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Abstract

This paper deals with convergence of solutions to a class of parabolic Keller-Segel systems, possibly
coupled to the (Navier-)Stokes equations in the framework of the full model

Oine + ue - Vng = An.—V- (nES(x,nE, Ce) - ch) + fz,ne, ce),
edice + u. - Vee = Ac. —c. +ne,
Opue + k(ue - VIue = Au.+ VP 4+nVo, V-ou.=0

to solutions of the parabolic-elliptic counterpart formally obtained on taking e N\, 0. In smoothly
bounded physical domains Q@ C RY with N > 1, and under appropriate assumptions on the
model ingredients, we shall first derive a general result which asserts certain strong and pointwise
convergence properties whenever asserting that supposedly present bounds on Ve, and u. are
bounded in L*((0,7); L4(9)) and in L>((0,T); L"(£2)), respectively, for some X\ € (2,00], ¢ > N
and r > max{2, N} such that %—}— % < % To our best knowledge, this seems to be the first rigorous
mathematical result on a fast signal diffusion limit in a chemotaxis-fluid system.

This general result will thereafter be concretized in the context of two examples: Firstly, for
an unforced Keller-Segel-Navier-Stokes system we shall establish a statement on global classical
solutions under suitable smallness conditions on the initial data, and show that these solutions
approach a global classical solution to the respective parabolic-elliptic simplification.

We shall secondly derive a corresponding convergence property for arbitrary solutions to fluid-free
Keller-Segel systems with logistic source terms, which in spatially one-dimensional settings turn
out to allow for a priori estimates compatible with our general theory. Building on the latter in
conjunction with a known result on emergence of large densities in the associated parabolic-elliptic
limit system, we will finally discover some quasi-blowup phenomenon for the fully parabolic Keller-
Segel system with logistic source and suitably small parameter € > 0.
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1 Introduction

The Keller-Segel system and its parabolic-elliptic simplification. To describe chemotactic
aggregation of cellular slime molds which move towards relatively high concentrations of a chemical
secreted by the amoebae themselves, Keller and Segel [17] proposed cross-diffusive parabolic systems
of the form

ng = diAn—a;V-(nVe),
¢ = dolAc— asc+ azn,

where the unknown functions n = n(z,t) and ¢ = ¢(x,t) denote the cell density and the concentration
of the chemical substance at place x and time ¢, respectively, and where dy, ds, a1, as, ag are positive
numbers. By substituting

al d1 a9 as

- = - = £ = d —= =
a4 S, & £, 7 v an 4 o,

and replacing dit with ¢, from this we obtain the system

{ ng = An—V-(nSVe), (11)

ey = Ac—yc+ an,

which in the limit € \, 0 formally approaches the corresponding parabolic-elliptic system, with the
second identity therein replaced with the inhomogeneous Helmholtz equation —Ac + ve = an.

As is well-known from quite a large literature, with regard to technical purposes the latter simplification
goes along with substantial advantages for mathematical analysis, in summary leading to much a
deeper knowledge on parabolic-elliptic Keller-Segel systems than currently available for their fully
parabolic relatives. Examples already include the mere detection of exploding solutions, typifying the
probably most characteristic effect of the considered cross-diffusive interaction, which in fact could
be accomplished for parabolic-elliptic systems already rather early ([14], [28], [29], [1], [3]), while for
the full system (1.1) with positive ¢, corresponding results on generic blow-up, thus going beyond
particular examples ([13]), seem to require significantly stronger efforts and hence have been achieved
only a few years ago ([52], [26]). Likewise, while considerable qualitative knowledge on the respective
blow-up mechanisms has been collected for parabolic-elliptic systems (see e.g. [30], [32], [34], [2], [39],
[38], [37]), only little information seems available for general blow-up solutions to (1.1) when € > 0
(307, 28], [55))-

More generally, by providing accessibility to numerous tools, especially from the analysis of scalar
parabolic problems, resorting to parabolic-elliptic simplifications has made it possible to reveal further
qualitative properties of Keller-Segel-type systems, inter alia also in the framework of global solutions
([16], [15], [27], [4], [56]), and partially even including couplings to additional quantities such as fluid
flows or haptotactic attractants ([18], [19], [40]).

Problem setting and main objectives. In line with the above, it seems natural to seek for some
appropriate control of the error made when approximating a fully parabolic system of Keller-Segel
type by its parabolic-elliptic simplification, especially in cases when the considered biological situation



is such that the respective signal diffuses much faster than individuals in the cell population, in the
context of (1.1) thus meaning that ¢ > 0 is small. Indeed, even in the context of the classical system
(1.1) already the question concerning mere convergence of solutions as € \, 0, apart from partially
being addressed by numerical considerations ([21]), seems to lack a rigorous answer up to now.

The goal of the present work consists in establishing a first result in this direction, with a main focus
being on deriving an approach robust enough so as to be not necessarily restricted to the prototypical
system (1.1), but rather capable of adequately treating more complex types of interaction, possibly
also with further components. In order to include an example for the latter which appears to be of
increasing interest in the recent literature, we shall address this problem in the context of the class
of Keller-Segel systems possibly coupled to the (Navier-)Stokes equations from fluid mechanics, and
for a fixed number 7' > 0 and arbitrary € > 0, we will accordingly be concerned with solutions to the
class of systems given by

Osne + ue - Vn, = An.—-V-. (nES(x, Ne, Ce) - ch) + fx,ne, co), xeQ, te(0,T),
€0ice + ue - Vee = Ac. —c. +n., xeQ, te(0,7),
Opus + k(ue - Viue = Auc.+ VP +n. Vo, V- u. =0, xeQ, te(0,7),
(Vne —nS(x,ne,ce) - Vee) v = % =0, wu.=0, x e, te(0,T),
ne(x,0) = no(x), c(z,0) =co(x), u(z,0)=uo(x), x € .

(1.2)
In cases of nontrivial fluid velocity fields u. and potential functions ¢, (1.2) thus accounts for possible
influences of liquid environments on the evolution of bacterial populations, and vice versa, through
transport and buoyancy; a considerable relevance of chemotaxis-fluid interaction mechanisms of this
type has been suggested by experimental findings in several contexts, including the striking obser-
vations from [43] on convection-driven formation of plume-like aggregates in populations of Bacillus
subtilis suspended to sessile water drops (cf. also the discussions and the references in [18] and in
[19]). Apart from this, we shall include here the possibility that alternative to the choice f = 0, the
proliferation term f may e.g. represent a logistic-type source, possibly even reflecting competition
with the quantity ¢ such as typically present in taxis-type models from spatial ecology where ¢ plays
the role of a second species ([58]). Moreover, our approach will be general enough so as to allow
for the chemotactic interaction in (1.2) to be described by the action of a matrix which may contain
off-diagonal entries, and thus especially be able to account for rotational flux components such as
proposed in the more recent modeling literature ([59]) but yet understood only rudimentarily from an
analytical point of view ([5], [45], [46], [22], [54]). Correspondigly, we shall suppose that with some
K¢ > 0 and some nonincreasing fp : [0,00) — R with f3(0) > 0,

feCH (2 x [0,00)%) is such that f(x,0,¢) >0 for all (z,¢) € Q x [0, 00), and that
{ fo(n) < f(z,n,c) < Ky (n+1) forall (z,n,c) € Q x [0,00)?,
(1.3)
that S = (Sij)i jeq1,....n) 1s such that for all (i, j) € {1, . N},
{ Sij € C%(Q x [0,00)?), and that (1.4)
1Sij(z,m,c)] < Kg for all (z,n,c) € Q x [0,00)? '



with a positive constant Kg, and that apart from that the parameter  is any real number and the
gravitational potential in (1.2) satisfies
b € W>>(Q). (1.5)

As for the initial data, our standing assumptions will be that

ng € WH(Q) is nonnegative with ng # 0,
co € WH™(Q) is nonnegative, and that (1.6)
ug € W2 (Q;RN)  satisfies V - ug = 0 and ug|pg = 0.

Our plan is to firstly derive a general result on convergence of solutions to (1.2) to solutions of the
associated parabolic-elliptic counterpart, and to secondly concretize this in the framework of two
particular examples. We shall thereby obtain corresponding approximation results both for certain
small-data solutions to an unforced chemotaxis-Navier-Stokes system, and for arbitrary solutions to a
one-dimensional fluid-free logistic Keller-Segel model, where as a by-product, the latter outcome will
imply an apparently new result on spontaneous emergence of arbitrarily large densities in the fully
parabolic case for suitably small € > 0.

Main results I. A general statement on the limit ¢ \, 0 in (1.2).  Accordingly, we shall first
examine the relationship between solutions to (1.2) and those to

ng+u-Vn = An—V-(nS(xz,n,c)-Ve)+ f(z,n,c), xeQ, te(0,7),
u- Ve = Ac—c+n, xeQ, te(0,7),
u 4+ Kk(u-Viu = Au+ VP +nVo, V-u=0, xeQ, te(0,7), (1.7)
(Vn —nS(z,n,c)-Ve) - V—$_0 u =0, xed, te(0,7T),
n(z,0) = no(x),u(z,0) = up(x), x € Q,

in a setting as general as possible. Our main result in this respect identifies a condition, yet on a given
family of solutions to (1.2) itself, as sufficient for strong, and especially a.e. pointwise convergence, in
the following sense.

Theorem 1.1 Let N > 1 and Q C RN be a bounded convex domain with smooth boundary, and
assume that (1.6) holds, that k € R, and that f, ¢ and S comply with (1.3), (1.5) and (1.4). Fur-
thermore, suppose that (€5)jen C (0,00) is such that €; \, 0 as j — oo, and that for some T > 0,
((ne, ey tte, Pr))ee(e;);en @8 Such that for each € € (gj)jen, (ne, s, ue, Pe) solves (1.2) classically in
Q x (0,T) withn: >0 and cc >0 in Q x (0,T), and such that

sup [[Veel|ao,myzac)) < o (1.8)
e€(gj)jen
as well as
sup  |[uel| Loo ((0,1);Lm () < 00 (1.9)
e€(gj)jen

with some A € (2,00], ¢ > N and r > max {2, N} satisfying

1 N 1
—4 — < = 1.10
A * 2q 2 ( )
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Then there exist a subsequence (g5, )ren of (€j)jen and a classical solution (n,c,u, P) of (1.7) in
Q x (0,T) with the properties that

ne—n  in CO(Qx[0,7)), (1.11)

Ne —n in L2((0,T); WH23(Q)), (1.12)

cc—c in Lloc((O,T];CO( )) N Line((0, TJ; WH2()), (1.13)

Vee 2Ve in () L®((0,7); LQ) N L¥((Q % (0,7))  and (1.14)
>N

ue —u in COQx [0, T);RY) N CHLQ x (0, T);RY) (1.15)

ase=¢j \0.

Remark. i) We underline that the above assumption on convexity of €2 is mainly of technical nature
and could actually be removed by additional efforts based on a differential geometrical property due
to [25] in quite a straightforward manner. In order to keep our reasoning as focused as possible,
however, we refrain from giving details on this here. Similarly, since in essential places we will rely
on convenient compactness features conveniently available in bounded domains, we shall not address
possible extensions to unbounded domains.

ii) The restriction to subsequences in the statement of Theorem 1.1 is mainly due to the circumstance
that in the full generality of the described setting we are not aware of an appropriate uniqueness
result for the limit problem (1.7); however, for special cases in which e.g. S = id and fluid coupling
is disregarded, the availability of corresponding uniqueness statements (see [42], for instance) in fact
allows for natural extensions of the above, so as to assert convergence actually along the entire given
sequence (£5);en; an example for such a refined application of Theorem 1.1 can be found in the context
of Theorem 1.3 below.

iii) We emphasize that Theorem 1.1 presupposes the existence of solutions to (1.2) throughout the
considered time interval. In cases in which blow-up is expected, this especially restricts applicability of
the above, in quite a natural manner, to local-in-time frameworks. Apart from that, possible challenges
concerning existence theories for (1.2) are entirely disregarded here; while statements on local and also
on global smooth solvability are available for numerous particular versions of (1.2) ([7], [49], [5], [51]),
a comprehensive theory in this regard seems yet lacking, especially in cases of nondiagonal S.

Main results II. The fast signal diffusion limit for small-data solutions to a Keller-Segel-
Navier-Stokes system. As a first application of the latter, let us consider the case when f = 0
in the Keller-Segel-Navier-Stokes system (1.2) in arbitrary spatial dimensions N > 2. Then in light
of well-known results on taxis-driven blow-up of some solutions to both the fully parabolic problem
(1.2) as well as its parabolic-elliptic counterpart (1.7) already in the simple case u = 0 ([29], [13], [52]),
regular behavior throughout the arbitrary time interval (0,7") can be expected only under appropriate
additional assumptions on the initial data. In deriving the following consequence of Theorem 1.1 on
this particular system, we shall accordingly restrict our considerations to solutions emanating from
suitably small initial data. In this context we will see the following.

Theorem 1.2 Let N > 2 and Q C RN be a bounded convexr domain with smooth boundary, let
k €R, p>N,q> N and r > N, and assume that (1.5) and (1.4) are valid. Then there exists



d = 4d(p,q,r) > 0 with the property that whenever ng, cy and uy comply with (1.6) and satisfy
|70l r () <9, [Veollpay <0 and  |uollprq) <6, (1.16)

for alle > 0 the problem (1.2) with f = 0 possesses a global classical solution (ng, cc,us, P:). Moreover,
gwen any (€5)jen C (0,00) satisfying €5 \, 0 as j — oo, one can find a subsequence (¢j,)ken and a
global classical solution (n,c,u, P) of (1.7) with f =0 such that for each T >0, (1.11)-(1.15) hold as
e=c¢j, \(0.

Remark. As a price to be paid in order to cover the general problem (1.2) in its full complexity, by
inter alia requiring an essentially non-explicit smallness assumption on ny with respect to the norm in
LP with p > N the above theorem is unable to cover e.g. the full mass-subcritical regime, as described
by the mere condition fQ ng < 4m, of the simple two-component Keller-Segel system in planar domains,
as obtained on letting S = id, f = 0 and u. = 0 in (1.2) ([31]). Extensions capable of adequately
coping with such critical situations apparently need to appropriately account for respectively present
subtle structural features, such as e.g. expressed in particular energy inequalities. Such concentrations
on particular versions of (1.2) form a topic of interest on its own, going beyond the focus of the present
study.

Main results III. A growth phenomenon in a fully parabolic one-dimensional Keller-Segel
system with logistic source. As a second application of our general theory, we shall consider the
family of fluid-free one-dimensional Keller-Segel systems with logistic source, as given by

Net = DNegy — (NeCer ) + ane — bng, x € (0,1), t>0,

ECot = Cegy — Ce + N, x € (0,1), t>0, (117)
Nee(0,1) = nez(1,t) = e (0,1) = cop(1,1) = 0, t>0, '
ne(x,0) = no(x), ce(z,0) = co(x), x € (0,1),

for ¢ > 0, with @ € R and b > 0, and with nonnegative functions ng € W5H*°((0,1)) and ¢y €
Whee((0,1)). We note that upon replacing n. by fic(z,t) := n.(z,t) with ¢ := Dt for (x,t) €
[0,1] x [0, 00), this problem indeed takes the form (1.2), and that as a well-known fact, for each ¢ > 0
there exists a global classical solution (ne, c.) for which both n. and ¢, are nonnegative and bounded
throughout (0,1) x (0,00) ([49]). In fact, by relying on suitable embedding properties available in this
one-dimensional context we shall firstly see that as € N\, 0, these solutions approach solutions to the
corresponding parabolic-elliptic counterpart, namely, the problem

nt = Dngy — (ncg)z + an — bn?, x € (0,1), t >0,
0 = cpp — Cc+ 1, € (0,1), t >0,
Coz —CH+ N x € (0,1) (1.18)
nm(())t) :nx(lvt) :C:E(Ovt) :Cx(lvt) =0, t>0,
n(z,0) = no(x), z € (0,1),

in the following sense:

Theorem 1.3 Let D > 0, a € R and b > 0, and suppose that ny and ¢y are such that (1.6) holds.
Then for all T > 0, the solutions (ne,c:) of (1.17) have the property that as e \, 0, (1.11)-(1.14) hold
with the unique classical solution (n,c) € (C°([0,1] x [0, T])NC%1([0,1] x (0,T))) x C*9(]0,1] x (0,T))
of (1.18).



Building on this result, we shall secondly discover that solutions to the fully parabolic problem (1.17)
can spontaneously generate arbitrarily large densities, possibly at intermediate time scales, provided
that the parameters D and ¢ satisfy appropriate smallness conditions. A similar growth phenomenon
had been detected in certain versions of the parabolic-elliptic problem before, and for further dis-
cussion, and also for numerical simulations indicating a temporally intermediat character of such
large-density occurrences, we may refer to [53].

Theorem 1.4 Let a € R and b € [0,1). Then there exist T > 0 and a nonnegative function ng €
W1o°((0,1)) with the following property: For all M > 0 one can find Dy > 0 such that for each
D € (0,Dq) and any nonnegative co € WH°((0,1)) there exist zo € (0,1),t9 € (0,T) and g9 > 0 such
that for any choice of € € (0,¢¢), the corresponding solution (ne,c.) of (1.17) satisfies

TLE(l‘o,to) Z M. (119)

Key steps in our analysis.  The crucial role of the assumptions from Theorem 1.1, and especially
of the inequality (1.10) therein, will already become clear in Section 2, in which we will derive some
e-independent estimates for general solutions to (1.2) under presupposed bounds on Ve, and wu. of
the considered form. Complementing these estimates by further compactness properties will allow for
passing to the limit along subsequences, with regard to the components n. and u. already in the flavor
claimed in Theorem 1.1; as for ¢, however, due to lacking uniform parabolicity (formally, ec; — 0 as
¢ — 0) in the equation describing its evolution we will at that stage only be able to conclude a weak
convergence property in L2((0,T); Wh2(Q)).

A key step will thereafter consist in improving this knowledge, which will be achieved through several
steps: After firstly showing that the limit ¢ satisfies its respective subproblem of (1.7) in a weak sense,
we can exploit the correspondingly satisfied integral identity to successively establish Holder regularity
of ¢, Ve and D?c in Section 5.1. The main step will then be accomplished by ensuring L? integrability
of ¢, locally away from the temporal origin, in Section 5.2. Our derivation thereof will rely on suitably
estimating the difference quotients

clx,t+h) —c(x,t)

Y =: 2} (2, t) + 27 (2, 1), zeQ, te(r,T — hg),

zp(z,t) ==

where z}lL and z}QL denote the classical solution of two linear elliptic equations, whose forcing terms
involve the time derivatives of n and u. Thanks to the availability of appropriate regularity information
on the latter, by utilizing standard elliptic regularity theory we will infer that indeed ¢; belongs to
L? (2% (0,T]). This in turn will allow us to adequately control the difference c. — ¢ through analyzing
a parabolic equation therefor, and hence verify Theorem 1.1 in Section 6.

Sections 7 and 8 will thereafter be devoted to the proofs of Theorem 1.2 and of Theorems 1.3 and 1.4,

respectively.

2 Some general estimates

In this section we collect some estimates which are valid for general solutions to systems of the form
(1.2), and which are independent of the particular choice of € > 0, partially under presupposed bounds



resembling those in (1.8) and (1.9). These estimates will firstly be used as a fundament for our proof of
Theorem 1.1, and secondly some of them will afterwards serve as helpful ingredients for the derivation
of Theorem 1.2 in Section 7.

Let us start with a fairly evident observation.
Lemma 2.1 Suppose that (1.3), (1.5) and (1.6) hold, and let k € R and T > 0. Then there exists

C = C(T) > 0 such that whenever (ne, ce,us, P:) is a classical solution of (1.2) in Q x (0,T) for some
e >0, we have ne >0 and c. > 0 in Q x (0,T) as well as

e, )|l L1 < C for allt € (0,T). (2.1)

PROOF.  According to the lower bound for fy and hence for f in (1.3), nonnegativity of n. results
from an application of the maximum principle to the first equation in (1.2). In view of the second
equation therein, by the same token this in turn entails nonnegativity also of c..

Next, integrating the first equation in (1.2) shows that since V - u. = 0, due to the upper bound for
f from (1.3) we have

d
/ngz/f(x,ns,cs) SKf/nE—l—Kf|Q| for all ¢t € (0,7,
dt Jo Q Q

from which (2.1) readily results upon a time integration. g

The next lemma already makes full use of supposedly present bounds in the style of (1.8) and (1.9),
and especially of the relation (1.10) involving the parameters therein.

Lemma 2.2 Suppose that (1.3), (1.4), (1.5) and (1.6) hold, and let k € R. Then for all T > 0,
L>0, € (2,00],g> N,r > N such that (1.10) holds, there exists C = C(T, \,q,r,Kg,L) > 0 such
that whenever (ne, ¢z, us, P-) is a classical solution of (1.2) in Q x (0,T) for some e > 0 fulfilling

IVeell romyna)y < L (2.2)
and
Jue (- )]l Lr) < L for allt € (0,7T), (2.3)
we have
(5 ) [ oo () < C for allt € (0,7T). (2.4)
PROOF.  Omitting the subscript € for notational convenience, without loss of generality assuming

that A < oo and following an essentially well-established procedure (cf. e.g. [41]), we estimate

M(T/) ‘= sup Hn(vt)HLOO(Q)7 T e (OvT)
te(0,77)

by representing n via an associated Duhamel formula. Indeed, using the maximum principle and (1.3)
as well as known smoothing properties of the Neumann heat semigroup (e'®);> in 2 (see Lemma 1.3



in [50]) we see that fixing any p1 = p1(X, q) € (N, q) and po = pa(r) € (N, r) such that § + % < 1,

with some C; = C1(\, ¢, 7) > 0 we have
t
n(,t) = ePng— / =90y . (n(.,s)S(-,n(.,s),c(., 5)) - Vc(-,s))ds
0
t t
~ [ IVl sds [ IR () el s))ds
0 0

N

t 1N
”nOHL"O(Q) + Cl/(; (t - S) 2 Hn(~,s)5(~,n(-,s),c(-, S)) ' vc('73>”L”1(Q)dS

IN

t 1N t
+C1/(t—8) 2 2#2Hn('as)u('73)HL“2(Q)ds+Cl/(t_3)_;Hn<'73)+1HLN(Q)dS (2.5)
0 0

for all t € (0,T"). Here using (1.4) and the Holder inequality along with (2.1) and our hypotheses (2.2)
and (2.3), we find positive constants Cy = C2(Kg),C3 = C3(Kg),Cs = Cy(T, Kg),Cs = C5(T,r, L)
and Cg = Cg(T') such that

||7‘L(, S)S('7n('7 3)76('7 3)) ’ VC(-, S)HL‘LI(Q) < C2Hn(7 S)Hqufﬁl (Q)”VC(, S)HL‘I(Q)
< Calln(, 92 gy In( 8) 15 Vel )l ooy
< 04]\4(11 (T’)HVO(-,S)HL(J(Q) for all s € (O,T’)
and
[n(, s)u, s)[[r2@) < Hn(’v‘S)HLTTj‘iQ(Q)||u(’as)HL’"(Q)
< G o)l lnt )@ luC, )l @)
< CsM*™(T') for all s € (0,7")
as well as
In(os) + v < lIntss) + 155 gy Iny 8) + 10,

< CeM®(T')+Cs  forall s (0,7")

with ay := % € (0,1), ag := W € (0,1) and a3 := &1 € (0,1). Since the inequalities
1

%4— % < 5 and p2 > N moreover warrant that (% + %) : ﬁ < 1 and %+ % < 1, by using the
Holder inequality two more times we thus infer from (2.5) and the nonnegativity of n that there exist
Cs = Cs(T, Aq,r, Kg, L) >0, Cy = Cg(T, A, q) > 0 and Cg = Cm(T’) > 0 such that

¢ (1l Ny A 5 ¢ 5
HMﬁMmm)S(%+%M“@W{A@—Q(ﬁmﬁhw% .{Anwm$mmﬁ%

t
FOM(T') - | (t— 8)72 %2 ds + Cs M (T")
0

< (Cg+ CsCo Mt (T/) + CyCr1oM*? (T/) + O M3 (T/) forall t € (0, T,).



Hence, by Young’s inequality,
M(T") < Cip + CuM*“(T") for all 7" € (0,7,
where a := max{ay, as, as} satisfies a € (0, 1), and where C; := 2Cs + CgC9 + CsC1p. As therefore
M(T') < max {1 , (zcll)ﬁ} for all 7’ € (0,T),

we have thus established (2.4). O

As a consequence of the latter estimate for n., by means of quite a similar argument, essentially well-
established in the theory of the Navier-Stokes system, we can again use the boundedness assumption
(2.3) in order to appropriately control the fluid velocity field as follows.

Lemma 2.3 Suppose that (1.3), (1.4), (1.5) and (1.6) hold, and let k € R. Then for all T > 0,
L >0, \¢€ (2 ool,¢ > N,r > max{2, N} fulfilling (1.10), there ezist « = a(r) € (3,1), p =
p(r) > max {1, 2@} 0=06(r) € (0,1) and C = C(T,\,q,7,Kg,k,L) > 0 such that if for some ¢ > 0
(ne, ce, ue, Pr) is a classical solution of (1.2) in Q x (0,T) for which (2.2) and (2.3) are valid, then

[A%ue (- ) o) < C for allt € (0,T) (2.6)

and

]|

where A := —PA denotes the realization of the Stokes operator in L*($;R?), defined on its domain
D(A) == W22(Q; R?) N W, (4 R2) N L2(Q) with L2(Q) == {p € L*(Q;R?) | V- u = 0}, and with P
representing the Helmholtz projection of L*(Q;R?) onto L2(Q).

%8 (@x[0,T1) <G (2.7)

PROOF.  Since r > N and thus § + % < 1, it is possible to fix & = a(r) € (1, 1) close to 5 such that
N

~ <1, 2.8

at o (2.8)

and thereafter take 3 € (%, 1) such that 8 < . Then using that ﬂ < N < r and that also -*5 <,
we can pick p = ,0( ) > max {1, 22} such that p < r and p > -5, observing that the latter ensures
that p = u(r) == + satisfies ¢ > 1. Again dropping the mdex € and as moreover i < p, relying on a
variation—of—constants representation of « we may employ known smoothing properties of the Stokes
semigroup (e~*4);>g ([10]) to find C; = C1(r, x) > 0 such that

t
A%, D)llrey = [ A% Hug — x / A% AP (u(,5) - V)u 5) | ds
0

t
+ / ACe=)APIn(. 5\ Vlds

0

Lr(Q)

t CqN(1_1
| A%uo]| ooy + Ca /0 (t=5) " 25Dl 5) - V)ul, s) | puds

IN

t
+01/ (t— ), 8)|yds  for all £ € (0,T). (2.9)
0
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Here since clearly p < r, we can employ the Holder inequality to see that thanks to (2.3) and the
inequalities & > 3 > 3 and p < r, the continuity of the embedding D(Ag) — WLHe(Q;RN) (9] [12])
and a well-known interpolation property (see Theorem 14.1 in Part 2 of [9]) guarantee that with some
Cy = Cy(r) > 0,03 = C3(r) > 0 and Cy = Cy(r) > 0 we have

[(u(s s) - V)uls s)llLe) Il $)llzr@IVuls )l 2 o
L”VU('75)||LP(Q)
CoL||APu(-, 8)|| Lo ()
oL AU )3y (e 5) 115,
LA U, )[4y e 5) 15,
CyL**M*(T")  for all s € (0,7") and any T" € (0,T)

INIANCIN CIA A

IN

if we let a := g € (0,1) and

M(T/) ‘= Ssup HAO[U’<7t)HLP(Q)7 T e (OaT)
te(0,77)

As Lemma 2.2 in particular implies the existence of C5 = C5(T, A\, q,r, Kg, L) > 0 such that
In()llze) < Cs for all t € (0,7),

noting that @ < 1 and that

N/1 1 N/r+p 1 N
a—i——(———)za—i——( —7):a+—<1
2\p p 2\ rp P 2r

by (2.8), we thus conclude from (2.9) and (1.6) that there exists Cs = C(T, A, ¢, 7, K5, K, L) > 0 such
that

M(T') < Cg+ CsM*(T')  for all T € (0,T),

which implies (2.6) due to the fact that a < 1.

Now by a straightforward adaptation of a well-known reasoning (see, for instance, the proof of (2.36)
in Lemma 2.8 of [48]), in quite a similar manner it is furthermore possible to find 6; = 6;(r) € (0,1)
and C7 = C7(T, \,q,7, Kg,k, L) > 0 fulfilling

[A%u(-,t) — A%u(-,to)|| o) < Crlt — to| for all t € (0,7) and ¢y € (0,7),
which finally implies (2.7) due to the fact that D(A7) < C%(Q;RYN) for any 63 from the nonempty

interval (0,20 — %) ([12]). O

Let us finally prepare an argument that will, before becoming substantial for the derivation of Theorem
1.2 in Section 7, inter alia reveal in Lemma 5.8 that the assumptions (1.8) and (1.9) actually imply
boundedness of Ve in L®((0,T); LI(Q)) for arbitrarily large g. The following lemma is the only place
in this paper where convexity of €2 is explicitly needed.
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Lemma 2.4 For all p > max{N,2}, ¢ > 2 and r € (2,00]| there exists C = C(p,q) > 0 such that if
(ne, ceyue, Pe) is a classical solution of (1.2) in Q x (0,T) for some e >0 and T > 0, then

_ 1
th/ Veli + /\vceyq D%+ (1- ) /vacs\q
< Cllneltyygy + Clluels mnwauq g, dorallic @), (2.10)

: qr o i ; TN
where we interpret ;=5 as coinciding with q if r = 0.

PROOF.  Once more omitting the subscript € for convenience, by means of the second equation in
(1.2), we see that for all ¢ € (0,7,

[ =2y¢. VI Ac — —u-
th/WC /Q|Vc| Ve V{ c—c+n—u Vc}
= 1/ |ch_2A|Vc|2—/ V|92 | D?c|?
2 Ja Q
—/ |Vc\q+/ ]Vc|q2Vc'Vn—/ |Ve|?™2Ve - V(u- Ve)
Q Q Q

1 2 —9
= = / o2 Vet _a=2 / Ve~V | Ve — / V|7 2| D2c|?
2 o0 81/ 2 0 Q

—/ |Vl —i—/ Ve|"2Ve - Vn —/ |Ve|?™2Ve - V(u- Ve)
Q Q Q

A A
Q Q

—/ n|Ve|72Ac — (q — 2)/ n|Ve|7™*Ve - (D%c- Ve)
Q Q

27 . uw-Ve)lVeld4Ve . (D%c - Ve .
-I-/Q(U-Vc)|Vc| Ac+ (g 2)/9( Vo) Veli Ve - (D% V), (2.11)

IN

because of mgiycﬁ < 0 on 90 x (0,T) due to the convexity of © ([24]), and because of ¢ > 2. Here two

applications of Young’s inequality and the Holder inequality show that abbreviating C4(q) := V2+4q—2
we have

—/ n|Vc|q_2Ac—(q—2)/ n|Ve|74Ve - (D%c - Ve)
Q Q
< Ciq) [ nlVelr? D2
Q
< 5 [ IverEDieR « i) [ (o
4 Jo Q

1 _
< 4/ V|2 D%c* + CF(q) Il 1o | Vel o2y (2.12)
Q L »=2 (Q)

and

/(u V)| Ve|i2Ac+ (¢ — 2) / (u-Ve)|Ve|T4Ve - (D3¢ Ve)
Q Q

12



< (o) [ [ullVelr D%
Q
1 _
< [1verEDiep R [ ufver
Q Q

1 212,12 2 9 g
< 4/Q\chq |1D%el” + Ci(@)lullzr I Vel ar, o
for all ¢ € (0,7). Now since p > max{N,2} and ¢ > 2 ensure that p(q — 2)(IN —2) < N(p — 2)g, it

2p(q—2)
follows that W12(Q) is continuously embedded into L T (©). Again using Young’s inequality, we
can therefore find Cy(p,q) > 0 and C3(p,q) > 0 such that
q—2
q]|2 a
o}
L2(Q)

}+@m@wﬁmn

(2.13)

@Iy Vel Sy < @mwwﬁmyﬂ

< —_— {

1
= / !VCIQ4ID2C'V6|2+2/ Vel + Cs(p, q) 17|19,
4 Jo q* Ja

[
)

L2(Q)

1 _ 1
< 5 [1warEpiep s o [ Vet Cap. gl g,
Q q= Jo

for all t € (0,7). Therefore, (2.12) and (2.13) when inserted into (2.11) show that

s fver g [ welrnteR + (1= ) [ [wer

< CGs(pg )Ilnlle(Q)+01( )HUHLT(Q)HVCHi%(Q) for all ¢ € (0,7),

which directly results in (2.10). O

3 Regularity and compactness properties implied by the hypotheses
from Theorem 1.1
Next concentrating on the particular setup created by Theorem 1.1, in this part we will augment the

estimates from the previous section by further compactness properties which will allow for passing to
the limit, already partially in the flavor claimed in Theorem 1.1.

Firstly, the L*° bound from Lemma 2.2 can quite immediately be improved into an estimate in some
Holder space by means of standard parabolic theory.

Lemma 3.1 Suppose that the assumptions of Theorem 1.1 are satisfied. Then there exist @ € (0,1)
and C > 0 such that
I a” $ @x[o.1]) <C for all € € (¢j)en. (3.1)

PrROOF.  We rewrite the first equation in (1.2) in the form

One =V -as(x,t,Vn.) + b(x, 1), xeQ, te(0,T),
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with
ac(z,t,8) = & —ne(z,1)S(z, ne(2,1), co(x, 1)) - Vee (@, 1) — ne(z, tue(x,t), (x,t,6) € Qx (0,T) x RY,
and

bo(x,t) := f(x,ne(z,t), ce(x,t)), (z,t) € Q@ x(0,T),

Then due to Young’s inequality and (1.3), Lemma 2.2 and Lemma 2.3 yield positive constants C and
Cy such that for all € € (g) jen,

as(x,t,8) - € > ]§2|2 — C1|Ve(z, t)> = Cy for all (z,t,£) € Q@ x (0,T) x RY
and
lac(2,,8)| < |€] + Co|Vee(z,t)| 4+ Cy  for all (z,t,€) € 2 x (0,T) x RY
as well as

|bz(x,t)| < Cs for all (z,t) € Q x (0,7).

Since (2.2) provides a bound for |Ve.|? in L%((O,T);L%(Q)), with the exponents therein satisfying
% + % = % + % < 1 by (1.10), the estimate (3.1) directly results on applying a standard result on

Holder regularity in scalar parabolic equations ([33, Theorem 1.3, Remark 1.4]). O

Thanks to standard Schauder estimates for the Stokes system, the latter directly entails bounds for
ue even in higher-order Holder spaces, at least locally away from the initial time.

Lemma 3.2 Under the assumptions of Theorem 1.1, for each 7 € (0,T) one can find 6 € (0,1) and
C > 0 such that

HusHCQMHg@X[T’TD <C  foralle € (gf)jen. (3.2)

PROOF. Thanks to the estimates provided by Lemma 2.2 and Lemma 2.3, this follows upon a
straightforward application of well-known Schauder theory for the linear inhomogeneous Stokes evo-
lution equation (see, for instance, Proposition 1.1 in [36]). O

As a further implication of Lemma 2.2, by way of a standard testing procedure we can also obtain
further bounds for the second solution component which, if the parameter s therein is chosen large,
may partially go beyond the information invested through (1.8).

Lemma 3.3 Suppose that the assumptions of Theorem 1.1 are satisfied with some (¢j);jen C (0,00).
Then for all s > 2 there exists C(s) > 0 such that for all € € (¢j);en,

/ G ) < C(s)  for allt € (0,T), (3.3)
Q

and that

/()T/Qcﬁ_2|Vc€]2 < C(s). (3.4)
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PROOF.  We multiply the second equation in (1.2) by ¢f~! and use Young’s inequality to see that
since V - u. =0,

d -1 1
L cﬁ—i—(s—l)/02_2\V05]2+/cf:—/nec§_1 < > /cj—i—/nﬁ for all t € (0,7,
sdt Jo Q Q Q s Jo 5 Jo

so that Lemma 2.2 implies the existence of Cy > 0 such that for all € € (g;)jen, Y= (t) := [ ¢2(-, 1), t €
[0, T, satisfies

eyL(t) + ye(t) + s(s — 1)/ 3 Ve P < ¢y for all t € (0, 7).
Q
This firstly entails by a comparison argument, or alternatively by a direct calculation, that

ye(t) < max{ / g C’l} for all t € (0,7") and € € (&) en,
Q

and secondly ensures upon integration that

T
s(s — 1)/ / 2 Ve* < 6/ co+CiT for all € € (¢)jen,
0o Jo Q

so that both (3.3) and (3.4) directly follow, because (g;);en is bounded. O
Similarly, Lemma 2.2 together with the latter entails an estimate for Vn.:

Lemma 3.4 Suppose that the assumptions of Theorem 1.1 are satisfied with some (£;)jen C (0,00).
Then there exists C' > 0 such that

T
/ / Vn > < C for all € € (g5)en. (3.5)
0o Jo

ProOOF.  Using n. as a test function in the first equation in (1.2) and relying on (1.4), (1.3) as well
as Young’s inequality, we find that again since V - u. = 0,

/QTLE(S(:L',HE,CE)'VCE)'VTLE—I-/QTLEf(l',nE,CE)

1 K2
5 [P+ S ey [ (Ve 4Ky [ nos kg [ 02
Q Q Q Q

for all ¢ € (0,7). In view of the bounds provided by Lemma 2.2 and Lemma 3.3, upon a time
integration this readily yields (3.5). g

IN

To prepare a useful ingredient for our subsequent analysis concerning the time regularity of the limit
¢ to be obtained, we note the following weak but eventually helpful regularity information on 9;n..
For its formulation and for later reference, let us agree on using the abbreviation W]%,Q(Q) ={y €
W22(Q) | 92 =0 on 0Q}.

Lemma 3.5 Under the assumptions from Theorem 1.1, there exists C' > 0 such that

T
/0 0me(e 3@t < € for all e € (eg)en (3.6)
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Proor.  For fixed t € (0,7) and ¢ € W]%,’Z(Q), using (1.2), (1.4) and (1.3) together with the Holder

inequality, we see that since g—lﬁ =0 on 012,

‘/Qamsc,t)w‘

‘/QnEAw—l—/na(S(x,nE,cs).VcE).Vw+/n5us.v¢+/f(x,ne,ce)z/z‘
176 ll 220 [AY[| L2 () + Ksllnell Lo @) Vel La@ IV 72 .
Flnell Loo @ lltell Lr @) IV, o2 @ T Kylne + U2 1Yl 220

IN

As the inequalities ¢ > N and r > N warrant that W]%,2(Q) is continuously embedded into both
qufql(Q) and W71 (Q), this implies the existence of C; > 0 such that for all ¢ € (0,7) and
€ € (5)jen,

[0me )l 22y < C1 - {Imellzoeqey + 1} - {1V eellpoqoy + lluelproy + 1}

so that (3.6) becomes a consequence of Lemma 2.2 when combined with (1.8) and (1.9) due to the
fact that the exponent therein satisfies A > 2. O
Based on the estimates collected so far, we can now extract a subsequence and identify a limit triple
(n,c,u) as follows.

Lemma 3.6 Suppose that the assumptions of Theorem 1.1 hold. Then there exist a subsequence
(€j,)ken of (g5)jen, a number 0 € (0,1) and functions

ne c®3(Qx [0,7]),
ce€ L*((0,T); Wh2(Q)) and (3.7)
we C%2(Q x [0,T;RN) N C21(Q x (0, T]; RY)

such that as € = g5, \, 0,

Ne —n in C°(Q x [0,T7), (3.8)
ne —n  in L*((0,T); W"(Q)), (3.9)
. —c¢ in L*((0,T); W2()) and (3.10)
ue —u in COQ x [0, T RY) N C2H@ x (0, T); RY), (3.11)
and that moreover
Ome = my in L*((0,T); (WrP(9))"). (3.12)

PROOF. By means of a standard subsequence extraction procedure inter alia relying on the Arzela-
Ascoli theorem, this can readily be derived from Lemma 3.1, Lemma 3.4, Lemma 3.3, Lemma 2.3,
Lemma 3.2 and Lemma 3.5. U

16



4 Solution properties of u

Thanks to the favorable convergence features of both wu. itself and the quantity n. determining the
forcing term in the fluid subsystem of (1.2), it is rather evident that the limit v obtained in Lemma
3.6 indeed satisfies its respective subproblem from (1.7):

Lemma 4.1 If the assumptions of Theorem 1.1 hold, then the functions n and u gained in Lemma
3.6 have the property that with some P € C19(Q x (0,T)) we have

ur+k(u-V)u=Au+ VP +nVe, V-u=0 forallxz € Q andt € (0,T), (4.1)

and that u(xz,t) =0 for all z € O and t € (0,T).

PrROOF.  In view of (1.2) and the convergence properties in (3.8) and (3.11), this follows from
arguments well-established in the theory of the Navier-Stokes equations (see, for instance, Chapter V
in [35)). O

5 Regularity and solution properties of c. Strong convergence of c.

In view of the singular limit taken when passing from (1.2) to (1.7), it may not be surprising that
corresponding questions concerning regularity in the limit process c. — ¢, as well as solution properties
of the obtained limit, are more delicate. Indeed, for appropriately taking € N\, 0 in nonlinear expressions
involving the second solution component, and especially in the taxis term in (1.2), the yet weak
convergence information in (3.10) seems insufficient.

5.1 Holder regularity of ¢, Ve and D?c. Solution properties of c

Suitable improvement of our knowledge in this respect will form the goal of this key section, and our
analysis in this direction will be launched by the following observation on validity of the Neumann
problem for second equation in (1.7) at least in some weak sense.

Lemma 5.1 Let the hypotheses from Theorem 1.1 be satisfied, and let n,c and u be as provided by
Lemma 3.6. Then there exists a null set N C (0,T) such that for allt € (0,T)\ N, c(-,t) € WH2(Q)
with
/ Ve- Vi + / ) = / ny — / (u-Ve)yp for all ¢ € WH2(Q). (5.1)
Q Q Q Q

PROOF.  Let us first make sure that for all p € C§°(Q2 x (0,T)) we have

/OT/QVC'VSO+/OT/QCSOZ/OT/QWP_/OT/Q(U'VC)SO- (5.2)

For the verification of this, given any such ¢ we use the second equation in (1.2) to see that for all
€ € (g5)jen,

—6/0T/chcpt+/0T/QVcs-Vgo+/0T/QCE<p:/OT/Qnsw—/OT/Q(ug-ch)cp. (5.3)
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Since (3.10) and (3.8) warrant that with (¢;, )ren as found in Lemma 3.6 we have

T T T T T
//ch-Vg0—>/ /Vc-Vgp, //cego—>/ /cgp and 5/ /cggot—>0
0 Q 0 Q 0 Q 0 Q 0 Q
as well as
T T
A A
0 Ja 0 Ja

as € = €, \, 0, and since combining (3.10) with (3.11) yields

/OT/Q(UE.Vca)cpﬁ/OT/Q(u.VC)SD ase=c;, \0,

the identity (5.2) indeed results from (5.3).

We next rely on the separability of W12(2) and a mollification argument in fixing (¢;);en C C°°(2)

such that Xo := {¢; | i € N} is dense in W12(Q2), and thereupon use that all the functionals CZ»(L),
i€ Nyuwe{1,2,3}, defined by

V() = /gzvf:(-,t)-vwi, ¢2(t) = /Qc<~,t>wz» and (7 (t) = /Q<u<-,t>-w<-,t>>wi

for t € (0,T) and i € N, belong to L'((0,T)). Therefore, namely, for each i € N we can fix a null set
N; C (0,T) such that any t € (0,7) \ N; is a Lebesgue point of CZ(L) for « € {1,2,3}, whence letting
N = (Uz‘eN/\/Z) Ut e (0,T) | e(-t) ¢ WE2(Q)} we have found a null set A C (0,T) such that

(0,T7)\ N exclusively contains common Lebesgue points of all (Z.(L) for i € Nand ¢ € {1,2, 3}, and such
that moreover c(-,t) € W12(Q) for all t € (0,T) \ V.

Now for fixed tg € (0,7) \ N and h € (0,T — to) we choose (xi)ien C C5°((0,T)) such that
Xt X(toorny 0 L((0,T))  asl— oo, (5.4)

where as usual X (4, 4,44) denotes the characteristic function of the set (to,to + h), and apply (5.2) for
fixed | € N and ¢ € Xq to p(z,t) := xi(t) - (), (z,t) € Q x (0,T), to see that

/OT/QXch.VI/q_/OT/meb:/OT/QXlnw_/OT/QXl(u.VC)w for all I € N,

by (5.4) implying that

1 to+h 1 to+h 1 to+h 1 to+h
/ /Vc-V@ZJ—l—/ /mb:/ /nw—/ /(UVO)¢ for all h € (0,7 — tp).
h to Q h to Q h to Q h to Q

Thanks to the Lebesgue point property of tg as well as the continuity of n in Q x (0,T) asserted by
Lemma 3.6, we may let h \, 0 here to see that

/Q Ve(to) Vi + /Q (st = /Q n(esto)t /Q (u(-rto) - Ve(to)) for all 1 € Xo,
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which, by density of Xg in W2(Q), upon a further approximation argument readily entails (5.1). [

Due to our knowledge on Hélder continuity of n and u, the identity (5.1) can be seen to entail that ¢
actually enjoys some further regularity properties.

Lemma 5.2 Under the assumptions of Theorem 1.1 and with ¢ and N taken from Lemma 3.6 and
Lemma 5.1, one can find 6 € (0,1) and C > 0 fulfilling

e )llwrz@) < C forallt € (0,T)\ N (5.5)

and

(1) —c(- ) lwrz@) < Ot — s/ forallt € (0,T)\N and s € (0,T)\ N. (5.6)
In particular, on redefining c(-,t) for t € N'U{0,T} if necessary, we can achieve that
ce CY[0,T); Wh2()). (5.7)

PRrOOF.  We first observe that for ¢ € (0,7) \ N we may apply (5.1) to 1 := c(-,t) € W12(Q) to see
that due to Young’s inequality,

Lrvetor+ [ @6 = [ n6aen = [ @0 Vet
- /Qn(-,t)c(-,t)
;/ﬂc2(.,t)+;/gn2(.,t),

because V- u(-,t) = 0 in 2. By boundedness of n in € x (0,7T"), as implied by Lemma 3.6, this directly
establishes (5.5).

Next, for fixed ¢t € (0,7) \ N and s € (0,7) \ N, we let z(z) = c(z,t) — c(z,s), v € Q. Then
z € W12(Q) by Lemma 5.1, whence z is an admissible test function in (5.1) evaluated both at t and
at s. Subtracting the respectively obtained identities

/QVC(~,t)-Vz+/Qc(',t)z:/Qn(-,t)z—/g(u(-,t)-Vc(-,t))z

IN

and

/QVC(-,S)-Vz—l—/ﬂc(-,s)z—/Qn(~,s)z—/g(u(-,s)-Vc(-,s))z,

we thus obtain that

/Q|v2|2+/922:/Q(n(-,t)—n(.,s))z—/ﬂ{(u(.,t)—u(-,s)).vc(-,t)}.z—/Q(u(-,s)-vz).z,

whence if according to Lemma 3.6 and (5.5) we let 6; € (0,1), C1 > 0, Co > 0 and C3 > 0 be such
that

t
5l

1 ~,

In(x,t) —n(x,s)| < C1|t~— 52 and  |u(z,t) —u(x,s)| < 02|£— §|971
for all z € Q, ¢t € (0,7) and 5 € (0,T)
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as well as

||VC(~,t)HL2(Q) < (4 for all £ € (0, T)\ N,

then it follows that

1
[ 1Velet) = Vel o) + 5 [ (e€t) = o) < R - |t = o™ + CRCHle — o
Q Q
and that thus (5.6) holds. The conclusion (5.7) thereby becomes evident. O

A second stage of our bootstrap-type argument now even yields some spatial C%>*? regularity infor-
mation, as well as validity of the sub-problem of (1.7) in question in the classical sense:

Lemma 5.3 Suppose that the assumptions from Theorem 1.1 hold, and let n,c and u be as in Lemma
3.6. Then there exist 6 € (0,1) and C > 0 such that

[[e(, t)||c2+9(§) <C for allt € (0,T). (5:8)
Moreover,
—Ac+c=n—u-Ve  forallzeQandte (0,T) (5.9)
as well as 5
8—5 =0 for allx € 0 and t € (0,T) (5.10)

i the classical sense.

PROOF.  Let us first make sure that there exist ¢, > N and C} > 0 such that with /' C (0,7") taken
from Lemma 5.1 we have

le( ) lw2ae @ < C1 - forallt e (0,T)\ N. (5.11)

To see this, we observe that since trivially ﬁ > 1, it is possible to fix a positive integer kg and

numbers g, ..., gx, such that ¢1 = 2,q;, > N and ¢ < g1 < (n]jg:” whenever 1 < k < ky. Then

since Lemma 3.6 and Lemma 5.2 warrant the existence of 61 € (0,1), Cy > 0, C3 > 0 and Cy > 0 such
that

InC D)l cor @) < C2s lul,t)llcor@y < Cs and  [[Ve(, t)||z2) < Ca for all t € (0,7), (5.12)
it follows that h(-,t) :=n(-,t) — u(-,t) - Ve(-, 1), t € (0,T), has the property that by definition of ¢,
[A( )]l Lar () < Cs := Ca + C3Cy for all t € (0, 7).

As from Lemma 5.1 we know that for each t € (0,7) \ N, ¢(-,t) € WH2(Q) is a weak solution, in the
standard sense specified in (5.1), of the Neumann boundary value problem for —Ac(-,t)+c(-,t) = h(-,t)
in €, elliptic estimates therefor (see, for instance, Chapter 9 in [11]) provide Cg > 0 such that

[e( Ollwza ) < Collh(-t)|[La @) < CsCs  for all t € (0,T) \ N.
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In the case N =1 in which ¢; > N, this already establishes (5.11), while if N > 2 and hence kg > 1,

the inequality ¢ < (N]lfgip ensures continuity of the embedding W24 (Q) — W14 (Q), whence (5.12)

actually implies boundedness of (h(-,t))¢ec(o, )\ in L%(Q).

Repeating this procedure, after finitely many steps we conclude that indeed (5.11) holds with ¢, := g,
and some appropriately large C1 > 0. Since g, > N, in view of the continuous embedding W24 (Q2) =
C'+0%2(Q) for any fixed 65 € (0,1 — —) this entails boundedness of (Ve(+,1))ic0, )\ in C?%(Q) and

thus, again through (5.12), of (h(-, ))te(o W in C%(Q) for some 63 € (0,1). Now elliptic Schauder
theory (see, for instance, Chapter 6 in [11]) applies to the Neumann boundary value problem for
—Ac(-,t) +¢(-,t) = h(-,t) in Q and provides C7 > 0 such that

le( )| gzros iy < Cr - forall t € (0,T)\ N,

which due to the time continuity property expressed in (5.7) clearly extends so as to remain valid
actually for all ¢ € (0,7). This clearly entails (5.8) and, as a consequence of (5.1), also (5.9) and thus
(5.10). O

By straightforward interpolation, combining the latter two lemmata finally provides Holder continuity
also in time of ¢, Ve and D?c.

Lemma 5.4 Under the assumptions from Theorem 1.1, there exist § € (0,1) and C > 0 such that
le(-,) = e 8)llcaromy < Clt — s|? forallt € (0,T) and s € (0,7, (5.13)
where ¢ is taken from Lemma 3.6.

PrOOF.  In line with Lemma 5.2, let us fix §; € (0,1) such that ¢ € C%([0,T]; W12(Q)), and
thereafter choose any 03 € (0,61). Then by straightforward interpolation, we can find a € (0,1) and
C7 > 0 such that

1l c2voa @y < CldllEero, @ l¥lhiiag — for ally € C2F(Q).

Therefore,

leC:,8) = e )l emsaz gy < Cr - {lleC, Ol zsor @y + el )l czsony | llels1) = el )t

for all t € (0,7) and s € (0,7, so that the claim readily results from Lemma 5.3 and Lemma 5.2 if
we let 6 := (1 — a)f; and take C' > 0 appropriately large. O

5.2 Regularity of ¢;. Strong convergence properties of c. and Ve,

Now an observation crucial for our derivation of strong convergence properties of c. is contained in
the following statement on local L? integrability of ¢; away from ¢t = 0. Using the validity of the
elliptic subproblem in (1.7) for ¢ as a starting point, besides relying on the local boundedness of u; in
Q x (0,T] our argument essentially utilizes the time regularity information on n; provided by Lemma
3.6 through Lemma 3.5.
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Lemma 5.5 Under the assumptions from Theorem 1.1, the function ¢ obtained in Lemma 3.6 satisfies
ct € L2 (% (0,T]). (5.14)
Proor.  We pick 7 € (0,T) and hg € (0,7 — 1), and for h € (0, hg) we let

c(z,t +h) —c(x,t)
h )

zp(z,t) == e, te(r,T — hy).

Then using Lemma 5.3 we see that for each fixed t € (7,7 — hg), z(+,t) € C?(Q) is a classical solution
of the Neumann boundary value problem for

Az t) (o) = % Aot h) — a4 n) Vel t 4w} - % A1) —ul1) - Ve 1))
= gn(,t) —u(-,t) - Vzi(-,t) in €, (5.15)
where for h € (0, hy),
on(a ) = T LE hi)L —nlzt) _ u@tt hi)L —UBD Ga b4 h),  weQ te (nT—ho).

Next, for h € (0, hg) and t € (0,7 — hg) we furthermore let z,(ll)(~,t) and z,(lz)(-,t) denote the classical
solutions of

—AZ}(ll)(~,t) + 21(11)('7” = gn(-, 1), req,
PEY (5.16)
o =0, x € 01,
and
AP () + 20 (1) = —ult) - V(- 1), reQ, .
() '
82}13 =0, x € 09,

noting that their existence in the space C?(€) is asserted by standard elliptic theory (see, for instance,
Chapter 6 in [11]) due to the fact that both g (-,¢) and u(-,t) - Vzp(-,t) are Holder continuous in 2
by Lemma 3.6, Lemma 5.3 and the inclusion z(-,t) € C?(9Q).

Then according to a uniqueness property of classical solutions to the Neumann problem associated
with the inhomogeneous Helmholtz equation in (5.15), it follows that

(ot =200+ 2200 forallte (r, T —to), (5.18)

and in order to successively derive L? bounds for z}(Ll) and then for z}(LQ), we first rewrite (5.16) in the

form z(l)(-,t) := B~ lg,(-,t), where B denotes the realization of —A + 1 in W]%,’Z(Q) Then since B~}
obviously is nonexpansive on L?(£2), we can estimate

‘|Z}(11)(,7t)||L2(Q) < HBln(-,t+ h) —n(-,t) i HB1{U(-,75 +h) —u(-t) Vel h)}
h L2(Q) L2(Q)
- HB_ln(-,Hh) —n(t) u(,t+ h) — u(-,t) Velt4+ B
- h 12(9) h 12(0)

22



+
L2(9)

1 t+h
+ Hh/t ut (-, s)ds

for all t € (1,7 — hg) and any h € (0, ho).

[Ve(-t + )|l 2 (q)

- HB_ln(-,t +h) —n(.?)
Lo ()

1 t+h
= Hh/ B_I’I’Lt(',S)dS
t

u(-,t+h) —u(-,t)
h

AIVe(,t+h)l| 2 o)

L2(2) L>=(Q)

Since u; is bounded in Q2 x (7,7) by Lemma 3.6, and since Lemma 5.2 implies boundedness of (0,7") 3
t = |IVe(, )|l 2(q), we thus obtain Cy = C1(7) > 0 such that for all & € (0, ho),

1 t+h 2

||z£1)(.,t)\|%2(9) < 2Hh B n(-, s)ds
t

+C for all t € (1,7 — hg).
L2(Q)

Therefore, by integration using the Fubini theorem as well as the Cauchy-Schwarz inequality,
T—ho () ) 9 T—ho 2
[ OBt < G at
-

t+h
5 / B~ n(-, s)ds
h t 12(Q)
T—ho t+h
: ClT+/ / 1B~ (-, 8) |12y dslt
T+h
= et [ [ 1B B drds

T—ho

o [ B ) gy
T—ho+h pT—ho . )
A B OB e

< O1T+ 2/ B~ (-, 8)[[72(yds  for all h € (0,T — hg — 7).

Now since standard elliptic regularity theory (see, for instance, Theorem 21.1 in [57]) ensures that
B~! maps LQ(Q) continuously into W]%,’2(Q), and that thus with some Cy > 0 we have ||B_11[)HL2(Q) <

C'2||1/1|| , forall ¢ € (Wif(ﬂ))*, this entails that

T—hg T
1
/T /Q(z,g N2 < Oy =Cy(r) = 1T + 2c§/T e OG22 (5.19)

for all h € 0,7 — hg — 7) with C5 being finite thanks to Lemma 3.5.
(2) @)

Next, in order to estimate z, ', we test (5.17) against z; ’(-,t) and recall the decomposition (5.18) to
infer that by solenoidality of u and by Young’s inequality,

on @), R P PN ¢ PR (PR ) e )
/rw DIz + /(zh<,t>>2 - /Q<<,t>vh<,t>>h<,t> /Q<<,t>vh<,t>>h<,t>
= [ AP0 T )
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IN

ORI I OFENCIE
Lo 0r + 7 [ G002
LT 0P + L0l ey [ 0002

for all ¢ € (1,7 — hg) and each h € (0,7 — ho — 7).

IN

As once more relying on Lemma 3.6 we can find Cy > 0 such that [[u(-,)|[ 1) < C4 for all t € (0,7),
in view of (5.19) this implies that

T—ho 2 T—hg 2
/ /(z,(f))2 < C:f/ /(z}j)ﬁ < % for all h € (0,T — hg — 7)
T Q T Q

and that thus, again by (5.19),

T—hg 2
/ /z%§26‘3+c3204 for all h € (0,7 — hg — 1)
T Q

because of (5.18). Consequently, there exist (h;)ien C (0,7 —ho—7) and z € L?(Q x (7,T — hy)) such
that h; — 0 and 2, — 2z in L?(2 x (7,7 — hg)) as i — 00, so that since by definition of distributional
derivatives z must coincide with ¢; a.e. in Q x (7,7 — hg), (5.14) results from the fact that 7 € (0,7)
and hg € (0,7 — 7) were arbitrary. O

On the basis of this, we can now in fact derive some strong convergence property of ¢. by analyzing
the difference ¢. — ¢ through a parabolic equation satisfied by the latter, in which the crucial source
term ec¢; can appropriately be controlled using (5.14).

Lemma 5.6 Suppose that the assumptions of Theorem 1.1 are satisfied with some (£;)jen C (0,00),
and let (n,c,u, P) and (&, )ken be as provided by Lemma 3.6. Then

e = ¢ in Lis.((0,T7; L*(Q)) (5.20)

and

Ve. =+ Ve  in L .(Q x (0,T]) (5.21)

loc

ase=¢j \ 0.
ProoOF.  For € € (gj)cn, we let
ze(x,t) := ce(x,t) — c(z, 1), (z,t) € Q x (0,7T),

and
ye(t) == / 22(z,t)dx, te(0,7).
Q

Then since z. € L>®(2 x (0,T)) and sz = Oyce — ¢ € L2 ((0,T]; L3(Q2)) by Lemma 2.4 with ¢ = 2

loc
and Lemma 5.5, it follows from a standard argument that y. belongs to I/Vlif((o, T]) and is therefore

locally absolutely continuous in (0,77 with
YL () = 2/ (o )0z(f)  forae. t € (0,T),
Q
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As herein by (1.2) and Lemma 5.3,

€0ize = Ace —ce+ne—u.-Ve: —ec
= Az +Ac—2z.—c+ne—u:. Ve — e¢y
= Aze—z.+(ne—n) — (ue —u)-Ve—u. - Vze — ey a.e. in Q for a.e. t € (0,7,

on integrating by parts and using Young’s inequality we obtain that

g+ [ v+ [ 22
= /Q(ns—n)zs—/g{(ug—u)'VC}ZE_/Q(us'vzs)zs_g/gctze

3
< /z§+/(n5—n)2—|—/ ”LLE—’LL|2’VC|2+€2/C? for a.e. t € (0,7,
4 Jo Q Q Q

because V - u. = 0 a.e. in © x (0,7"). Hence

e

1
2y2(t) + -y (t) —I—/ |V2|? < he + 82/ (-t for a.e. t € (0,7), (5.22)
Q Q

4

where according to Lemma 3.6,

he = |9 - Ine = 1l Fooix (0.7 T te = ull7oc@x(0.1)) - Vel T (0.1):22(0)
satisfies
he =0 as € =¢j, \0. (5.23)

Given any 7 € (0,7") and an arbitrary n > 0 we use (5.23) and Lemma 5.5 along with the boundedness
of (yf)ae(ajk)kew in L*°((0,7)), as entailed by Lemma 3.3 and Lemma 5.3, to fix g > 0 small enough
such that whenever € € (¢j, )gen is such that € < gy, we have

4h. < g (5.24)
and
g U
25/ /cf <2 (5.25)
5 Je 3
as well as - .
ve(3) e F <1 (5.26)

Then from (5.22) we infer on dropping the nonnegative last summand on the left that the absolutely

continuous function [3,T] > t e3=(=5)y, (t) satisfies

d - T 2h
dt{@;g t_2)y€(t)} S 6216(15—2){85 + 26/{;6?(,t)} for a.e. t S <g7T>a
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and therefore we obtain using (5.26), (5.24) and (5.25) that

oy 2he [* ¢
ye(t) < y€<T) e2:(1=3) 4 Ze Te_2ls(t_5)d8—|—25/ g2 (t=9) . /cf(-,s)ds

2 €
< y5<7) e 2: (- 3) 4, - {1—6 2: (= 2) +25/ /Ct
n,.n, n
< =4+ =4+ -=-= for all ¢ T).
< 3+3+3 n orallt e (r,T)
This in conjunction with Lemma 5.5 and Lemma 3.3 implies that for each 7 € (0,7) we have
ze =0 in L®((1,T); L*(Q))  ase=¢;, (0. (5.27)

Going back to (5.22), we see upon direct integration therein that for each 7 € (0,7") we moreover have

//]V%]Q Sye(r) +he - (T =7 —l—f-://ct for all £ € (5, Jren,

so that again by means of (5.23), Lemma 5.5 and the boundedness of (y:).c(, in L*°((0,7)) we

'k)kEN
infer that for any such 7,
ze =0 in L*((r,T); WH3(Q))  ase=¢j, \,0.
Together with (5.27), this shows that both (5.20) and (5.21) hold. O

5.3 A bound for Ve, in L>((0,7); L7(2)) for arbitrarily large ¢

Let us conclude this section by providing some additional integrability information on the signal
gradient Ve, on the basis of the differential inequality from Lemma 2.4.

Our reasoning will involve the following elementary interpolation inequality.

Lemma 5.7 Let ¢ > 2. Then for all p € C%*(Q) such that ¢ - g—f =0 on 09, we have

/va\q< (VN +q¢-2) ‘”2-{/ V|t 2\D2<p\2} {/\s@!"} +2- (5.28)

Proor.  We integrate by parts and use the Holder inequality to see that

/valq = /IVsOI‘I_QVsD-VsO
Q Q

= —/QsOWIHAso—(q—2)/QsOIV<plq‘4Vs0-(D%-Vsa)

< (R+a=2) [ Il V6l D%
2q
< wirg-{ [l [} [merantee)
from which (5.28) can readily be derived. O

Indeed, we can thereby achieve the following.

26



Lemma 5.8 Assume the hypotheses from Theorem 1.1, and let ¢ > max{N,2}. Then there exists
C = C(q) > 0 such that for all € € (€5)jen,

/ Ve DT <C forall t € (0,T). (5.29)
Q
In particular,
sup ||Cs||Loo(Qx(o,T)) < 0. (5.30)
e€(gj)jen

PROOF.  Since (ne)ee(c;), ey 20 (Ue)ee(c,), oy are bounded in L (2x (0, 7)) and in L>(2x (0, T); RM)

according to Lemma 2.2 and Lemma 2.3, respectively, from Lemma 2.4 we infer the existence of
C1 = C1(q) > 0 such that for all € € (¢;);en,

ed

1 R R _
A/ |ch|q+/ ]Vc€|q_2|D205|2+/ Vc€|q<01+01/ VeI forall te(0,T). (531)
qdt Jo 4 Jo 0 Q

Here we may use that Lemma 3.3 warrants boundedness of (cc)ce(e;), oy in L*°((0,T); Li(Q)) to see

that as a consequence of Lemma 5.7 and Young’s inequality, with some positive constants C; = C;(q)
i €{2,3,4}, we have

q

_a_ 2
Cl/ ‘ch’qA < CQ_{/ |V68§—2‘D2662}4+2.{/Cg}%z
Q Q Q

q

~ T+2
< C3'{/|vcgq_2‘ch€2}
Q

1 ~
< 4/ Ve |72 D3¢ |? + Cy for all t € (0,7) and any € € (g;)jen,
Q

so that (5.31) entails the inequality

ed

Z]\dt/ |VCE|E—|—/ |VC€|(/1\§ Ci+Cy for all t € (O,T) and € € (5j)j6Na
Q Q

from which (5.29) directly follows. As ¢ > N and hence W'9(Q) — L>®(Q), again due to the
boundedness property from Lemma 3.3 this in turn implies (5.30). O

6 Solution properties of n. Proof of Theorem 1.1

Now knowing that c. — ¢ also in the pointwise sense, we can readily pass to the limit also in the first
equation in (1.2).

Lemma 6.1 Suppose that the assumptions of Theorem 1.1 are satisfied with some (g;)jen C (0,00),
and let (n,c,u, P) be as provided by Lemma 3.6. Then in the classical pointwise sense we have

ne+u-Vn=An—V-(nS(xz,n,c)-Ve)+ f(z,n,c) forallxz € Q and t € (0,T) (6.1)
as well as

(Vn —nS(xz,n,c)-Ve)-v=0 for all x € 00 and t € (0,T). (6.2)
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PROOF.  Let us first make sure that for arbitrary ¢ € C§°(Q x [0,7)),

—/OT/Qngot—/QnogD(-,O) = / /Vn ch—l—/ / (z,n,c)-Ve) Vo
+ nu- Ve + f(z,n,c)p. (6.3)
0 Q 0 Q

To see this, given any such ¢ and ¢ € (¢;)j € N we use (1.2) to find that

/OT/Qnecpt/Qnogo(-,O) - /OT/QVTLE-V90+/0T/Qn5(5(x,n5,cg)-VCE)'Vgo
+/OT/Qnsus-Vso+/0T/Qf(x,ns,ce)% (6.4)

where by (3.8), (3.9) and (3.11), clearly

T T
[ foos [ foon [ [ [ fsnss
0 Q 0 Q
/ /nsus-Vgo%/ /nu'Vgp
0 Q 0 Q

as € = g5, \( 0, where (g, )ren is as provided by Lemma 3.6. Apart from this, thanks to Lemma 5.6
we know that ¢. — c a.e. in Q x (0,7") and hence, again by (3.8), that also S(-,ne,c.) = S(-,n,c) and
f(G,ne,cc) = f(-,n,c) ae. in Qx(0,T). Since combining (1.4) and (1.3) with (3.8) and (5.30) moreover
ensures boundedness of (S(-, ne, Cs))ae(fjk)kel\l in L=(Q x (0,7); RY*N) and of (f(-, ne, CE))Ee(ajk)keN in
L>*(Q2 x (0,T)), by means of the dominated convergence theorem and a well-known argument ([54,

Lemma A.4]) we conclude that as € = g, \, 0, not only f(-,ne,c:) = f(-,n,¢) in L*(Q x (0,7)) but
also

neS(- ne, c2) = nS(-,n,e)  in L2(Q x (0,T); RV*N).

In conjunction with (3.10), these properties warrant that

/OT/Qf(fﬂ’ns,cs)so—>/OT/Qf(:E’n,C)so
/ /ne (x,mne,cc) - Vee) - ch—>/ / (z,n,c)-Ve)- Vo

as € = €5, \, 0, so that (6.3) becomes a consequence of (6.4).

and

Thus knowing that n € L2((0,T); W2(2)) forms a weak solution of the initial-boundary value prob-
lem (6.1)-(6.2) in the standard generalized sense from e.g. [20], we may invoke classical results from
parabolic regularity theory to conclude from the Holder continuity of n,c, Ve, D?c and v in Q x [0, T,

as stated by Lemma 3.6 and Lemma 5.4, that firstly n € O+ Y (2 % (0, 7)) for some 6; € (0,1)
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(see, for instance, Theorem 1.1 in [23]), and that secondly, as a consequence thereof, due to this
additional information on Hoélder continuity of Vn we can find 65 € (0,1) such that we even have

-
n € C*02143(Q x (0,T]). Therefore, (6.3) warrants validity of (6.1) and (6.2) in the classical
pointwise sense through a standard variational argument. O

The proof of our main result on the parabolic-elliptic limit in (1.2) is now almost immediate:

ProOOF of Theorem 1.1.  With (¢j, )ren and (n,c, u, P) taken as in Lemma 3.6 and Lemma 4.1,
from Lemma 3.6 and Lemma 5.6 we immediately infer that (1.11), (1.12) and (1.15) hold, and that
moreover
ce e in L.((0,T]; L*()) N Li,e((0, T); WH*(92)) (6.5)
as € = €5, \y 0. Observing that for each fixed § > N, Lemma 5.8 provides C; > 0 such that
e () llwrag) < Ch for all t € (0,7") and each € € (&) en, (6.6)

we firstly obtain (1.14) as an immediate consequence thereof, and can furthermore secondly complete
the derivation of (1.13): As ¢ > N, namely, the Gagliardo-Nirenberg inequality yields a € (0,1) and
C3 > 0 such that for all t € (0,7) and € € (¢j)en,

HC5<'7t> - c('7t)HCO(§) < CQHCE('vt) - C(Ut)H(IZ/Vlﬁ(Q)HCE('vt) - C(7t)H2;EIQ)

< CofllecC, Olhwrae + e Dllwray |+ llea(8) = e DIl

A

so that combining (6.5) with (6.6) shows that indeed c. — ¢ also in L{2((0,7);C°(Q)). Finally,

Lemma 4.1 in conjunction with Lemma 5.3 and Lemma 6.1 guarantees that in fact (n,c,u, P) solves
(1.7) classically in © x (0,7). O

7 Small-data solutions to an unforced Keller-Segel-Navier-Stokes
system. Proof of Theorem 1.2

The purpose of this section consists in providing a first exemplary application of Theorem 1.1, namely
in the framework of Theorem 1.2. To this end, as for general S the no-flux boundary conditions in
(1.2) need not reduce to separate homogeneous Neumann boundary conditions for n. and c., following
[54] we introduce an appropriate regularization in which S vanishes near the lateral boundary. More
precisely, let us fix (p;),c0,1) € C5°(2) and (xy)pe(0,1) € C°([0, 00)) such that

0<p,<1inQ with p, "1inQasn\,0,

and that
0<x,<1in[0,00) with x,=0in [%,oo) and x, / 11in [0,00) as 7\, 0. (7.1)
For n € (0,1), we then define
Sy(x,n,c) = py(x) - xn(n) - S(x,n,c), (z,n,¢) € Q x [0,00)?, (7.2)

and observe that S, € C2(Q x [0, 00)%; RV*N).
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Given ¢ > 0, for n € (0,1) we consider the approximate versions of (1.2) given by

( Oty + Uey - Vg, = Ang —V- <n€nSn(a:, Nen, Cen) * Vcsn>, zeN, t>0,
€0¢Cen + Uy - Vg = Acey — Cep + Ny reQ, t>0,
Optien + K(Uep - V)Uey = Auey + VPey+ 1)V, Ve =0, x €N, t>0, (7.3)
Wen — Oen — () y,, =0, z € dQ, t>0,

[ Men(2,0) =no(x), cen(x,0) = co(x), uep(w,0) = up(x), x €€

By means of a well-established construction involving the contraction mapping principle, one can firstly
show that for each € > 0 and 7 € (0, 1) there exists a quadruple (ney, Cey, Uey, Pey), nonnegative in its
first two components, that solves (7.3) classically in Q x (0, Tynaz,en) for some Thpapen < +00. Using
that S, (x,n,c) = 0 whenever n > %, by following a series of standard arguments (see e.g. [47, 51]) one
can thereupon readily verify on the basis of suitable a priori estimates that actually T5qz.0n = +00,
and that hence this problem possesses a globally defined classical solution (e, cey, ey, Peyy) for which
Neyp and ¢,y are nonnegative in Q x (0, 00).

In order to derive appropriate bounds for these solutions, independently of € and 7, we start by again
using Lemma 2.4 to refine the differential inequality appearing therein as follows.

Lemma 7.1 Let N >2,p > N,q > 2 and r > N. Then there exists Ki(p,q,r) > 0 such that for all
e >0 and any n € (0,1),

1 —
S [ Vet + (G- Kl e} [ [Vel?D%
1
+ {1_(]2_Kl(paQar)|usn|%r(Q)}'/Q’Van|q

< Ki(p.g.)negllyqy  forallt >0, (7.4)

PrROOF.  Using Lemma 2.4 as a starting point, thanks to (2.10) we can fix C; = Ci(p,q,r) > 0 such
that for all e > 0 and n € (0, 1),

S [ Vet + 1 [ Fealr D%+ (1= 2) [ Do
< Cillnegllg, +01||usn||y HVCEHHqL(Q) (7.5)
= Cillnegllloqy + Cilluey 2o HIVcenP for all £ > 0. (7.6)

Here since r > N and thus 2%"2 < %, we may use the continuity of the embedding W12(Q) —

T

L%Q(Q) to find Cy = Ca(p, ¢, r) > 0 such that

q
Ol ooy |1 Veenl2 |, 2y ) < ColluenllEriay {vacenrz B [\ m}
q _
= Callialiroy - { % [ Vet D%y Veaf? + [ 19eyit}
2
q _
< LGl [ [Veenlt21D%n P+ Collue ) [ [Vl
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for all t > 0. When inserted into (7.5), this yields (7.4) on letting Ki(p,q,r) := max {C, %Cg}, for
instance. U

In consequence, if u, is suitably small, then also V¢, can be estimated in a favorable manner:

Lemma 7.2 Let N >2,p> N, q> 2 and r > N. Then there exist 51(p,q,r) > 0 and Ka(p,q,r) > 0
such that if e >0, n € (0,1) and T > 0 are such that

Huan('vt)HL’"(Q) < 51(pa q,T) for allt € (OaT)v (77)

then

[V een( D)l ey gmax{||Vco||Lqm>,K2- sup Hnenc,s)m(m} forallte (0.7).  (7.8)

s€(0,t)

Proor.  With Ki(p,q,r) > 0 taken from Lemma 7.1, we let d1(p,q,7) := ﬁ and then
1(P,q,"

obtain from (7.4) that if (7.7) holds for some € > 0, n € (0,1) and T > 0, then y(t) := [, [V (-, 1)]%,
t > 0, satisfies

1
Y (t) + §y(t) < Ki(p,q, r)][ne(-,t)HqLI,(Q) for all t € (0, 7).

€
q
Therefore, if given any ¢ € (0,7) we let M(t) := Ki(p,q,7) - SuDse(o) [[7e(, s)Hqu(Q), then

1
< ' (s) + §y(s) < M (t) for all s € (0,1),
q

so that a comparison argument yields the inequality

y(s) < max {y(O) , QM(t)} for all s € [0,¢].

Q|
O

When evaluated at s = ¢, this precisely leads to (7.8) upon defining Ks(p, q,r) := (2K1(p,q,7))<.

Now the above hypothesis can be fulfilled if ug and n,, are appropriately small:

Lemma 7.3 Let N > 2,p>1 and r > N be such that

Nr
P> o (7.9)
Then for all § > 0 there exists d3(5,p,r) > 0 such that if
HUOHLT(Q) < 53(6,]9,7"), (710)
and if for some € > 0,m € (0,1) and T > 0 we have
H”an('7t)HLP(Q) < 63(57]77 T) fOT’ allt € (OaT)) (711)
then
[ten (- )| Lr) < 0 for allt € (0,T). (7.12)

31



PrOOF. By relying on known regularization features of the Stokes semigroup (e™*4);>o ([10]), let
us fix C1 = C1(r) > 0, Co = Co(r) > 0, C3 = C3(p,r) > 0 and p > 0 such that for all ¢ > 0,

le " |l Lr) < Cillellr@ — for all p € LL() (7.13)
and

1

le 4PV - ol| L) < CQt*r%e*#tMLg(m for all ¢ € C1(Q; RV*N) such that ¢ = 0 on 99

(7.14)
as well as [ B
le™ 4Pyl priy < Cat™ 2% e Mgl gy for all p € COELRY). (7.15)
We then fix > 0 and may without loss of generality assume that
2 5
CyCy k|67 < 3 (7.16)

where Cy = Cy(r) == [ o2 2re M9do < oo since r > N. Noting that thanks to (7.9) we moreover

know that also C5 = Cs(p,r) := fooo 07%(%7%)4'6_'“‘0(10 is finite, we thereupon pick d3 = d3(d, p,7) > 0
small enough such that both

Cid3 <

D>

(7.17)

and
C3C5|| V| Lo ()ds <

[2)S)

(7.18)

hold, and suppose that (7.10) and (7.11) are satisfied with some € > 0,7 € (0,1) and T" > 0. Then
since g, clearly is a mild solution of its respective subproblem in (7.3), we may use (7.13), (7.14) and
(7.15) along with the Holder inequality to estimate

[[en (-5 )l ()

t t
ey — Ii/o e~ =9Apy. (ten(+,8) @ Uey (-, 5))ds + /0 e~ =APn(., 5)Vlds

L ()

N
< ClHUO”L”"(Q) + Colr| | (T— 8)7%7567M(t75)”u8n('7 8) ® uen (-, 3)”L§(Q)d8

_1 N (t—s
) 2 e it )”Uan(WS)H%T(Q)dS

A
Q
s
2
=

=
)

+
<
=
=

|

»

t 11
+03HV¢HLO<,(Q)/O(75—5) 2 G e ) gy (4 8) | ogyds for all £ € [0,T). (7.19)

In order to verify that this implies the inequality

M(Tp) <6 forall Tp € [0,T] (7.20)
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for

M(Tp) == sup |uey(-,t)[lr(0), Ty € [0, T7,
t€[0,T0)

assuming (7.20) to be false we could make use of the continuity of M and e.g. combine (7.19) with
(7.16) to find Ty € (0,T] such that M(Ty) < 6 for all Ty € [0,7%) but M(T,) = d. According to
(7.19) and our hypotheses (7.10) and (7.11) in conjunction with (7.16), (7.17) and (7.18), however,
this would mean that

t
§=M(T,) < 0163+C’2]/<;52/ (t —s) 2 e HE=3)ds
0
o YCGD ue-
+CalVellums [ (¢ =5 FGTDrem-s
0
< 01(53+CQC4’H’(52—|—C3C5HV¢HLOQ(Q)53
NS,
-6 6 6 2
which is absurd. Therefore, (7.20) and hence (7.12) must be valid. O

The hypotheses of the latter lemma, however, are satisfied if Ve, and u., are conveniently small:

Lemma 7.4 Let N > 2. Then for allp > 1,q > N and r > N there exists d2(p,q,r) > 0 such that if
for somee >0, n¢€ (0,1) and T > 0 we have

”vc&"’]('v t)HLq(Q) < 62(17, q, T) fOT all t € (07 T) (721>
and

||u€77('7 75)||LT(Q) < 52(1)’ q, T‘) fOT’ all t € (07 T)v (722)
then

[nen ()l ey < 2lnollzry  for allt € (0,T), (7.23)

ProoF. Givenp > 1,g > N and r > N, by using a well-known smoothing property of the Neumann
heat semigroup (') ([50]) we can fix u > 0,C; = C1(p,q) > 0 and Cy = Ca(p,r) > 0 such that
whenever t > 0,

€29 Gl < min{CrF e gl Cot el e

for all p € C1(;RY) such that ¢ - v = 0 on 99, (7.24)

and thereupon let dy = d2(p, ¢, ) > 0 be small enough such that

1
CiC3Kshs < (7.25)
and 1
CyC40y < T (7.26)
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N
where Ca = Ca(q) := [, 072 %e 9 do and where O = Cs(r) == [,° o2 2 e hdo are finite due
to our assumptions that ¢ > N and r > N.
Then assuming (7.21) and (7.22) to be valid for some ¢ > 0,17 € (0,1) ad T" > 0, we may employ a

variation-of-constants representation associated with the first equation in (7.3) to see that thanks to
the contractivity of (¢!®)i>0 on LP(Q),

172 (-5 D) e ()

t
ety — / eli=9Ay . (nsn(', 5)Sy (-, ey (+,8), cen(-,8)) - Veey (-, S))dS
0

t
_/ e(t_s)Av . (nen(~78)usr]('as)>d5
0

L7(Q)
t 1 N
< R — §) 2 2g e M=) : . . : . . o
< ||nO”L Q) + Cl/o (t S) ae nan( 75)577( 7”877( 75)70877( )S)) vc&ﬁ( 55)‘ P (Q)dS
¢ 1 N
)5 o o H(t—s) . . -
+CQ/0 (t—s) 2 2re ¥ Hnan( ,s)ugn( ’S)HLﬁ(Q)dS (7.27)

for all t € (0,7"). Here by the Holder inequality, (1.4), and (7.21), we know that abbreviating M :=
[72en |l oo (0,77 () We have

[rene 51859, conc ) - Fenlcs3) gy < Kisene 8wy [Veen )
< KgdoM for all s € (0,7),
while similarly (7.22) guarantees that
[72en (-5 8)uen (-5 8) | 2 < lnen(s 9)l o) luen (- $)ll @)

LPF7 (Q)
< 9M  forall s e (0,7).

Therefore, we may use (7.25) and (7.26) to infer from (7.27) that

t 1N
[1en (Ol e ) < lInolle) + 01K552M/ (t—s) 2 20e #7945
0
t 1 N
+C'252M/ (t —s) 2 e HE=9)ds
0
< ”noHLp(Q) + C1C3K 569 M + CoCrdo M
M M
< nollzeo) + VEREVE for all t € (0,7),
which implies that
M
M < lnollze) + =
and hence completes the proof. U

Now a self-map type argument combines the latter lemmata so as to make sure that for suitably small
initial data, all the above assumptions can be fulfilled simultaneously:
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Lemma 7.5 Let N > 2,p > max{2,N},q > N andr > N. Then there exists C = C(p,q,r) > 0 such
that if no, co and ug satisfy (1.6) with

1 1 1
[0l zr(0) < =, |VeollLaga) < ol and uollr@) < = (7.28)

Q
Q

then for all e > 0 and n € (0, 1), the solution of (7.3) has the properties that
||”8n(‘7t)||Lp(Q) <C, chan('yt)HLQ(Q) <C and ||Ue77('7t)HLT(Q) <C  forallt>0. (7.29)

PROOF. Given p > max{2,N},g > N and r > N, we take §; = d1(p,q,r) > 0 and Ko =
Ks(p,q,r) > 0 from Lemma 7.2 and let dy = d2(p, q,7) > 0 be as provided by Lemma 7.4. Then since
p>N > NJET, an application of Lemma 7.3 to ¢ := min{d1, d2} yields d3 = d3(p,q,r) > 0 with the
property that whenever (7.10) and (7.11) hold for some € > 0,1 € (0,1) and 7" > 0, we have

l[ten (- )l Lr(@) < 61 for all t € (0,T") (7.30)
and
||u577(',t)HLr(Q) < for all ¢ € (O,T). (731)
We now suppose that ng, cop and ug comply with (1.6) and are such that
3Kz|nollLe() < 62 (7.32)
and
[Veol Loy < 02 (7.33)
as well as
[uoll zro) < 03 (7.34)
and
3llnollLr (o) < s, (7.35)

and we claim that then for each ¢ > 0 and 7 € (0, 1), the obviously well-defined element
T =T., :=sup {f >0 ‘ 72 (-, )| Lo () < 3llnoll ooy for all t € (o,f)}
of (0, 00] actually satisfies T, = oo.
To see this, we note that by definition of T,
[0 (s )l ) < 3lnollr) — forall t € (0,T), (7.36)

which in conjunction with (7.34) and (7.35) allows for an application of Lemma 7.3 to conclude that
in fact both (7.30) and (7.31) hold. In particular, (7.30) enables us to employ Lemma 7.2 to see that
thanks to (7.33), again (7.36), and (7.32),

IVeen(sOllzaey < max {|Veollpaey » Kz - 3lnollzro |

< b for all t € (0,7), (7.37)
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which in turn, when combined with (7.31), makes it possible to infer from Lemma 7.4 that
men (5 )l r@) < 2lIn0llLe)  for all t € (0,7).

As ng # 0 by (1.6), by continuity of n, this shows that indeed 7T, cannot be finite for any ¢ > 0 and
n € (0,1), and that thus (7.29) results as a consequence of (7.36), (7.37) and (7.30) if in accordance
with (7.32)-(7.35), the constant C in (7.28) and (7.29) is chosen suitably large. O

In fact, we have thereby proved the essential body of Theorem 1.2 already:

PROOF of Theorem 1.2.  According to Lemma 7.5, there exists § = d(p,q,r) > 0 such that (1.16)
implies the boundedness properties in (7.29) uniformly with respect to € > 0 and 1 € (0,1). Thanks
to the estimates thereby implied through Lemma 2.2, Lemma 2.3 and Lemma 5.6, by means of a
standard subsequence extraction procedure this can readily be seen to entail, for each ¢ > 0, the
existence of a global classical solution (ng,ce,ue, P:) of (1.2) which in fact has the properties that
Nep, — Ne, Cen, — Ce and Ugy — e a.e. in Q x (0,00) with some (1;);eny C (0,1) such that 7, N\, 0 as
[ — oo ([5]).

The remaining part of the statement then directly results from Theorem 1.1 and the boundedness
features of (Veg)eso and (ue)e>o implied by (7.29). O

8 A logistic Keller-Segel system. Proof of Theorems 1.3 and 1.4

As a second example for taking a parabolic-elliptic limit along the lines of Theorem 1.1, in this section
we shall consider the one-dimensional logistic Keller-Segel system (1.17) for fixed D > 0,a € R,0 >0
and € > 0.

Again we start by stating an almost immediate basic property.

Lemma 8.1 Let T > 0. Then there exists C(T") > 0 such that for any € > 0,

1
/ ce(+,t) < C(T) for allt € (0,7T) (8.1)
0
PROOF.  As an immediate consequence of Lemma 2.1, we obtain C(T) > 0 such that
1
/ ne(-,t) < CL(T) for all t € (0, 7).
0

Thereupon, using (1.17) we can estimate

1 1 1
gd/ ce(-,t)—i—/ cE(-,t):/ n(1) < Co(T)  forall £ € (0,T),
dt Jo 0 0

which by comparison implies that

1 1
/ ce(,t) < max {/ o, C1(T)} for all t € (0,7),
0 0

as intended. O

Now in the spatially one-dimensional setting considered here, the availability of favorable embeddings
allows us to conclude the following from an essentially well-established testing procedure.
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Lemma 8.2 Let T > 0. Then there exists C(T) > 0 such that

/T /1 .. <C(T) for all e € (0,1). (8.2)
o Jo

PROOF. By referring to both PDEs in (1.17) and employing Young’s inequality, we see that whenever
e >0,

d 1 o 1 1,2 1 1
{ [rmncos [ acopen [ "o [ eueor [ den
dt { Jo 2 Jo 0 Me 0 0
1 1 1 1 1
= —2/ ngcgm(~,t)+a/ nalnna(-,t)—b/ nglnna(',t)—l—a/ ng(-,t)—b/ n2(-,t)
0 0 0 0 0

1 1 1 1 1 1
< 2/ czm(-,t)-i-a/ nalnng(-,t)—b/ nglnng(-,t)—l-a/ ng(-,t)—i—/ ng(',t) (8.3)
0 0 0 0 0

for all ¢ € (0,7). Since it can readily be verified by elementary analysis that thanks to the nonnega-
tivity of b there exists Cy > 0 with the property that

aflné —b&?Iné+al +€2 <282 +C,  forall &€ >0,

and since the Gagliardo-Nirenberg inequality, Young’s inequality and Lemma 2.1 provide Cy > 0 and
C3(T) > 0 such that for all e > 0 we have

1
2 /0 2,8 = 2vElagon,

< Gf( \/7’75) 2200 Vel Z2((0,1)) + Callv/el T2 o,0))
< D/ t)+ Cs5(T) for all t € (0,7),

from (8.3) it thus follows that for any such ¢,

d 1 1 1
dt{/ nelnng(-,t) + 8/ ch(-,t)} + 2/ 2o (1) < Cy(T) :=Cy + C3(T) for all t € (0,T).
0 0 0

Hence, when resorting to € € (0,1) we infer that

1 ool 1 /T 1 1
| ntmmnt g [ en g [ En < [ mness [ @ e
0 0 o Jo 0 0
1 1
< / nolnng + - / 2, + Cy(T)T,
0 0
which entails (8.2) due to the fact that fol ne(-,T)Inn.(-,T) > —1. O

In conjunction with the L' information from Lemma 8.1, the latter entails an estimate for c., com-
patible with (1.10):
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Lemma 8.3 For any T > 0 one can find C(T') > 0 with the property that

T 5
/ lececst)Em oyt < C(T)  for all e € (0,1). (8.4)
0
PROOF.  As the Gagliardo-Nirenberg inequality says that with some C; > 0 we have

5 1 5
HCEZ‘HEOO((OJ)) < ClHcexcc||%2((071))||Cg”12/1((071)) + C1H05H21((0’1)) for all £ > 0 and each ¢ > 0,

the claim results upon integrating and combining Lemma 8.2 with Lemma 8.1. O
We can thereby directly pass to the limit € N\, 0 by means of Theorem 1.1:

PROOF of Theorem 1.3. We pick any ¢ > 5 and then obtain as a particular consequence of Lemma
8.3 that for each T' > 0, (e )o¢(0,1) is bounded in L3 ((0,7); L((0,1))). Since this choice of ¢ precisely
ensures that % + 2%1 < %, the conclusion follows by applying Theorem 1.1 with ug = 0 and ¢ = 0,
and recalling from standard literature ([42], [6]) a well-known uniqueness property of (1.18) within
the indicated class. U

Thanks to a known result on spontaneous emergence of large densities in the limit problem (1.18) for
suitably small D > 0, our statement from Theorem 1.3 enables us to finally draw a similar conclusion
also for the fully parabolic problem when the parameter € therein is appropriately small.

PROOF of Theorem 1.4.  According to a result from [53, Theorem 1.1] on the parabolic-elliptic
problem (1.18), we can pick some nonnegative ng € W1°°((0,1)) which is such that there exists T' > 0
having the property that to arbitrary M > 0 there corresponds some Dy > 0 such that for each
D € (0, Dy), the solution (n,c) = (np,cp) of (1.18) satisfies

np(zo(D), to(D)) > 2M (8.5)

with some zo(D) € (0,1) and to(D) € (0,T). Now keeping ng,7 and M fixed, given any such D
and arbitrary nonnegative cog € W1H*°((0,1)) we may employ Theorem 1.3 to see that the associated
solutions (npe, cpe) of (1.17) approximate (np, cp) in the sense that, inter alia, np. — np in C°([0, 1] x
[0,7]) as € \( 0. In particular, we can therefore find 9 > 0 such that np. > np — M in (0,1) x (0,7)
for all ¢ € (0,ep), which when evaluated at (zo(D),to(D)) and combined with (8.5) directly yields
(1.19). 0
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