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Abstract

We consider the degenerate haptotaxis system

{
ut = (d(x)u)xx − (d(x)uwx)x,
wt = −ug(w),

endowed with no-flux boundary conditions in a bounded open interval Ω ⊂ R. It was proposed as a
basic model for haptotactic migration in heterogeneous environments. If the diffusion is degenerate
in the sense that d is non-negative, has a non-empty zero set and satisfies

∫
Ω

1

d
< ∞, then it has

been shown in [12] under appropriate assumptions on the initial data that the system has a global
generalized solution satisfying in particular u(·, t) ⇀ µ∞

d
weakly in L1(Ω) as t → ∞ for some

positive constant µ∞.
We now prove that under the additional restriction

∫
Ω

1

d2 < ∞ we have the strong convergence
u(·, t) → µ∞

d
in Lp(Ω) as t → ∞ for any p ∈ (1, 2). In addition, with the same restriction on d we

obtain improved regularity properties of u, for instance du ∈ L∞((0,∞);Lp(Ω)) for any p ∈ (1,∞).
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1 Introduction

Tumor invasion into the healthy tissue relies on a plethora of processes. However, many types of
cancer cells are ony able to move if they adhere to the tissue fibers in the extracellular matrix. Hence,
they migrate from places with low densities of the tissue fibers (and corresponding adhesive molecules
on the fibers) to places with higher densities. This process is called haptotaxis (see e.g. [4]) and has
been present in a growing number of macroscopic models for tumor invasion into the tissue (see e.g.
[5] for one of the first models). Consequently, the mathematical analysis of haptotaxis systems has
got growing interest during the past decade. Mathematically, these systems usually consist of a cross-
diffusive parabolic PDE for the tumor cell density (modeling diffusion and haptotaxis) coupled with
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an ODE for the density of the tissue fibers (since the latter is a non-diffusive attractant for the tumor
cells). In most of these systems the random movement of cancer cells is described by non-degenerate
diffusion of Fickian type (see e.g. [1, Section 4.3] for a recent survey), only few containing degenerate
diffusion (see e.g. [13]). However, in organs with very heterogeneous tissue (e.g. in the brain) recent
modeling approaches suggest that non-Fickian diffusion operators could possibly be more adequate,
among them the so-called myopic diffusion (see e.g. [2]).
In [10] a degenerate haptotaxis system involving myopic diffusion has been proposed as a basic model
for describing glioma spread in heterogeneous tissue. We will study a particular one-dimensional ver-
sion thereof, which has been analyzed in [12] concerning the global existence and asymptotic behavior
of a generalized solution. Namely, in a bounded open interval Ω ⊂ R, we consider the initial-boundary
value problem 




ut =
(
d(x)u

)
xx

−
(
d(x)uwx

)
x
, x ∈ Ω, t > 0,

wt = −ug(w), x ∈ Ω, t > 0,(
d(x)u

)
x
− d(x)uwx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), w(x, 0) = w0(x), x ∈ Ω,

(1.1)

with given nonnegative functions d, u0 and w0 on Ω and g generalizing the prototyoical choice g(s) = s,
s ≥ 0. More precisely, we assume that d ∈ C0(Ω) ∩ C1({d > 0}) is nonnegative and such that

∫

Ω

1

d2
<∞, (1.2)

where {d > 0} :=
{
x ∈ Ω

∣∣ d(x) > 0
}
. Furthermore, let g ∈ C2([0,∞)) such that g(0) = 0 and that

with some positive constants γ and γ we have

γ ≤ g′(s) ≤ γ and γs ≤ g(s) ≤ γs for all s ≥ 0. (1.3)

Finally, we choose initial data satisfying

u0, w0 ∈ C0(Ω), u0 ≥ 0, u0 6≡ 0, w0 ≥ 0,
√
w0 ∈W 1,2(Ω) and

∫

Ω

d2x
d
w0 <∞. (1.4)

In [12] the above assumptions were prescribed, but with
∫
Ω

1
d
<∞ instead of (1.2), and it was shown

that there exists a global generalized solution (u,w) to (1.1) in the sense of [12, Definition 2.1] such that
u ∈ C0

w([0,∞);L1(Ω))∩L∞((0,∞);L1(Ω)), w ∈ C0(Ω×[0,∞))∩L∞(Ω×(0,∞))∩L1
loc([0,∞);W 1,1(Ω)),

u obeys conservation of mass and the solution has the asymptotic behavior w(·, t) → 0 in L∞(Ω) as
well as

u(·, t)⇀ µ∞
d

weakly in L1(Ω) as t→ ∞, (1.5)

where µ∞ :=
∫
Ω u0∫
Ω

1
d

.

It is the purpose of the present paper to establish a strong convergence of u(·, t) to µ∞

d
in some space

Lp(Ω). To this end, it turns out that instead of requiring 1
d
belonging to L1(Ω) we need that it be-

longs also to L2(Ω). The latter means an additional restriction of the behavior of d near its zeros as
compared to the setting from [12].

Main results: By requiring the generalization (1.6) of (1.2) we have the following main results:
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Theorem 1.1 Let Ω ⊂ R be a bounded interval, and suppose that d ∈ C0(Ω) ∩ C1({d > 0}) is
nonnegative and such that ∫

Ω

1

dλ
<∞ for some λ ≥ 2. (1.6)

Moreover, let g ∈ C2([0,∞)) be such that g(0) = 0 and that (1.3) is valid with some γ > 0 and γ > 0,
and assume that the initial data u0 and w0 satisfy (1.4). Then the global generalized solution (u,w)
of (1.1) from [12, Theorem 1.1] has the additional properties that

du ∈ L∞((0,∞);Lp(Ω)) for all p ∈ (1,∞) (1.7)

and
u ∈ L∞((0,∞);Lp(Ω)) for all p ∈ (1, λ) (1.8)

as well as
u ∈ C0({d > 0} × (0,∞)), (1.9)

and furthermore with µ∞ :=
∫
Ω u0∫
Ω

1
d

we have

u(·, t) → µ∞
d

in Lp(Ω) for all p ∈ (1, λ) as t→ ∞. (1.10)

While the proof of the regularity properties in [12] is mainly based on bounds obtained from an
energy-like inequality for regularized approximations of (1.1), our approach to prove (1.7) stems from
the observation that the flux term in the first equation of (1.1) has the form

(du)x − duwx = ew
(
due−w

)
x
.

This idea was established in non-degenerate haptotaxis systems in [6, 7] and leads for a supposedly
given smooth solution of (1.1) to the identity

d

dt

∫

Ω

1

d

(
due−w

)p
ew = −p(p− 1)

∫

Ω
ew

(
due−w

)p−2 (
due−w

)2
x
+ (p− 1)

∫

Ω

1

d2
g(w)e2w

(
due−w

)p+1
.

In order to rigorously prove an appropriate ODI for a regularized approximation of
∫
Ω

1
d
(due−w)

p
ew,

in the regularized version of the above identity we estimate the last term on the right-hand side, where
u appears at a high power, by using on the one hand an interpolation inequality of Gagliardo-Nirenberg
type which may be viewed as a derivate of an observation originally made in [3] and on the other hand
estimates provided by [12] for the approximate problems (2.1), see (2.2)–(2.13) below. Here we will
make essential use of our overall assumption that 1

d
does not only belong to L1(Ω) but even to L2(Ω).

In addition, we will also have to adequately cope with terms stemming from the artificial diffusion
introduced in the second equation in (2.1), in this context no longer acting in a dissipative manner,
and this will be achieved by substantially relying on the boundedness properties from [12]. These
ingredients will then lead to uniform Lp estimates for the regularizations dεuε of du. This we will do
in Section 2.1, after having stated the approximate problems (2.1) along with some of their important
properties from [12] in the beginning of Section 2.
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If in addition to the assumptions from Theorem 1.1 we require w0
d

∈ L∞(Ω), then [12, Theorem 1.3]
implies for a.e. t > 0 the existence of positive constants C1(t) and C2(t) such that

C1(t)

d(x)
≤ u(x, t) ≤ C2(t)

d(x)
for a.e. x ∈ Ω.

Hence, we cannot expect to achieve bounds for uε itself in L
p(Ω) for large p. However, for any compact

set K ⊂ {d > 0} we obtain uniform bounds for uε in L
∞(K). This is done in Section 2.2 with the help

of a transformation to an inhomogeneous heat equation and the use of well-known estimates for the
heat semigroup. These bounds in conjunction with standard parabolic regularity results then yield
uniform interior Hölder estimates for uε in domains of the form K × (τ, 1√

ε
), see Section 2.3.

As all these estimates are uniform with respect to ε, by taking the limit ε ց 0 along an appropriate
subsequence we finally conclude in Section 3 the properties of u claimed in Theorem 1.1. A short
appendix contains the proof of the announced interpolation inequality of Gagliardo-Nirenberg type.

2 Refined uniform regularity properties for approximating problems

As in [12] we consider the approximating problems





uεt = (dεuε)xx − (dεuεwεx)x, x ∈ Ω, t > 0,

wεt = ε
(
dε

wεx√
g(wε)

)

x
− uεg(wε), x ∈ Ω, t > 0,

uεx = wεx = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0(x), wε(x, 0) = w0ε(x), x ∈ Ω,

(2.1)

for ε ∈ (εj)j∈N, where (εj)j∈N ⊂ (0, 1) with εj ց 0 as j → ∞ as well as dε and w0ε are defined in
[12, Lemma 2.2 and Lemma 2.6]. In view of the latter references, these functions have the following
properties, which we will frequently use in the sequel: For all ε, ε′ ∈ (εj)j∈N we have

dε ∈ C∞(Ω̄), dε → d in L∞(Ω) as ε = εj ց 0, (2.2)

dεx → dx in Lp
loc({d > 0}) as ε = εj ց 0 for all p ∈ [1,∞), (2.3)

dε > 0 and d ≤ dε ≤ dε′ in Ω̄ for ε ≤ ε′, (2.4)

dεx = 0 on ∂Ω, (2.5)

dε ≤ ‖d‖L∞(Ω) + 1 in Ω, (2.6)

ε2
∫

Ω

d2εx
d3ε

≤ 1 and ε
1
4 · 1

infx∈Ω dε(x)
≤ 1, (2.7)

w0ε(x) := w0j(x) + ε
1
4 , x ∈ Ω, ε = εj (2.8)

where w0j ∈ L∞(Ω) is nonnegative and in particular satisfies
√
w0j ∈ W 1,2(Ω) as well as suppw0j ⊂

{d > 0} and, as j → ∞, w0j ր w0 in Ω.
Furthermore, it was shown in [12, Section 4] that for any ε ∈ (εj)j∈N there is a global classical solution
(uε, wε) to (2.1). According to [12, Lemmas 2.7., 2.8 and 3.5], for any ε ∈ (εj)j∈N this solution fulfills
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uε ≥ 0, wε > 0 in Ω̄× [0,∞) as well as

∫

Ω
uε(·, t) =

∫

Ω
u0 for all t > 0, (2.9)

wε(x, t) ≤M := ‖w0‖L∞(Ω) + 1 for all x ∈ Ω and t > 0 (2.10)

and there exists a constant C > 0 such that for any ε ∈ (εj)j∈N we have

∫

Ω
uε(·, t)

∣∣∣ ln(dεuε(·, t))
∣∣∣ ≤ C · (1 +√

εt) for all t > 0, (2.11)

∫

Ω
dε
w2
εx(·, t)
wε(·, t)

≤ C · (1 +√
εt) for all t > 0, (2.12)

∫ t

0

∫

Ω

(dεuε)
2
x

dεuε
≤ C · (1 +√

εt) for all t > 0. (2.13)

2.1 An estimate for dεuε in L
p(Ω)

A crucial step for our asymptotic analysis consists in deriving appropriate ε-independent regularity
properties of the solution component uε in Lebesgue spaces involving higher integrability powers. In
order to prove the desired Lp estimate for dεuε for abitrary large finite p, we will rely on an interpolation
using Lemma 4.1 as well as the estimates from [12] and our assumption that 1

d
belongs to L2(Ω) and

not only to L1(Ω) as described in the introduction.

Lemma 2.1 Assume that
∫
Ω

1
d2
<∞. Then for all p ∈ (1,∞) there exists C(p) > 0 such that for all

ε ∈ (εj)j∈N we have

‖dεuε(·, t)‖Lp(Ω) ≤ C(p)eC(p)
√
εt for all t > 0. (2.14)

Proof. Let us first follow an idea well-established in related non-degenerate frameworks ([6, 7]) to
rewrite the flux in the first equation in (2.1) according to

(dεuε)x − dεuεwεx = ewε

(
dεuεe

−wε

)

x
, x ∈ Ω, t > 0.

This, namely, suggests to test the PDE in question by (dεuεe
−wε)p−1 to obtain

d

dt

∫

Ω

1

dε

(
dεuεe

−wε

)p

ewε = p

∫

Ω

(
dεuεe

−wε

)p−1
·
{
ewε

(
dεuεe

−wε

)

x

}

x

−(p− 1)

∫

Ω
dp−1
ε upεe

−(p−1)wε ·
{
ε
(
dε

wεx√
g(wε)

)

x
− uεg(wε)

}

= −p(p− 1)

∫

Ω
ewε

(
dεuεe

−wε

)p−2
·
(
dεuεe

−wε

)2

x

+(p− 1)ε

∫

Ω

(
dp−1
ε upεe

−(p−1)wε

)

x
· dε

wεx√
g(wε)

+(p− 1)

∫

Ω
dp−1
ε up+1

ε g(wε)e
−(p−1)wε for all t > 0, (2.15)
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where the second summand on the right can be expanded so as to yield

(p− 1)ε

∫

Ω

(
dp−1
ε upεe

−(p−1)wε

)

x
· dε

wεx√
g(wε)

= (p− 1)ε

∫

Ω

{
1

dε
ewε ·

(
dεuεe

−wε

)p
}

x

· dε
wεx√
g(wε)

= p(p− 1)ε

∫

Ω
ewε ·

(
dεuεe

−wε

)p−1
·
(
dεuεe

−wε

)

x
· wεx√

g(wε)

+(p− 1)ε

∫

Ω
ewε ·

(
dεuεe

−wε

)p

· w2
εx√
g(wε)

−(p− 1)ε

∫

Ω

dεx

dε
ewε ·

(
dεuεe

−wε

)p

· wεx√
g(wε)

for all t > 0. (2.16)

Here by Young’s inequality, (2.10) and (1.3),

p(p− 1)ε

∫

Ω
ewε ·

(
dεuεe

−wε

)p−1
·
(
dεuεe

−wε

)

x
· wεx√

g(wε)

≤ p(p− 1)

2

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x

+
p(p− 1)ε2

2

∫

Ω
e2wε ·

(
dεuεe

−wε

)p

· w2
εx

g(wε)

≤ p(p− 1)

2

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x

+
p(p− 1)εe2M

2γ
·
{
ε · 1

infx∈Ω dε(x)

}
·
∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
·
∫

Ω
dε
w2
εx

wε
for all t > 0,

so that since

ε · 1

infx∈Ω dε(x)
≤ 1

by (2.7), and since (2.12) warrants that with some c1 > 0 we have

∫

Ω
dε
w2
εx

wε
≤ c1 · (1 +

√
εt) for all t > 0,

we infer that for any choice of ε ∈ (εj)j∈N ⊂ (0, 1) and all t > 0,

p(p− 1)ε

∫

Ω
ewε ·

(
dεuεe

−wε

)p−1
·
(
dεuεe

−wε

)

x
· wεx√

g(wε)

≤ p(p− 1)

2

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x
+ c2 · (1 +

√
εt) ·

∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
, (2.17)
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where c2 :=
p(p−1)e2M c1

2γ .

Similarly, the second last summand in (2.16) can be controlled according to

(p− 1)ε

∫

Ω
ewε ·

(
dεuεe

−wε

)p

· w2
εx√
g(wε)

≤ (p− 1)

√
M

γ
eM ·

{
ε · 1

infx∈Ω dε(x)

}
·
∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
·
∫

Ω
dε
w2
εx

wε

≤ c3 · (1 +
√
εt) ·

∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
for all t > 0 (2.18)

with c3 := (p− 1)
√

M
γ
eMc1, whereas for the rightmost term in (2.16) we find on invoking the Cauchy-

Schwarz inequality that

−(p− 1)ε

∫

Ω

dεx

dε
ewε ·

(
dεuεe

−wε

)p

· wεx√
g(wε)

≤ (p− 1)eM ·
{
ε ·

{∫

Ω

d2εx
d3ε

} 1
2

}
·
∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
·
{∫

Ω
dε

w2
εx

g(wε)

} 1
2

≤ c4 · (1 +
√
εt)

1
2 ·

∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)

≤ c4 · (1 +
√
εt) ·

∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
for all t > 0 (2.19)

with c4 :=
(p−1)eM

√
c1√

γ
, because (2.7) asserts that

ε ·
{∫

Ω

d2εx
d3ε

} 1
2

≤ 1.

In summary, (2.16)-(2.19) show that writing c5 := c2 + c3 + c4 we obtain

(p− 1)ε

∫

Ω

(
dp−1
ε upεe

−(p−1)wε

)

x
· dε

wεx√
g(wε)

≤ p(p− 1)

2

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x

+c5 · (1 +
√
εt) ·

∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)
(2.20)

for all t > 0, and in order to further estimate the last summand herein, employing the Gagliardo-
Nirenberg inequality we pick c6 > 0 such that

‖ϕ‖2L∞(Ω) ≤ c6‖ϕx‖
2p
p+1

L2(Ω)
‖ϕ‖

2
p+1

L
2
p (Ω)

+ c6‖ϕ‖2
L

2
p (Ω)

for all ϕ ∈W 1,2(Ω)

and invoke Young’s inequality in fixing c7 > 0 such that

ab ≤ p− 1

p
a

p+1
p + c7b

p+1 for all a ≥ 0 and b ≥ 0.
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Using that by (2.6) and (2.9) we know that

∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥

2
p

L
2
p (Ω)

=

∫

Ω
dεuεe

−wε ≤ c8 := (‖d‖L∞(Ω) + 1) ·
∫

Ω
u0 for all t > 0, (2.21)

we thereby see that for all t > 0,

c5 · (1 +
√
εt) ·

∥∥∥dεuεe−wε

∥∥∥
p

L∞(Ω)

= c5 · (1 +
√
εt) ·

∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥
2

L∞(Ω)

≤ c5c6 · (1 +
√
εt) ·

∥∥∥∥
{(

dεuεe
−wε

) p
2

}

x

∥∥∥∥

2p
p+1

L2(Ω)

·
∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥

2
p+1

L
2
p (Ω)

+c5c6 · (1 +
√
εt) ·

∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥
2

L
2
p (Ω)

≤ p− 1

p

∥∥∥∥
{(

dεuεe
−wε

) p
2

}

x

∥∥∥∥
2

L2(Ω)

+c7 ·
{
c5c6 · (1 +

√
εt)

}p+1∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥
2

L
2
p (Ω)

+c5c6 · (1 +
√
εt) ·

∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥
2

L
2
p (Ω)

≤ p− 1

p

∥∥∥∥
{(

dεuεe
−wε

) p
2

}

x

∥∥∥∥
2

L2(Ω)

+ c9 · (1 +
√
εt)p+1

=
p(p− 1)

4

∫

Ω

(
dεuεe

−wε

)p−2
·
(
dεuεe

−wε

)2

x
+ c9 · (1 +

√
εt)p+1 (2.22)

with c9 := c
p+1
5 c

p+1
6 c7c

p
8 + c5c6c

p
8.

On the right-hand side of (2.15), we next proceed to use (1.3) and (2.10) as well as (2.4) to estimate

(p− 1)

∫

Ω
dp−1
ε up+1

ε g(wε)e
−(p−1)wε = (p− 1)

∫

Ω

1

d2ε
g(wε)e

2wε ·
(
dεuεe

−wε

)p+1

≤ c10

∥∥∥dεuεe−wε

∥∥∥
p+1

L∞(Ω)
for all t > 0, (2.23)

noting that c10 := (p−1)γMe2M
∫
Ω

1
d2

is finite thanks to our overall assumption on square integrability
of 1

d
. Here we recall that (2.11) provides c11 > 0 such that

∫

Ω
uε

∣∣∣ ln(dεuε)
∣∣∣ ≤ c11 · (1 +

√
εt) for all t > 0,

8



which by (2.6), (2.9) and (2.10) entails that there exists c12 > 0 such that
∥∥∥∥
(
dεuεe

−wε

) p
2 ·

∣∣∣∣ ln
(
dεuεe

−wε

) p
2

∣∣∣∣

p
2
∥∥∥∥

2
p

L
2
p (Ω)

=
p

2

∫

Ω
dεuεe

−wε ·
∣∣∣∣ ln

(
dεuεe

−wε

)∣∣∣∣

≤ p

2

∫

Ω
dεuε

∣∣∣ ln(dεuε)
∣∣∣e−wε +

p

2

∫

Ω
dεuεwεe

−wε

≤ p

2
(‖d‖L∞(Ω) + 1)

∫

Ω
uε

∣∣∣ ln(dεuε)
∣∣∣

+
p

2
(‖d‖L∞(Ω) + 1)M

∫

Ω
uε

≤ c12 · (1 +
√
εt) for all t > 0.

Therefore, applying Lemma 4.1 to q := 2
p
and recalling (2.21) we see that with some c13 ≥ p + 1 we

have

c10

∥∥∥dεuεe−wε

∥∥∥
p+1

L∞(Ω)

= c10

∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥

2
p
+2

L∞(Ω)

≤ p− 1

2p
· 1

c12 · (1 +
√
εt)

·
∥∥∥∥
{(

dεuεe
−wε

) p
2

}

x

∥∥∥∥
2

L2(Ω)

·
∥∥∥∥
(
dεuεe

−wε

) p
2

∣∣∣∣ ln
(
dεuεe

−wε

) p
2

∣∣∣∣

p
2
∥∥∥∥

2
p

L
2
p (Ω)

+c13e
c13·(1+

√
εt) + c13

∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥

2(p+1)
p

L
2
p (Ω)

≤ p− 1

2p

∥∥∥∥
{(

dεuεe
−wε

) p
2

}

x

∥∥∥∥
2

L2(Ω)

+ c13e
c13·(1+

√
εt) + c14

=
p(p− 1)

8

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x
+ c13e

c13·(1+
√
εt) + c14 for all t > 0.

Together with (2.23), (2.22), (2.20) and (2.15), since (1 +
√
εt)p+1 ≤ e(p+1)

√
εt ≤ ec13·(1+

√
εt) for all

t > 0 this entails that

d

dt

∫

Ω

1

dε

(
dεuεe

−wε

)p

ewε +
p(p− 1)

8

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x

≤ (c9 + c13)e
c13·(1+

√
εt) + c14 for all t > 0. (2.24)

Since finally a Sobolev inequality associated with the embedding W 1,2(Ω) →֒ L∞(Ω) yields c15 > 0
such that

‖ϕ‖2L∞(Ω) ≤ c15‖ϕx‖2L2(Ω) + c15‖ϕ‖2
L

2
p (Ω)

for all ϕ ∈W 1,2(Ω),

again by means of (2.21) and (2.4), as
∫
Ω

1
d
is finite we can find c16 > 0 and c17 > 0 such that

∫

Ω

1

dε

(
dεuεe

−wε

)p

ewε ≤ eM ·
{∫

Ω

1

dε

}
·
∥∥∥
(
dεuεe

−wε

) p
2
∥∥∥
2

L∞(Ω)

≤ c16

∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x
+ c16 for all t > 0

9



and hence
∫

Ω

(
dεuεe

−wε

)p−2(
dεuεe

−wε

)2

x
≥ 1

c16

∫

Ω

1

dε

(
dεuεe

−wε

)p

ewε − 1 for all t > 0.

Therefore, (2.24) shows that for

yε(t) :=

∫

Ω

1

dε

(
dεuε(·, t)e−wε(·,t)

)p

ewε(·,t), t ∈ [0, Tmax,ε),

and c17 :=
p(p−1)
8c16

as well as c18 := (c9 + c13)e
c13 + c14 +

p(p−1)
8 we have

y′ε(t) + c17yε(t) ≤ c18e
c13

√
εt for all t > 0,

which by an ODE comparison argument implies that

yε(t) ≤ yε(0)e
−c17t + c18

∫ t

0
e−c17(t−s)ec13

√
εsds

= yε(0)e
−c17t +

c18

c17 + c13
√
ε
e−c17t ·

{
e(c17+c13

√
ε)t − 1

}

≤ yε(0)e
−c17t +

c18

c17
ec13

√
εt for all t > 0

and thereby yields the claim, because

yε(0) =

∫

Ω
dp−1
ε u

p
0e

−(p−1)w0ε ≤ (‖d‖L∞(Ω) + 1)p−1‖u0‖pL∞(Ω)|Ω|

by (2.6). �

2.2 A local L∞ bound for uε in {d > 0}
We first plan to derive a bound for uε in L∞(K) with arbitrary compact K ⊂ {d > 0}, which in view
of the equation satisfied by the quantity dεuεe

−wε apparently does not follow from Lemma 2.1 in a
trivial manner upon performing a straightforward Moser-type iteration. Fortunately, in the present
one-dimensional situation an alternative approach can be based on a variable transformation which
allows for a reduction to a linear inhomogeneous heat equation:

Lemma 2.2 Let J ⊂ Ω be an interval and x0 ∈ J , and given ε ∈ (εj)j∈N let

φε(x) :=

∫ x

x0

dξ√
dε(ξ)

, x ∈ J, (2.25)

as well as J̃ε := φε(J). Then φε ∈ C∞(J) is strictly increasing, and if for arbitrary ζ ∈ C2(J̃ε) we let
the functions Zε,Wε and Hε be definied on J̃ε × [0,∞) by setting

Zε(y, t) := dε(x)uε(x, t) (2.26)
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and
Wε(y, t) := wε(x, t) (2.27)

as well as
Hε(y, t) := ζ(y)Zε(y, t) (2.28)

with
x := φ−1

ε (y) (2.29)

for y ∈ J̃ε and t ≥ 0, then

Hεt = Hεyy − b(1)εy − b(2)ε + b(3)ε , y ∈ J̃ε, t > 0, (2.30)

where
b(1)ε (y, t) := ζ(y)Zε(y, t)Wεy(y, t) (2.31)

and
b(2)ε (y, t) :=

(
2ζy(y) +Dε(y)ζ(y)

)
Zεy(y, t) (2.32)

as well as
b(3)ε (y, t) :=

(
− ζyy(y) + ζy(y)Wεy(y, t) +Dε(y)ζ(y)Wεy(y, t)

)
Zε(y, t) (2.33)

with

Dε(y) :=
dεx(x)

2
√
dε(x)

, x = φ−1
ε (y), (2.34)

for (y, t) ∈ J̃ε × (0,∞). Moreover, if J ∩ ∂Ω 6= ∅, and if for some ε ∈ (εj)j∈N we have ζy = 0 on
φε(J ∩ ∂Ω), then

Hεy = 0 on φε(J ∩ ∂Ω). (2.35)

Proof. The claimed regularity and monotonicity properties of φε are evident from the inclusion
dε ∈ C∞(Ω) and the positivity of dε on Ω, as asserted by (2.2) and (2.4). To verify (2.30), we only
need to combine (2.25)-(2.29) in computing

Zεy =
√
dε · (dεuε)x (2.36)

as well as

Zεyy = dε · (dεuε)xx +
1

2
dεx · (dεuε)x = dε · (dεuε)xx +DεZεy

and, similarly,

Wεy =
√
dεwεx as well as

Wεyy = dεwεxx +
1

2
dεxwεx = dεwεxx +DεWεy,

so that by (2.1),

Zεt = dεuεt

= dε · (dεuε)xx − dε · (dεuε)xwεx − dε · (dεuε)wεxx

=
{
Zεyy −DεZεy

}
− ZεyWεy − Zε ·

{
Wεyy −DεWεy

}

= Zεyy − (ZεWεy)y −DεZεy +DεZεWεy
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in J̃ε × (0,∞). By furthermore using the identities

Hεy = ζZεy + ζyZε (2.37)

and

Hεyy = ζZεyy + 2ζyZεy + ζyyZε,

from this we readily derive (2.30). Finally, (2.35) is a direct consequence of (2.37) and the fact that
due to (2.36), the boundary condition for uε in (2.1) together with the property dεx|∂Ω = 0 achieved
in (2.5) warrants that Zεy = 0 on φε(J ∩ ∂Ω). �

In consequence, deriving bounds of the desired type essentially reduces to suitably estimating the
inhomogeneities in (2.30) on the basis of [12, Lemma 3.5] and Lemma 2.1. Indeed, this will form the
core of the otherwise mainly technical reasoning in the following.

Lemma 2.3 Suppose that
∫
Ω

1
d2
<∞, and let K ⊂ {d > 0} be compact. Then there exists C(K) > 0

such that whenever ε ∈ (εj)j∈N,

‖uε(·, t)‖L∞(K) ≤ C(K)eC(K)
√
εt for all t > 0. (2.38)

Proof. We evidently only need to consider the situation when K ⊂ {d > 0} is a compact interval,
and hence contained in a single connected component J ⊂ Ω of {d > 0}. Here we first concentrate on
the case when J ⊂ Ω, in which since then J is open, by compactness of K we can find points a0, a, b0
and b in Ω fulfilling

K ⊂ (a0, b0) ⊂ [a0, b0] ⊂ (a, b) ⊂ [a, b] ⊂ J. (2.39)

Now fixing any x0 ∈ J , for ε ∈ (εj)j∈N we let φε and J̃ε be taken from Lemma 2.2, and observe that since

dε → d in L∞(Ω) by (2.2) and hence φε(x) →
∫ x

x0

dξ√
d(ξ)

uniformly with respect to x ∈ [a, b] ⊂ {d > 0}
as ε = εj ց 0, due to (2.39) it is possible to choose real numbers ã0, ã, b̃0 and b̃ as well as ε(1) ∈ (0, 1)
such that for any ε ∈ (εj)j∈N fulfilling ε < ε(1) we have

φε(K) ⊂ [ã0, b̃0] ⊂ (ã, b̃) ⊂ [ã, b̃] ⊂ φε([a, b]). (2.40)

Now writing G0 := (ã0, b̃0) and G := (ã, b̃), we fix a cut-off function ζ ∈ C∞
0 (G) satisfying 0 ≤ ζ ≤ 1 in

G as well as ζ ≡ 1 in G0, and thereupon take ε ∈ (εj)j∈N such that ε < ε(1) as well as Zε,Wε, Hε, Dε

and b
(i)
ε , i ∈ {1, 2, 3}, as introduced in Lemma 2.2. Then letting A denote the realization of the

operator −(·)yy under homogeneous Neumann boundary conditions in the fixed domain G, we may
use (2.30) to represent Hε according to

Hε(·, t) = e−min{1,t}AHε(·, (t− 1)+)−
∫ t

(t−1)+

e−(t−s)Ab(1)εy (·, s)ds

−
∫ t

(t−1)+

e−(t−s)Ab(2)ε (·, s)ds+
∫ t

(t−1)+

e−(t−s)Ab(3)ε (·, s)ds (2.41)
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for ε ∈ (εj)j∈N ∩ (0, ε(1)) and t > 0, where by the maximum principle, (2.28), (2.26) and (2.6),

∥∥∥e−min{1,t}AHε(·, (t− 1)+)
∥∥∥
L∞(G)

=
∥∥∥e−tAHε(·, 0)

∥∥∥
L∞(G)

≤ ‖Hε(·, 0)‖L∞(G)

≤ ‖dεu0‖L∞(Ω)

≤ c1 := (‖d‖L∞(Ω) + 1)‖u0‖L∞(Ω) for all t ≤ 1, (2.42)

and where by a known regularization property of (e−τA)τ≥0 ([11]), there exists c2 > 0 such that

∥∥∥e−min{1,t}AHε(·, (t− 1)+)
∥∥∥
L∞(G)

=
∥∥∥e−AHε(·, t− 1)

∥∥∥
L∞(G)

≤ c2‖Hε(·, t− 1)‖L1(G)

≤ c2‖Zε(·, t− 1)‖L1(G) for all t > 1. (2.43)

To further estimate the latter, we substitute y = φε(x) and recall (2.9) in deriving

‖Zε(·, t− 1)‖L1(G) =

∫

G

Zε(y, t− 1)dy

=

∫

φ−1
ε (G)

dε(x)uε(x, t− 1)
dx√
dε(x)

≤ (‖d‖L∞(Ω) + 1)
1
2

∫

Ω
uε(x, t− 1)dx

= c3 := (‖d‖L∞(Ω) + 1)
1
2

∫

Ω
u0 for all t > 1,

whence (2.42) and (2.43) imply that

∥∥∥e−min{1,t}AHε(·, (t− 1)+)
∥∥∥
L∞(G)

≤ max{c1, c2c3} for all t > 0. (2.44)

We next fix an arbitrary p ∈ (32 , 2) and employ further known smoothing estimates for the Neumann
heat semigroup ([8], [11]) to obtain c4 > 0 and c5 > 0 with the property that for all τ ∈ (0, 1) we have

‖e−τAϕy‖L∞(G) ≤ c4τ
− 1

2
− 1

2p ‖ϕ‖Lp(G) for all ϕ ∈ C1(Ḡ) such that ϕ|∂G = 0 (2.45)

and
‖e−τAϕ‖L∞(G) ≤ c5τ

− 1
2p ‖ϕ‖Lp(G) for all ϕ ∈ C0(Ḡ). (2.46)

Therefore,

∥∥∥∥
∫ t

(t−1)+

e−(t−s)Ab(1)εy (·, s)ds
∥∥∥∥
L∞(G)

≤ c4

∫ t

(t−1)+

(t− s)
− 1

2
− 1

2p ‖b(1)ε (·, s)‖Lp(Ω)ds

≤ c4c6‖b(1)ε ‖L∞((0,t);Lp(G)) for all t > 0 (2.47)

13



with c6 :=
∫ 1
0 σ

− 1
2
− 1

2pdσ = 2p
p−1 , and by means of the Hölder inequality we see that

∥∥∥∥
∫ t

(t−1)+

e−(t−s)Ab(2)ε (·, s)ds
∥∥∥∥
L∞(G)

≤ c5

∫ t

(t−1)+

(t− s)
− 1

2p ‖b(2)ε (·, s)‖Lp(G)ds

≤ c5 ·
{∫ t

(t−1)+

(t− s)
− 1

2(p−1)ds

} p−1
p

·
{∫ t

(t−1)+

‖b(2)ε (·, s)‖p
Lp(G)ds

} 1
p

≤ c5c7‖b(2)ε ‖Lp(G×((t−1)+,t)) for all t > 0 (2.48)

with

c7 :=

{∫ 1

0
σ
− 1

2(p−1)dσ

} p−1
p

=
(2(p− 1)

2p− 3

) p−1
p
,

and ∥∥∥∥
∫ t

(t−1)+

e−(t−s)Ab(3)ε (·, s)ds
∥∥∥∥
L∞(G)

≤ c5

∫ t

(t−1)+

(t− s)
− 1

2p ‖b(3)ε (·, s)‖Lp(G)ds

≤ c5c8‖b(3)ε ‖L∞((0,t);Lp(G)) for all t > 0, (2.49)

where c8 :=
∫ 1
0 σ

− 1
2pdσ = 2p

2p−1 .
To prepare an appropriate further estimation of the right-hand sides in (2.47), (2.48) and (2.49), using
that φ−1

ε (G) ⊂ [a, b] we infer from the uniform positivity of d in [a, b] and the fact that dε ≥ d for all
ε ∈ (εj)j∈N that there exists δ > 0 such that for each ε ∈ (εj)j∈N,

dε(x) ≥ δ for all x ∈ [a, b]. (2.50)

For arbitrary q ∈ (1,∞), we thus obtain that
∫

G

Zq
ε (y, t)dy =

∫

φ−1
ε (G)

(
dε(x)uε(x, t)

)q dx√
dε(x)

≤ 1√
δ

∫ b

a

(dεuε)
q for all t > 0,

so that from Lemma 2.1 it follows that for any such q we can find c9(q) > 0 fulfilling

‖Zε(·, t)‖Lq(G) ≤ c9(q)e
c9(q)

√
εt for all t > 0. (2.51)

Moreover, if q ∈ (1, 2), then by (2.6) and the Hölder inequality we see that for all t > 0,
∫ t+1

t

∫

G

|Zεy(y, s)|qdyds =

∫ t+1

t

∫

φ−1
ε (G)

d
q
2
ε (x)

∣∣∣(dεuε)x(x, s)
∣∣∣
q dx√

dε(x)
ds

≤
∫ t+1

t

∫ b

a

d
q−1
2

ε ·
{(dεuε)

2
x

dεuε

} q
2 · (dεuε)

q
2

≤ (‖d‖L∞(Ω) + 1)
q−1
2 ·

{∫ t+1

t

∫

Ω

(dεuε)
2
x

dεuε

} q
2

·
{∫ t+1

t

∫

Ω
(dεuε)

q
2−q

} 2−q
2

,
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where (2.13) yields c10 > 0 such that

∫ t+1

t

∫

Ω

(dεuε)
2
x

dεuε
≤ c10 · (1 +

√
εt) for all t > 0.

Again employing Lemma 2.1, we thus conclude that for each q ∈ (1, 2) there exists c11(q) > 0 satisfying

‖Zεy‖Lq(G×(t,t+1)) ≤ c11(q)e
c11(q)

√
εt for all t > 0. (2.52)

Proceeding similarly, using (2.10) and (2.50) we estimate

∫

G

W 2
εy(y, t)dy =

∫

φ−1
ε (G)

√
dεw

2
εxdx

≤
∫ b

a

{
dε
w2
εx

wε

}
· wε√

dε

≤ M√
δ

∫

Ω
dε
w2
εx

wε
for all t > 0,

so that from (2.12) we readily infer the existence of c12 > 0 satisfying

‖Wεy(·, t)‖L2(G) ≤ c12e
√
εt for all t > 0. (2.53)

Finally, relying on the local convergence properties of (dεx)ε∈(εj)j∈N
expressed in (2.3), given any

q ∈ (1,∞) we can find ε(2)(q) ∈ (0, ε(1)) and c13(q) > 0 such that

∫

G

|Dε(y)|qdy =

∫

φ−1
ε (G)

1√
dε

∣∣∣
dεx

2
√
dε

∣∣∣
q

dx

≤ 1

2q
√
δ
q+1

∫ b

a

|dεx|q

≤ c13(q) for all ε ∈ (εj)j∈N such that ε < ε(2)(q). (2.54)

Now going back to (2.47), using (2.51), (2.53) and the fact that |ζ| ≤ 1, by the Hölder inequality we
find that therein for each ε ∈ (εj)j∈N such that ε < ε(1) we have

‖b(1)ε (·, t)‖Lp(G) = ‖ζZεWεy‖Lp(G)

≤ ‖Zε‖
L

2p
2−p (G)

‖Wεy‖L2(G)

≤ c9

( 2p

2− p

)
e
c9(

2p
2−p

)
√
εt · c12e

√
εt for all t > 0,

and that hence in view of (2.47) there exists c14 > 0 such that

∥∥∥∥
∫ t

(t−1)+

e−(t−s)Ab(1)εy (·, s)ds
∥∥∥∥
L∞(G)

≤ c14e
c14

√
εt for all t > 0. (2.55)
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Likewise, fixing any r ∈ (p, 2) we may combine (2.52) with (2.54) to see that whenever ε ∈ (εj)j∈N is
such that ε < ε(2)( pr

r−p
),

‖b(2)ε ‖Lp(G×(t,t+1)) = ‖2ζyZεy +DεζZεy‖Lp(G×(t,t+1))

≤ 2‖ζy‖L∞(G)‖Zεy‖Lp(G×(t,t+1)) + ‖Dε‖
L

pr
r−p (G)

‖Zεy‖Lr(G×(t,t+1))

≤ 2‖ζy‖L∞(G) · c11(p)ec11(p)
√
εt + c13

( pr

r − p

)
· c11(r)ec11(r)

√
εt for all t > 0

and thus, by (2.48),
∥∥∥∥
∫ t

(t−1)+

e−(t−s)Ab(2)ε (·, s)ds
∥∥∥∥
L∞(G)

≤ c15e
c15

√
εt for all t > 0 (2.56)

with some suitably large c15 > 0. Finally, (2.51), (2.53) and (2.54) imply that for ε ∈ (εj)j∈N fulfilling
ε < ε(2)( 4p

2−p
) we have

‖b(3)ε (·, t)‖Lp(G) = ‖ − ζyyZε + ζyWεyZε +DεζWεyZε‖Lp(G)

≤ ‖ζyy‖L∞(G)‖Zε‖Lp(G) + ‖ζy‖L∞(G)‖Wεy‖L2(G)‖Zε‖
L

2p
2−p (G)

+‖Dε‖
L

4p
2−p (G)

‖Wεy‖L2(G)‖Zε‖
L

4p
2−p (G)

≤ ‖ζyy‖L∞(G) · c9(p)ec9(p)
√
εt + ‖ζy‖L∞(G) · c12e

√
εt · c9

( 2p

2− p

)
e
c9(

2p
2−p

)
√
εt

+c
2−p
4p

13

( 4p

2− p

)
· c12e

√
εt · c9

( 4p

2− p

)
e
c9(

4p
2−p

)
√
εt for all t > 0,

by (2.49) meaning that there exists c16 > 0 with the property that for any such ε,
∥∥∥∥
∫ t

(t−1)+

e−(t−s)Ab(3)ε (·, s)ds
∥∥∥∥
L∞(G)

≤ c16e
c16

√
εt for all t > 0. (2.57)

In summary, (2.41), (2.44), (2.55), (2.56) and (2.57) entail the existence of c17 > 0 such that writing
ε(3) := min{ε(2)( pr

r−p
), ε(2)( 4p

2−p
)}, for each ε ∈ (εj)j∈N satisfying ε < ε(3) we have

‖Hε(·, t)‖L∞(G) ≤ c17e
c17

√
εt for all t > 0

and hence

‖Zε(·, t)‖L∞(G0) ≤ c17e
c17

√
εt for all t > 0

due to the fact that ζ ≡ 1 in G0. Transforming back to the original variables, again by (2.50) we thus
see that for any such ε and each t > 0,

δ‖uε(·, t)‖L∞(K) ≤ ‖dεuε(·, t)‖L∞(K) ≤ ‖dεuε(·, t)‖L∞(φ−1
ε (G0))

= ‖Zε(·, t)‖L∞(G0) ≤ c17e
c17

√
εt,

because K ⊂ φ−1
ε (G0) ⊂ [a, b] by (2.40).

This proves (2.38) in the case when J ⊂ Ω, whereas the situation when J ∩ ∂Ω 6= ∅ can be dealt with
quite similarly, by e.g. fixing, for convenience, x0 ∈ J ∩ ∂Ω in (2.25), and choosing ζ to be identically
equal to 1 near the boundary point 0 = φε(x0). �
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2.3 Local Hölder regularity of uε in {d > 0}
Now with the above boundedness information at hand, we may invoke standard parabolic regularity
to obtain the announced interior Hölder regularity property.

Lemma 2.4 Assume that
∫
Ω

1
d2
< ∞. Then for each compact K ⊂ {d > 0} and any τ ∈ (0, 1) there

exist θ(K, τ) ∈ (0, 1) and C(K, τ) > 0 with the property that for any ε ∈ (εj)j∈N we have

‖uε‖
Cθ(K,τ),

θ(K,τ)
2 (K×[t,t+1])

≤ C(K, τ) for all t ∈
(
τ,

1√
ε

)
. (2.58)

Proof. We write the first equation in (2.1) in the form

uεt =
(
aε(x, t, uεx)

)

x
, x ∈ Ω, t > 0,

where

aε(x, t, ξ) := dε(x)ξ + dεx(x)uε(x, t)− dε(x)uε(x, t)wεx(x, t), x ∈ Ω, t > 0, ξ ∈ R. (2.59)

Once again assuming without loss of generality that K is an interval, we can fix an open interval
Ω0 ⊂ Ω such that K ⊂ Ω0 ⊂ Ω0 ⊂ {d > 0}, so that since Ω0 still is a compact subinterval of {d > 0},
using (2.3) and (2.4) we obtain positive constants c1, c2 and c3 such that for all ε ∈ (εj)j∈N,

c1 ≤ dε(x) ≤ c2 for all x ∈ Ω0 (2.60)

and ∫

Ω0

d2εx ≤ c3. (2.61)

Moreover, employing Lemma 2.3 and (2.12) we see that for some c4 > 0 and c5 > 0 and any ε ∈ (εj)j∈N
we have

‖uε(·, t)‖L∞(Ω0) ≤ c4 for all t ∈
(
0,

1√
ε

)
(2.62)

as well as ∫

Ω
dε
w2
εx

wε
≤ c5 for all t ∈

(
0,

1√
ε

)
, (2.63)

where the latter along with (2.60) and (2.10) entails that

∫

Ω0

w2
εx ≤ M

c1

∫

Ω0

dε
w2
εx

wε
≤ Mc5

c1
for all t ∈

(
0,

1√
ε

)
. (2.64)

Writing

ψ(0)
ε (x, t) :=

d2εx(x)

dε(x)
u2ε(x, t) + dε(x)u

2
ε(x, t)w

2
εx(x, t)

and

ψ(1)
ε (x, t) := |dεx(x)|uε(x, t) + dε(x)uε(x, t)|wεx(x, t)|
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for x ∈ Ω, t > 0 and ε ∈ (εj)j∈N, from (2.60), (2.61), (2.62) and (2.64) we thus infer that for any such
ε we have

∫

Ω0

|ψ(0)
ε (·, t)| ≤ c3c

2
4

c1
+ c2c

2
4 ·
Mc5

c1
for all t ∈

(
0,

1√
ε

)

and
∫

Ω0

|ψ(1)
ε (·, t)|2 ≤ 2 ·

{
c3c

2
4 + c22c

2
4 ·
Mc5

c1

}
for all t ∈

(
0,

1√
ε

)
.

Since by Young’s inequality and (2.60),

aε(x, t, ξ) · ξ ≥
1

2
dε(x)ξ

2 − ψ(0)
ε (x, t) ≥ c1

2
ξ2 − ψ(0)

ε (x, t) for all x ∈ Ω0, t > 0 and ξ ∈ R,

and since (2.60) moreover warrants that

|aε(x, t, ξ)| ≤ dε(x)|ξ|+ ψ(1)
ε (x, t) ≤ c2|ξ|+ ψ(1)

ε (x, t) for all x ∈ Ω0, t > 0 and ξ ∈ R,

in view of the boundedness property (2.62) the inequality in (2.58) follows from a standard result on
interior Hölder regularity of bounded solutions to scalar parabolic equations ([9, Theorem 1.1]). �

3 Proof of Theorem 1.1

The uniform estimates of the solutions to the approximate problems (2.1) proved in Section 2 imply
the following refined regularity properties of the generalized solution to (1.1).

Lemma 3.1 Suppose that
∫
Ω

1
d2
< ∞, and let (u,w) denote the global generalized solution of (1.1)

from [12, Theorem 1.1]. Then

du ∈ L∞((0,∞);Lp(Ω)) for all p ∈ (1,∞) (3.1)

and
u ∈ C0({d > 0} × (0,∞)). (3.2)

Moreover, for all p ∈ (1,∞) there exists C(p) > 0 such that

‖du(·, t)‖Lp(Ω) ≤ C(p) for all t > 0, (3.3)

and given any compact K ⊂ {d > 0} and τ > 0 one can find θ(K, τ) ∈ (0, 1) and C(K, τ) > 0 such
that

‖u(·, t)‖Cθ(K,τ)(K) ≤ C(K, τ) for all t > τ. (3.4)

Proof. In view of the pointwise approximation property of (uεjk )k∈N stated in [12, Lemma 6.1],
i.e. uεjk → u a.e. in Ω× (0,∞), both (3.1) and (3.3) directly result on taking ε = εjk ց 0 in Lemma
2.1, whereas (3.2) and (3.4) can easily be deduced from Lemma 2.4. �

Finally, we are in the position to prove our main result.
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Proof of Theorem 1.1. The regularity properties (1.7) and (1.9) have precisely been established
in Lemma 3.1 already, as (1.6) implies (1.2) in view of λ ≥ 2 and the boundedness of Ω. Hence, it
remains to show that (1.6) implies (1.8) and (1.10). To achieve this, we let p ∈ (1, λ) be given and
then infer from (1.7) that with some c1 > 0 we have

∫

Ω
(du)

pλ
λ−p ≤ c1 for all t > 0. (3.5)

By means of the Hölder inequality, this firstly implies that

∫

Ω
up =

∫

Ω

1

dp
· (du)p ≤

{∫

Ω

1

dλ

} p
λ

·
{∫

Ω
(du)

pλ
λ−p

}λ−p
λ

≤
{∫

Ω

1

dλ

} p
λ

· c
λ−p
λ

1 for all t > 0

and thereby, thanks to (1.6), already establishes (1.8). Secondly, given any η > 0 we may use (1.6)
along with the fact that p < λ in choosing a relatively open subset Ω0 of Ω satisfying {d = 0} ⊂ Ω0

and

2p−1c
λ−p
λ

1 ·
{∫

Ω0

1

dλ

} p
λ

≤ ηp

3
(3.6)

as well as

2p−1µp∞

∫

Ω0

1

dp
≤ ηp

3
. (3.7)

Then since K := Ω \ Ω0 is compact, Lemma 3.1 applies so as to show that in view of the Arzelà-
Ascoli theorem the semi-orbit (u(·, t))t>1 is relatively compact in C0(K) and that hence, thanks to
the outcome of [12, Theorem 1.2], namely (1.5), we have

u(·, t) → µ∞
d

in L∞(K) as t→ ∞,

so that we can fix t0 > 1 such that
∥∥∥u(·, t)− µ∞

d

∥∥∥
L∞(Ω\Ω0)

≤ ηp

3|Ω| for all t > t0. (3.8)

Now in the inequality
∫

Ω

∣∣∣u(·, t)− µ∞
d

∣∣∣
p

=

∫

Ω0

∣∣∣u(·, t)− µ∞
d

∣∣∣
p

+

∫

Ω\Ω0

∣∣∣u(·, t)− µ∞
d

∣∣∣
p

≤ 2p−1

∫

Ω0

up + 2p−1µp∞

∫

Ω0

1

dp
+

∫

Ω\Ω0

∣∣∣u(·, t)− µ∞
d

∣∣∣
p

, t > 0, (3.9)

according to (3.6) and again the Hölder inequality we have

2p−1

∫

Ω0

up ≤ 2p−1 ·
{∫

Ω0

1

dλ

} p
λ

·
{∫

Ω0

(du)
pλ
λ−p

}λ−p
λ

≤ 2p−1 ·
{∫

Ω0

1

dλ

} p
λ

· c
λ−p
λ

1

≤ ηp

3
for all t > 0,
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whereas (3.7) warrants that

2p−1µp∞

∫

Ω0

1

dp
≤ ηp

3
.

As (3.8) ensures that apart from that we have

∫

Ω\Ω0

∣∣∣u(·, t)− µ∞
d

∣∣∣
p

≤
∥∥∥u(·, t)− µ∞

d

∥∥∥
p

L∞(Ω\Ω0)
|Ω \ Ω0| ≤

ηp

3
for all t > t0,

it follows from (3.9) that

∥∥∥u(·, t)− µ∞
d

∥∥∥
Lp(Ω)

≤
(ηp
3

+
ηp

3
+
ηp

3

) 1
p
= η for all t > t0,

thereby verifying (1.10). �

4 Appendix: A refined interpolation inequality

We prove the following interpolation inequality of Gagliardo-Nirenberg type which is based on an
observation originally made in [3].

Lemma 4.1 Let q > 0. Then there exist C(q) > 0 and Λ(q) > 0 such that for any choice of η ∈ (0, 1)
we have

‖ϕ‖q+2
L∞(Ω) ≤ η‖ϕx‖2L2(Ω) ·

∥∥∥ϕ
∣∣∣ ln |ϕ|

∣∣∣
1
q
∥∥∥
q

Lq(Ω)
+C(q)‖ϕ‖q+2

Lq(Ω)+C(q)e
Λ(q)
η for all ϕ ∈W 1,2(Ω). (4.1)

Proof. Following the argument in [3], we first invoke the Gagliardo-Nirenberg inequality to find
c1 ≥ 1 such that

‖ψ‖q+2
L∞(Ω) ≤ c1‖ψx‖2L2(Ω)‖ψ‖

q
Lq(Ω) + c1‖ψ‖q+2

Lq(Ω) for all ψ ∈W 1,2(Ω). (4.2)

For fixed η ∈ (0, 1), we then let

N := exp

{
2q+3c1

η

}
> 1

and introduce ζ ∈ W
1,∞
loc (R) by defining ζ(ξ) := 0 for ξ ∈ [−N,N ], ζ(ξ) := |ξ| for |ξ| ≥ 2N and

ζ(ξ) := 2(|ξ| −N) for N < |ξ| < 2N . Then given ϕ ∈W 1,2(Ω), we evidently have

‖|ϕ| − ζ(ϕ)‖L∞(Ω) ≤ 2N

and furthermore

‖ζ(ϕ)‖q
Lq(Ω) ≤

∫

{|ϕ|≥N}
|ϕ|q ≤ 1

lnN

∫

Ω
|ϕ|q

∣∣∣ ln |ϕ|
∣∣∣ =

1

lnN

∥∥∥ϕ
∣∣∣ ln |ϕ|

∣∣∣
1
q
∥∥∥
q

Lq(Ω)
.
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Since (a+ b)q+2 ≤ 2q+1(aq+2 + bq+2) for all a ≥ 0 and b ≥ 0, (4.2) thus entails that

‖ϕ‖q+2
L∞(Ω) ≤ 2q+1‖ζ(ϕ)‖q+2

L∞(Ω) + 2q+1‖|ϕ| − ζ(ϕ)‖q+2
L∞(Ω)

≤ 2q+1c1‖(ζ(ϕ))x‖2L2(Ω)‖ζ(ϕ)‖
q
Lq(Ω) + 2q+1c1‖ζ(ϕ)‖q+2

Lq(Ω) + 2q+1 · (2N)q+2

≤ 2q+3c1

lnN
‖ϕx‖2L2(Ω)

∥∥∥ϕ
∣∣∣ ln |ϕ|

∣∣∣
1
q
∥∥∥
q

Lq(Ω)
+ 2q+1c1‖ϕ‖q+2

Lq(Ω) + 22q+3N q+2,

because ‖ζ ′‖L∞(R) = 2 and |ζ(ξ)| ≤ |ξ| for all ξ ∈ R. In view of our definition of N , this proves (4.1)
with C(q) := max{2q+1c1 , 2

2q+3} and Λ(q) := 2q+3c1(q + 2). �
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