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Abstract

This paper deals with convergence of solutions to a class of parabolic Keller-Segel systems, possibly
coupled to the (Navier-)Stokes equations in the framework of the full model





∂tnε + uε · ∇nε = ∆nε −∇ ·
(
nεS(x, nε, cε) · ∇cε

)
+ f(x, nε, cε),

ε∂tcε + uε · ∇cε = ∆cε − cε + nε,

∂tuε + κ(uε · ∇)uε = ∆uε +∇Pε + nε∇φ, ∇ · uε = 0

to solutions of the parabolic-elliptic counterpart formally obtained on taking ε ց 0. In smoothly
bounded physical domains Ω ⊂ R

N with N ≥ 1, and under appropriate assumptions on the
model ingredients, we shall first derive a general result which asserts certain strong and pointwise
convergence properties whenever asserting that supposedly present bounds on ∇cε and uε are
bounded in Lλ((0, T );Lq(Ω)) and in L∞((0, T );Lr(Ω)), respectively, for some λ ∈ (2,∞], q > N

and r > max{2, N} such that 1

λ
+ N

2q
< 1

2
. To our best knowledge, this seems to be the first rigorous

mathematical result on a fast signal diffusion limit in a chemotaxis-fluid system.

This general result will thereafter be concretized in the context of two examples: Firstly, for
an unforced Keller-Segel-Navier-Stokes system we shall establish a statement on global classical
solutions under suitable smallness conditions on the initial data, and show that these solutions
approach a global classical solution to the respective parabolic-elliptic simplification.

We shall secondly derive a corresponding convergence property for arbitrary solutions to fluid-free
Keller-Segel systems with logistic source terms, which in spatially one-dimensional settings turn
out to allow for a priori estimates compatible with our general theory. Building on the latter in
conjunction with a known result on emergence of large densities in the associated parabolic-elliptic
limit system, we will finally discover some quasi-blowup phenomenon for the fully parabolic Keller-
Segel system with logistic source and suitably small parameter ε > 0.
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1 Introduction

The Keller-Segel system and its parabolic-elliptic simplification. To describe chemotactic
aggregation of cellular slime molds which move towards relatively high concentrations of a chemical
secreted by the amoebae themselves, Keller and Segel [17] proposed cross-diffusive parabolic systems
of the form

{
nt = d1∆n− a1∇ · (n∇c),
ct = d2∆c− a2c+ a3n,

where the unknown functions n = n(x, t) and c = c(x, t) denote the cell density and the concentration
of the chemical substance at place x and time t, respectively, and where d1, d2, a1, a2, a3 are positive
numbers. By substituting

a1

d1
= S,

d1

d2
= ε,

a2

d2
= γ and

a3

d2
= α,

and replacing d1t with t, from this we obtain the system

{
nt = ∆n−∇ · (nS∇c),
εct = ∆c− γc+ αn,

(1.1)

which in the limit ε ց 0 formally approaches the corresponding parabolic-elliptic system, with the
second identity therein replaced with the inhomogeneous Helmholtz equation −∆c+ γc = αn.

As is well-known from quite a large literature, with regard to technical purposes the latter simplification
goes along with substantial advantages for mathematical analysis, in summary leading to much a
deeper knowledge on parabolic-elliptic Keller-Segel systems than currently available for their fully
parabolic relatives. Examples already include the mere detection of exploding solutions, typifying the
probably most characteristic effect of the considered cross-diffusive interaction, which in fact could
be accomplished for parabolic-elliptic systems already rather early ([14], [28], [29], [1], [3]), while for
the full system (1.1) with positive ε, corresponding results on generic blow-up, thus going beyond
particular examples ([13]), seem to require significantly stronger efforts and hence have been achieved
only a few years ago ([52], [26]). Likewise, while considerable qualitative knowledge on the respective
blow-up mechanisms has been collected for parabolic-elliptic systems (see e.g. [30], [32], [34], [2], [39],
[38], [37]), only little information seems available for general blow-up solutions to (1.1) when ε > 0
([30], [25], [55]).

More generally, by providing accessibility to numerous tools, especially from the analysis of scalar
parabolic problems, resorting to parabolic-elliptic simplifications has made it possible to reveal further
qualitative properties of Keller-Segel-type systems, inter alia also in the framework of global solutions
([16], [15], [27], [4], [56]), and partially even including couplings to additional quantities such as fluid
flows or haptotactic attractants ([18], [19], [40]).

Problem setting and main objectives. In line with the above, it seems natural to seek for some
appropriate control of the error made when approximating a fully parabolic system of Keller-Segel
type by its parabolic-elliptic simplification, especially in cases when the considered biological situation
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is such that the respective signal diffuses much faster than individuals in the cell population, in the
context of (1.1) thus meaning that ε > 0 is small. Indeed, even in the context of the classical system
(1.1) already the question concerning mere convergence of solutions as ε ց 0, apart from partially
being addressed by numerical considerations ([21]), seems to lack a rigorous answer up to now.

The goal of the present work consists in establishing a first result in this direction, with a main focus
being on deriving an approach robust enough so as to be not necessarily restricted to the prototypical
system (1.1), but rather capable of adequately treating more complex types of interaction, possibly
also with further components. In order to include an example for the latter which appears to be of
increasing interest in the recent literature, we shall address this problem in the context of the class
of Keller-Segel systems possibly coupled to the (Navier-)Stokes equations from fluid mechanics, and
for a fixed number T > 0 and arbitrary ε > 0, we will accordingly be concerned with solutions to the
class of systems given by





∂tnε + uε · ∇nε = ∆nε −∇ ·
(
nεS(x, nε, cε) · ∇cε

)
+ f(x, nε, cε), x ∈ Ω, t ∈ (0, T ),

ε∂tcε + uε · ∇cε = ∆cε − cε + nε, x ∈ Ω, t ∈ (0, T ),

∂tuε + κ(uε · ∇)uε = ∆uε +∇Pε + nε∇φ, ∇ · uε = 0, x ∈ Ω, t ∈ (0, T ),

(∇nε − nεS(x, nε, cε) · ∇cε) · ν = ∂cε
∂ν

= 0, uε = 0, x ∈ ∂Ω, t ∈ (0, T ),

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω.
(1.2)

In cases of nontrivial fluid velocity fields uε and potential functions φ, (1.2) thus accounts for possible
influences of liquid environments on the evolution of bacterial populations, and vice versa, through
transport and buoyancy; a considerable relevance of chemotaxis-fluid interaction mechanisms of this
type has been suggested by experimental findings in several contexts, including the striking obser-
vations from [43] on convection-driven formation of plume-like aggregates in populations of Bacillus
subtilis suspended to sessile water drops (cf. also the discussions and the references in [18] and in
[19]). Apart from this, we shall include here the possibility that alternative to the choice f ≡ 0, the
proliferation term f may e.g. represent a logistic-type source, possibly even reflecting competition
with the quantity c such as typically present in taxis-type models from spatial ecology where c plays
the role of a second species ([58]). Moreover, our approach will be general enough so as to allow
for the chemotactic interaction in (1.2) to be described by the action of a matrix which may contain
off-diagonal entries, and thus especially be able to account for rotational flux components such as
proposed in the more recent modeling literature ([59]) but yet understood only rudimentarily from an
analytical point of view ([5], [45], [46], [22], [54]). Correspondigly, we shall suppose that with some
Kf > 0 and some nonincreasing f0 : [0,∞) → R with f0(0) ≥ 0,

{
f ∈ C1(Ω× [0,∞)2) is such that f(x, 0, c) ≥ 0 for all (x, c) ∈ Ω× [0,∞), and that

f0(n) ≤ f(x, n, c) ≤ Kf · (n+ 1) for all (x, n, c) ∈ Ω× [0,∞)2,

(1.3)
that S = (Sij)i,j∈{1,...,N} is such that for all (i, j) ∈ {1, ..., N}2,

{
Sij ∈ C2(Ω× [0,∞)2), and that

|Sij(x, n, c)| ≤ KS for all (x, n, c) ∈ Ω× [0,∞)2
(1.4)
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with a positive constant KS , and that apart from that the parameter κ is any real number and the
gravitational potential in (1.2) satisfies

φ ∈W 2,∞(Ω). (1.5)

As for the initial data, our standing assumptions will be that




n0 ∈W 1,∞(Ω) is nonnegative with n0 6≡ 0,

c0 ∈W 1,∞(Ω) is nonnegative, and that

u0 ∈W 2,∞(Ω;RN ) satisfies ∇ · u0 ≡ 0 and u0|∂Ω = 0.

(1.6)

Our plan is to firstly derive a general result on convergence of solutions to (1.2) to solutions of the
associated parabolic-elliptic counterpart, and to secondly concretize this in the framework of two
particular examples. We shall thereby obtain corresponding approximation results both for certain
small-data solutions to an unforced chemotaxis-Navier-Stokes system, and for arbitrary solutions to a
one-dimensional fluid-free logistic Keller-Segel model, where as a by-product, the latter outcome will
imply an apparently new result on spontaneous emergence of arbitrarily large densities in the fully
parabolic case for suitably small ε > 0.

Main results I. A general statement on the limit εց 0 in (1.2). Accordingly, we shall first
examine the relationship between solutions to (1.2) and those to





nt + u · ∇n = ∆n−∇ · (nS(x, n, c) · ∇c) + f(x, n, c), x ∈ Ω, t ∈ (0, T ),

u · ∇c = ∆c− c+ n, x ∈ Ω, t ∈ (0, T ),

ut + κ(u · ∇)u = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t ∈ (0, T ),

(∇n− nS(x, n, c) · ∇c) · ν = ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t ∈ (0, T ),

n(x, 0) = n0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.7)

in a setting as general as possible. Our main result in this respect identifies a condition, yet on a given
family of solutions to (1.2) itself, as sufficient for strong, and especially a.e. pointwise convergence, in
the following sense.

Theorem 1.1 Let N ≥ 1 and Ω ⊂ R
N be a bounded convex domain with smooth boundary, and

assume that (1.6) holds, that κ ∈ R, and that f , φ and S comply with (1.3), (1.5) and (1.4). Fur-
thermore, suppose that (εj)j∈N ⊂ (0,∞) is such that εj ց 0 as j → ∞, and that for some T > 0,
((nε, cε, uε, Pε))ε∈(εj)j∈N

is such that for each ε ∈ (εj)j∈N, (nε, cε, uε, Pε) solves (1.2) classically in
Ω× (0, T ) with nε ≥ 0 and cε ≥ 0 in Ω× (0, T ), and such that

sup
ε∈(εj)j∈N

‖∇cε‖Lλ((0,T );Lq(Ω)) <∞ (1.8)

as well as
sup

ε∈(εj)j∈N

‖uε‖L∞((0,T );Lr(Ω)) <∞ (1.9)

with some λ ∈ (2,∞], q > N and r > max {2, N} satisfying

1

λ
+
N

2q
<

1

2
. (1.10)
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Then there exist a subsequence (εjk)k∈N of (εj)j∈N and a classical solution (n, c, u, P ) of (1.7) in
Ω× (0, T ) with the properties that

nε → n in C0(Ω× [0, T ]), (1.11)

nε ⇀ n in L2((0, T );W 1,2(Ω)), (1.12)

cε → c in L∞
loc((0, T ];C

0(Ω)) ∩ L2
loc((0, T ];W

1,2(Ω)), (1.13)

∇cε ⋆
⇀ ∇c in

⋂

q̂>N

L∞((0, T );Lq̂(Ω)) ∩ L∞((Ω× (0, T )) and (1.14)

uε → u in C0(Ω× [0, T ];RN ) ∩ C2,1
loc (Ω× (0, T ];RN ) (1.15)

as ε = εjk ց 0.

Remark. i) We underline that the above assumption on convexity of Ω is mainly of technical nature
and could actually be removed by additional efforts based on a differential geometrical property due
to [25] in quite a straightforward manner. In order to keep our reasoning as focused as possible,
however, we refrain from giving details on this here. Similarly, since in essential places we will rely
on convenient compactness features conveniently available in bounded domains, we shall not address
possible extensions to unbounded domains.
ii) The restriction to subsequences in the statement of Theorem 1.1 is mainly due to the circumstance
that in the full generality of the described setting we are not aware of an appropriate uniqueness
result for the limit problem (1.7); however, for special cases in which e.g. S ≡ id and fluid coupling
is disregarded, the availability of corresponding uniqueness statements (see [42], for instance) in fact
allows for natural extensions of the above, so as to assert convergence actually along the entire given
sequence (εj)j∈N; an example for such a refined application of Theorem 1.1 can be found in the context
of Theorem 1.3 below.
iii) We emphasize that Theorem 1.1 presupposes the existence of solutions to (1.2) throughout the
considered time interval. In cases in which blow-up is expected, this especially restricts applicability of
the above, in quite a natural manner, to local-in-time frameworks. Apart from that, possible challenges
concerning existence theories for (1.2) are entirely disregarded here; while statements on local and also
on global smooth solvability are available for numerous particular versions of (1.2) ([7], [49], [5], [51]),
a comprehensive theory in this regard seems yet lacking, especially in cases of nondiagonal S.

Main results II. The fast signal diffusion limit for small-data solutions to a Keller-Segel-
Navier-Stokes system. As a first application of the latter, let us consider the case when f ≡ 0
in the Keller-Segel-Navier-Stokes system (1.2) in arbitrary spatial dimensions N ≥ 2. Then in light
of well-known results on taxis-driven blow-up of some solutions to both the fully parabolic problem
(1.2) as well as its parabolic-elliptic counterpart (1.7) already in the simple case u ≡ 0 ([29], [13], [52]),
regular behavior throughout the arbitrary time interval (0, T ) can be expected only under appropriate
additional assumptions on the initial data. In deriving the following consequence of Theorem 1.1 on
this particular system, we shall accordingly restrict our considerations to solutions emanating from
suitably small initial data. In this context we will see the following.

Theorem 1.2 Let N ≥ 2 and Ω ⊂ R
N be a bounded convex domain with smooth boundary, let

κ ∈ R, p > N , q > N and r > N , and assume that (1.5) and (1.4) are valid. Then there exists
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δ = δ(p, q, r) > 0 with the property that whenever n0, c0 and u0 comply with (1.6) and satisfy

‖n0‖Lp(Ω) ≤ δ, ‖∇c0‖Lq(Ω) ≤ δ and ‖u0‖Lr(Ω) ≤ δ, (1.16)

for all ε > 0 the problem (1.2) with f ≡ 0 possesses a global classical solution (nε, cε, uε, Pε). Moreover,
given any (εj)j∈N ⊂ (0,∞) satisfying εj ց 0 as j → ∞, one can find a subsequence (εjk)k∈N and a
global classical solution (n, c, u, P ) of (1.7) with f ≡ 0 such that for each T > 0, (1.11)-(1.15) hold as
ε = εjk ց 0.

Remark. As a price to be paid in order to cover the general problem (1.2) in its full complexity, by
inter alia requiring an essentially non-explicit smallness assumption on n0 with respect to the norm in
Lp with p > N the above theorem is unable to cover e.g. the full mass-subcritical regime, as described
by the mere condition

∫
Ω n0 < 4π, of the simple two-component Keller-Segel system in planar domains,

as obtained on letting S ≡ id, f ≡ 0 and uε ≡ 0 in (1.2) ([31]). Extensions capable of adequately
coping with such critical situations apparently need to appropriately account for respectively present
subtle structural features, such as e.g. expressed in particular energy inequalities. Such concentrations
on particular versions of (1.2) form a topic of interest on its own, going beyond the focus of the present
study.

Main results III. A growth phenomenon in a fully parabolic one-dimensional Keller-Segel
system with logistic source. As a second application of our general theory, we shall consider the
family of fluid-free one-dimensional Keller-Segel systems with logistic source, as given by





nεt = Dnεxx − (nεcεx)x + anε − bn2ε, x ∈ (0, 1), t > 0,

εcεt = cεxx − cε + nε, x ∈ (0, 1), t > 0,

nεx(0, t) = nεx(1, t) = cεx(0, t) = cεx(1, t) = 0, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), x ∈ (0, 1),

(1.17)

for ε > 0, with a ∈ R and b ≥ 0, and with nonnegative functions n0 ∈ W 1,∞((0, 1)) and c0 ∈
W 1,∞((0, 1)). We note that upon replacing nε by ñε(x, t̃) := nε(x, t) with t̃ := Dt for (x, t) ∈
[0, 1]× [0,∞), this problem indeed takes the form (1.2), and that as a well-known fact, for each ε > 0
there exists a global classical solution (nε, cε) for which both nε and cε are nonnegative and bounded
throughout (0, 1)× (0,∞) ([49]). In fact, by relying on suitable embedding properties available in this
one-dimensional context we shall firstly see that as ε ց 0, these solutions approach solutions to the
corresponding parabolic-elliptic counterpart, namely, the problem





nt = Dnxx − (ncx)x + an− bn2, x ∈ (0, 1), t > 0,

0 = cxx − c+ n, x ∈ (0, 1), t > 0,

nx(0, t) = nx(1, t) = cx(0, t) = cx(1, t) = 0, t > 0,

n(x, 0) = n0(x), x ∈ (0, 1),

(1.18)

in the following sense:

Theorem 1.3 Let D > 0, a ∈ R and b ≥ 0, and suppose that n0 and c0 are such that (1.6) holds.
Then for all T > 0, the solutions (nε, cε) of (1.17) have the property that as εց 0, (1.11)-(1.14) hold
with the unique classical solution (n, c) ∈ (C0([0, 1]× [0, T ])∩C2,1([0, 1]× (0, T )))×C2,0([0, 1]× (0, T ))
of (1.18).
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Building on this result, we shall secondly discover that solutions to the fully parabolic problem (1.17)
can spontaneously generate arbitrarily large densities, possibly at intermediate time scales, provided
that the parameters D and ε satisfy appropriate smallness conditions. A similar growth phenomenon
had been detected in certain versions of the parabolic-elliptic problem before, and for further dis-
cussion, and also for numerical simulations indicating a temporally intermediat character of such
large-density occurrences, we may refer to [53].

Theorem 1.4 Let a ∈ R and b ∈ [0, 1). Then there exist T > 0 and a nonnegative function n0 ∈
W 1,∞((0, 1)) with the following property: For all M > 0 one can find D0 > 0 such that for each
D ∈ (0, D0) and any nonnegative c0 ∈W 1,∞((0, 1)) there exist x0 ∈ (0, 1), t0 ∈ (0, T ) and ε0 > 0 such
that for any choice of ε ∈ (0, ε0), the corresponding solution (nε, cε) of (1.17) satisfies

nε(x0, t0) ≥M. (1.19)

Key steps in our analysis. The crucial role of the assumptions from Theorem 1.1, and especially
of the inequality (1.10) therein, will already become clear in Section 2, in which we will derive some
ε-independent estimates for general solutions to (1.2) under presupposed bounds on ∇cε and uε of
the considered form. Complementing these estimates by further compactness properties will allow for
passing to the limit along subsequences, with regard to the components nε and uε already in the flavor
claimed in Theorem 1.1; as for cε, however, due to lacking uniform parabolicity (formally, εcεt → 0 as
ε → 0) in the equation describing its evolution we will at that stage only be able to conclude a weak
convergence property in L2((0, T );W 1,2(Ω)).

A key step will thereafter consist in improving this knowledge, which will be achieved through several
steps: After firstly showing that the limit c satisfies its respective subproblem of (1.7) in a weak sense,
we can exploit the correspondingly satisfied integral identity to successively establish Hölder regularity
of c, ∇c and D2c in Section 5.1. The main step will then be accomplished by ensuring L2 integrability
of ct, locally away from the temporal origin, in Section 5.2. Our derivation thereof will rely on suitably
estimating the difference quotients

zh(x, t) :=
c(x, t+ h)− c(x, t)

h
=: z1h(x, t) + z2h(x, t), x ∈ Ω, t ∈ (τ, T − h0),

where z1h and z2h denote the classical solution of two linear elliptic equations, whose forcing terms
involve the time derivatives of n and u. Thanks to the availability of appropriate regularity information
on the latter, by utilizing standard elliptic regularity theory we will infer that indeed ct belongs to
L2
loc(Ω×(0, T ]). This in turn will allow us to adequately control the difference cε−c through analyzing

a parabolic equation therefor, and hence verify Theorem 1.1 in Section 6.

Sections 7 and 8 will thereafter be devoted to the proofs of Theorem 1.2 and of Theorems 1.3 and 1.4,
respectively.

2 Some general estimates

In this section we collect some estimates which are valid for general solutions to systems of the form
(1.2), and which are independent of the particular choice of ε > 0, partially under presupposed bounds
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resembling those in (1.8) and (1.9). These estimates will firstly be used as a fundament for our proof of
Theorem 1.1, and secondly some of them will afterwards serve as helpful ingredients for the derivation
of Theorem 1.2 in Section 7.

Let us start with a fairly evident observation.

Lemma 2.1 Suppose that (1.3), (1.5) and (1.6) hold, and let κ ∈ R and T > 0. Then there exists
C = C(T ) > 0 such that whenever (nε, cε, uε, Pε) is a classical solution of (1.2) in Ω× (0, T ) for some
ε > 0, we have nε ≥ 0 and cε ≥ 0 in Ω× (0, T ) as well as

‖nε(·, t)‖L1(Ω) ≤ C for all t ∈ (0, T ). (2.1)

Proof. According to the lower bound for f0 and hence for f in (1.3), nonnegativity of nε results
from an application of the maximum principle to the first equation in (1.2). In view of the second
equation therein, by the same token this in turn entails nonnegativity also of cε.

Next, integrating the first equation in (1.2) shows that since ∇ · uε ≡ 0, due to the upper bound for
f from (1.3) we have

d

dt

∫

Ω
nε =

∫

Ω
f(x, nε, cε) ≤ Kf

∫

Ω
nε +Kf |Ω| for all t ∈ (0, T ),

from which (2.1) readily results upon a time integration. �

The next lemma already makes full use of supposedly present bounds in the style of (1.8) and (1.9),
and especially of the relation (1.10) involving the parameters therein.

Lemma 2.2 Suppose that (1.3), (1.4), (1.5) and (1.6) hold, and let κ ∈ R. Then for all T > 0,
L > 0, λ ∈ (2,∞], q > N, r > N such that (1.10) holds, there exists C = C(T, λ, q, r,KS , L) > 0 such
that whenever (nε, cε, uε, Pε) is a classical solution of (1.2) in Ω× (0, T ) for some ε > 0 fulfilling

‖∇cε‖Lλ((0,T );Lq(Ω)) ≤ L (2.2)

and
‖uε(·, t)‖Lr(Ω) ≤ L for all t ∈ (0, T ), (2.3)

we have
‖nε(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, T ). (2.4)

Proof. Omitting the subscript ε for notational convenience, without loss of generality assuming
that λ <∞ and following an essentially well-established procedure (cf. e.g. [41]), we estimate

M(T ′) := sup
t∈(0,T ′)

‖n(·, t)‖L∞(Ω), T ′ ∈ (0, T )

by representing n via an associated Duhamel formula. Indeed, using the maximum principle and (1.3)
as well as known smoothing properties of the Neumann heat semigroup (et∆)t≥0 in Ω (see Lemma 1.3
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in [50]) we see that fixing any µ1 = µ1(λ, q) ∈ (N, q) and µ2 = µ2(r) ∈ (N, r) such that 1
λ
+ N

2µ1
< 1

2 ,
with some C1 = C1(λ, q, r) > 0 we have

n(·, t) = et∆n0 −
∫ t

0
e(t−s)∆∇ ·

(
n(·, s)S(·, n(·, s), c(·, s)) · ∇c(·, s)

)
ds

−
∫ t

0
e(t−s)∆∇ · (n(·, s)u(·, s))ds+

∫ t

0
e(t−s)∆f(·, n(·, s), c(·, s))ds

≤ ‖n0‖L∞(Ω) + C1

∫ t

0
(t− s)

− 1
2
− N

2µ1 ‖n(·, s)S(·, n(·, s), c(·, s)) · ∇c(·, s)‖Lµ1 (Ω)ds

+C1

∫ t

0
(t− s)

− 1
2
− N

2µ2 ‖n(·, s)u(·, s)‖Lµ2 (Ω)ds+ C1

∫ t

0
(t− s)−

1
2 ‖n(·, s) + 1‖LN (Ω)ds (2.5)

for all t ∈ (0, T ). Here using (1.4) and the Hölder inequality along with (2.1) and our hypotheses (2.2)
and (2.3), we find positive constants C2 = C2(KS), C3 = C3(KS), C4 = C4(T,KS), C5 = C5(T, r, L)
and C6 = C6(T ) such that

‖n(·, s)S(·, n(·, s), c(·, s)) · ∇c(·, s)‖Lµ1 (Ω) ≤ C2‖n(·, s)‖
L

qµ1
q−µ1 (Ω)

‖∇c(·, s)‖Lq(Ω)

≤ C3‖n(·, s)‖a1L∞(Ω)‖n(·, s)‖
1−a1
L1(Ω)

‖∇c(·, s)‖Lq(Ω)

≤ C4M
a1(T ′)‖∇c(·, s)‖Lq(Ω) for all s ∈ (0, T ′)

and

‖n(·, s)u(·, s)‖Lµ2 (Ω) ≤ ‖n(·, s)‖
L

rµ2
r−µ2 (Ω)

‖u(·, s)‖Lr(Ω)

≤ ‖n(·, s)‖a2
L∞(Ω)‖n(·, s)‖

1−a2
L1(Ω)

‖u(·, s)‖Lr(Ω)

≤ C5M
a2(T ′) for all s ∈ (0, T ′)

as well as

‖n(·, s) + 1‖LN (Ω) ≤ ‖n(·, s) + 1‖a3
L∞(Ω)‖n(·, s) + 1‖1−a3

L1(Ω)

≤ C6M
a3(T ′) + C6 for all s ∈ (0, T ′)

with a1 := qµ1−q+µ1
qµ1

∈ (0, 1), a2 := ru2−r+µ2
rµ2

∈ (0, 1) and a3 := N−1
N

∈ (0, 1). Since the inequalities
1
λ
+ N

2µ1
< 1

2 and µ2 > N moreover warrant that (12 + N
2µ1

) · λ
λ−1 < 1 and 1

2 + N
2µ2

< 1, by using the
Hölder inequality two more times we thus infer from (2.5) and the nonnegativity of n that there exist
C8 = C8(T, λ, q, r,KS , L) > 0, C9 = C9(T, λ, q) > 0 and C10 = C10(r) > 0 such that

‖n(·, t)‖L∞(Ω) ≤ C8 + C8M
a1(T ′) ·

{∫ t

0
(t− s)

−( 1
2
+ N

2µ1
)· λ

λ−1ds

}λ−1
λ

·
{∫ t

0
‖∇c(·, s)‖λLq(Ω)ds

} 1
λ

+C8M
a2(T ′) ·

∫ t

0
(t− s)

− 1
2
− N

2µ2 ds+ C8M
a3(T ′)

≤ C8 + C8C9M
a1(T ′) + C8C10M

a2(T ′) + C8M
a3(T ′) for all t ∈ (0, T ′).
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Hence, by Young’s inequality,

M(T ′) ≤ C11 + C11M
a(T ′) for all T ′ ∈ (0, T ),

where a := max{a1, a2, a3} satisfies a ∈ (0, 1), and where C11 := 2C8 + C8C9 + C8C10. As therefore

M(T ′) ≤ max
{
1 , (2C11)

1
1−a

}
for all T ′ ∈ (0, T ),

we have thus established (2.4). �

As a consequence of the latter estimate for nε, by means of quite a similar argument, essentially well-
established in the theory of the Navier-Stokes system, we can again use the boundedness assumption
(2.3) in order to appropriately control the fluid velocity field as follows.

Lemma 2.3 Suppose that (1.3), (1.4), (1.5) and (1.6) hold, and let κ ∈ R. Then for all T > 0,
L > 0, λ ∈ (2,∞], q > N, r > max{2, N} fulfilling (1.10), there exist α = α(r) ∈ (12 , 1), ρ =
ρ(r) > max {1, N2α}, θ = θ(r) ∈ (0, 1) and C = C(T, λ, q, r,KS , κ, L) > 0 such that if for some ε > 0
(nε, cε, uε, Pε) is a classical solution of (1.2) in Ω× (0, T ) for which (2.2) and (2.3) are valid, then

‖Aαuε(·, t)‖Lρ(Ω) ≤ C for all t ∈ (0, T ) (2.6)

and
‖uε‖

Cθ, θ2 (Ω×[0,T ])
≤ C, (2.7)

where A := −P∆ denotes the realization of the Stokes operator in L2(Ω;R2), defined on its domain
D(A) := W 2,2(Ω;R2) ∩W 1,2

0 (Ω;R2) ∩ L2
σ(Ω) with L2

σ(Ω) := {ϕ ∈ L2(Ω;R2) | ∇ · u = 0}, and with P
representing the Helmholtz projection of L2(Ω;R2) onto L2

σ(Ω).

Proof. Since r > N and thus 1
2 +

N
2r < 1, it is possible to fix α = α(r) ∈ (12 , 1) close to

1
2 such that

α+
N

2r
< 1, (2.8)

and thereafter take β ∈ (12 , 1) such that β < α. Then using that N
2α < N < r and that also r

r−1 < r,

we can pick ρ = ρ(r) > max {1, N2α} such that ρ ≤ r and ρ > r
r−1 , observing that the latter ensures

that µ = µ(r) := rρ
r+ρ satisfies µ > 1. Again dropping the index ε and as moreover µ < ρ, relying on a

variation-of-constants representation of u we may employ known smoothing properties of the Stokes
semigroup (e−tA)t≥0 ([10]) to find C1 = C1(r, κ) > 0 such that

‖Aαu(·, t)‖Lρ(Ω) =

∥∥∥∥∥A
αe−tAu0 − κ

∫ t

0
Aαe−(t−s)AP

[
(u(·, s) · ∇)u(·, s)

]
ds

+

∫ t

0
Aαe−(t−s)AP[n(·, s)∇φ]ds

∥∥∥∥∥
Lρ(Ω)

≤ ‖Aαu0‖Lρ(Ω) + C1

∫ t

0
(t− s)

−α−N
2
( 1
µ
− 1

ρ
)‖(u(·, s) · ∇)u(·, s)‖Lµ(Ω)ds

+C1

∫ t

0
(t− s)−α‖n(·, s)‖Lρ(Ω)ds for all t ∈ (0, T ). (2.9)
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Here since clearly µ < r, we can employ the Hölder inequality to see that thanks to (2.3) and the

inequalities α > β > 1
2 and ρ ≤ r, the continuity of the embedding D(Aβρ ) →֒ W 1,ρ(Ω;RN ) ([9] [12])

and a well-known interpolation property (see Theorem 14.1 in Part 2 of [9]) guarantee that with some
C2 = C2(r) > 0, C3 = C3(r) > 0 and C4 = C4(r) > 0 we have

‖(u(·, s) · ∇)u(·, s)‖Lµ(Ω) ≤ ‖u(·, s)‖Lr(Ω)‖∇u(·, s)‖
L

rµ
r−µ (Ω)

≤ L‖∇u(·, s)‖Lρ(Ω)

≤ C2L‖Aβu(·, s)‖Lρ(Ω)

≤ C3L‖Aαu(·, s)‖aLρ(Ω)‖u(·, s)‖1−aLρ(Ω)

≤ C4L‖Aαu(·, s)‖aLρ(Ω)‖u(·, s)‖1−aLr(Ω)

≤ C4L
2−aMa(T ′) for all s ∈ (0, T ′) and any T ′ ∈ (0, T )

if we let a := β
α
∈ (0, 1) and

M(T ′) := sup
t∈(0,T ′)

‖Aαu(·, t)‖Lρ(Ω), T ′ ∈ (0, T ).

As Lemma 2.2 in particular implies the existence of C5 = C5(T, λ, q, r,KS , L) > 0 such that

‖n(·, t)‖Lρ(Ω) ≤ C5 for all t ∈ (0, T ),

noting that α < 1 and that

α+
N

2

( 1

µ
− 1

ρ

)
= α+

N

2

(r + ρ

rρ
− 1

ρ

)
= α+

N

2r
< 1

by (2.8), we thus conclude from (2.9) and (1.6) that there exists C6 = C6(T, λ, q, r,KS , κ, L) > 0 such
that

M(T ′) ≤ C6 + C6M
a(T ′) for all T ′ ∈ (0, T ),

which implies (2.6) due to the fact that a < 1.

Now by a straightforward adaptation of a well-known reasoning (see, for instance, the proof of (2.36)
in Lemma 2.8 of [48]), in quite a similar manner it is furthermore possible to find θ1 = θ1(r) ∈ (0, 1)
and C7 = C7(T, λ, q, r,KS , κ, L) > 0 fulfilling

‖Aαu(·, t)−Aαu(·, t0)‖Lρ(Ω) ≤ C7|t− t0|θ1 for all t ∈ (0, T ) and t0 ∈ (0, T ),

which finally implies (2.7) due to the fact that D(Aαρ ) →֒ Cθ2(Ω;RN ) for any θ2 from the nonempty

interval (0, 2α− N
ρ
) ([12]). �

Let us finally prepare an argument that will, before becoming substantial for the derivation of Theorem
1.2 in Section 7, inter alia reveal in Lemma 5.8 that the assumptions (1.8) and (1.9) actually imply
boundedness of ∇c in L∞((0, T );Lq̂(Ω)) for arbitrarily large q̂. The following lemma is the only place
in this paper where convexity of Ω is explicitly needed.
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Lemma 2.4 For all p > max{N, 2}, q ≥ 2 and r ∈ (2,∞] there exists C = C(p, q) > 0 such that if
(nε, cε, uε, Pε) is a classical solution of (1.2) in Ω× (0, T ) for some ε > 0 and T > 0, then

ε

q

d

dt

∫

Ω
|∇cε|q +

1

4

∫

Ω
|∇cε|q−2|D2cε|2 +

(
1− 1

q2

)∫

Ω
|∇cε|q

≤ C‖nε‖qLp(Ω) + C‖uε‖2Lr(Ω)‖∇cε‖
q

L
qr
r−2 (Ω)

for all t ∈ (0, T ), (2.10)

where we interpret qr
r−2 as coinciding with q if r = ∞.

Proof. Once more omitting the subscript ε for convenience, by means of the second equation in
(1.2), we see that for all t ∈ (0, T ),

ε

q

d

dt

∫

Ω
|∇c|q =

∫

Ω
|∇c|q−2∇c · ∇

{
∆c− c+ n− u · ∇c

}

=
1

2

∫

Ω
|∇c|q−2∆|∇c|2 −

∫

Ω
|∇c|q−2|D2c|2

−
∫

Ω
|∇c|q +

∫

Ω
|∇c|q−2∇c · ∇n−

∫

Ω
|∇c|q−2∇c · ∇(u · ∇c)

=
1

2

∫

∂Ω
|∇c|q−2∂|∇c|2

∂ν
− q − 2

2

∫

Ω
|∇c|q−4|∇|∇c|2|2 −

∫

Ω
|∇c|q−2|D2c|2

−
∫

Ω
|∇c|q +

∫

Ω
|∇c|q−2∇c · ∇n−

∫

Ω
|∇c|q−2∇c · ∇(u · ∇c)

≤ −
∫

Ω
|∇c|q−2|D2c|2 −

∫

Ω
|∇c|q

−
∫

Ω
n|∇c|q−2∆c− (q − 2)

∫

Ω
n|∇c|q−4∇c · (D2c · ∇c)

+

∫

Ω
(u · ∇c)|∇c|q−2∆c+ (q − 2)

∫

Ω
(u · ∇c)|∇c|q−4∇c · (D2c · ∇c), (2.11)

because of ∂|∇c|
2

∂ν
≤ 0 on ∂Ω× (0, T ) due to the convexity of Ω ([24]), and because of q ≥ 2. Here two

applications of Young’s inequality and the Hölder inequality show that abbreviating C1(q) :=
√
2+q−2

we have

−
∫

Ω
n|∇c|q−2∆c− (q − 2)

∫

Ω
n|∇c|q−4∇c · (D2c · ∇c)

≤ C1(q)

∫

Ω
n|∇c|q−2|D2c|

≤ 1

4

∫

Ω
|∇c|q−2|D2c|2 + C2

1 (q)

∫

Ω
n2|∇c|q−2

≤ 1

4

∫

Ω
|∇c|q−2|D2c|2 + C2

1 (q)‖n‖2Lp(Ω)‖∇c‖
q−2

L
p(q−2)
p−2 (Ω)

(2.12)

and
∫

Ω
(u · ∇c)|∇c|q−2∆c+ (q − 2)

∫

Ω
(u · ∇c)|∇c|q−4∇c · (D2c · ∇c)
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≤ C1(q)

∫

Ω
|u||∇c|q−1|D2c|

≤ 1

4

∫

Ω
|∇c|q−2|D2c|2 + C2

1 (q)

∫

Ω
|u|2|∇c|q

≤ 1

4

∫

Ω
|∇c|q−2|D2c|2 + C2

1 (q)‖u‖2Lr(Ω)‖∇c‖
q

L
qr
r−2 (Ω)

(2.13)

for all t ∈ (0, T ). Now since p > max{N, 2} and q ≥ 2 ensure that p(q − 2)(N − 2) < N(p − 2)q, it

follows that W 1,2(Ω) is continuously embedded into L
2p(q−2)
(p−2)q (Ω). Again using Young’s inequality, we

can therefore find C2(p, q) > 0 and C3(p, q) > 0 such that

C2
1 (q)‖n‖2Lp(Ω)‖∇c‖

q−2

L
p(q−2)
p−2 (Ω)

≤ C2(p, q)‖n‖2Lp(Ω) ·
{∥∥∥∇|∇c| q2

∥∥∥
2

L2(Ω)
+
∥∥∥|∇c|

q
2

∥∥∥
2

L2(Ω)

} q−2
q

≤ 1

q2
·
{∥∥∥∇|∇c| q2

∥∥∥
2

L2(Ω)
+

∥∥∥|∇c|
q
2

∥∥∥
2

L2(Ω)

}
+ C3(p, q)‖n‖qLp(Ω)

=
1

4

∫

Ω
|∇c|q−4|D2c · ∇c|2 + 1

q2

∫

Ω
|∇c|q + C3(p, q)‖n‖qLp(Ω)

≤ 1

4

∫

Ω
|∇c|q−2|D2c|2 + 1

q2

∫

Ω
|∇c|q + C3(p, q)‖n‖qLp(Ω)

for all t ∈ (0, T ). Therefore, (2.12) and (2.13) when inserted into (2.11) show that

ε

q

d

dt

∫

Ω
|∇c|q +

1

4

∫

Ω
|∇c|q−2|D2c|2 +

(
1− 1

q2

)∫

Ω
|∇c|q

≤ C3(p, q)‖n‖qLp(Ω) + C2
1 (q)‖u‖2Lr(Ω)‖∇c‖

q

L
qr
r−2 (Ω)

for all t ∈ (0, T ),

which directly results in (2.10). �

3 Regularity and compactness properties implied by the hypotheses

from Theorem 1.1

Next concentrating on the particular setup created by Theorem 1.1, in this part we will augment the
estimates from the previous section by further compactness properties which will allow for passing to
the limit, already partially in the flavor claimed in Theorem 1.1.

Firstly, the L∞ bound from Lemma 2.2 can quite immediately be improved into an estimate in some
Hölder space by means of standard parabolic theory.

Lemma 3.1 Suppose that the assumptions of Theorem 1.1 are satisfied. Then there exist θ ∈ (0, 1)
and C > 0 such that

‖nε‖
Cθ, θ2 (Ω×[0,T ])

≤ C for all ε ∈ (εj)j∈N. (3.1)

Proof. We rewrite the first equation in (1.2) in the form

∂tnε = ∇ · aε(x, t,∇nε) + bε(x, t), x ∈ Ω, t ∈ (0, T ),
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with

aε(x, t, ξ) := ξ − nε(x, t)S(x, nε(x, t), cε(x, t)) · ∇cε(x, t)− nε(x, t)uε(x, t), (x, t, ξ) ∈ Ω× (0, T )× R
N ,

and

bε(x, t) := f(x, nε(x, t), cε(x, t)), (x, t) ∈ Ω× (0, T ),

Then due to Young’s inequality and (1.3), Lemma 2.2 and Lemma 2.3 yield positive constants C1 and
C2 such that for all ε ∈ (εj)j∈N,

aε(x, t, ξ) · ξ ≥
|ξ|2
2

− C1|∇cε(x, t)|2 − C1 for all (x, t, ξ) ∈ Ω× (0, T )× R
N

and

|aε(x, t, ξ)| ≤ |ξ|+ C2|∇cε(x, t)|+ C2 for all (x, t, ξ) ∈ Ω× (0, T )× R
N

as well as

|bε(x, t)| ≤ C3 for all (x, t) ∈ Ω× (0, T ).

Since (2.2) provides a bound for |∇cε|2 in L
λ
2 ((0, T );L

q
2 (Ω)), with the exponents therein satisfying

2
λ
+ N

2· q
2
= 2

λ
+ N

q
< 1 by (1.10), the estimate (3.1) directly results on applying a standard result on

Hölder regularity in scalar parabolic equations ([33, Theorem 1.3, Remark 1.4]). �

Thanks to standard Schauder estimates for the Stokes system, the latter directly entails bounds for
uε even in higher-order Hölder spaces, at least locally away from the initial time.

Lemma 3.2 Under the assumptions of Theorem 1.1, for each τ ∈ (0, T ) one can find θ ∈ (0, 1) and
C > 0 such that

‖uε‖
C2+θ,1+ θ

2 (Ω×[τ,T ])
≤ C for all ε ∈ (εj)j∈N. (3.2)

Proof. Thanks to the estimates provided by Lemma 2.2 and Lemma 2.3, this follows upon a
straightforward application of well-known Schauder theory for the linear inhomogeneous Stokes evo-
lution equation (see, for instance, Proposition 1.1 in [36]). �

As a further implication of Lemma 2.2, by way of a standard testing procedure we can also obtain
further bounds for the second solution component which, if the parameter s therein is chosen large,
may partially go beyond the information invested through (1.8).

Lemma 3.3 Suppose that the assumptions of Theorem 1.1 are satisfied with some (εj)j∈N ⊂ (0,∞).
Then for all s ≥ 2 there exists C(s) > 0 such that for all ε ∈ (εj)j∈N,

∫

Ω
csε(·, t) ≤ C(s) for all t ∈ (0, T ), (3.3)

and that ∫ T

0

∫

Ω
cs−2
ε |∇cε|2 ≤ C(s). (3.4)
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Proof. We multiply the second equation in (1.2) by cs−1
ε and use Young’s inequality to see that

since ∇ · uε ≡ 0,

ε

s

d

dt

∫

Ω
csε + (s− 1)

∫

Ω
cs−2
ε |∇cε|2 +

∫

Ω
csε =

∫

Ω
nεc

s−1
ε ≤ s− 1

s

∫

Ω
csε +

1

s

∫

Ω
nsε for all t ∈ (0, T ),

so that Lemma 2.2 implies the existence of C1 > 0 such that for all ε ∈ (εj)j∈N, yε(t) :=
∫
Ω c

s
ε(·, t), t ∈

[0, T ], satisfies

εy′ε(t) + yε(t) + s(s− 1)

∫

Ω
cs−2
ε |∇cε|2 ≤ C1 for all t ∈ (0, T ).

This firstly entails by a comparison argument, or alternatively by a direct calculation, that

yε(t) ≤ max

{∫

Ω
cs0 , C1

}
for all t ∈ (0, T ) and ε ∈ (εj)j∈N,

and secondly ensures upon integration that

s(s− 1)

∫ T

0

∫

Ω
cs−2
ε |∇cε|2 ≤ ε

∫

Ω
cs0 + C1T for all ε ∈ (εj)j∈N,

so that both (3.3) and (3.4) directly follow, because (εj)j∈N is bounded. �

Similarly, Lemma 2.2 together with the latter entails an estimate for ∇nε:
Lemma 3.4 Suppose that the assumptions of Theorem 1.1 are satisfied with some (εj)j∈N ⊂ (0,∞).
Then there exists C > 0 such that

∫ T

0

∫

Ω
|∇nε|2 ≤ C for all ε ∈ (εj)j∈N. (3.5)

Proof. Using nε as a test function in the first equation in (1.2) and relying on (1.4), (1.3) as well
as Young’s inequality, we find that again since ∇ · uε ≡ 0,

1

2

d

dt

∫

Ω
n2ε +

∫

Ω
|∇nε|2 =

∫

Ω
nε(S(x, nε, cε) · ∇cε) · ∇nε +

∫

Ω
nεf(x, nε, cε)

≤ 1

2

∫

Ω
|∇nε|2 +

K2
S

2
‖nε‖2L∞(Ω)

∫

Ω
|∇cε|2 +Kf

∫

Ω
nε +Kf

∫

Ω
n2ε

for all t ∈ (0, T ). In view of the bounds provided by Lemma 2.2 and Lemma 3.3, upon a time
integration this readily yields (3.5). �

To prepare a useful ingredient for our subsequent analysis concerning the time regularity of the limit
c to be obtained, we note the following weak but eventually helpful regularity information on ∂tnε.
For its formulation and for later reference, let us agree on using the abbreviation W

2,2
N (Ω) := {ψ ∈

W 2,2(Ω) | ∂ψ
∂ν

= 0 on ∂Ω}.
Lemma 3.5 Under the assumptions from Theorem 1.1, there exists C > 0 such that

∫ T

0
‖∂tnε(·, t)‖2(W 2,2

N
(Ω))⋆

dt ≤ C for all ε ∈ (εj)j∈N. (3.6)
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Proof. For fixed t ∈ (0, T ) and ψ ∈W
2,2
N (Ω), using (1.2), (1.4) and (1.3) together with the Hölder

inequality, we see that since ∂ψ
∂ν

= 0 on ∂Ω,

∣∣∣∣
∫

Ω
∂tnε(·, t)ψ

∣∣∣∣ =

∣∣∣∣
∫

Ω
nε∆ψ +

∫

Ω
nε(S(x, nε, cε) · ∇cε) · ∇ψ +

∫

Ω
nεuε · ∇ψ +

∫

Ω
f(x, nε, cε)ψ

∣∣∣∣
≤ ‖nε‖L2(Ω)‖∆ψ‖L2(Ω) +KS‖nε‖L∞(Ω)‖∇cε‖Lq(Ω)‖∇ψ‖

L
q

q−1 (Ω)

+‖nε‖L∞(Ω)‖uε‖Lr(Ω)‖∇ψ‖L r
r−1 (Ω)

+Kf‖nε + 1‖L2(Ω)‖ψ‖L2(Ω)

As the inequalities q > N and r > N warrant that W 2,2
N (Ω) is continuously embedded into both

W
1, q

q−1 (Ω) and W
1, r

r−1 (Ω), this implies the existence of C1 > 0 such that for all t ∈ (0, T ) and
ε ∈ (εj)j∈N,

‖∂tnε(·, t)‖(W 2,2
N

(Ω))⋆
≤ C1 ·

{
‖nε‖L∞(Ω) + 1

}
·
{
‖∇cε‖Lq(Ω) + ‖uε‖Lr(Ω) + 1

}

so that (3.6) becomes a consequence of Lemma 2.2 when combined with (1.8) and (1.9) due to the
fact that the exponent therein satisfies λ > 2. �

Based on the estimates collected so far, we can now extract a subsequence and identify a limit triple
(n, c, u) as follows.

Lemma 3.6 Suppose that the assumptions of Theorem 1.1 hold. Then there exist a subsequence
(εjk)k∈N of (εj)j∈N, a number θ ∈ (0, 1) and functions





n ∈ Cθ,
θ
2 (Ω× [0, T ]),

c ∈ L2((0, T );W 1,2(Ω)) and

u ∈ Cθ,
θ
2 (Ω× [0, T ];RN ) ∩ C2,1(Ω× (0, T ];RN )

(3.7)

such that as ε = εjk ց 0,

nε → n in C0(Ω× [0, T ]), (3.8)

nε ⇀ n in L2((0, T );W 1,2(Ω)), (3.9)

cε ⇀ c in L2((0, T );W 1,2(Ω)) and (3.10)

uε → u in C0(Ω× [0, T ];RN ) ∩ C2,1
loc (Ω× (0, T ];RN ), (3.11)

and that moreover
∂tnε ⇀ nt in L2((0, T ); (W 2,2

N (Ω))⋆). (3.12)

Proof. By means of a standard subsequence extraction procedure inter alia relying on the Arzelá-
Ascoli theorem, this can readily be derived from Lemma 3.1, Lemma 3.4, Lemma 3.3, Lemma 2.3,
Lemma 3.2 and Lemma 3.5. �
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4 Solution properties of u

Thanks to the favorable convergence features of both uε itself and the quantity nε determining the
forcing term in the fluid subsystem of (1.2), it is rather evident that the limit u obtained in Lemma
3.6 indeed satisfies its respective subproblem from (1.7):

Lemma 4.1 If the assumptions of Theorem 1.1 hold, then the functions n and u gained in Lemma
3.6 have the property that with some P ∈ C1,0(Ω× (0, T )) we have

ut + κ(u · ∇)u = ∆u+∇P + n∇φ, ∇ · u = 0 for all x ∈ Ω and t ∈ (0, T ), (4.1)

and that u(x, t) = 0 for all x ∈ ∂Ω and t ∈ (0, T ).

Proof. In view of (1.2) and the convergence properties in (3.8) and (3.11), this follows from
arguments well-established in the theory of the Navier-Stokes equations (see, for instance, Chapter V
in [35]). �

5 Regularity and solution properties of c. Strong convergence of cε

In view of the singular limit taken when passing from (1.2) to (1.7), it may not be surprising that
corresponding questions concerning regularity in the limit process cε → c, as well as solution properties
of the obtained limit, are more delicate. Indeed, for appropriately taking εց 0 in nonlinear expressions
involving the second solution component, and especially in the taxis term in (1.2), the yet weak
convergence information in (3.10) seems insufficient.

5.1 Hölder regularity of c,∇c and D2c. Solution properties of c

Suitable improvement of our knowledge in this respect will form the goal of this key section, and our
analysis in this direction will be launched by the following observation on validity of the Neumann
problem for second equation in (1.7) at least in some weak sense.

Lemma 5.1 Let the hypotheses from Theorem 1.1 be satisfied, and let n, c and u be as provided by
Lemma 3.6. Then there exists a null set N ⊂ (0, T ) such that for all t ∈ (0, T ) \N , c(·, t) ∈ W 1,2(Ω)
with ∫

Ω
∇c · ∇ψ +

∫

Ω
cψ =

∫

Ω
nψ −

∫

Ω
(u · ∇c)ψ for all ψ ∈W 1,2(Ω). (5.1)

Proof. Let us first make sure that for all ϕ ∈ C∞
0 (Ω× (0, T )) we have

∫ T

0

∫

Ω
∇c · ∇ϕ+

∫ T

0

∫

Ω
cϕ =

∫ T

0

∫

Ω
nϕ−

∫ T

0

∫

Ω
(u · ∇c)ϕ. (5.2)

For the verification of this, given any such ϕ we use the second equation in (1.2) to see that for all
ε ∈ (εj)j∈N,

−ε
∫ T

0

∫

Ω
cεϕt +

∫ T

0

∫

Ω
∇cε · ∇ϕ+

∫ T

0

∫

Ω
cεϕ =

∫ T

0

∫

Ω
nεϕ−

∫ T

0

∫

Ω
(uε · ∇cε)ϕ. (5.3)
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Since (3.10) and (3.8) warrant that with (εjk)k∈N as found in Lemma 3.6 we have

∫ T

0

∫

Ω
∇cε · ∇ϕ→

∫ T

0

∫

Ω
∇c · ∇ϕ,

∫ T

0

∫

Ω
cεϕ→

∫ T

0

∫

Ω
cϕ and ε

∫ T

0

∫

Ω
cεϕt → 0

as well as
∫ T

0

∫

Ω
nεϕ→

∫ T

0

∫

Ω
nϕ

as ε = εjk ց 0, and since combining (3.10) with (3.11) yields

∫ T

0

∫

Ω
(uε · ∇cε)ϕ→

∫ T

0

∫

Ω
(u · ∇c)ϕ as ε = εjk ց 0,

the identity (5.2) indeed results from (5.3).

We next rely on the separability of W 1,2(Ω) and a mollification argument in fixing (ψi)i∈N ⊂ C∞(Ω)

such that X0 := {ψi | i ∈ N} is dense in W 1,2(Ω), and thereupon use that all the functionals ζ
(ι)
i ,

i ∈ N, ι ∈ {1, 2, 3}, defined by

ζ
(1)
i (t) :=

∫

Ω
∇c(·, t) · ∇ψi, ζ

(2)
i (t) :=

∫

Ω
c(·, t)ψi and ζ

(3)
i (t) :=

∫

Ω
(u(·, t) · ∇c(·, t))ψi

for t ∈ (0, T ) and i ∈ N, belong to L1((0, T )). Therefore, namely, for each i ∈ N we can fix a null set

Ni ⊂ (0, T ) such that any t ∈ (0, T ) \ Ni is a Lebesgue point of ζ
(ι)
i for ι ∈ {1, 2, 3}, whence letting

N :=
(⋃

i∈NNi

)
∪ {t ∈ (0, T ) | c(·, t) 6∈ W 1,2(Ω)} we have found a null set N ⊂ (0, T ) such that

(0, T ) \N exclusively contains common Lebesgue points of all ζ
(ι)
i for i ∈ N and ι ∈ {1, 2, 3}, and such

that moreover c(·, t) ∈W 1,2(Ω) for all t ∈ (0, T ) \ N .

Now for fixed t0 ∈ (0, T ) \ N and h ∈ (0, T − t0) we choose (χl)l∈N ⊂ C∞
0 ((0, T )) such that

χl
⋆
⇀ χ(t0,t0+h) in L∞((0, T )) as l → ∞, (5.4)

where as usual χ(t0,t0+h) denotes the characteristic function of the set (t0, t0 + h), and apply (5.2) for
fixed l ∈ N and ψ ∈ X0 to ϕ(x, t) := χl(t) · ψ(x), (x, t) ∈ Ω× (0, T ), to see that

∫ T

0

∫

Ω
χl∇c · ∇ψ +

∫ T

0

∫

Ω
χlcψ =

∫ T

0

∫

Ω
χlnψ −

∫ T

0

∫

Ω
χl(u · ∇c)ψ for all l ∈ N,

by (5.4) implying that

1

h

∫ t0+h

t0

∫

Ω
∇c · ∇ψ +

1

h

∫ t0+h

t0

∫

Ω
cψ =

1

h

∫ t0+h

t0

∫

Ω
nψ − 1

h

∫ t0+h

t0

∫

Ω
(u · ∇c)ψ for all h ∈ (0, T − t0).

Thanks to the Lebesgue point property of t0 as well as the continuity of n in Ω × (0, T ) asserted by
Lemma 3.6, we may let hց 0 here to see that

∫

Ω
∇c(·, t0) · ∇ψ +

∫

Ω
c(·, t0)ψ =

∫

Ω
n(·, t0)ψ −

∫

Ω
(u(·, t0) · ∇c(·, t0))ψ for all ψ ∈ X0,
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which, by density of X0 in W 1,2(Ω), upon a further approximation argument readily entails (5.1). �

Due to our knowledge on Hölder continuity of n and u, the identity (5.1) can be seen to entail that c
actually enjoys some further regularity properties.

Lemma 5.2 Under the assumptions of Theorem 1.1 and with c and N taken from Lemma 3.6 and
Lemma 5.1, one can find θ ∈ (0, 1) and C > 0 fulfilling

‖c(·, t)‖W 1,2(Ω) ≤ C for all t ∈ (0, T ) \ N (5.5)

and
‖c(·, t)− c(·, s)‖W 1,2(Ω) ≤ C|t− s|θ for all t ∈ (0, T ) \ N and s ∈ (0, T ) \ N . (5.6)

In particular, on redefining c(·, t) for t ∈ N ∪ {0, T} if necessary, we can achieve that

c ∈ Cθ([0, T ];W 1,2(Ω)). (5.7)

Proof. We first observe that for t ∈ (0, T ) \N we may apply (5.1) to ψ := c(·, t) ∈W 1,2(Ω) to see
that due to Young’s inequality,

∫

Ω
|∇c(·, t)|2 +

∫

Ω
c2(·, t) =

∫

Ω
n(·, t)c(·, t)−

∫

Ω
(u(·, t) · ∇c(·, t))c(·, t)

=

∫

Ω
n(·, t)c(·, t)

≤ 1

2

∫

Ω
c2(·, t) + 1

2

∫

Ω
n2(·, t),

because ∇·u(·, t) ≡ 0 in Ω. By boundedness of n in Ω× (0, T ), as implied by Lemma 3.6, this directly
establishes (5.5).

Next, for fixed t ∈ (0, T ) \ N and s ∈ (0, T ) \ N , we let z(x) := c(x, t) − c(x, s), x ∈ Ω. Then
z ∈ W 1,2(Ω) by Lemma 5.1, whence z is an admissible test function in (5.1) evaluated both at t and
at s. Subtracting the respectively obtained identities

∫

Ω
∇c(·, t) · ∇z +

∫

Ω
c(·, t)z =

∫

Ω
n(·, t)z −

∫

Ω
(u(·, t) · ∇c(·, t))z

and
∫

Ω
∇c(·, s) · ∇z +

∫

Ω
c(·, s)z =

∫

Ω
n(·, s)z −

∫

Ω
(u(·, s) · ∇c(·, s))z,

we thus obtain that
∫

Ω
|∇z|2 +

∫

Ω
z2 =

∫

Ω
(n(·, t)− n(·, s))z −

∫

Ω

{
(u(·, t)− u(·, s)) · ∇c(·, t)

}
· z −

∫

Ω
(u(·, s) · ∇z) · z,

whence if according to Lemma 3.6 and (5.5) we let θ1 ∈ (0, 1), C1 > 0, C2 > 0 and C3 > 0 be such
that

|n(x, t̃)− n(x, s̃)| ≤ C1|t̃− s̃|
θ1
2 and |u(x, t̃)− u(x, s̃)| ≤ C2|t̃− s̃|

θ1
2

for all x ∈ Ω, t̃ ∈ (0, T ) and s̃ ∈ (0, T )
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as well as

‖∇c(·, t̃)‖L2(Ω) ≤ C3 for all t̃ ∈ (0, T ) \ N ,

then it follows that
∫

Ω
|∇c(·, t)−∇c(·, s)|2 + 1

2

∫

Ω
(c(·, t)− c(·, s))2 ≤ C2

1 |Ω| · |t− s|θ1 + C2
2C

2
3 |t− s|θ1

and that thus (5.6) holds. The conclusion (5.7) thereby becomes evident. �

A second stage of our bootstrap-type argument now even yields some spatial C2+θ regularity infor-
mation, as well as validity of the sub-problem of (1.7) in question in the classical sense:

Lemma 5.3 Suppose that the assumptions from Theorem 1.1 hold, and let n, c and u be as in Lemma
3.6. Then there exist θ ∈ (0, 1) and C > 0 such that

‖c(·, t)‖C2+θ(Ω) ≤ C for all t ∈ (0, T ). (5.8)

Moreover,
−∆c+ c = n− u · ∇c for all x ∈ Ω and t ∈ (0, T ) (5.9)

as well as
∂c

∂ν
= 0 for all x ∈ ∂Ω and t ∈ (0, T ) (5.10)

in the classical sense.

Proof. Let us first make sure that there exist q⋆ > N and C1 > 0 such that with N ⊂ (0, T ) taken
from Lemma 5.1 we have

‖c(·, t)‖W 2,q⋆ (Ω) ≤ C1 for all t ∈ (0, T ) \ N . (5.11)

To see this, we observe that since trivially N
(N−2)+

> 1, it is possible to fix a positive integer k0 and

numbers q1, ..., qk0 such that q1 = 2, qk0 > N and qk ≤ qk+1 <
Nqk

(n−qk)+
whenever 1 ≤ k < k0. Then

since Lemma 3.6 and Lemma 5.2 warrant the existence of θ1 ∈ (0, 1), C2 > 0, C3 > 0 and C4 > 0 such
that

‖n(·, t)‖Cθ1(Ω) ≤ C2, ‖u(·, t)‖Cθ1(Ω) ≤ C3 and ‖∇c(·, t)‖L2(Ω) ≤ C4 for all t ∈ (0, T ), (5.12)

it follows that h(·, t) := n(·, t)− u(·, t) · ∇c(·, t), t ∈ (0, T ), has the property that by definition of q1,

‖h(·, t)‖Lq1 (Ω) ≤ C5 := C2 + C3C4 for all t ∈ (0, T ).

As from Lemma 5.1 we know that for each t ∈ (0, T ) \ N , c(·, t) ∈ W 1,2(Ω) is a weak solution, in the
standard sense specified in (5.1), of the Neumann boundary value problem for −∆c(·, t)+c(·, t) = h(·, t)
in Ω, elliptic estimates therefor (see, for instance, Chapter 9 in [11]) provide C6 > 0 such that

‖c(·, t)‖W 2,q1 (Ω) ≤ C6‖h(·, t)‖Lq1 (Ω) ≤ C5C6 for all t ∈ (0, T ) \ N .
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In the case N = 1 in which q1 > N , this already establishes (5.11), while if N ≥ 2 and hence k0 > 1,
the inequality q2 <

Nq1
(N−q1)+

ensures continuity of the embeddingW 2,q1(Ω) →֒W 1,q2(Ω), whence (5.12)

actually implies boundedness of (h(·, t))t∈(0,T )\N in Lq2(Ω).

Repeating this procedure, after finitely many steps we conclude that indeed (5.11) holds with q⋆ := qk0
and some appropriately large C1 > 0. Since q⋆ > N , in view of the continuous embeddingW 2,q⋆(Ω) →֒
C1+θ2(Ω) for any fixed θ2 ∈ (0, 1 − N

q⋆
) this entails boundedness of (∇c(·, t))t∈(0,T )\N in Cθ2(Ω) and

thus, again through (5.12), of (h(·, t))t∈(0,T )\N in Cθ3(Ω) for some θ3 ∈ (0, 1). Now elliptic Schauder
theory (see, for instance, Chapter 6 in [11]) applies to the Neumann boundary value problem for
−∆c(·, t) + c(·, t) = h(·, t) in Ω and provides C7 > 0 such that

‖c(·, t)‖C2+θ3 (Ω) ≤ C7 for all t ∈ (0, T ) \ N ,

which due to the time continuity property expressed in (5.7) clearly extends so as to remain valid
actually for all t ∈ (0, T ). This clearly entails (5.8) and, as a consequence of (5.1), also (5.9) and thus
(5.10). �

By straightforward interpolation, combining the latter two lemmata finally provides Hölder continuity
also in time of c,∇c and D2c.

Lemma 5.4 Under the assumptions from Theorem 1.1, there exist θ ∈ (0, 1) and C > 0 such that

‖c(·, t)− c(·, s)‖C2+θ(Ω) ≤ C|t− s|θ for all t ∈ (0, T ) and s ∈ (0, T ), (5.13)

where c is taken from Lemma 3.6.

Proof. In line with Lemma 5.2, let us fix θ1 ∈ (0, 1) such that c ∈ Cθ1([0, T ];W 1,2(Ω)), and
thereafter choose any θ2 ∈ (0, θ1). Then by straightforward interpolation, we can find a ∈ (0, 1) and
C1 > 0 such that

‖ψ‖C2+θ2 (Ω) ≤ C1‖ψ‖aC2+θ1 (Ω)
‖ψ‖1−a

W 1,2(Ω)
for all ψ ∈ C2+θ1(Ω).

Therefore,

‖c(·, t)− c(·, s)‖C2+θ2(Ω) ≤ C1 ·
{
‖c(·, t)‖C2+θ1(Ω) + ‖c(·, s)‖C2+θ1(Ω)

}a
· ‖c(·, t)− c(·, s)‖1−a

W 1,2(Ω)

for all t ∈ (0, T ) and s ∈ (0, T ), so that the claim readily results from Lemma 5.3 and Lemma 5.2 if
we let θ := (1− a)θ1 and take C > 0 appropriately large. �

5.2 Regularity of ct. Strong convergence properties of cε and ∇cε

Now an observation crucial for our derivation of strong convergence properties of cε is contained in
the following statement on local L2 integrability of ct away from t = 0. Using the validity of the
elliptic subproblem in (1.7) for c as a starting point, besides relying on the local boundedness of ut in
Ω× (0, T ] our argument essentially utilizes the time regularity information on nt provided by Lemma
3.6 through Lemma 3.5.
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Lemma 5.5 Under the assumptions from Theorem 1.1, the function c obtained in Lemma 3.6 satisfies

ct ∈ L2
loc(Ω× (0, T ]). (5.14)

Proof. We pick τ ∈ (0, T ) and h0 ∈ (0, T − τ), and for h ∈ (0, h0) we let

zh(x, t) :=
c(x, t+ h)− c(x, t)

h
, x ∈ Ω, t ∈ (τ, T − h0).

Then using Lemma 5.3 we see that for each fixed t ∈ (τ, T −h0), zh(·, t) ∈ C2(Ω) is a classical solution
of the Neumann boundary value problem for

−∆zh(·, t) + zh(·, t) =
1

h
·
{
n(·, t+ h)− u(·, t+ h) · ∇c(·, t+ h)

}
− 1

h
·
{
n(·, t)− u(·, t) · ∇c(·, t)

}

= gh(·, t)− u(·, t) · ∇zh(·, t) in Ω, (5.15)

where for h ∈ (0, h0),

gh(x, t) :=
n(x, t+ h)− n(x, t)

h
− u(x, t+ h)− u(x, t)

h
· ∇c(x, t+ h), x ∈ Ω, t ∈ (τ, T − h0).

Next, for h ∈ (0, h0) and t ∈ (0, T − h0) we furthermore let z
(1)
h (·, t) and z(2)h (·, t) denote the classical

solutions of 



−∆z
(1)
h (·, t) + z

(1)
h (·, t) = gh(·, t), x ∈ Ω,

∂z
(1)
h

∂ν
= 0, x ∈ ∂Ω,

(5.16)

and 



−∆z
(2)
h (·, t) + z

(2)
h (·, t) = −u(·, t) · ∇zh(·, t), x ∈ Ω,

∂z
(2)
h

∂ν
= 0, x ∈ ∂Ω,

(5.17)

noting that their existence in the space C2(Ω) is asserted by standard elliptic theory (see, for instance,
Chapter 6 in [11]) due to the fact that both gh(·, t) and u(·, t) · ∇zh(·, t) are Hölder continuous in Ω
by Lemma 3.6, Lemma 5.3 and the inclusion zh(·, t) ∈ C2(Ω).

Then according to a uniqueness property of classical solutions to the Neumann problem associated
with the inhomogeneous Helmholtz equation in (5.15), it follows that

zh(·, t) = z
(1)
h (·, t) + z

(2)
h (·, t) for all t ∈ (τ, T − t0), (5.18)

and in order to successively derive L2 bounds for z
(1)
h and then for z

(2)
h , we first rewrite (5.16) in the

form z
(1)
h (·, t) := B−1gh(·, t), where B denotes the realization of −∆+ 1 in W 2,2

N (Ω). Then since B−1

obviously is nonexpansive on L2(Ω), we can estimate

‖z(1)h (·, t)‖L2(Ω) ≤
∥∥∥∥B

−1n(·, t+ h)− n(·, t)
h

∥∥∥∥
L2(Ω)

+

∥∥∥∥B
−1

{u(·, t+ h)− u(·, t)
h

· ∇c(·, t+ h)
}∥∥∥∥

L2(Ω)

≤
∥∥∥∥B

−1n(·, t+ h)− n(·, t)
h

∥∥∥∥
L2(Ω)

+

∥∥∥∥
u(·, t+ h)− u(·, t)

h
· ∇c(·, t+ h)

∥∥∥∥
L2(Ω)
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≤
∥∥∥∥B

−1n(·, t+ h)− n(·, t)
h

∥∥∥∥
L2(Ω)

+

∥∥∥∥
u(·, t+ h)− u(·, t)

h

∥∥∥∥
L∞(Ω)

‖∇c(·, t+ h)‖L2(Ω)

=

∥∥∥∥
1

h

∫ t+h

t

B−1nt(·, s)ds
∥∥∥∥
L2(Ω)

+

∥∥∥∥
1

h

∫ t+h

t

ut(·, s)ds
∥∥∥∥
L∞(Ω)

· ‖∇c(·, t+ h)‖L2(Ω)

for all t ∈ (τ, T − h0) and any h ∈ (0, h0).

Since ut is bounded in Ω× (τ, T ) by Lemma 3.6, and since Lemma 5.2 implies boundedness of (0, T ) ∋
t 7→ ‖∇c(·, t)‖L2(Ω), we thus obtain C1 = C1(τ) > 0 such that for all h ∈ (0, h0),

‖z(1)h (·, t)‖2L2(Ω) ≤ 2

∥∥∥∥
1

h

∫ t+h

t

B−1nt(·, s)ds
∥∥∥∥
2

L2(Ω)

+ C1 for all t ∈ (τ, T − h0).

Therefore, by integration using the Fubini theorem as well as the Cauchy-Schwarz inequality,

∫ T−h0

τ

‖z(1)h (·, t)‖2L2(Ω)dt ≤ C1T +
2

h2

∫ T−h0

τ

∥∥∥∥
∫ t+h

t

B−1nt(·, s)ds
∥∥∥∥
2

L2(Ω)

dt

≤ C1T +
2

h

∫ T−h0

τ

∫ t+h

t

‖B−1nt(·, s)‖2L2(Ω)dsdt

= C1T +
2

h

∫ τ+h

τ

∫ s

τ

‖B−1nt(·, s)‖2L2(Ω)dtds

+
2

h

∫ T−h0

τ+h

∫ s

s−h
‖B−1nt(·, s)‖2L2(Ω)dtds

+
2

h

∫ T−h0+h

T−h0

∫ T−h0

s−h
‖B−1nt(·, s)‖2L2(Ω)dtds

≤ C1T + 2

∫ T

τ

‖B−1nt(·, s)‖2L2(Ω)ds for all h ∈ (0, T − h0 − τ).

Now since standard elliptic regularity theory (see, for instance, Theorem 21.1 in [57]) ensures that
B−1 maps L2(Ω) continuously into W 2,2

N (Ω), and that thus with some C2 > 0 we have ‖B−1ψ‖L2(Ω) ≤
C2‖ψ‖(W 2,2

N
(Ω))⋆

for all ψ ∈ (W 2,2
N (Ω))⋆, this entails that

∫ T−h0

τ

∫

Ω
(z

(1)
h )2 ≤ C3 = C3(τ) := C1T + 2C2

2

∫ T

τ

‖nt(·, t)‖2(W 2,2
N

(Ω))⋆
dt (5.19)

for all h ∈ 0, T − h0 − τ) with C3 being finite thanks to Lemma 3.5.

Next, in order to estimate z
(2)
h , we test (5.17) against z

(2)
h (·, t) and recall the decomposition (5.18) to

infer that by solenoidality of u and by Young’s inequality,

∫

Ω
|∇z(2)h (·, t)|2 +

∫

Ω
(z

(2)
h (·, t))2 = −

∫

Ω
(u(·, t) · ∇z(1)h (·, t))z(2)h (·, t)−

∫

Ω
(u(·, t) · ∇z(2)h (·, t))z(2)h (·, t)

=

∫

Ω
z
(1)
h (·, t)(u(·, t) · ∇z(2)h (·, t))
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≤
∫

Ω
|∇z(2)h (·, t)|2 + 1

4

∫

Ω
(z

(1)
h (·, t))2|u(·, t)|2

≤
∫

Ω
|∇z(2)h (·, t)|2 + 1

4
‖u(·, t)‖2L∞(Ω)

∫

Ω
(z

(1)
h (·, t))2

for all t ∈ (τ, T − h0) and each h ∈ (0, T − h0 − τ).

As once more relying on Lemma 3.6 we can find C4 > 0 such that ‖u(·, t)‖L∞(Ω) ≤ C4 for all t ∈ (0, T ),
in view of (5.19) this implies that

∫ T−h0

τ

∫

Ω
(z

(2)
h )2 ≤ C2

4

4

∫ T−h0

τ

∫

Ω
(z

(1)
h )2 ≤ C3C

2
4

4
for all h ∈ (0, T − h0 − τ)

and that thus, again by (5.19),

∫ T−h0

τ

∫

Ω
z2h ≤ 2C3 +

C3C
2
4

2
for all h ∈ (0, T − h0 − τ)

because of (5.18). Consequently, there exist (hi)i∈N ⊂ (0, T −h0− τ) and z ∈ L2(Ω× (τ, T −h0)) such
that hi → 0 and zhi ⇀ z in L2(Ω× (τ, T − h0)) as i→ ∞, so that since by definition of distributional
derivatives z must coincide with ct a.e. in Ω× (τ, T − h0), (5.14) results from the fact that τ ∈ (0, T )
and h0 ∈ (0, T − τ) were arbitrary. �

On the basis of this, we can now in fact derive some strong convergence property of cε by analyzing
the difference cε − c through a parabolic equation satisfied by the latter, in which the crucial source
term εct can appropriately be controlled using (5.14).

Lemma 5.6 Suppose that the assumptions of Theorem 1.1 are satisfied with some (εj)j∈N ⊂ (0,∞),
and let (n, c, u, P ) and (εjk)k∈N be as provided by Lemma 3.6. Then

cε → c in L∞
loc((0, T ];L

2(Ω)) (5.20)

and
∇cε → ∇c in L2

loc(Ω× (0, T ]) (5.21)

as ε = εjk ց 0.

Proof. For ε ∈ (εj)j∈N, we let

zε(x, t) := cε(x, t)− c(x, t), (x, t) ∈ Ω× (0, T ),

and

yε(t) :=

∫

Ω
z2ε (x, t)dx, t ∈ (0, T ).

Then since zε ∈ L∞(Ω × (0, T )) and ∂tzε = ∂tcε − ct ∈ L2
loc((0, T ];L

2(Ω)) by Lemma 2.4 with q = 2

and Lemma 5.5, it follows from a standard argument that yε belongs to W
1,2
loc ((0, T ]) and is therefore

locally absolutely continuous in (0, T ] with

y′ε(t) = 2

∫

Ω
zε(·, t)∂tzε(·, t) for a.e. t ∈ (0, T ).
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As herein by (1.2) and Lemma 5.3,

ε∂tzε = ∆cε − cε + nε − uε · ∇cε − εct

= ∆zε +∆c− zε − c+ nε − uε · ∇cε − εct

= ∆zε − zε + (nε − n)− (uε − u) · ∇c− uε · ∇zε − εct a.e. in Ω for a.e. t ∈ (0, T ),

on integrating by parts and using Young’s inequality we obtain that

ε

2
y′ε(t) +

∫

Ω
|∇zε|2 +

∫

Ω
z2ε

=

∫

Ω
(nε − n)zε −

∫

Ω

{
(uε − u) · ∇c

}
zε −

∫

Ω
(uε · ∇zε)zε − ε

∫

Ω
ctzε

≤ 3

4

∫

Ω
z2ε +

∫

Ω
(nε − n)2 +

∫

Ω
|uε − u|2|∇c|2 + ε2

∫

Ω
c2t for a.e. t ∈ (0, T ),

because ∇ · uε ≡ 0 a.e. in Ω× (0, T ). Hence

ε

2
y′ε(t) +

1

4
yε(t) +

∫

Ω
|∇zε|2 ≤ hε + ε2

∫

Ω
c2t (·, t) for a.e. t ∈ (0, T ), (5.22)

where according to Lemma 3.6,

hε := |Ω| · ‖nε − n‖2L∞(Ω×(0,T )) + ‖uε − u‖2L∞(Ω×(0,T )) · ‖∇c‖2L∞((0,T );L2(Ω))

satisfies
hε → 0 as ε = εjk ց 0. (5.23)

Given any τ ∈ (0, T ) and an arbitrary η > 0 we use (5.23) and Lemma 5.5 along with the boundedness
of (yε)ε∈(εjk )k∈N

in L∞((0, T )), as entailed by Lemma 3.3 and Lemma 5.3, to fix ε0 > 0 small enough

such that whenever ε ∈ (εjk)k∈N is such that ε < ε0, we have

4hε ≤
η

3
(5.24)

and

2ε

∫ T

τ
2

∫

Ω
c2t ≤

η

3
(5.25)

as well as
yε

(τ
2

)
· e− τ

4ε ≤ η

3
. (5.26)

Then from (5.22) we infer on dropping the nonnegative last summand on the left that the absolutely

continuous function [ τ2 , T ] ∋ t 7→ e
1
2ε

(t− τ
2
)yε(t) satisfies

d

dt

{
e

1
2ε

(t− τ
2
)yε(t)

}
≤ e

1
2ε

(t− τ
2
)

{
2hε
ε

+ 2ε

∫

Ω
c2t (·, t)

}
for a.e. t ∈

(τ
2
, T

)
,
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and therefore we obtain using (5.26), (5.24) and (5.25) that

yε(t) ≤ yε

(τ
2

)
· e− 1

2ε
(t− τ

2
) +

2hε
ε

∫ t

τ
2

e−
1
2ε

(t−s)ds+ 2ε

∫ t

τ
2

e−
1
2ε

(t−s) ·
∫

Ω
c2t (·, s)ds

≤ yε

(τ
2

)
· e− 1

2ε
(t− τ

2
) + 4hε ·

{
1− e−

1
2ε

(t− τ
2
)
}
+ 2ε

∫ t

τ
2

∫

Ω
c2t

≤ η

3
+
η

3
+
η

3
= η for all t ∈ (τ, T ).

This in conjunction with Lemma 5.5 and Lemma 3.3 implies that for each τ ∈ (0, T ) we have

zε → 0 in L∞((τ, T );L2(Ω)) as ε = εjk ց 0. (5.27)

Going back to (5.22), we see upon direct integration therein that for each τ ∈ (0, T ) we moreover have
∫ T

τ

∫

Ω
|∇zε|2 ≤

ε

2
yε(τ) + hε · (T − τ) + ε2

∫ T

τ

∫

Ω
c2t for all ε ∈ (εjk)k∈N,

so that again by means of (5.23), Lemma 5.5 and the boundedness of (yε)ε∈(εjk )k∈N
in L∞((0, T )) we

infer that for any such τ ,

zε → 0 in L2((τ, T );W 1,2(Ω)) as ε = εjk ց 0.

Together with (5.27), this shows that both (5.20) and (5.21) hold. �

5.3 A bound for ∇cε in L∞((0, T );Lq̂(Ω)) for arbitrarily large q̂

Let us conclude this section by providing some additional integrability information on the signal
gradient ∇cε on the basis of the differential inequality from Lemma 2.4.

Our reasoning will involve the following elementary interpolation inequality.

Lemma 5.7 Let q ≥ 2. Then for all ϕ ∈ C2(Ω) such that ϕ · ∂ϕ
∂ν

= 0 on ∂Ω, we have

∫

Ω
|∇ϕ|q ≤ (

√
N + q − 2)

2q
q+2 ·

{∫

Ω
|∇ϕ|q−2|D2ϕ|2

} q
q+2

·
{∫

Ω
|ϕ|q

} 2
q+2

. (5.28)

Proof. We integrate by parts and use the Hölder inequality to see that
∫

Ω
|∇ϕ|q =

∫

Ω
|∇ϕ|q−2∇ϕ · ∇ϕ

= −
∫

Ω
ϕ|∇ϕ|q−2∆ϕ− (q − 2)

∫

Ω
ϕ|∇ϕ|q−4∇ϕ · (D2ϕ · ∇ϕ)

≤ (
√
N + q − 2)

∫

Ω
|ϕ| · |∇ϕ|q−2 · |D2ϕ|

≤ (
√
N + q − 2)

{∫

Ω
|ϕ|q

} 1
q

·
{∫

Ω
|∇ϕ|q

} q−2
2q

·
{∫

Ω
|∇ϕ|q−2|D2ϕ|2

} 1
2

,

from which (5.28) can readily be derived. �

Indeed, we can thereby achieve the following.
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Lemma 5.8 Assume the hypotheses from Theorem 1.1, and let q̂ > max{N, 2}. Then there exists
C = C(q̂) > 0 such that for all ε ∈ (εj)j∈N,

∫

Ω
|∇cε(·, t)|q̂ ≤ C for all t ∈ (0, T ). (5.29)

In particular,
sup

ε∈(εj)j∈N

‖cε‖L∞(Ω×(0,T )) <∞. (5.30)

Proof. Since (nε)ε∈(εj)j∈N
and (uε)ε∈(εj)j∈N

are bounded in L∞(Ω×(0, T )) and in L∞(Ω×(0, T );RN )
according to Lemma 2.2 and Lemma 2.3, respectively, from Lemma 2.4 we infer the existence of
C1 = C1(q̂) > 0 such that for all ε ∈ (εj)j∈N,

ε

q̂

d

dt

∫

Ω
|∇cε|q̂ +

1

4

∫

Ω
|∇cε|q̂−2|D2cε|2 +

∫

Ω
|∇cε|q̂ ≤ C1 + C1

∫

Ω
|∇cε|q̂ for all t ∈ (0, T ). (5.31)

Here we may use that Lemma 3.3 warrants boundedness of (cε)ε∈(εj)j∈N
in L∞((0, T );Lq̂(Ω)) to see

that as a consequence of Lemma 5.7 and Young’s inequality, with some positive constants Ci = Ci(q̂),
i ∈ {2, 3, 4}, we have

C1

∫

Ω
|∇cε|q̂ ≤ C2 ·

{∫

Ω
|∇cε|q̂−2|D2cε|2

} q̂
q̂+2

·
{∫

Ω
cq̂ε

} 2
q+2

≤ C3 ·
{∫

Ω
|∇cε|q̂−2|D2cε|2

} q̂
q̂+2

≤ 1

4

∫

Ω
|∇cε|q̂−2|D2cε|2 + C4 for all t ∈ (0, T ) and any ε ∈ (εj)j∈N,

so that (5.31) entails the inequality

ε

q̂

d

dt

∫

Ω
|∇cε|q̂ +

∫

Ω
|∇cε|q̂ ≤ C1 + C4 for all t ∈ (0, T ) and ε ∈ (εj)j∈N,

from which (5.29) directly follows. As q̂ > N and hence W 1,q̂(Ω) →֒ L∞(Ω), again due to the
boundedness property from Lemma 3.3 this in turn implies (5.30). �

6 Solution properties of n. Proof of Theorem 1.1

Now knowing that cε → c also in the pointwise sense, we can readily pass to the limit also in the first
equation in (1.2).

Lemma 6.1 Suppose that the assumptions of Theorem 1.1 are satisfied with some (εj)j∈N ⊂ (0,∞),
and let (n, c, u, P ) be as provided by Lemma 3.6. Then in the classical pointwise sense we have

nt + u · ∇n = ∆n−∇ · (nS(x, n, c) · ∇c) + f(x, n, c) for all x ∈ Ω and t ∈ (0, T ) (6.1)

as well as
(∇n− nS(x, n, c) · ∇c) · ν = 0 for all x ∈ ∂Ω and t ∈ (0, T ). (6.2)
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Proof. Let us first make sure that for arbitrary ϕ ∈ C∞
0 (Ω× [0, T )),

−
∫ T

0

∫

Ω
nϕt −

∫

Ω
n0ϕ(·, 0) = −

∫ T

0

∫

Ω
∇n · ∇ϕ+

∫ T

0

∫

Ω
n(S(x, n, c) · ∇c) · ∇ϕ

+

∫ T

0

∫

Ω
nu · ∇ϕ+

∫ T

0

∫

Ω
f(x, n, c)ϕ. (6.3)

To see this, given any such ϕ and ε ∈ (εj)j ∈ N we use (1.2) to find that

−
∫ T

0

∫

Ω
nεϕt −

∫

Ω
n0ϕ(·, 0) = −

∫ T

0

∫

Ω
∇nε · ∇ϕ+

∫ T

0

∫

Ω
nε(S(x, nε, cε) · ∇cε) · ∇ϕ

+

∫ T

0

∫

Ω
nεuε · ∇ϕ+

∫ T

0

∫

Ω
f(x, nε, cε)ϕ, (6.4)

where by (3.8), (3.9) and (3.11), clearly

∫ T

0

∫

Ω
nεϕt →

∫ T

0

∫

Ω
nϕt,

∫ T

0

∫

Ω
∇nε · ∇ϕ→

∫ T

0

∫

Ω
∇n · ∇ϕ and

∫ T

0

∫

Ω
nεuε · ∇ϕ→

∫ T

0

∫

Ω
nu · ∇ϕ

as ε = εjk ց 0, where (εjk)k∈N is as provided by Lemma 3.6. Apart from this, thanks to Lemma 5.6
we know that cε → c a.e. in Ω× (0, T ) and hence, again by (3.8), that also S(·, nε, cε) → S(·, n, c) and
f(·, nε, cε) → f(·, n, c) a.e. in Ω×(0, T ). Since combining (1.4) and (1.3) with (3.8) and (5.30) moreover
ensures boundedness of (S(·, nε, cε))ε∈(εjk )k∈N

in L∞(Ω× (0, T );RN×N ) and of (f(·, nε, cε))ε∈(εjk )k∈N
in

L∞(Ω × (0, T )), by means of the dominated convergence theorem and a well-known argument ([54,
Lemma A.4]) we conclude that as ε = εjk ց 0, not only f(·, nε, cε) → f(·, n, c) in L1(Ω× (0, T )) but
also

nεS(·, nε, cε) → nS(·, n, c) in L2(Ω× (0, T );RN×N ).

In conjunction with (3.10), these properties warrant that

∫ T

0

∫

Ω
f(x, nε, cε)ϕ→

∫ T

0

∫

Ω
f(x, n, c)ϕ

and
∫ T

0

∫

Ω
nε(S(x, nε, cε) · ∇cε) · ∇ϕ→

∫ T

0

∫

Ω
n(S(x, n, c) · ∇c) · ∇ϕ

as ε = εjk ց 0, so that (6.3) becomes a consequence of (6.4).

Thus knowing that n ∈ L2((0, T );W 1,2(Ω)) forms a weak solution of the initial-boundary value prob-
lem (6.1)-(6.2) in the standard generalized sense from e.g. [20], we may invoke classical results from
parabolic regularity theory to conclude from the Hölder continuity of n, c,∇c,D2c and u in Ω× [0, T ],

as stated by Lemma 3.6 and Lemma 5.4, that firstly n ∈ C1+θ1,
1+θ1

2 (Ω × (0, T ]) for some θ1 ∈ (0, 1)
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(see, for instance, Theorem 1.1 in [23]), and that secondly, as a consequence thereof, due to this
additional information on Hölder continuity of ∇n we can find θ2 ∈ (0, 1) such that we even have

n ∈ C2+θ2,1+
θ2
2 (Ω × (0, T ]). Therefore, (6.3) warrants validity of (6.1) and (6.2) in the classical

pointwise sense through a standard variational argument. �

The proof of our main result on the parabolic-elliptic limit in (1.2) is now almost immediate:

Proof of Theorem 1.1. With (εjk)k∈N and (n, c, u, P ) taken as in Lemma 3.6 and Lemma 4.1,
from Lemma 3.6 and Lemma 5.6 we immediately infer that (1.11), (1.12) and (1.15) hold, and that
moreover

cε → c in L∞
loc((0, T ];L

2(Ω)) ∩ L2
loc((0, T ];W

1,2(Ω)) (6.5)

as ε = εjk ց 0. Observing that for each fixed q̂ > N , Lemma 5.8 provides C1 > 0 such that

‖cε(·, t)‖W 1,q̂(Ω) ≤ C1 for all t ∈ (0, T ) and each ε ∈ (εj)j∈N, (6.6)

we firstly obtain (1.14) as an immediate consequence thereof, and can furthermore secondly complete
the derivation of (1.13): As q̂ > N , namely, the Gagliardo-Nirenberg inequality yields a ∈ (0, 1) and
C2 > 0 such that for all t ∈ (0, T ) and ε ∈ (εj)j∈N,

‖cε(·, t)− c(·, t)‖C0(Ω) ≤ C2‖cε(·, t)− c(·, t)‖a
W 1,q̂(Ω)‖cε(·, t)− c(·, t)‖1−a

L2(Ω)

≤ C2

{
‖cε(·, t)‖W 1,q̂(Ω) + ‖c(·, t)‖W 1,q̂(Ω)

}a
· ‖cε(·, t)− c(·, t)‖1−a

L2(Ω)
,

so that combining (6.5) with (6.6) shows that indeed cε → c also in L∞
loc((0, T );C

0(Ω)). Finally,
Lemma 4.1 in conjunction with Lemma 5.3 and Lemma 6.1 guarantees that in fact (n, c, u, P ) solves
(1.7) classically in Ω× (0, T ). �

7 Small-data solutions to an unforced Keller-Segel-Navier-Stokes

system. Proof of Theorem 1.2

The purpose of this section consists in providing a first exemplary application of Theorem 1.1, namely
in the framework of Theorem 1.2. To this end, as for general S the no-flux boundary conditions in
(1.2) need not reduce to separate homogeneous Neumann boundary conditions for nε and cε, following
[54] we introduce an appropriate regularization in which S vanishes near the lateral boundary. More
precisely, let us fix (ρη)η∈(0,1) ⊂ C∞

0 (Ω) and (χη)η∈(0,1) ⊂ C∞([0,∞)) such that

0 ≤ ρη ≤ 1 in Ω with ρη ր 1 in Ω as η ց 0,

and that

0 ≤ χη ≤ 1 in [0,∞) with χη ≡ 0 in [ 1
η
,∞) and χη ր 1 in [0,∞) as η ց 0. (7.1)

For η ∈ (0, 1), we then define

Sη(x, n, c) := ρη(x) · χη(n) · S(x, n, c), (x, n, c) ∈ Ω̄× [0,∞)2, (7.2)

and observe that Sη ∈ C2(Ω̄× [0,∞)2;RN×N ).
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Given ε > 0, for η ∈ (0, 1) we consider the approximate versions of (1.2) given by




∂tnεη + uεη · ∇nεη = ∆nεη −∇ ·
(
nεηSη(x, nεη, cεη) · ∇cεη

)
, x ∈ Ω, t > 0,

ε∂tcεη + uεη · ∇cεη = ∆cεη − cεη + nεη, x ∈ Ω, t > 0,

∂tuεη + κ(uεη · ∇)uεη = ∆uεη +∇Pεη + nεη∇φ, ∇ · uεη = 0, x ∈ Ω, t > 0,
∂nεη

∂ν
=

∂cεη
∂ν

= 0, uεη = 0, x ∈ ∂Ω, t > 0,

nεη(x, 0) = n0(x), cεη(x, 0) = c0(x), uεη(x, 0) = u0(x), x ∈ Ω.

(7.3)

By means of a well-established construction involving the contraction mapping principle, one can firstly
show that for each ε > 0 and η ∈ (0, 1) there exists a quadruple (nεη, cεη, uεη, Pεη), nonnegative in its
first two components, that solves (7.3) classically in Ω × (0, Tmax,εη) for some Tmax,εη ≤ +∞. Using
that Sη(x, n, c) = 0 whenever n ≥ 1

η
, by following a series of standard arguments (see e.g. [47, 51]) one

can thereupon readily verify on the basis of suitable a priori estimates that actually Tmax,εη = +∞,
and that hence this problem possesses a globally defined classical solution (nεη, cεη, uεη, Pεη) for which
nεη and cεη are nonnegative in Ω× (0,∞).

In order to derive appropriate bounds for these solutions, independently of ε and η, we start by again
using Lemma 2.4 to refine the differential inequality appearing therein as follows.

Lemma 7.1 Let N ≥ 2, p > N, q > 2 and r > N . Then there exists K1(p, q, r) > 0 such that for all
ε > 0 and any η ∈ (0, 1),

ε

q

d

dt

∫

Ω
|∇cεη|q +

{1

4
−K1(p, q, r)‖uεη‖2Lr(Ω)

}
·
∫

Ω
|∇cεη|q−2|D2cεη|2

+
{
1− 1

q2
−K1(p, q, r)‖uεη‖2Lr(Ω)

}
·
∫

Ω
|∇cεη|q

≤ K1(p, q, r)‖nεη‖qLp(Ω) for all t > 0. (7.4)

Proof. Using Lemma 2.4 as a starting point, thanks to (2.10) we can fix C1 = C1(p, q, r) > 0 such
that for all ε > 0 and η ∈ (0, 1),

ε

q

d

dt

∫

Ω
|∇cεη|q +

1

4

∫

Ω
|∇cεη|q−2|D2cεη|2 +

(
1− 1

q2

)∫

Ω
|∇cεη|q

≤ C1‖nεη‖qLp(Ω) + C1‖uεη‖2Lr(Ω)‖∇cεη‖
q

L
qr
r−2 (Ω)

(7.5)

= C1‖nεη‖qLp(Ω) + C1‖uεη‖2Lr(Ω)

∥∥∥|∇cεη|
q
2

∥∥∥
2

L
2r
r−2 (Ω)

for all t > 0. (7.6)

Here since r > N and thus 2r
r−2 < 2N

N−2 , we may use the continuity of the embedding W 1,2(Ω) →֒
L

2r
r−2 (Ω) to find C2 = C2(p, q, r) > 0 such that

C1‖uεη‖2Lr(Ω)

∥∥∥|∇cεη|
q
2

∥∥∥
2

L
2r
r−2 (Ω)

≤ C2‖uεη‖2Lr(Ω) ·
{∥∥∥∇|∇cεη|

q
2

∥∥∥
2

L2(Ω)
+
∥∥∥|∇cεη|

q
2

∥∥∥
2

L2(Ω)

}

= C2‖uεη‖2Lr(Ω) ·
{
q2

4

∫

Ω
|∇cεη|q−4|D2cεη · ∇cεη|2 +

∫

Ω
|∇cεη|q

}

≤ q2

4
C2‖uεη‖2Lr(Ω)

∫

Ω
|∇cεη|q−2|D2cεη|2 + C2‖uεη‖2Lr(Ω)

∫

Ω
|∇cεη|q
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for all t > 0. When inserted into (7.5), this yields (7.4) on letting K1(p, q, r) := max {C1,
q2

4 C2}, for
instance. �

In consequence, if uεη is suitably small, then also ∇cεη can be estimated in a favorable manner:

Lemma 7.2 Let N ≥ 2, p > N , q > 2 and r > N . Then there exist δ1(p, q, r) > 0 and K2(p, q, r) > 0
such that if ε > 0, η ∈ (0, 1) and T > 0 are such that

‖uεη(·, t)‖Lr(Ω) ≤ δ1(p, q, r) for all t ∈ (0, T ), (7.7)

then

‖∇cεη(·, t)‖Lq(Ω) ≤ max

{
‖∇c0‖Lq(Ω) , K2 · sup

s∈(0,t)
‖nεη(·, s)‖Lp(Ω)

}
for all t ∈ (0, T ). (7.8)

Proof. With K1(p, q, r) > 0 taken from Lemma 7.1, we let δ1(p, q, r) := 1√
4K1(p,q,r)

and then

obtain from (7.4) that if (7.7) holds for some ε > 0, η ∈ (0, 1) and T > 0, then y(t) :=
∫
Ω |∇cεη(·, t)|q,

t ≥ 0, satisfies

ε

q
· y′(t) + 1

2
y(t) ≤ K1(p, q, r)‖nε(·, t)‖qLp(Ω) for all t ∈ (0, T ).

Therefore, if given any t ∈ (0, T ) we let M(t) := K1(p, q, r) · sups∈(0,t) ‖nε(·, s)‖qLp(Ω), then

ε

q
· y′(s) + 1

2
y(s) ≤M(t) for all s ∈ (0, t),

so that a comparison argument yields the inequality

y(s) ≤ max
{
y(0) , 2M(t)

}
for all s ∈ [0, t].

When evaluated at s = t, this precisely leads to (7.8) upon defining K2(p, q, r) := (2K1(p, q, r))
1
q . �

Now the above hypothesis can be fulfilled if u0 and nεη are appropriately small:

Lemma 7.3 Let N ≥ 2, p > 1 and r > N be such that

p >
Nr

N + 2r
. (7.9)

Then for all δ > 0 there exists δ3(δ, p, r) > 0 such that if

‖u0‖Lr(Ω) ≤ δ3(δ, p, r), (7.10)

and if for some ε > 0, η ∈ (0, 1) and T > 0 we have

‖nεη(·, t)‖Lp(Ω) ≤ δ3(δ, p, r) for all t ∈ (0, T ), (7.11)

then
‖uεη(·, t)‖Lr(Ω) ≤ δ for all t ∈ (0, T ). (7.12)
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Proof. By relying on known regularization features of the Stokes semigroup (e−tA)t≥0 ([10]), let
us fix C1 = C1(r) > 0, C2 = C2(r) > 0, C3 = C3(p, r) > 0 and µ > 0 such that for all t > 0,

‖e−tAϕ‖Lr(Ω) ≤ C1‖ϕ‖Lr(Ω) for all ϕ ∈ Lrσ(Ω) (7.13)

and

‖e−tAP∇ · ϕ‖Lr(Ω) ≤ C2t
− 1

2
−N

2r e−µt‖ϕ‖
L

r
2 (Ω)

for all ϕ ∈ C1(Ω;RN×N ) such that ϕ = 0 on ∂Ω

(7.14)
as well as

‖e−tAPϕ‖Lr(Ω) ≤ C3t
−N

2
( 1
p
− 1

r
)+e−µt‖ϕ‖Lp(Ω) for all ϕ ∈ C0(Ω;RN ). (7.15)

We then fix δ > 0 and may without loss of generality assume that

C2C4|κ|δ2 ≤
δ

6
, (7.16)

where C4 = C4(r) :=
∫∞
0 σ−

1
2
−N

2r e−µσdσ < ∞ since r > N . Noting that thanks to (7.9) we moreover

know that also C5 = C5(p, r) :=
∫∞
0 σ

−N
2
( 1
p
− 1

r
)+e−µσdσ is finite, we thereupon pick δ3 = δ3(δ, p, r) > 0

small enough such that both

C1δ3 ≤
δ

6
(7.17)

and

C3C5‖∇φ‖L∞(Ω)δ3 ≤
δ

6
(7.18)

hold, and suppose that (7.10) and (7.11) are satisfied with some ε > 0, η ∈ (0, 1) and T > 0. Then
since uεη clearly is a mild solution of its respective subproblem in (7.3), we may use (7.13), (7.14) and
(7.15) along with the Hölder inequality to estimate

‖uεη(·, t)‖Lr(Ω)

=

∥∥∥∥∥e
−tAu0 − κ

∫ t

0
e−(t−s)AP∇ · (uεη(·, s)⊗ uεη(·, s))ds+

∫ t

0
e−(t−s)AP[n(·, s)∇φ]ds

∥∥∥∥∥
Lr(Ω)

≤ C1‖u0‖Lr(Ω) + C2|κ|
∫ t

0
(t− s)−

1
2
−N

2r e−µ(t−s)‖uεη(·, s)⊗ uεη(·, s)‖L r
2 (Ω)

ds

+C3

∫ t

0
(t− s)

−N
2
( 1
p
− 1

r
)+e−µ(t−s)‖nεη(·, s)∇φ‖Lp(Ω)ds

≤ C1‖u0‖Lr(Ω) + C2|κ|
∫ t

0
(t− s)−

1
2
−N

2r e−µ(t−s)‖uεη(·, s)‖2Lr(Ω)ds

+C3‖∇φ‖L∞(Ω)

∫ t

0
(t− s)

−N
2
( 1
r
− 1

p
)+e−µ(t−s)‖nεη(·, s)‖Lp(Ω)ds for all t ∈ [0, T ]. (7.19)

In order to verify that this implies the inequality

M(T0) < δ for all T0 ∈ [0, T ] (7.20)
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for

M(T0) := sup
t∈[0,T0]

‖uεη(·, t)‖Lr(Ω), T0 ∈ [0, T ],

assuming (7.20) to be false we could make use of the continuity of M and e.g. combine (7.19) with
(7.16) to find T⋆ ∈ (0, T ] such that M(T0) < δ for all T0 ∈ [0, T⋆) but M(T⋆) = δ. According to
(7.19) and our hypotheses (7.10) and (7.11) in conjunction with (7.16), (7.17) and (7.18), however,
this would mean that

δ =M(T⋆) ≤ C1δ3 + C2|κ|δ2
∫ t

0
(t− s)−

1
2
−N

2r e−µ(t−s)ds

+C3‖∇φ‖L∞(Ω)δ3

∫ t

0
(t− s)

−N
2
( 1
p
− 1

r
)+e−µ(t−s)ds

≤ C1δ3 + C2C4|κ|δ2 + C3C5‖∇φ‖L∞(Ω)δ3

≤ δ

6
+
δ

6
+
δ

6
=
δ

2
,

which is absurd. Therefore, (7.20) and hence (7.12) must be valid. �

The hypotheses of the latter lemma, however, are satisfied if ∇cεη and uεη are conveniently small:

Lemma 7.4 Let N ≥ 2. Then for all p > 1, q > N and r > N there exists δ2(p, q, r) > 0 such that if
for some ε > 0, η ∈ (0, 1) and T > 0 we have

‖∇cεη(·, t)‖Lq(Ω) ≤ δ2(p, q, r) for all t ∈ (0, T ) (7.21)

and
‖uεη(·, t)‖Lr(Ω) ≤ δ2(p, q, r) for all t ∈ (0, T ), (7.22)

then
‖nεη(·, t)‖Lp(Ω) ≤ 2‖n0‖Lp(Ω) for all t ∈ (0, T ). (7.23)

Proof. Given p > 1, q > N and r > N , by using a well-known smoothing property of the Neumann
heat semigroup (et∆)t≥0 ([50]) we can fix µ > 0, C1 = C1(p, q) > 0 and C2 = C2(p, r) > 0 such that
whenever t > 0,

‖et∆∇ · ϕ‖Lp(Ω) ≤ min
{
C1t

− 1
2
−N

2q e−µt‖ϕ‖
L

pq
p+q (Ω)

, C2t
− 1

2
−N

2r e−µt‖ϕ‖
L

pr
p+r (Ω)

}

for all ϕ ∈ C1(Ω;RN ) such that ϕ · ν = 0 on ∂Ω, (7.24)

and thereupon let δ2 = δ2(p, q, r) > 0 be small enough such that

C1C3KSδ2 ≤
1

4
(7.25)

and

C2C4δ2 ≤
1

4
, (7.26)
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where C2 = C2(q) :=
∫∞
0 σ

− 1
2
−N

2q e−µσdσ and where C3 = C3(r) :=
∫∞
0 σ−

1
2
−N

2r e−µσdσ are finite due
to our assumptions that q > N and r > N .

Then assuming (7.21) and (7.22) to be valid for some ε > 0, η ∈ (0, 1) ad T > 0, we may employ a
variation-of-constants representation associated with the first equation in (7.3) to see that thanks to
the contractivity of (et∆)t≥0 on Lp(Ω),

‖nεη(·, t)‖Lp(Ω)

=

∥∥∥∥∥e
t∆n0 −

∫ t

0
e(t−s)∆∇ ·

(
nεη(·, s)Sη(·, nεη(·, s), cεη(·, s)) · ∇cεη(·, s)

)
ds

−
∫ t

0
e(t−s)∆∇ ·

(
nεη(·, s)uεη(·, s)

)
ds

∥∥∥∥∥
Lp(Ω)

≤ ‖n0‖Lp(Ω) + C1

∫ t

0
(t− s)

− 1
2
−N

2q e−µ(t−s)
∥∥∥nεη(·, s)Sη(·, nεη(·, s), cεη(·, s)) · ∇cεη(·, s)

∥∥∥
L

pq
p+q (Ω)

ds

+C2

∫ t

0
(t− s)−

1
2
−N

2r e−µ(t−s)‖nεη(·, s)uεη(·, s)‖
L

pr
p+r (Ω)

ds (7.27)

for all t ∈ (0, T ). Here by the Hölder inequality, (1.4), and (7.21), we know that abbreviating M :=
‖nεη‖L∞((0,T );Lp(Ω)) we have

∥∥∥nεη(·, s)Sη(·, nεη(·, s), cεη(·, s)) · ∇cεη(·, s)
∥∥∥
L

pq
p+q (Ω)

≤ KS‖nεη(·, s)‖Lp(Ω)‖∇cεη(·, s)‖Lq(Ω)

≤ KSδ2M for all s ∈ (0, T ),

while similarly (7.22) guarantees that

‖nεη(·, s)uεη(·, s)‖
L

pr
p+r (Ω)

≤ ‖nεη(·, s)‖Lp(Ω)‖uεη(·, s)‖Lr(Ω)

≤ δ2M for all s ∈ (0, T ).

Therefore, we may use (7.25) and (7.26) to infer from (7.27) that

‖nεη(·, t)‖Lp(Ω) ≤ ‖n0‖Lp(Ω) + C1KSδ2M

∫ t

0
(t− s)

− 1
2
−N

2q e−µ(t−s)ds

+C2δ2M

∫ t

0
(t− s)−

1
2
−N

2r e−µ(t−s)ds

≤ ‖n0‖Lp(Ω) + C1C3KSδ2M + C2C4δ2M

≤ ‖n0‖Lp(Ω) +
M

4
+
M

4
for all t ∈ (0, T ),

which implies that

M ≤ ‖n0‖Lp(Ω) +
M

2

and hence completes the proof. �

Now a self-map type argument combines the latter lemmata so as to make sure that for suitably small
initial data, all the above assumptions can be fulfilled simultaneously:

34



Lemma 7.5 Let N ≥ 2, p > max{2, N}, q > N and r > N . Then there exists C = C(p, q, r) > 0 such
that if n0, c0 and u0 satisfy (1.6) with

‖n0‖Lp(Ω) ≤
1

C
, ‖∇c0‖Lq(Ω) ≤

1

C
and ‖u0‖Lr(Ω) ≤

1

C
, (7.28)

then for all ε > 0 and η ∈ (0, 1), the solution of (7.3) has the properties that

‖nεη(·, t)‖Lp(Ω) ≤ C, ‖∇cεη(·, t)‖Lq(Ω) ≤ C and ‖uεη(·, t)‖Lr(Ω) ≤ C for all t > 0. (7.29)

Proof. Given p > max{2, N}, q > N and r > N , we take δ1 = δ1(p, q, r) > 0 and K2 =
K2(p, q, r) > 0 from Lemma 7.2 and let δ2 = δ2(p, q, r) > 0 be as provided by Lemma 7.4. Then since
p > N > Nr

N+2r , an application of Lemma 7.3 to δ := min{δ1, δ2} yields δ3 = δ3(p, q, r) > 0 with the
property that whenever (7.10) and (7.11) hold for some ε > 0, η ∈ (0, 1) and T > 0, we have

‖uεη(·, t)‖Lr(Ω) ≤ δ1 for all t ∈ (0, T ) (7.30)

and
‖uεη(·, t)‖Lr(Ω) ≤ δ2 for all t ∈ (0, T ). (7.31)

We now suppose that n0, c0 and u0 comply with (1.6) and are such that

3K2‖n0‖Lp(Ω) ≤ δ2 (7.32)

and
‖∇c0‖Lq(Ω) ≤ δ2 (7.33)

as well as
‖u0‖Lr(Ω) ≤ δ3 (7.34)

and
3‖n0‖Lp(Ω) ≤ δ3, (7.35)

and we claim that then for each ε > 0 and η ∈ (0, 1), the obviously well-defined element

T ≡ Tεη := sup

{
T̂ > 0

∣∣∣∣ ‖nεη(·, t)‖Lp(Ω) < 3‖n0‖Lp(Ω) for all t ∈ (0, T̂ )

}

of (0,∞] actually satisfies Tεη = ∞.

To see this, we note that by definition of T ,

‖nεη(·, t)‖Lp(Ω) < 3‖n0‖Lp(Ω) for all t ∈ (0, T ), (7.36)

which in conjunction with (7.34) and (7.35) allows for an application of Lemma 7.3 to conclude that
in fact both (7.30) and (7.31) hold. In particular, (7.30) enables us to employ Lemma 7.2 to see that
thanks to (7.33), again (7.36), and (7.32),

‖∇cεη(·, t)‖Lq(Ω) ≤ max
{
‖∇c0‖Lq(Ω) , K2 · 3‖n0‖Lp(Ω)

}

≤ δ2 for all t ∈ (0, T ), (7.37)
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which in turn, when combined with (7.31), makes it possible to infer from Lemma 7.4 that

‖nεη(·, t)‖Lp(Ω) ≤ 2‖n0‖Lp(Ω) for all t ∈ (0, T ).

As n0 6≡ 0 by (1.6), by continuity of nεη this shows that indeed Tεη cannot be finite for any ε > 0 and
η ∈ (0, 1), and that thus (7.29) results as a consequence of (7.36), (7.37) and (7.30) if in accordance
with (7.32)-(7.35), the constant C in (7.28) and (7.29) is chosen suitably large. �

In fact, we have thereby proved the essential body of Theorem 1.2 already:

Proof of Theorem 1.2. According to Lemma 7.5, there exists δ = δ(p, q, r) > 0 such that (1.16)
implies the boundedness properties in (7.29) uniformly with respect to ε > 0 and η ∈ (0, 1). Thanks
to the estimates thereby implied through Lemma 2.2, Lemma 2.3 and Lemma 5.6, by means of a
standard subsequence extraction procedure this can readily be seen to entail, for each ε > 0, the
existence of a global classical solution (nε, cε, uε, Pε) of (1.2) which in fact has the properties that
nεηl → nε, cεηl → cε and uεηl → uε a.e. in Ω × (0,∞) with some (ηl)l∈N ⊂ (0, 1) such that ηl ց 0 as
l → ∞ ([5]).
The remaining part of the statement then directly results from Theorem 1.1 and the boundedness
features of (∇cε)ε>0 and (uε)ε>0 implied by (7.29). �

8 A logistic Keller-Segel system. Proof of Theorems 1.3 and 1.4

As a second example for taking a parabolic-elliptic limit along the lines of Theorem 1.1, in this section
we shall consider the one-dimensional logistic Keller-Segel system (1.17) for fixed D > 0, a ∈ R, b ≥ 0
and ε > 0.

Again we start by stating an almost immediate basic property.

Lemma 8.1 Let T > 0. Then there exists C(T ) > 0 such that for any ε > 0,
∫ 1

0
cε(·, t) ≤ C(T ) for all t ∈ (0, T ) (8.1)

Proof. As an immediate consequence of Lemma 2.1, we obtain C1(T ) > 0 such that
∫ 1

0
nε(·, t) ≤ C1(T ) for all t ∈ (0, T ).

Thereupon, using (1.17) we can estimate

ε
d

dt

∫ 1

0
cε(·, t) +

∫ 1

0
cε(·, t) =

∫ 1

0
nε(·, t) ≤ C1(T ) for all t ∈ (0, T ),

which by comparison implies that
∫ 1

0
cε(·, t) ≤ max

{∫ 1

0
c0 , C1(T )

}
for all t ∈ (0, T ),

as intended. �

Now in the spatially one-dimensional setting considered here, the availability of favorable embeddings
allows us to conclude the following from an essentially well-established testing procedure.

36



Lemma 8.2 Let T > 0. Then there exists C(T ) > 0 such that

∫ T

0

∫ 1

0
c2εxx ≤ C(T ) for all ε ∈ (0, 1). (8.2)

Proof. By referring to both PDEs in (1.17) and employing Young’s inequality, we see that whenever
ε > 0,

d

dt

{∫ 1

0
nε lnnε(·, t) +

ε

2

∫ 1

0
c2εx(·, t)

}
+D

∫ 1

0

n2εx
nε

(·, t) +
∫ 1

0
c2εxx(·, t) +

∫ 1

0
c2εx(·, t)

= −2

∫ 1

0
nεcεxx(·, t) + a

∫ 1

0
nε lnnε(·, t)− b

∫ 1

0
n2ε lnnε(·, t) + a

∫ 1

0
nε(·, t)− b

∫ 1

0
n2ε(·, t)

≤ 1

2

∫ 1

0
c2εxx(·, t) + a

∫ 1

0
nε lnnε(·, t)− b

∫ 1

0
n2ε lnnε(·, t) + a

∫ 1

0
nε(·, t) +

∫ 1

0
n2ε(·, t) (8.3)

for all t ∈ (0, T ). Since it can readily be verified by elementary analysis that thanks to the nonnega-
tivity of b there exists C1 > 0 with the property that

aξ ln ξ − bξ2 ln ξ + aξ + ξ2 ≤ 2ξ2 + C1 for all ξ > 0,

and since the Gagliardo-Nirenberg inequality, Young’s inequality and Lemma 2.1 provide C2 > 0 and
C3(T ) > 0 such that for all ε > 0 we have

2

∫ 1

0
n2ε(·, t) = 2‖√nε‖4L4((0,1))

≤ C2‖(
√
nε)x‖L2((0,1))‖

√
nε‖3L2((0,1)) + C2‖

√
nε‖4L2((0,1))

≤ D

∫ 1

0

n2εx
nε

(·, t) + C3(T ) for all t ∈ (0, T ),

from (8.3) it thus follows that for any such ε,

d

dt

{∫ 1

0
nε lnnε(·, t) +

ε

2

∫ 1

0
c2εx(·, t)

}
+

1

2

∫ 1

0
c2εxx(·, t) ≤ C4(T ) := C1 + C3(T ) for all t ∈ (0, T ).

Hence, when resorting to ε ∈ (0, 1) we infer that

∫ 1

0
nε(·, T ) lnnε(·, T ) +

ε

2

∫ 1

0
c2εx(·, T ) +

1

2

∫ T

0

∫ 1

0
c2εxx ≤

∫ 1

0
n0 lnn0 +

ε

2

∫ 1

0
c20x + C4(T )T

≤
∫ 1

0
n0 lnn0 +

1

2

∫ 1

0
c20x + C4(T )T,

which entails (8.2) due to the fact that
∫ 1
0 nε(·, T ) lnnε(·, T ) ≥ −1

e
. �

In conjunction with the L1 information from Lemma 8.1, the latter entails an estimate for cεx com-
patible with (1.10):
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Lemma 8.3 For any T > 0 one can find C(T ) > 0 with the property that

∫ T

0
‖cεx(·, t)‖

5
2

L∞((0,1))dt ≤ C(T ) for all ε ∈ (0, 1). (8.4)

Proof. As the Gagliardo-Nirenberg inequality says that with some C1 > 0 we have

‖cεx‖
5
2

L∞((0,1)) ≤ C1‖cεxx‖2L2((0,1))‖cε‖
1
2

L1((0,1))
+ C1‖cε‖

5
2

L1((0,1))
for all t > 0 and each ε > 0,

the claim results upon integrating and combining Lemma 8.2 with Lemma 8.1. �

We can thereby directly pass to the limit εց 0 by means of Theorem 1.1:

Proof of Theorem 1.3. We pick any q > 5 and then obtain as a particular consequence of Lemma
8.3 that for each T > 0, (cεx)ε∈(0,1) is bounded in L

5
2 ((0, T );Lq((0, 1))). Since this choice of q precisely

ensures that 2
5 + 1

2q <
1
2 , the conclusion follows by applying Theorem 1.1 with u0 ≡ 0 and φ ≡ 0,

and recalling from standard literature ([42], [6]) a well-known uniqueness property of (1.18) within
the indicated class. �

Thanks to a known result on spontaneous emergence of large densities in the limit problem (1.18) for
suitably small D > 0, our statement from Theorem 1.3 enables us to finally draw a similar conclusion
also for the fully parabolic problem when the parameter ε therein is appropriately small.

Proof of Theorem 1.4. According to a result from [53, Theorem 1.1] on the parabolic-elliptic
problem (1.18), we can pick some nonnegative n0 ∈W 1,∞((0, 1)) which is such that there exists T > 0
having the property that to arbitrary M > 0 there corresponds some D0 > 0 such that for each
D ∈ (0, D0), the solution (n, c) ≡ (nD, cD) of (1.18) satisfies

nD(x0(D), t0(D)) ≥ 2M (8.5)

with some x0(D) ∈ (0, 1) and t0(D) ∈ (0, T ). Now keeping n0, T and M fixed, given any such D

and arbitrary nonnegative c0 ∈ W 1,∞((0, 1)) we may employ Theorem 1.3 to see that the associated
solutions (nDε, cDε) of (1.17) approximate (nD, cD) in the sense that, inter alia, nDε → nD in C0([0, 1]×
[0, T ]) as εց 0. In particular, we can therefore find ε0 > 0 such that nDε ≥ nD −M in (0, 1)× (0, T )
for all ε ∈ (0, ε0), which when evaluated at (x0(D), t0(D)) and combined with (8.5) directly yields
(1.19). �
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