.17)

Upon these specifications, with φ as in (2.5) we introduce

y(t) :=
1

p

∫

Ω
up(·, t) + b

∫

Ω
|∇φ(v(·, t))|2, t ∈ [0, Tmax), (3.18)

and to arrange the derivation of an appropriate autonomous ordinary differential inequality for y, we
first go back to Lemma 3.1 to see that by definition of c3 we have

1

p

d

dt

∫

Ω
up+

∫

Ω
up+(p−1)a11

∫

Ω
up−1|∇u|2 ≤ c3

∫

Ω
up−1|∇v|2+(µ1+1)

∫

Ω
up for all t ∈ (0, Tmax).

(3.19)
Here with η as fixed above, by Young’s inequality we can estimate

c3

∫

Ω
up−1|∇v|2 ≤ η

∫

Ω
u2p−2 +

c23
4η

∫

Ω
|∇v|4 for all t ∈ (0, Tmax), (3.20)

where recalling (2.7) and (2.6), by means of (3.15), (3.14) and (3.17) we see that

c23
4η

∫

Ω
|∇v|4 =

c23
4η

∫

Ω

1

φ′4(v)
|∇φ(v)|4

≤ c23
4d42η

∫

Ω
|∇φ(v)|4

≤ c23c5

4d42η
‖∆φ(v)‖2L2(Ω)‖φ(v)‖2L∞(Ω)

≤ c23c
2
4c5

4d42η

∫

Ω
|∆φ(v)|2

≤ bd2

4

∫

Ω
|∆φ(v)|2 for all t ∈ (0, Tmax). (3.21)

12



As Lemma 3.2 yields c6 > 0 such that

d

dt

∫

Ω
|∇φ(v)|2 + d2

2

∫

Ω
|∆φ(v)|2 ≤ c6

∫

Ω
u2 + c6 for all t ∈ (0, Tmax),

from (3.19)-(3.21) we thus infer that

d

dt

{

1

p

∫

Ω
up + b

∫

Ω
|∇φ(v)|2

}

+

∫

Ω
up + (p− 1)a11

∫

Ω
up−1|∇u|2 + bd2

4

∫

Ω
|∆φ(v)|2

≤ (µ1 + 1)

∫

Ω
up + η

∫

Ω
u2p−2 + bc6

∫

Ω
u2 + bc6 for all t ∈ (0, Tmax). (3.22)

Here we may use that p > 2 and hence 2p−2 > p as well as 2p−2 > 2 in employing Young’s inequality
again to find c7 > 0 such that

(µ1 + 1)

∫

Ω
up + η

∫

Ω
u2p−2 + bc6

∫

Ω
u2 ≤ 2η

∫

Ω
u2p−2 + c7 for all t ∈ (0, Tmax), (3.23)

where an application of (3.13) to ϕ := u
p+1
2 shows that according to our definition of p we have

2η

∫

Ω
u2p−2 = 2η‖u

p+1
2 ‖

4p−4
p+1

L
4p−4
p+1 (Ω)

= 2η‖u
p+1
2 ‖

4p0+4n
p0+2n

L
4p0+4n
p0+2n (Ω)

≤ 2c2η‖∇u
p+1
2 ‖2L2(Ω)‖u

p+1
2 ‖

2p0
p0+2n

L
np0

p0+2n (Ω)
+ 2c2η‖u

p+1
2 ‖

4p0+4n
p0+2n

L
np0

p0+2n (Ω)
(3.24)

for all t ∈ (0, Tmax). Since
p+1
2 = p0+2n

n
and hence

‖u
p+1
2 ‖

np0
p0+2n

L
np0

p0+2n (Ω)
=

∫

Ω
up0 ≤ c1 for all t ∈ (0, Tmax),

by (3.16) this entails that

2η

∫

Ω
u2p−2 ≤ 2c

2
n

1 c2η‖∇u
p+1
2 ‖2L2(Ω) + 2c

4p0+4n
np0

1 c2η

=
(p+ 1)2

2
c

2
n

1 c2η

∫

Ω
up−1|∇u|2 + 2c

4p0+4n
np0

1 c2η

≤ (p− 1)a11
2

∫

Ω
up−1|∇u|2 + c8 for all t ∈ (0, Tmax) (3.25)

with c8 := 2c
4p0+4n

np0
1 c2η.

Finally, invoking the Poincaré inequality to fix c9 > 0 such that
∫

Ω
|∇ϕ|2 ≤ c9

∫

Ω
|∆ϕ|2 for all ϕ ∈ W 2,2(Ω) fulfilling ∂ϕ

∂ν
= 0 on ∂Ω,

13



combining (3.23), (3.24) and (3.25) we conclude from (3.22) that

d

dt

{

1

p

∫

Ω
up + b

∫

Ω
|∇φ(v)|2

}

+

∫

Ω
up +

bd2

4c9

∫

Ω
|∇φ(v)|2 + (p− 1)a11

2

∫

Ω
up−1|∇u|2

≤ c10 := bc6 + c7 + c8 for all t ∈ (0, Tmax),

and that hence with y as in (3.18), h(t) := (p−1)a11
2

∫

Ω up−1(·, t)|∇u(·, t)|2, t ∈ (0, Tmax), and c11 :=

min{p, d2
4c9

} we have

y′(t) + c11y(t) + h(t) ≤ c10 for all t ∈ (0, Tmax). (3.26)

By nonnegativity of h, on an ODE comparison this firstly implies that

y(t) ≤ c12 := max

{

1

p

∫

Ω
u
p
0 + b

∫

Ω
|∇φ(v0))|2 ,

c10

c11

}

for all t ∈ (0, Tmax),

whereafter a direct integration of (3.26) in time shows that

y(t+ τ) +

∫ t+τ

t

h(s)ds ≤ y(t) + c10τ ≤ c12 + c10 for all t ∈ (0, Tmax − τ),

because τ ≤ 1. As also y is nonnegative, this entails (3.11). �

A straightforward induction thereupon implies validity of (3.11) actually for any p < 3n
(n−2)+

.

Lemma 3.5 For any choice of p > 2 satisfying p < 3n
(n−2)+

, there exists C = C(p) > 0 such that

∫ t+τ

t

∫

Ω
up−1|∇u|2 ≤ C for all t ∈ (0, Tmax − τ) (3.27)

with τ = min{1, 12Tmax}.

Proof. We recursively define (pk)k∈{0,1,2,...} ⊂ [1,∞) by letting p0 := 1 and pk :=
2pk−1

n
+ 3 for

k ≥ 1. Then it can easily be verified that pk ր 3n
(n−2)+

as k → ∞, so that since successively applying
Lemma 3.4 yields

sup
t∈(0,Tmax−τ)

∫ t+τ

t

∫

Ω
upk−1|∇u|2 < ∞ for all k ∈ {1, 2, 3, ...},

it follows that for each p in the indicated range the inequality (3.27) holds with suitably large C =
C(p) > 0. �

4 A Hölder estimate for v

Now in the case n ≤ 9, Lemma 3.5 together with the Sobolev embedding theorem and (2.3) implies
spatio-temporal integrability propeties of u itself which by means of standard regularity theory for
quasilinear parabolic equations can be seen to ensure bounds for v in appropriate Hölder spaces.
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Lemma 4.1 Let n ≤ 9. Then there exist θ ∈ (0, 1) and C > 0 such that

‖v‖
Cθ, θ2 (Ω̄×[t,t+τ ])

≤ C for all t ∈ (0, Tmax − τ), (4.1)

where again τ = min{1, 12Tmax}.

Proof. We divide the argument into two steps.

Step 1. Let us first make sure that there exist q > 1, r > 1 and c1 > 0 such that

1

r
+

n

2q
< 1, (4.2)

and that
∫ t+τ

t

‖u(·, s)‖rLq(Ω)ds ≤ c1 for all t ∈ (0, Tmax − τ). (4.3)

To see this, we note that our hypothesis n ≤ 9 warrants that (n−2)2 < 6n and hence (n−2)+
3 < 2n

(n−2)+
,

whence it is possible to fix κ ≥ 1 such that

(n− 2)+
3

< κ <
2n

(n− 2)+
. (4.4)

Here the left inequality guarantees that n
κ
< 3n

(n−2)+
, so that we can find p > 2 fulfilling

n

κ
< p <

3n

(n− 2)+
, (4.5)

and thereupon define

q :=
(p+ 1)κ

2
and r := p+ 1, (4.6)

noting that then clearly q > 1 and r > 1, and that thanks to the left inequality in (4.5) we have

1

r
+

n

2q
=

1

p+ 1

(

1 +
n

κ

)

< 1,

as required in (4.2).
Now according to the second inequality in (4.5), Lemma 3.5 applies so as to yield c2 > 0 such that

∫ t+τ

t

∫

Ω
|∇u

p+1
2 |2 ≤ c2 for all t ∈ (0, Tmax − τ). (4.7)

As the second restriction expressed in (4.4) ensures that W 1,2(Ω) →֒ Lκ(Ω), in view of (2.3) we infer
from (4.7) te existence of c3 > 0 such that

∫ t+τ

t

‖u
p+1
2 (·, s)‖2Lκ(Ω)ds ≤ c3 for all t ∈ (0, Tmax − τ),
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that is,
∫ t+τ

t

‖u(·, s)‖p+1

L
(p+1)κ

2 (Ω)
ds ≤ c3 for all t ∈ (0, Tmax − τ),

which due to (4.6) is equivalent to (4.3) with c1 = c3.

Step 2. We proceed to verify that the conclusion of the lemma holds.
For this purpose, we write the second equation in (1.1) in the form

vt = ∇ ·A(x, t,∇v) +B(x, t), x ∈ Ω, t ∈ (0, Tmax),

where

A(x, t, ξ) :=
(

d2 + 2a22v(x, t)
)

ξ, (x, t, ξ) ∈ Ω× (0, Tmax)× R
n,

and

B(x, t) := µ2v(x, t)
(

1− v(x, t)− a2u(x, t)
)

, (x, t) ∈ Ω× (0, Tmax),

define measurable functions satisfying

A(x, t, ξ) · ξ =
(

d2 + 2a22v(x, t)
)

|ξ|2 ≥ d2|ξ|2 for all (x, t, ξ) ∈ Ω× (0, Tmax)× R
n

and

|A(x, t, ξ)| ≤ (d2 + 2a22M)|ξ| for all (x, t, ξ) ∈ Ω× (0, Tmax)× R
n

as well as

|B(x, t)| ≤ µ2M(1 +M) + µ2a2Mu(x, t) for all (x, t) ∈ Ω× (0, Tmax)

according to (2.4). Since (4.3) therefore guarantees that

sup
t∈(0,Tmax−τ)

∫ t+τ

t

‖B(·, s)‖rLq(Ω)ds < ∞,

and since v is bounded in Ω × (0, Tmax) and v0 is Hölder continuous in Ω̄ by assumption, in view
of (4.2) a standard result on Hölder regularity in quasilinear parabolic equations ([24, Theorem 1.3,
Remark 1.4]) becomes applicable so as to yield θ ∈ (0, 1) and C > 0 such that (4.1) holds. �

5 Boundedness of u

The crucial progress provided by Lemma 4.1 consists in the circumstance that it facilitates access
of our analysis to an interpolation inequality addressing integrals for derivatives of functions with
bounded modulus of continuity, as observed in [22, Lemma 5.1] for a special case and generalized in
Lemma 10.1 in the appendix. In the following lemma, this will enable us to suitably estimate certain
lower-order integrals obtained when tracking the time evolution of suitably weighted L2p norms of ∇v

also in the case when unlike in Lemma 3.2 and Lemma 3.4, the parameter p herein is chosen to be
larger than 1. We remark that through the analysis of the functional from (5.3), at this stage we make
essential use of our overall assumption that d2 be positive (cf. e.g. the definition of c1 in the proof
below).

16



Lemma 5.1 Suppose that n ≤ 9, and assume that Ω is convex. Then for all p ≥ 2 there exists
C = C(p) > 0 such that

∫

Ω
up(·, t) ≤ C for all t ∈ (0, Tmax) (5.1)

and
∫

Ω
|∇v(·, t)|2p ≤ C for all t ∈ (0, Tmax). (5.2)

Proof. Without loss of generality we may assume that p ≥ n
2 − 1. We then abbreviate z := φ(v)

with φ as given by (2.5), and prepare an analysis of

y(t) :=
1

p

∫

Ω
up(·, t) + 1

2p

∫

Ω
|∇z(·, t)|2p, t ∈ (0, Tmax), (5.3)

by writing the second equation in (1.1) in the form

zt = φ′(v)vt = φ′(v)∆z + g, x ∈ Ω, t ∈ (0, Tmax),

with
g(x, t) := µ2φ

′(v(x, t))v(x, t)
(

1− v(x, t)− a2u(x, t)
)

, (x, t) ∈ Ω× (0, Tmax). (5.4)

By straightforward computation using the identity ∇z ·∇∆z = 1
2∆|∇z|2−|D2z|2, from this we obtain

that

1

2p

d

dt

∫

Ω
|∇z|2p =

∫

Ω
|∇z|2p−2∇z · ∇

{

φ′(v)∆z + g
}

=

∫

Ω
φ′(v)|∇z|2p−2∇z · ∇∆z +

∫

Ω
φ′′(v)|∇z|2p−2(∇z · ∇v)∆z

+

∫

Ω
|∇z|2p−2∇z · ∇g

=
1

2

∫

Ω
φ′(v)|∇z|2p−2∆|∇z|2 −

∫

Ω
φ′(v)|∇z|2p−2|D2z|2

+

∫

Ω

φ′′(v)

φ′(v)
|∇z|2p∆z +

∫

Ω
|∇z|2p−2∇z · ∇g for all t ∈ (0, Tmax), (5.5)

where since ∂|∇z|2

∂ν
≤ 0 on ∂Ω by convexity of Ω and the fact that ∂z

∂ν
= 0 on ∂Ω ([16]), integrating by

parts and invoking Young’s inequality shows that for all t ∈ (0, Tmax) we have

1

2

∫

Ω
φ′(v)|∇z|2p−2∆|∇z|2 = −1

2

∫

Ω
∇
{

φ′(v)|∇z|2p−2
}

· ∇|∇z|2 + 1

2

∫

∂Ω
φ′(v)|∇z|2p−2∂|∇z|2

∂ν

≤ −p− 1

2

∫

Ω
φ′(v)|∇z|2p−4

∣

∣

∣
∇|∇z|2

∣

∣

∣

2
− 1

2

∫

Ω

φ′′(v)

φ′(v)
|∇z|2p−2∇z · ∇|∇z|2

≤ −p− 1

4

∫

Ω
φ′(v)|∇z|2p−4

∣

∣

∣
∇|∇z|2

∣

∣

∣

2
+

1

4(p− 1)

∫

Ω

φ′′2(v)

φ′3(v)
|∇z|2p+2

≤ −p− 1

4

∫

Ω
φ′(v)|∇z|2p−4

∣

∣

∣
∇|∇z|2

∣

∣

∣

2
+ c1

∫

Ω
|∇z|2p+2 (5.6)
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with c1 :=
a222

(p−1)d32
, where we have used (2.7) and the fact that φ′′ ≡ 2a22.

Similarly, the second last term in (5.5) can be estimated against the third last by using the pointwise
inequality |∆z| ≤ √

n|D2z| according to

∣

∣

∣

∣

∫

Ω

φ′′(v)

φ′(v)
|∇z|2p∆z

∣

∣

∣

∣

≤
√
n

∫

Ω

φ′′(v)

φ′(v)
|∇z|2p|D2z|

≤ 1

2

∫

Ω
φ′(v)|∇z|2p−2|D2z|2 + n

2

∫

Ω

φ′′2(v)

φ′3(v)
|∇z|2p+2

≤ 1

2

∫

Ω
φ′(v)|∇z|2p−2|D2z|2 + c2

∫

Ω
|∇z|2p+2 for all t ∈ (0, Tmax)(5.7)

with c2 :=
2na222
d32

.

Finally, observing that by (5.4) and (2.4) we have

|g(x, t)| ≤ c3 ·
(

u(x, t) + 1
)

for all x ∈ Ω and t ∈ (0, Tmax)

with c3 := max{µ2(d2+2a22M)M(1+M) , µ2a2(d2+2a22M)M}, upon one more integration by parts
we see that due to (2.7), in the rightmost integral in (5.5) we have

∫

Ω
|∇z|2p−2∇z · ∇g = −

∫

Ω
g|∇z|2p−2∆z − (p− 1)

∫

Ω
g|∇z|2p−4∇z · ∇|∇z|2

≤ 1

4

∫

Ω
φ′(v)|∇z|2p−2|D2z|2 + nc23

d2

∫

Ω
(u+ 1)2|∇z|2p−2

+
p− 1

4

∫

Ω
φ′(v)|∇z|2p−4

∣

∣

∣
∇|∇z|2

∣

∣

∣

2
+

(p− 1)c23
d2

∫

Ω
(u+ 1)2|∇z|2p−2

≤ 1

4

∫

Ω
φ′(v)|∇z|2p−2|D2z|2 + p− 1

4

∫

Ω
φ′(v)|∇z|2p−4

∣

∣

∣
∇|∇z|2

∣

∣

∣

2

+
(n+ p− 1)c23

d2

∫

Ω
(u+ 1)p+1 +

(n+ p− 1)c23
d2

∫

Ω
|∇z|2p+2

≤ 1

4

∫

Ω
φ′(v)|∇z|2p−2|D2z|2 + p− 1

4

∫

Ω
φ′(v)|∇z|2p−4

∣

∣

∣
∇|∇z|2

∣

∣

∣

2

+c4

∫

Ω
up+1 + c4

∫

Ω
|∇z|2p+2 + c4 for all t ∈ (0, Tmax), (5.8)

where c4 := 2p+1 · (n+p−1)c23
d2

·max{1, |Ω|}. As clearly

1

2

∫

Ω
|∇z|2p ≤ 1

2

∫

Ω
|∇z|2p+2 +

|Ω|
2

for all t ∈ (0, Tmax),

combining (5.5)-(5.8) shows that writing c5 := max{c4 , c1 + c2 + c4 +
1
2 , c4 +

|Ω|
2 } we have

1

2p

d

dt

∫

Ω
|∇z|2p + 1

2

∫

Ω
|∇z|2p + d2

4

∫

Ω
|∇z|2p−2|D2z|2 ≤ c5

∫

Ω
up+1 + c5

∫

Ω
|∇z|2p+2 + c5 (5.9)
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for all t ∈ (0, Tmax), again because φ′(v) ≥ d2 by (2.7).

We now recall Lemma 3.1 which implies that if we let c6 :=
4(p−1)a11
(p+1)2

and c7 := max{ (p−1)a212
4a11

, µ1+1},
then

1

p

d

dt

∫

Ω
up +

∫

Ω
up + c6

∫

Ω
|∇u

p+1
2 |2 ≤ c7

∫

Ω
up−1|∇v|2 + c7

∫

Ω
up for all t ∈ (0, Tmax), (5.10)

where once more using Young’s inequality and (2.7) we find that

c7

∫

Ω
up ≤ c7

∫

Ω
up+1 + c7|Ω| for all t ∈ (0, Tmax) (5.11)

and

c7

∫

Ω
up−1|∇v|2 ≤ c7

∫

Ω
up+1 + c7

∫

Ω
|∇v|p+1

≤ c7

∫

Ω
up+1 + c7

∫

Ω
|∇v|2p+2 + c7|Ω|

≤ c7

∫

Ω
up+1 +

c7

d
2p+2
2

∫

Ω
|∇z|2p+2 + c7|Ω| for all t ∈ (0, Tmax). (5.12)

In summary, from (5.9)-(5.12) we infer that for all t ∈ (0, Tmax), the function y defined in (5.3) satisfies

y′(t) + py(t) +
d2

4

∫

Ω
|∇z|2p−2|D2z|2 + c6

∫

Ω
|∇u

p+1
2 |2 ≤ c8

∫

Ω
up+1 + c8

∫

Ω
|∇z|2p+2 + c8 (5.13)

with c8 := max{c5 + 2c7 , c5 +
c7

d
2p+2
2

, c5 + 2c7|Ω|}. Here we use an Ehrling-type lemma along with

(2.3) to find c9 > 0 such that

c8

∫

Ω
up+1 = c8‖u

p+1
2 ‖2L2(Ω) ≤ c6‖∇u

p+1
2 ‖2L2(Ω) + c9‖u

p+1
2 ‖2

L
2

p+1 (Ω)

≤ c6

∫

Ω
|∇u

p+1
2 |2 + c9m

p+1 for all t ∈ (0, Tmax), (5.14)

whereas the Hölder bound for v derived in Lemma 4.1, clearly implying equicontinuity of (z(·, t))t∈(0,Tmax)

according to the definition of φ and the boundedness of v, allows for an application of the interpolation
inequality stated in Lemma 10.1 below to conclude that with some c10 > 0 we have

c8

∫

Ω
|∇z|2p+2 ≤ d2

4

∫

Ω
|∇z|2p−2|D2z|2 + c10‖z‖2p+2

L∞(Ω)

≤ d2

4

∫

Ω
|∇z|2p−2|D2z|2 + c10(d2M + a22M

2)2p+2 for all t ∈ (0, Tmax), (5.15)

because p ≥ n
2 − 1, and again because of (2.4) and (2.6).

In light of (5.14) and (5.15), we thus see that (5.13) implies the inequality

y′(t) + py(t) ≤ c11 := c8 + c9m
p+1 + c10(d2M + a22M

2)2p+2 for all t ∈ (0, Tmax),
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from which on an ODE comparison we obtain that

y(t) ≤ max

{

1

p

∫

Ω
u
p
0 +

1

2p

∫

Ω
|∇φ(v0)|2p ,

c11

p

}

for all t ∈ (0, Tmax)

and hence infer that (5.1) and (5.2) hold. �

By means of a standard argument, the latter implies a bound for u in L∞.

Lemma 5.2 Suppose that n ≤ 9 and that Ω is convex. Then there exists C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax).

Proof. Since the exponent p in Lemma 5.1 can be chosen arbitrarily large, this results from a
straightforward application of a Moser-type iteration procedure (cf. [29, Lemma A.1] for a version
precisely covering the present situation). �

6 Estimates for solutions and derivatives in Hölder spaces. Proof

of Theorem 1.1

In this section we shall derive further estimates in spaces of Hölder continuous functions. Since we
plan to apply these both to complete our proof of global existence as well as to prepare a subsequent
compactness argument for the verification of the convergence statements in Theorem 1.2-Theorem 1.4,
we formulate our results here in a way slightly more general for each of the latter purposes.

We begin with a second application of parabolic Hölder estimates to see that bounds in the flavor of
(1.2) imply Hölder estimates for u and v in the following sense.

Lemma 6.1 Let n ≥ 1, T ∈ (0,∞] and (u, v) ∈ (C2,1(Ω̄ × (0, T )))2 be a classical solution of the
boundary value problem in (1.1) in Ω × (0, T ) for which u ≥ 0 and v ≥ 0, and for which there exist
p > n and K > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,p(Ω) ≤ K for all t ∈ (0, T ). (6.1)

Then for each δ ∈ (0, τ) there exist θ = θ(δ) ∈ (0, 1) and C = C(δ) > 0 with the property that

‖u‖
Cθ, θ2 (Ω̄×[t,t+τ ])

≤ C for all t ∈ (δ, T − τ) (6.2)

and
‖v‖

Cθ, θ2 (Ω̄×[t,t+τ ])
≤ C for all t ∈ (δ, T − τ), (6.3)

where τ := min{1, 12T}.

Proof. We rewrite the first equation in (1.1) according to

ut = ∇ ·A(x, t,∇u) +B(x, t), x ∈ Ω, t ∈ (0, T ),

with

A(x, t, ξ) := d1ξ + 2a11u(x, t)ξ + a12v(x, t)ξ + a12u(x, t)∇v(x, t), (x, t, ξ) ∈ Ω× (0, T )× R
n,
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and

B(x, t) := µ1u(x, t)
(

1− u(x, t)− a1v(x, t)
)

, (x, t) ∈ Ω× (0, T ).

Here by Young’s inequality we can estimate

A(x, t, ξ) · ξ ≥ d1|ξ|2 + a12u(x, t)∇v(x, t) · ξ

≥ d1

2
|ξ|2 − a212

2d1
u2(x, t)|∇v(x, t)|2 for all (x, t, ξ) ∈ Ω× (0, T )× R

n,

and moreover we have

|A(x, t, ξ)| ≤
(

d1 + 2a11u(x, t) + a12v(x, t)
)

· |ξ|+ a12u(x, t)|∇v(x, t)|
for all (x, t, ξ) ∈ Ω× (0, T )× R

n

and

|B(x, t)| ≤ µ1u(x, t) ·
(

1 + u(x, t) + a1v(x, t)
)

for all (x, t) ∈ Ω× (0, T ).

Using that (6.1) warrants that ∇v ∈ L∞((0, T );Lp(Ω;Rn)) and that u and also v is bounded due to
the hypothesis p > n, we readily obtain (6.2) from [24, Theorem 1.3]. Likewise, relying only on the
latter boundedness properies of u and v, the property (6.3) can be obtained from [24, Theorem 1.3]
immediately. �

By means of standard parabolic Schauder theory, we proceed to derive higher order estimates, firstly
for the second solution component.

Lemma 6.2 Let n ≥ 1 and T ∈ (0,∞], and assume that (u, v) ∈ (C2,1(Ω̄ × (0, T )))2 solves the
boundary value problem in (1.1) in Ω × (0, T ) and is such that u and v are nonnegative and that
(6.1) holds with some p > n and K > 0. Then for each δ ∈ (0, τ) there exist θ = θ(δ) ∈ (0, 1) and
C = C(δ) > 0 with the property that

‖v‖
C2+θ,1+ θ

2 (Ω̄×[t,t+τ ])
≤ C for all t ∈ (δ, T − τ), (6.4)

where again we have set τ := min{1, 12T}.

Proof. Given δ > 0, we fix χ ∈ C∞([0,∞)) such that χ ≡ 0 in [0, δ2 ] and χ ≡ 1 in [δ,∞), and
observe that then with φ as in (2.5), the function z defined by

z(x, t) := χ(t) · φ(v(x, t)), (x, t) ∈ Ω̄× [0, T ),

satisfies ∂z
∂ν

= 0 on ∂Ω× (0,∞) and

zt = A(x, t)∆z +B(x, t), x ∈ Ω, t ∈ (0, T ), (6.5)

where

A(x, t) := φ′(v(x, t)), (x, t) ∈ Ω× (0, T ),
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and

B(x, t) := χ′(t)φ(v(x, t)) + µ2χ(t)φ
′(v(x, t)) · v(x, t)

(

1− v(x, t)− a2u(x, t)
)

, (x, t) ∈ Ω× (0, T ).

Since Lemma 6.1 entails the existence of θ1 = θ1(δ) ∈ (0, 1) and c1 = c1(δ) > 0 such that

‖A‖
Cθ1,

θ1
2 (Ω̄×[t,t+τ ])

+ ‖B‖
Cθ1,

θ1
2 (Ω̄×[t,t+τ ])

≤ c1 for all t ∈ (0, T − τ),

and since z(·, 0) ≡ 0 is trivially smooth in Ω̄ and satisfies the first-order compatibility condition for
the Neumann initial-boundary value problem associated with (6.5), the property (6.4) is a straight-
forward consequence of classical Schauder theory for inhomogeneous linear parabolic equations with
Hölder continuous coefficients ([13, p. 320, Theorem 5.3]) and evident mapping properties of the C∞

diffeomorphism φ on [0,∞). �

An extension of the above argument to the first equation in (1.1) requires to adequately respect
the cross-diffusive interaction present therein. Thanks to the information on Hölder continuity of vt
entailed by the previous lemma, however, this can be accomplished with the following outcome.

Lemma 6.3 Let n ≥ 1, T ∈ (0,∞] and (u, v) ∈ (C2,1(Ω̄ × (0, T )))2 be a classical solution of the
boundary value problem in (1.1) in Ω × (0, T ) with u ≥ 0 and v ≥ 0, which satisfies (6.1) with some
p > n and K > 0. Then writing τ := min{1, 12T}, for each δ ∈ (0, τ) one can find θ = θ(δ) ∈ (0, 1)
and C = C(δ) > 0 fulfilling

‖u‖
C2+θ,1+ θ

2 (Ω̄×[t,t+τ ])
≤ C for all t ∈ (δ, T − τ). (6.6)

Proof. We once more fix χ ∈ C∞([0,∞)) such that χ ≡ 0 on [0, δ2 ] and χ ≡ 1 on [δ,∞), and
thereupon let

w(x, t) := χ(t) ·
{

d1u(x, t) + a11u
2(x, t) + a12u(x, t)v(x, t)

}

, (x, t) ∈ Ω× (0, T ).

Then using (1.1) we compute

wt = χ(t) ·
{

d1ut + 2a11uut + a12vut + a12uvt

}

+ χ′(t) ·
{

d1u+ a11u
2 + a12uv

}

=
{

d1 + 2a11u+ a12v
}

· χ(t)∆
{

d1u+ a11u
2 + a12uv

}

+χ(t) ·
{

d1 + 2a11u+ a12v
}

·
{

µ1u− µ1u
2 − µ1a1uv

}

+a12χ(t)uvt + χ′(t) ·
{

d1u+ a11u
2 + a12uv

}

= A(x, t)∆w +B(x, t), x ∈ Ω, t ∈ (0, T ), (6.7)

where

A(x, t) := d1 + 2a11u(x, t) + a12v(x, t), (x, t) ∈ Ω× (0, T ),
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and

B(x, t) := χ(t) ·
{

d1 + 2a11u(x, t) + a12v(x, t)
}

·
{

µ1u(x, t)− µ1u
2(x, t)− µ1a1u(x, t)v(x, t)

}

+a12χ(t)u(x, t)vt(x, t) + χ′(t) ·
{

d1u(x, t) + a11u
2(x, t) + a12u(x, t)v(x, t)

}

,

(x, t) ∈ Ω× (0, T ).

Here due to Lemma 6.1, and moreover thanks to Lemma 6.2 and the fact that χ ≡ 0 in [0, δ2 ], it follows
that there exist θ1 = θ1(δ) ∈ (0, 1) and c1 = c1(δ) > 0 such that

‖A‖
Cθ1,

θ1
2 (Ω̄×[t,t+τ ])

+ ‖B‖
Cθ1,

θ1
2 (Ω̄×[t,t+τ ])

≤ c1 for all t ∈ (0, T − τ),

that w(·, 0) ≡ 0, and that w satisfies the first-order compatibility condition corresponding to the
Neumann initial-boundary value problem for (6.7), so that by parabolic Schauder theory ([13]) we can
find c2 = c2(δ) > 0 fulfilling

‖w‖
C2+θ1,1+

θ1
2 (Ω̄×[t,t+τ ])

≤ c2 for all t ∈ (0, T − τ). (6.8)

Now since by definition of χ and w we can represent ∇u in Ω× (δ, T ) according to

∇u =
∇w − a12u∇v

d1 + 2a11u+ a12v
, (x, t) ∈ Ω× (δ, T ),

again in view of Lemma 6.1 and Lemma 6.2 we firstly conclude from (6.8) that with some θ2 = θ2(δ) ∈
(0, 1) and c3 = c3(δ) > 0 we have

‖∇u‖
Cθ2,

θ2
2 (Ω̄×[t,t+τ ])

≤ c3 for all t ∈ (δ, T − τ). (6.9)

Thereupon, for i ∈ {1, ...n} and j ∈ {1, ..., n} computing

∂xixj
u =

∂xixj
w − a12∂xj

u∂xi
v − a12u∂xixj

v

d1 + 2a11u+ a12v
−

(2a11uxj
+ a12vxj

)(wxi
− a11uvxi

)

(d1 + 2a11u+ a12v)2
,

for all (x, t) ∈ Ω × (δ, T ), we similarly see, using (6.8), Lemma 6.1, Lemma 6.2 and now also (6.9),
that there exist θ3 = θ3(δ) ∈ (0, 1) and c4 = c4(δ) > 0 such that

‖D2u‖
Cθ3,

θ3
2 (Ω̄×[t,t+τ ])

≤ c4 for all t ∈ (δ, T − τ), (6.10)

and finally the identity

ut =
wt − a12uvt

d1 + 2a11u+ a12v
, (x, t) ∈ Ω× (δ, T ),

in view of (6.8), Lemma 6.1 and Lemma 6.2 warrants the existence of θ4 = θ4(δ) ∈ (0, 1) and c5 =
c5(δ) > 0 such that

‖ut‖
Cθ4,

θ4
2 (Ω̄×[t,t+τ ])

≤ c5 for all t ∈ (δ, T − τ). (6.11)

Combining (6.10) and (6.11) with Lemma 6.1 finally proves (6.6). �

Our main result on global existence and boundedness of solutions to (1.1) is now obvious.

Proof of Theorem 1.1. We only need to combine the statements from Lemma 5.1 and Lemma 6.3,
the latter being applied to the local solution from Lemma 2.1 and to T := Tmax, with the extensibility
criterion (2.1). �
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7 Dominance of the first species. Proof of Theorem 1.2

In order to simplify presentation, throughout this section we shall assume without further mentioning
that the hypotheses of Theorem 1.2 are met, hence in particular supposing (u, v) to be a global classical
solution of the boundary value problem in (1.1) to which Lemma 6.2 and Lemma 6.3 apply.

In order to construct a genuine energy functional under the parameter assumptions from Theorem
1.2, beyond the mass evolution law for the first component observed in Lemma 2.2 we shall need
information on the time evolution of three further functionals. The first of these is addressed in the
following.

Lemma 7.1 We have

d

dt

∫

Ω
lnu ≥ − a212

4d1

∫

Ω
|∇v|2 + µ1|Ω| − µ1

∫

Ω
u− µ1a1

∫

Ω
v for all t > 0. (7.1)

Proof. Since u is positive in Ω̄ × (0,∞) according to the strong maximum principle, we may
multiply the first equation in (1.1) by 1

u
to see using integration by parts that

d

dt

∫

Ω
lnu =

∫

Ω
(d1 + 2a11u+ a12v)

|∇u|2
u2

+ a12

∫

Ω

1

u
∇u · ∇v + µ1|Ω| − µ1

∫

Ω
u− µ1a1

∫

Ω
v

≥ d1

∫

Ω

|∇u|2
u2

+ a12

∫

Ω

1

u
∇u · ∇v + µ1|Ω| − µ1

∫

Ω
u− µ1a1

∫

Ω
v for all t > 0.

As by Young’s inequality we can estimate
∣

∣

∣

∣

a12

∫

Ω

1

u
∇u · ∇v

∣

∣

∣

∣

≤ d1

∫

Ω

|∇u|2
u2

+
a212
4d1

∫

Ω
|∇v|2 for all t > 0,

this yields (7.1). �

As for the second solution component, we shall need the following two observations.

Lemma 7.2 The solution of (1.1) satisfies

d

dt

∫

Ω
v = µ2

∫

Ω
v − µ2

∫

Ω
v2 − µ2a2

∫

Ω
uv for all t > 0 (7.2)

as well as
1

2

d

dt

∫

Ω
v2 ≤ −d2

∫

Ω
|∇v|2 + µ2

∫

Ω
v2 − µ2

∫

Ω
v3 for all t > 0. (7.3)

Proof. The identity (7.2) directly results on integrating the second equation in (1.1) over Ω.
Furthermore, on using v as a test function in (1.1) we see that

1

2

d

dt

∫

Ω
v2 = −

∫

Ω
(d2 + 2a22v)|∇v|2 + µ2

∫

Ω
v2 − µ2

∫

Ω
v3 − µ2a2

∫

Ω
uv2 for all t > 0,

and hence conclude from the nonnegativity of both u and v that also (7.3) holds. �

Now combining the latter two lemmata we obtain a two-parameter family of candidates for an energy
functional.
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Lemma 7.3 For β > 0 and

α ≥ a212
4d1d2

, (7.4)

we let

Fαβ(t) :=

∫

Ω

(

u(·, t)− 1− lnu(·, t)
)

+
α

2

∫

Ω
v2(·, t) + β

∫

Ω
v(·, t), t > 0. (7.5)

Then for any choice of ε ∈ (0, 1) we have

F ′
αβ(t) ≤ −εµ1

∫

Ω
(u− 1)2 − εαµ2

∫

Ω
v3 + Lε(α, β)

∫

Ω
v for all t > 0, (7.6)

where we have set

Lε(α, β) :=
1

4(1− ε)αµ2
·
{

(µ1a1 + βµ2a2)
2

4(1− ε)µ1
+ (α− β)µ2

}2

+

− βµ2(a2 − 1) (7.7)

for α > 0, β > 0 and ε ∈ (0, 1).

Proof. We combine the differential inequalities established in Lemma 7.1 and Lemma 7.2 and
recall that d

dt

∫

Ω u = µ1

∫

Ω u−µ1

∫

Ω u2−µ1a1
∫

Ω uv for t > 0 to see on straightforward rearrangements
into quadratic expressions that

F ′
αβ(t) ≤ µ1

∫

Ω
u− µ1

∫

Ω
u2 − µ1a1

∫

Ω
uv

−
{

− a212
4d1

∫

Ω
|∇v|2 + µ1|Ω| − µ1

∫

Ω
u− µ1a1

∫

Ω
v

}

+α ·
{

− d2

∫

Ω
|∇v|2 + µ2

∫

Ω
v2 − µ2

∫

Ω
v3
}

+β ·
{

µ2

∫

Ω
v − µ2

∫

Ω
v2 − µ2a2

∫

Ω
uv

}

=

{

a212
4d1

− αd2

}

·
∫

Ω
|∇v|2

−µ1

∫

Ω
(u− 1)2

+(µ1a1 + βµ2)

∫

Ω
v + (α− β)µ2

∫

Ω
v2 − αµ2

∫

Ω
v3

−(µ1a1 + βµ2a2)

∫

Ω
uv for all t > 0. (7.8)

Here the first summand on the right is nonpositive thanks to (7.4), and in order to make appropriate
use of the dissipative properties of the last we rewrite uv = (u − 1)v + v therein and use Young’s
inequality to estimate

−(µ1a1 + βµ2a2)

∫

Ω
uv = −(µ1a1 + βµ2a2)

∫

Ω
(u− 1)v − (µ1a1 + βµ2a2)

∫

Ω
v

≤ (1− ε)µ1

∫

Ω
(u− 1)2 +

(µ1a1 + βµ2a2)
2

4(1− ε)µ1

∫

Ω
v2 − (µ1a1 + βµ2a2)

∫

Ω
v
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for t > 0. From (7.8) we therefore obtain that for all t > 0,

F ′
αβ(t) ≤ −εµ1

∫

Ω
(u− 1)2

−βµ2(a2 − 1)

∫

Ω
v + lε(α, β)

∫

Ω
v2 − αµ2

∫

Ω
v3

with

lε(α, β) :=

{

(µ1a1 + βµ2a2)
2

4(1− ε)µ1
+ (α− β)µ2

}

.

As another application of Young’s inequality shows that

lε(α, β)

∫

Ω
v2 ≤ (1− ε)αµ2

∫

Ω
v3 +

(lε)
2
+(α, β)

4(1− ε)αµ2

∫

Ω
v for all t > 0,

this readily leads to (7.6) with Lε(α, β) as given by (7.7). �

In order to suitably select the numbers α and β in Fαβ , in view of an argument based on continuous
dependence it seems adequate to study the corresponding problem in the limit case ε ց 0 in (7.6).
We therefore define L0(α, β) := limεց0 Lε(α, β), that is, we let

L0(α, β) :=
1

4αµ2
·
{

(µ1a1 + βµ2a2)
2

4µ1
+ (α− β)µ2

}2

+

− βµ2(a2 − 1), α > 0, β > 0, (7.9)

and are thus led to determining circumstances under which L0 becomes negative. The following lemma
reduces this to an associated negativity property of a polynomial with coefficients only involving the
parameters a1 and a2.

Lemma 7.4 Suppose that a2 > 1, and let α > 0 and β > 0. Then

L0(α, β) < 0 if and only if Λ

(
√

µ2

µ1
α ,

√

µ2

µ1
β

)

< 0, (7.10)

where
Λ(ξ, η) := 4ξ2 − 8

√
a2 − 1ξη + a22η

4 + 2(a1a2 − 2)η2 + a21, ξ > 0, η > 0. (7.11)

Proof. If L0(α, β) < 0, then by definition of L0 we have

(µ1a1 + βµ2a2)
2

4µ1
+ (α− β)µ2 ≤

{

(µ1a1 + βµ2a2)
2

4µ1
+ (α− β)µ2

}

+

< 2
√

αβ(a2 − 1)µ2,

and hence

(µ1a1 + µ2a2β)
2 + 4(α− β)µ1µ2 < 8

√

αβ(a2 − 1)µ1µ2.

On dividing by µ1µ2 and substituting α = µ1

µ2
ξ2 as well as β = µ1

µ2
η2, this can readily be seen to entail

(7.10). The converse implication can be verified similarly. �

The arguments leading to the following statements are elementary, but since they contain the key
observations underlying our conditions on a1 and a2 in Theorem 1.2, we include a proof here for
completeness.
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Lemma 7.5 Suppose that a2 > 1, and let the function Λ be as defined in (7.11).
i) Λ possesses a critical point in (0,∞)2 if and only if a1 < 2, and in that case this critical point is
uniquely determined by the identity (ξ, η) = (ξ0, η0), where

ξ0 :=

√

(2− a1)(a2 − 1)

a2
and η0 :=

√

2− a1

a2
, (7.12)

and Λ attains a local minimum at (ξ0, η0).

ii) Let a1 < 2. Then
Λ(ξ0, η0) < 0 if and only if a1 < 1. (7.13)

Proof. We compute

∂Λ(ξ, η)

∂ξ
= 8ξ − 8

√
a2 − 1η, (ξ, η) ∈ (0,∞)2,

and

∂Λ(ξ, η)

∂η
= −8

√
a2 − 1ξ + 4a22η

3 + 4(a1a2 − 2)η, (ξ, η) ∈ (0,∞)2,

to find that (ξ, η) ∈ (0,∞)2 is a critical point of Λ if and only if

ξ =
√
a2 − 1η and 2

√
a2 − 1ξ = a22η

3 + (a1a2 − 2)η,

that is, if and only if

2
√
a2 − 1

2
η = a22η

3 + (a1a2 − 2)η,

or, equivalently,

(2− a1)a2η = a22η
3.

Since solving this with respect to η > 0 is possible precisely when a1 < 2, this readily implies the
claimed necessity and sufficiency of this condition for the existence of a critical point, as well as the
formulae in (7.12). As moreover in this case we have

D2Λ(ξ, η) =

(

8 −8
√
a2 − 1

−8
√
a2 − 1 12a22η

2 + 4(a1a2 − 2)

)

for all (ξ, η) ∈ (0,∞)2

and hence

detD2Λ(ξ0, η0) = 8 ·
{

12a22 ·
2− a1

a2
+ 4(a1a2 − 2)

}

− 64(a2 − 1)

= 96a2(2− a1) + 32(a1a2 − 2)− 64(a2 − 1)

= 64(2− a1)a2 > 0,

it follows that in fact Λ attains a local minimum at (ξ0, η0).
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ii) By (7.11) and (7.12), we see that indeed

Λ(ξ0, η0) = 4 · (2− a1)(a2 − 1)

a2
− 8

√
a2 − 1 ·

√

(2− a1)(a2 − 1)

a2
·
√

2− a1

a2

+a22 ·
(2− a1

a2

)2
+ 2(a1a2 − 2) · 2− a1

a2
+ a21

=
8a2 − 8− 4a1a2 + 4a1

a2
− 16a2 − 16− 8a1a2 + 8a1

a2

+4− 4a1 + a21 +
4a1a2 − 2a21a2 − 8 + 4a1

a2
+ a21

= 4a1 − 4

is negative if and only if a1 < 1. �

We are now ready to identify the parameter conditions from Theorem 1.2 as sufficient for Fαβ to
become an energy functional for (1.1) when α and β are chosen suitably.

Lemma 7.6 Suppose that
a2 > 1, and a1 ∈ [0, 1) (7.14)

as well as
a212
d1d2

≤ µ1

µ2
· 4(2− a1)(a2 − 1)

a2
. (7.15)

Then there exist α > 0, β > 0 and δ > 0 such that the function Fαβ defined in (7.5) satisfies

F ′
αβ(t) ≤ −δ

∫

Ω
(u− 1)2 − δ

∫

Ω
v3 for all t > 0. (7.16)

Proof. According to the outcome of Lemma 7.5, with ξ0 and η0 taken from (7.12) we define

α :=
µ1

µ2
ξ20 and β :=

µ1

µ2
η20,

and then obtain on combining Lemma 7.5 with Lemma 7.4 that as a consequence of (7.14) we have

L0(α, β) < 0.

In light of the definition (7.9) of L0(α, β), we can therefore fix ε ∈ (0, 1) suitably small such that still

Lε(α, β) ≤ 0.

Now since (7.15) warrants that

α =
µ1

µ2
· (2− a1)(a2 − 1)

a2
≥ a212

4d1d2

and that hence (7.4) is satisfied, from (7.6) we directly infer that indeed (7.16) holds if we let δ :=
min{εµ1, εαµ2}, for instance. �
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Along with the uniform continuity properties implied by Lemma 6.2 and Lemma 6.3, within the above
parameter regime the global dissipative feature of (1.1) expressed in (7.16) finally implies stabilization
in the claimed sense.

Proof of Theorem 1.2. As (u(·, t))t>1 and (v(·, t))t>1 are relatively compact in C2(Ω̄) by the Arzelá-
Ascoli theorem, for the derivation of (1.5) and (1.6) it is sufficient to make sure that

u(·, t) → 1 in L∞(Ω) as t → ∞ (7.17)

and
v(·, t) → 0 in L∞(Ω) as t → ∞. (7.18)

To verify this, we firstly invoke Lemma 7.6 to obtain α > 0, β > 0 and δ > 0 such that

δ

∫ t

1

∫

Ω
(u− 1)2 + δ

∫ t

1

∫

Ω
v3 ≤ Fαβ(1) for all t > 1

and that hence
∫ ∞

1

∫

Ω
(u− 1)2 < ∞ and

∫ ∞

1

∫

Ω
v3 < ∞. (7.19)

Now if (7.17) was false, then we could pick (xk)k∈N ⊂ Ω, (tk)k∈N ⊂ (1,∞) and ε > 0 such that tk → ∞
as k → ∞ but

∣

∣

∣
u(xk, tk)− 1

∣

∣

∣
≥ ε for all k ∈ N.

In view of the spatio-temporal equicontinuity property implied by Lemma 6.3, this would entail that
on passing to a subsequence if necessary we could assume that

∣

∣

∣
u(x, t)− 1

∣

∣

∣
≥ ε

2
for all x ∈ Br(x0), each t ∈ (tk, tk + η) and any k ∈ N

with some x0 ∈ Ω, r > 0 and η > 0. This, however, would imply that

∫ tk+η

tk

∫

Ω

(

u(x, t)− 1
)2

dxdt ≥ η|Br(x0)| ·
ε2

4
> 0 for all k ∈ N

and thereby contradict the fact that

∫ t+η

t

∫

Ω

(

u(x, s)− 1
)2

dxds → 0 as t → ∞,

as asserted by (7.19). The corresponding convergence statement (7.18) can be verified in quite a
similar manner. �

8 Coexistence. Proof of Theorem 1.3

In this section we consider the case of weak competition, as determined by the assumptions that
both a1 ∈ (0, 1) and a2 ∈ (0, 1). Tacitly assuming that (u, v) is a global solution with the properties
and under the circumstances listed in Theorem 1.3, we begin with an elementary lemma asserting an
asymptotic pointwise upper bound of v.
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Lemma 8.1 The second solution component satisfies

lim sup
t→∞

‖v(·, t)‖L∞(Ω) ≤ 1. (8.1)

Proof. We let v(x, t) := y(t), (x, t) ∈ Ω̄× [0,∞), where y ∈ C1([0,∞)) denotes the solution of

{

y′(t) = µ2y(t) · (1− y(t)), t > 0,

y(0) = ‖v‖L∞(Ω×(0,∞)).

Then since

vt −∆[(d2 + a22v)v]− µ2v(1− v − a2u) = y′ − µ2y(1− y − a2u) ≥ 0 in Ω× (0,∞),

an application of the comparison principle readily shows that v ≤ v in Ω× (0,∞), so that (8.1) results
from the fact that unless v ≡ 0 we have y(t) → 1 as t → ∞. �

Using this, we can construct a functional which in its basic flavor resembles that from Lemma 7.3,
and which along each individual trajectory of (1.1) plays the role of an energy after some appropriate
waiting time. Actually, the verification of this will turn out to be much simpler than that in Section
7.

Lemma 8.2 Assume that a1 ∈ (0, 1) and a2 ∈ (0, 1), and that (1.9) holds. Then with u⋆ and v⋆ as
given by (1.8), there exist t0 > 0 and ε > 0 such that for

F (2)(t) :=

∫

Ω

(

u(·, t)− u⋆ − u⋆ ln
u(·, t)
u⋆

)

+
µ1a1

µ2a2

∫

Ω

(

v(·, t)− v⋆ − v⋆ ln
v(·, t)
v⋆

)

, t > 0, (8.2)

we have
F (2)(t) ≥ 0 for all t > 0 (8.3)

as well as

d

dt
F (2)(t) + ε

∫

Ω

(

u(·, t)− u⋆

)2
+ ε

∫

Ω

(

v(·, t)− v⋆

)2
≤ 0 for all t > t0. (8.4)

Proof. Once more due to the strong maximum principle, our overall assumption that u 6≡ 0 6≡ v

warrants that both u and v are positive in Ω̄ × (0,∞) and that hence F (2) is well-defined. To prove
its nonnegativity, we let f(s) := s − 1 − ln s for s > 0 and observe that f(1) = 0 = f ′(1) as well as
f ′′(s) > 0 for all s > 0, so that 0 = f(1) = mins>0 f(s). For all t > 0 we thus have

u(·, t)− u⋆ − u⋆ ln
u(·, t)
u⋆

= u⋆f
(u(·, t)

u⋆

)

≥ 0

and

v(·, t)− v⋆ − v⋆ ln
v(·, t)
v⋆

= v⋆f
(v(·, t)

v⋆

)

≥ 0,

which entail that indeed F (2)(t) ≥ 0.
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Next, in order to prepare our verification of (8.4) we note that our assumptions a1 ∈ (0, 1) and
a2 ∈ (0, 1) imply that 1

a2
− a1 > 0, which enables us to fix some δ ∈ (0, 1) that satisfies

1

a2
− a1

1− δ
> 0. (8.5)

Moreover, since a straightforward computation using (1.8) and (1.9) shows that

µ1a1

µ2a2
v⋆d2 −

a212u⋆

4d1
=

u⋆d2

4

(µ1

µ2
· a1
a2

· 4v⋆
u⋆

− a212
d1d2

)

=
u⋆d2

4

(µ1

µ2
· 4a1(1− a2)

a2(1− a1)
− a212

d1d2

)

> 0,

it is possible to find some suitably small η > 0 such that still

µ1a1

µ2a2
· v⋆d2

(1 + η)2
− a212u⋆

4d1
> 0, (8.6)

whereupon Lemma 8.1 applies so as to yield t0 > 0 such that

v(x, t) ≤ 1 + η for all x ∈ Ω and t > t0. (8.7)

To derive (8.4) for this choice of t0 and the number

ε := min

{

δ , µ1a1

( 1

a2
− a1

1− δ

)

}

(8.8)

which is positive due to (8.5), we first use (1.1) to compute

d

dt

∫

Ω

(

u− u⋆ − u⋆ ln
u

u⋆

)

=

∫

Ω

(

ut −
u⋆

u
ut

)

=

∫

Ω
µ1(u− u⋆)(1− u− a1v)− u⋆

∫

Ω
(d1 + 2a11u+ a12v)

|∇u|2
u2

− a12u⋆

∫

Ω

∇u

u
· ∇v

= −µ1

∫

Ω
(u− u⋆)

2 − µ1a1

∫

Ω
(u− u⋆)(v − v⋆)− u⋆

∫

Ω
(d1 + 2a11u+ a12v)

|∇u|2
u2

−a12u⋆

∫

Ω

∇u

u
· ∇v

≤ −µ1

∫

Ω
(u− u⋆)

2 − µ1a1

∫

Ω
(u− u⋆)(v − v⋆)− u⋆d1

∫

Ω

|∇u|2
u2

− a12u⋆

∫

Ω

∇u

u
· ∇v
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and

d

dt

∫

Ω

(

v − v⋆ − v⋆ ln
v

v⋆

)

= −µ2

∫

Ω
(v − v⋆)

2 − µ2a2

∫

Ω
(u− u⋆)(v − v⋆)− v⋆

∫

Ω
(d2 + 2a22v)

|∇v|2
v2

≤ −µ2

∫

Ω
(v − v⋆)

2 − µ2a2

∫

Ω
(u− u⋆)(v − v⋆)− v⋆d2

∫

Ω

|∇v|2
v2

for t > 0. Here for large t we may use (8.7) to see that

d

dt

∫

Ω

(

v − v⋆ − v⋆ ln
v

v⋆

)

≤ −µ2

∫

Ω
(v − v⋆)

2 − µ2a2

∫

Ω
(u− u⋆)(v − v⋆)−

v⋆d2

(1 + η)2

∫

Ω
|∇v|2 for all t > t0

and hence

d

dt
F (2)(t) ≤ −µ1

∫

Ω
(u− u⋆)

2 − 2µ1a1

∫

Ω
(u− u⋆)(v − v⋆)−

µ1a1

a2

∫

Ω
(v − v⋆)

2

−u⋆d1

∫

Ω

|∇u|2
u2

− a12u⋆

∫

Ω

∇u

u
· ∇v − µ1a1

µ2a2
· v⋆d2

(1 + η)2

∫

Ω
|∇v|2 for all t > t0. (8.9)

As thanks to Young’s inequality we know that

−2µ1a1

∫

Ω
(u− u⋆)(v − v⋆) ≤ µ1(1− δ)

∫

Ω
(u− u⋆)

2 +
µ1a

2
1

1− δ

∫

Ω
(v − v⋆)

2

and

−a12u⋆

∫

Ω

∇u

u
· ∇v ≤ u⋆d1

∫

Ω

|∇u|2
u2

+
a212u⋆

4d1

∫

Ω
|∇v|2

for all t > 0, from (8.9) and (8.6) we infer that indeed

d

dt
F (2)(t) ≤ −δ

∫

Ω
(u− u⋆)

2 − µ1a1

( 1

a2
− a1

1− δ

)

∫

Ω
(v − v⋆)

2 −
(µ1a1

µ2a2
· v⋆d2

(1 + η)2
− a212u⋆

4d1

)

∫

Ω
|∇v|2

≤ −δ

∫

Ω
(u− u⋆)

2 − µ1a1

( 1

a2
− a1

1− δ

)

∫

Ω
(v − v⋆)

2

≤ −ε ·
{
∫

Ω
(u− u⋆)

2 +

∫

Ω
(v − v⋆)

2

}

for all t > t0 (8.10)

according to our definition (8.8) of ε. �

Relying on the energy inequality (8.4) together with the equicontinuity properties implied by Lemma
6.3 and Lemma 6.2, we can complete the proof of Theorem 1.3.
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Proof of Theorem 1.3. Taking t0 > 0 and ε > 0 from Lemma 8.2, on integrating (8.4) we infer
that with F (2) as introduced in (8.2) we have

ε

∫ t

t0

∫

Ω
(u− u⋆)

2 + ε

∫ t

t0

∫

Ω
(v − v⋆)

2 ≤ F (2)(t0) for all t > t0

and thus
∫ ∞

t0

∫

Ω
(u− u⋆)

2 < ∞ and

∫ ∞

t0

∫

Ω
(v − v⋆)

2 < ∞. (8.11)

As u and v are uniformly continuous in Ω × (1,∞) by Lemma 6.3 and Lemma 6.2, by means of an
argument in the style of that presented in Theorem 1.2, this entails both (1.10) and (1.11). �

9 Dominance of the second species. Proof of Theorem 1.4

Let us finally consider the case when a1 ≥ 1 > a2, in which the independence of our main result from
a12 rests on the following observation.

Lemma 9.1 Let a1 ≥ 1 and a2 ∈ (0, 1), and assume that (u, v) ∈ (C2,1(Ω̄ × (0,∞)))2 is a classical
solution of the boundary value problem in (1.1) such that v 6≡ 0. Then there exists ε > 0 such that

F (3)(t) :=

∫

Ω
u(·, t) + µ1(2− a2)

µ2a
2
2

∫

Ω

(

v(·, t)− 1− ln v(·, t)
)

, t > 0, (9.1)

satisfies
F (3)(t) ≥ 0 for all t > 0 (9.2)

as well as
d

dt
F (3)(t) + ε

∫

Ω
u2(·, t) + ε

∫

Ω

(

v(·, t)− 1
)2

≤ 0 for all t > 0. (9.3)

Proof. Again noting that v > 0 in Ω̄ × (0,∞) by the strong maximum principle, we obtain that
F (3) is well-defined and satisfies (9.2) due to the nonnegativity of 0 < s 7→ s − 1 − ln s. In order
to derive (9.3), we note that since a2 < 1 it is possible to fix η ∈ (0, 1) suitably small such that
1

1−η
< 2− a2, so that

ε1 :=
µ1(2− a2)

a22
− µ1

(1− η)a22

is positive and hence also ε := min{ε1, ηµ1} > 0. To verify (9.3), we first use (1.1) to see that

d

dt

∫

Ω
u = µ1

∫

Ω
u− µ1

∫

Ω
u2 − µ1a1

∫

Ω
uv

= −µ1(a1 − 1)

∫

Ω
u− µ1

∫

Ω
u2 − µ1a1

∫

Ω
u(v − 1) for all t > 0

and

d

dt

∫

Ω

(

v − 1− ln v
)

= −µ2

∫

Ω
(v − 1)2 − µ2a2

∫

Ω
u(v − 1)−

∫

Ω
(d2 + 2a22v)

|∇v|2
v2

≤ −µ2

∫

Ω
(v − 1)2 − µ2a2

∫

Ω
u(v − 1) for all t > 0.
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Therefore,

d

dt
F (3)(t) ≤ −µ1

∫

Ω
u2−µ1(2− a2)

a22

∫

Ω
(v−1)2−µ1(a1−1)

∫

Ω
u−
(

µ1a1+
µ1(2− a2)

a2

)

∫

Ω
u(v−1) (9.4)

for all t > 0, where rearranging the latter two summands and using our assumption a1 ≥ 1 as well as
Young’s inequality shows that

−µ1(a1 − 1)

∫

Ω
u−

(

µ1a1 +
µ1(2− a2)

a2

)

∫

Ω
u(v − 1)

= −µ1(a1 − 1)

∫

Ω
uv − 2µ1

a2

∫

Ω
u(v − 1)

≤ (1− η)µ1

∫

Ω
u2 +

µ1

(1− η)a22

∫

Ω
(v − 1)2 for all t > 0.

Consequently, (9.4) implies that

d

dt

∫

Ω
F (3)(t) ≤ −ηµ1

∫

Ω
u2 −

(µ1(2− a2)

a22
− µ1

(1− η)a22

)

∫

Ω
(v − 1)2

≤ −ε ·
{
∫

Ω
u2 +

∫

Ω
(v − 1)2

}

for all t > 0,

as claimed. �

Indeed, this enables us to derive Theorem 1.4 from Lemma 6.3 and Lemma 6.2.

Proof of Theorem 1.4. As Lemma 9.1 entails that with ε > 0 and F (3) as defined there we have

∫ t

1

∫

Ω
u2 +

∫ t

1

∫

Ω
(v − 1)2 ≤ F (3)(1)

ε
for all t > 1,

on the basis of Lemma 6.3 and Lemma 6.2 we readily obtain (1.13) and (1.14). �

10 Appendix: An interpolation lemma for equicontinuous families

of functions

We finally include the Ehrling-type interpolation inequality used in Lemma 5.1, which actually gener-
alizes a previously obtained result addressing the special case when p = 2 in the following ([22, Lemma
5.1]). For completeness, let us include a proof here.

Lemma 10.1 Let n ≥ 1 and Ω ⊂ R
n be a bounded domain with smooth boundary, and let ω : (0,∞) →

(0,∞) be nondecreasing. Then for all p ≥ 1 and each ε > 0 there exists C(p, ε) > 0 such that

∫

Ω
|∇ϕ|2p+2 ≤ ε

∫

Ω
|∇ϕ|2p−2|D2ϕ|2 + C(p, ε)‖ϕ‖2p+2

L∞(Ω) (10.1)
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holds for all

ϕ ∈ Sω :=

{

ϕ̃ ∈ C2(Ω̄)

∣

∣

∣

∣

∂ϕ̃
∂ν

= 0 on ∂Ω, and

for all ε′ > 0, we have |ϕ̃(x)− ϕ̃(y)| < ε′

whenever x, y ∈ Ω̄ are such that |x− y| < ω(ε′).

}

(10.2)

Proof. Given ε > 0, we write

ε′ :=

√

ε

4n+ 32p2
and δ := ω(ε′) (10.3)

and then may use the compactness of Ω̄ to pickN ∈ N and {x1, ..., xN} ⊂ Ω̄ such that Ω̄ ⊂ ⋃N
j=1Bδ(xj).

Moreover, we let (ζj)j∈{1,...,N} ⊂ C1(Ω̄) be an associated partition of unity such that ζj ≥ 0 in Ω̄,

supp ζj ⊂ Bδ(xj) for all j ∈ {1, ..., N} and
∑N

j=1 ζj ≡ 1 in Ω̄. Finally employing Young’s inequality in
choosing c1 > 0 such that

AB ≤ 1

8N
A

2p+2
2p+1 + c1B

2p+2 for all A ≥ 0 and B ≥ 0, (10.4)

we claim that (10.1) holds for all ϕ ∈ Sω if we set

C(p, ε) := 22p+5Nc1c
2p+2
2 (10.5)

with
c2 := max

j∈{1,...,N}
‖∇ζj‖L2p+2(Ω). (10.6)

To verify this, we introduce

I :=

∫

Ω
|∇ϕ|2p+2 and J :=

∫

Ω
|∇ϕ|2p−2|D2ϕ|2

as well as

ϕj := ϕ(xj), Ij :=

∫

Ω
|∇ϕ|2p+2ζj and Jj :=

∫

Ω
|∇ϕ|2p−2|D2ϕ|2ζj for j ∈ {1, ..., N}.

Then an integration by parts shows that for each j ∈ {1, ..., N},

Ij =

∫

Ω
|∇ϕ|2p∇ϕ · ∇(ϕ− ϕj)ζj

= −
∫

Ω
(ϕ− ϕj)|∇ϕ|2p∆ϕζj −

∫

Ω
(ϕ− ϕj)∇ϕ · ∇|∇ϕ|2pζj

−
∫

Ω
(ϕ− ϕj)|∇ϕ|2p∇ϕ · ∇ζj

=: Ij1 + Ij2 + Ij3, (10.7)
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where boundary integrals vanish due to the fact that ∂ϕ
∂ν

|∂Ω = 0. Here the inclusion ϕ ∈ Sω along with
our choice of δ implies that

|ϕ− ϕj | ≤ ε′ in supp ζj .

Since |∆ϕ| ≤ √
n|D2ϕ| in Ω, in view of the Cauchy-Schwarz inequality and Young’s inequality we can

therefore estimate

Ij1 ≤ ε′
∫

Ω
|∇ϕ|2p|∆ϕ|ζj

≤ ε′ ·
(
∫

Ω
|∇ϕ|2p+2ζj

)
1
2
(
∫

Ω
|∇ϕ|2p−2|∆ϕ|2ζj

)
1
2

≤
√
nε′
√

Ij
√

Jj

≤ 1

2
Ij +

nε′2

2
Jj . (10.8)

In the same manner, by using the identity ∇|∇ϕ|2p = 2p|∇ϕ|2p−2D2ϕ · ∇ϕ we find that

Ij2 ≤ 2pε′
∫

Ω
|∇ϕ|2p−2

∣

∣

∣
∇ϕ · (D2ϕ · ∇ϕ)

∣

∣

∣
ζj

≤ 2pε′
∫

Ω
|∇ϕ|2p|D2ϕ|ζj

≤ 2pε′
√

Ij
√

Jj

≤ 1

4
Ij + 4p2ε′2Jj . (10.9)

As for the last summand Ij3 in (10.7), we trivially estimate |ϕ− ϕj | ≤ 2‖ϕ‖L∞(Ω) to derive from the
Hölder inequality, (10.6) and (10.4) that

Ij3 ≤ 2‖ϕ‖L∞(Ω)

(
∫

Ω
|∇ϕ|2p+2

)
2p+1
2p+2

(
∫

Ω
|∇ζj |2p+2

)
1

2p+2

≤ 2c2‖ϕ‖L∞(Ω)I
2p+1
2p+2

≤ 1

8N
I + c1 ·

(

2c2‖ϕ‖L∞(Ω)

)2p+2
. (10.10)

Collecting (10.7)-(10.10) shows that

1

4
Ij ≤

(n

2
+ 4p2

)

ε′2Jj +
1

8N
I + 22p+2c1c

2p+2
2 ‖ϕ‖2p+2

L∞(Ω),

which on summation over j ∈ {1, ..., N} entails that

I =
N
∑

j=1

Ij

≤ (2n+ 16p2)ε′2 ·
N
∑

j=1

Jj + 4N ·
( 1

8N
I + 22p+2c1c

2p+2
2 ‖ϕ‖2p+2

L∞(Ω)

)

= (2n+ 16p2)ε′2J +
1

2
I + 22p+4Nc1c

2p+2
2 ‖ϕ‖2p+2

L∞(Ω).
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Consequently,

I ≤ (4n+ 32p2)ε′2J + 22p+5Nc1c
2p+2
2 ‖ϕ‖2p+2

L∞(Ω),

which according to the definitions (10.3) and (10.5) of ε′ and C(p, ε) precisely proves (10.1). �
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