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Abstract

We consider the spatially two-dimensional version of a cross-diffusion system, as originally proposed
by Short et al. in [27] to describe the evolution of urban crime. Although sharing some basic structure
elements with the well-studied classical Keller-Segel chemotaxis model, this system contains an essen-
tial difference to the latter by accounting for a certain nonlinear mechanism of attractant production,
potentially yet increasing explosion-supporting properties.

The intention of this paper is to make sure that despite this, a theory of global smooth solutions can be
established after all within certain small-data settings which can be described in an essentially explicit
manner. The main results in this direction firstly identify hypotheses on smallness of the initial data,
and of some given external production terms, as sufficient to ensure global existence and uniqueness
of smooth and bounded solutions. Secondly, any such bounded solution is shown to asymptotically
approach some steady state, provided that the prescribed sources comply with appropriate additional
assumptions on their stabilization in the large time limit. Finally, a statement on asymptotic stability
of certain steady states is derived as a by-product.
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1 Introduction

This manuscript is concerned with the parabolic system

{
ut = ∆u− χ∇ ·

(
u
v
∇v

)
− uv +B1(x, t),

vt = ∆v − v + uv +B2(x, t),
(1.1)

which for the particular value χ = 2 was proposed in [27] and [26] as a model for the spatio-temporal
evolution of urban crime. Here, besides assuming criminal agents to be continuously distributed in space
and time, with population density u = u(x, t), and to adjust their motion toward increasing concen-
trations of an abstract so-called attractiveness value v = v(x, t), key hypotheses underlying the model
development in [27] rest on an inclusion of fundamental and statistically affirmed behavioral strategies,
as expounded in the context of the broken windows theory ([15]) and also becoming manifest in what is
commonly referred to as repeat and near-repeat victimization effect in criminology ([13]).

As a consequence of apparently noticeable mathematical delicacy, according to the modeling approach
in [27] an appropriate incorporation of such self-exciting tendencies in criminal activity is reflected in
the nonlinear signal production term +uv in the second equation from (1.1). In particular, this seems
to constitute a further significant complexification in comparison to related cross-diffusion systems from
mathematical biology, which even despite such additional nonlinear ingredients are yet lacking a com-
plete understanding. Indeed, already when interacting with a linearly produced signal, the potentially
destabilizing action of the cross-diffusive mechanism from (1.1) seems to substantially limit existence
theories, as indicated by a considerable literature on the classical Keller-Segel model

{
ut = ∆u− χ∇ ·

(
u
v
∇v

)
,

vt = ∆v − v + u,
(1.2)

for chemotactic migration ([14]): Results on global classical solvability in n-dimensional domains with
n ≥ 2 seem available only under smallness conditions on the key parameter χ, in general requiring

χ <
√

2
n
([2], [32]), where in the case n = 2 the slightly weaker assumption χ < χ0 with some χ0 >

1.015 is known to be sufficient ([18]); in the presence of larger values of χ, global solutions so far have
been constructed only within appropriately generalized frameworks ([32], [28], [19]). Certain parabolic-
elliptic simplifications of (1.2) admit slightly more comprehensive existence results, especially in radially
symmetric settings ([9], [3]), but on the other hand moreover allow for the rigorous detection of exploding
solutions in some three- or higher-dimensional domains ([22]).

In line with this, available existence results for the more complex system (1.1) involving the relevant value
χ = 2 seem limited to spatially one-dimensional settings ([25]), and to local-in-time classical ([24]) or
some global generalized solvability, at least in radial cases ([34]), in two-dimensional frameworks; findings
on global classical solvability in two-dimensional domains seem yet to require the smallness condition
χ < 1 ([7]). Considerably more comprehensive insight, inter alia addressing qualitative features such as
the possibility of stable spatially heterogeneous behavior resembling crime hotspot formation, could be
gained only in related stationary systems ([4], [5], [10], [16], [29]).

Main results. The intention of this work is to develop an analytical approach capable of adequately
coping with the challenges linked to the interplay of taxis-type cross-diffusion in the above flavor on the
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one hand, and the considered nonlinear signal production mechanism on the other, in contexts of smooth
solutions at least within certain ranges of suitably small initial data. This will be substantiated in the
framework of the initial-boundary value problem





ut = ∆u− χ∇ ·
(
u
v
∇v

)
− uv +B1(x, t), x ∈ Ω, t > 0,

vt = ∆v − v + uv +B2(x, t), x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0 x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.3)

in a bounded convex domain Ω ⊂ R
2 with smooth boundary, where χ > 0, and where throughout the

sequel we shall assume that the given source terms B1 and B2 for criminal agents and attractiveness are
suitably regular in the sense that

{
B1 ∈ C1(Ω× [0,∞)) is nonnegative and bounded, and that

B2 ∈ C2(Ω× [0,∞)) is nonnegative and bounded,
(1.4)

and that the initial data in (1.3) are such that
{
u0 ∈ C0(Ω) is nonnegative, and that

v0 ∈W 1,∞(Ω) is positive in Ω.
(1.5)

In order to formulate our main results, we recall that, firstly, due to the Gagliardo-Nirenberg inequality
there exists K > 0 with the property that

∫

Ω
ϕ4 ≤ K

{∫

Ω
|∇ϕ|2

}
·
{∫

Ω
ϕ2

}
+K

{∫

Ω
ϕ2

}2

for all ϕ ∈W 1,2(Ω), (1.6)

that with some L ∈ (0, 6 + 4
√
2], as a consequence of [33, Lemma 3.3] we secondly have

∫

Ω

|∇ϕ|4
ϕ3

≤ L

∫

Ω
ϕ|D2 lnϕ|2 for all ϕ ∈ C2(Ω) such that ϕ > 0 in Ω and ∂ϕ

∂ν
= 0 on ∂Ω, (1.7)

and that, thirdly, according to the convexity of Ω we can find Γ ∈ (0, 1] such that the Neumann heat
semigroup (et∆)t≥0 satisfies

et∆ϕ ≥ Γ

∫

Ω
ϕ in Ω for all t > 1 and any nonnegative ϕ ∈ C0(Ω) (1.8)

(see e.g. [8] and, for a one-dimensional version, also [11]).

Referring to these constants, our main results on global solvability in contexts of suitably small data can
be formulated as follows.

Theorem 1.1 Let χ > 0 and Ω ⊂ R
2 be a bounded convex domain with smooth boundary, and let

K > 0, L > 0 and Γ ∈ (0, 1] be such that (1.6), (1.7) and (1.8) are valid. For arbitrary δ > 0, let
λ := min{1, Γδ4e }, and suppose that B1 and B2 are such that (1.4) holds and such that moreover

∫

Ω
B2

1(·, t) ≤
Γ2

4KL(L+ 4)χ4e2
· δ2 · λ2 for all t > 0 (1.9)
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and ∫

Ω
B2(·, t) ≥ δ for all t > 0 (1.10)

as well as ∫

Ω
|∇

√
B2(·, t))|2 ≤

Γ

8KLχ4e
· δ · λ2 for all t > 0. (1.11)

Then for any u0 and v0 fulfilling (1.5) and

v0(x) ≥ δ for all x ∈ Ω (1.12)

as well as ∫

Ω
u20 ≤

Γ

2KL(L+ 4)χ4e
· δ (1.13)

and ∫

Ω
|∇√

v0|2 ≤
Γ

16KLχ4e
· δ, (1.14)

the problem (1.3) possesses a global classical solution (u, v) which for each T > 0 and p > 2 is uniquely
determined by the inclusions

{
u ∈ C0(Ω× [0, T ]) ∩ C2,1(Ω× (0, T )),

v ∈ C0([0, T ];W 1,p(Ω)) ∩ C2,1(Ω× (0, T )),
(1.15)

and which is such that u ≥ 0 and v > 0 in Ω × [0,∞). Moreover, this solution is bounded in the sense
that

sup
t>0

‖u(·, t)‖L∞(Ω) <∞ and sup
t>0

‖v(·, t)‖W 1,p(Ω) <∞ for all p > 1. (1.16)

We emphasize that the explicit character of the right-hand sides in (1.9), (1.11), (1.13) and (1.14)
particularly enables us to conclude from Theorem 1.1 that given arbitrary functions B1, B2, u0 and v0
fulfilling (1.4) and (1.5) as well as inft>0

∫
ΩB2(·, t) > 0, one can find χ0 = χ0(B1, B2, u0, v0,Ω) > 0 with

the property that whenever χ ∈ (0, χ0), the claimed statement on global existence and boundedness
holds, ; and that hence any blow-up phenomenon is precluded in such situations. From the point of view
of In the framework of the intended application, the latter indicates that appropriate smallness of the
initial data, or alternatively an insufficient sensitivity of offenders to bias the attractiveness field, may
limit the system potential to spontaneously generate crime hotspots in the sense of aggregate-type and
spatially localized distributions of criminal activity. An interesting question going beyond the scope of
this study is whether such phenomena of locally large density formation, as numerically observed already
in [26], can rigorously be constructed in suitable settings involving either large initial data or suitably
supercritical χ.

Next, in order to secondly identify some genuinely diffusion-enforced large-time relaxation property
of (1.3), at least within the set of all global bounded solutions, in our following result on large time
asymptotics we rely on additional assumptions on decay and stabilization of the external ingredients B1

and B2 which essentially resemble the hypotheses introduced in [25] to derive a similar conclusion in the
one-dimensional version of (1.3).
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Theorem 1.2 Let χ > 0 and Ω ⊂ R
2 be a bounded domain with smooth boundary, and suppose that B1

and B2 are such that beyond (1.4),

∫ t+1

t

∫

Ω
B1 → 0 as t→ ∞ (1.17)

and
B2(·, t) → B2,∞ a.e. in Ω as t→ ∞ (1.18)

with some 0 6≡ B2,∞ ∈ C0(Ω). Then whenever (1.5) holds and (u, v) is a global classical solution of (1.3)
that satisfies (1.15) and possesses the boundedness features in (1.16), we have

u(·, t) → 0 in L∞(Ω) as t→ ∞, (1.19)

and
v(·, t) → v∞ in L∞(Ω) as t→ ∞, (1.20)

where v∞ denotes the solution of the boundary value problem

{
−∆v∞ + v∞ = B2,∞, x ∈ Ω,
∂v∞
∂ν

= 0, x ∈ ∂Ω.
(1.21)

We shall finally see that this especially entails the following result on asymptotic stability of equilibria in
the presence of time-independent pairs (B1, B2) of system ingredients suitably close to the homogeneous
sources (0, η) with prescribed η > 0.

Theorem 1.3 Let χ > 0 and Ω ⊂ R
2 be a bounded domain with smooth boundary, and let η > 0. Then

there exists ε = ε(χ, η,Ω) > 0 with the property that whenever φ ∈ C2(Ω), u0 ∈ C0(Ω) and v0 ∈W 1,∞(Ω)
are such that

‖φ‖L∞(Ω) ≤ ε (1.22)

and
‖∇φ‖L2(Ω) ≤ ε, (1.23)

and that (1.5) holds with
‖u0‖L2(Ω) ≤ ε (1.24)

as well as
‖v0 − v∞‖L∞(Ω) ≤ ε (1.25)

and
‖∇v0 −∇v∞‖L2(Ω) ≤ ε, (1.26)

the problem (1.3) with

B1(x, t) := 0 and B2(x, t) := η + φ(x), (x, t) ∈ Ω× [0,∞), (1.27)

admits a global classical solution (u, v) fulfilling (1.19) and (1.20), where v∞ solves (1.21) with

B2,∞(x) := η + φ(x), x ∈ Ω. (1.28)
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Theorem 1.3 signifies that if only very few criminal agents are introduced as a source, any small per-
tubation of even a high level of constant attractiveness is insufficient to induce the formation of crime
patterns or clusters. Apart from that, we emphasize that both Theorem 1.2 and Theorem 1.3 do not
include the simple prototypical case when besides B2 also B1 is a positive constant, especially repre-
senting settings in which offenders are added at a constant rate. In fact, the simulations performed in
[26] and [27] suggest that in the latter case the system may possibly support the formation of crime
hotsopts for large χ, indicating that stabilization results in the flavor of those from Theorem 1.2 and
Theorem 1.3 may not be expected in such situations, and that hence the spatio-temporal dynamics of
(1.3) in the presence of persistent external sources of criminal agents may contain much more colorful
facets deserving further investigation beyond this study.

Organization of the paper. After stating a basic result on local existence and extensibility in
Section 2, we shall build our existence theory on the observation, to be detailed in Section 3, that for
suitably chosen b > 0 the quantity ∫

Ω
u2 + b

∫

Ω

|∇v|2
v

(1.29)

satisfies a superlinearly forced differential inequality, provided that the smallness assumptions from
Theorem 1.1 are fulfilled. In Section 4, accordingly obtained a priori estimates will successively be
improved in order to indeed warrant global extensibility. The proof of Theorem 1.2 and of Theorem
1.3 will thereafter be achieved in Section 5 on the basis of ideas from [25], augmented by an additional
observation on relative compactness of any bounded trajectory in (C0(Ω))2.

2 Local existence and basic estimates

Local solvability, as well as a suitable criterion for a solution to be extensible, can be obtained by
following standard arguments.

Lemma 2.1 Let χ > 0 and Ω ⊂ R
2 be a bounded domain with smooth boundary, and suppose that (1.4)

and (1.5) hold. Then there exist Tmax ∈ (0,∞] and a pair of functions u and v, for each T ∈ (0, Tmax)
and p > 2 uniquely determined by (1.15), which solve (1.3) classically in Ω × [0, Tmax), and which are
such that u ≥ 0 and v > 0 in Ω× [0, Tmax), and that

either Tmax = ∞, or

lim sup
tրTmax

{
‖u(·, t)‖L∞(Ω) +

∥∥∥
1

v(·, t)
∥∥∥
L∞(Ω)

+ ‖v(·, t)‖W 1,p(Ω)

}
= ∞ for all p > 2. (2.1)

Proof. All statements can be derived by straightforward adaptation of existence and extensibility
arguments well-established in the context of chemotaxis-type parabolic systems ([1], [12]). �

As a first qualitative feature of this solution, let us state the following pointwise lower bound for its
second component that will play an essential role throughout our analysis, inter alia as a means to
provide appropriate control of the singular ingredient 1

v
to the cross-diffusive flux in (1.3).

Lemma 2.2 Let B1, B2, u0 and v0 satisfy (1.4) and (1.5). Then with Γ ∈ (0, 1] satisfying (1.8), the
solution of (1.3) satisfies

v(x, t) ≥ Γ

2e
·min

{
inf
y∈Ω

v0(y) , inf
s>0

∫

Ω
B2(·, s)

}
for all x ∈ Ω and t ∈ (0, Tmax). (2.2)

6



Proof. Using the order-preserving property of the Neumann heat semigroup along with the nonneg-
ativity of uv and (1.8), on the basis of a variation-of-constants representation of v we obtain

v(·, t) = et(∆−1)v0 +

∫ t

0
e(t−s)(∆−1)u(·, s)v(·, s)ds+

∫ t

0
e(t−s)(∆−1)B2(·, s)ds

≥ e−t inf
y∈Ω

v0(y) +

∫ (t−1)+

0
e−(t−s) · Γ

∫

Ω
B2(·, s)ds in Ω for all t ∈ (0, Tmax).

Since for t ≤ 1 + ln 2 we have

e−t inf
y∈Ω

v0(y) ≥
1

2e
inf
y∈Ω

v0(y) ≥
Γ

2e
inf
y∈Ω

v0(y)

due to the fact that Γ ≤ 1, and since for t > 1 + ln 2,
∫ (t−1)+

0
e−(t−s) · Γ

∫

Ω
B2(·, s)ds ≥ Γ

{
inf
s>0

∫

Ω
B2(·, s)

}
·
∫ t−1

0
e−(t−s)ds

= Γ

{
inf
s>0

∫

Ω
B2(·, s)

}
· (e−1 − e−t)

≥ Γ

{
inf
s>0

∫

Ω
B2(·, s)

}
· 1

2e
in Ω,

this readily leads to (2.2). �

3 Construction of an energy functional

Now the crucial part of our analysis is approached through the following result of a straightforward L2

testing procedure performed to the first sub-problem of (1.3), where an element of decisive importance for
our strategy will be formed by the zero-order dissipative contribution

∫
Ω u

2v to the following inequality.

Lemma 3.1 Let η > 0. Then the solution of (1.3) has the property that for all t ∈ (0, Tmax),

d

dt

∫

Ω
u2 +

{
1− Kχ4

4ηγ

∫

Ω
u2

}
·
∫

Ω
|∇u|2 + 2

∫

Ω
u2v ≤ η

∫

Ω

|∇v|4
v3

+
Kχ4

4ηγ

{∫

Ω
u2

}2

+2‖B1(·, t)‖L2(Ω) ·
{∫

Ω
u2

} 1
2

, (3.1)

where K > 0 is taken from (1.6), and where γ := inf(x,t)∈Ω×(0,Tmax) v(x, t).

Proof. Using u as a test function for the first equation in (1.3), we obtain

1

2

d

dt

∫

Ω
u2 +

∫

Ω
|∇u|2 = χ

∫

Ω

u

v
∇u · ∇v −

∫

Ω
u2v +

∫

Ω
B1u for all t ∈ (0, Tmax), (3.2)

where to applications of Young’s inequality show that

χ

∫

Ω

u

v
∇u · ∇v ≤ 1

2

∫

Ω
|∇u|2 + χ2

2

∫

Ω

u2

v2
|∇v|2

≤ 1

2

∫

Ω
|∇u|2 + η

2

∫

Ω

|∇v|4
v3

+
χ4

8η

∫

Ω

u4

v
for all t ∈ (0, Tmax). (3.3)
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Since v ≥ γ in Ω× (0, Tmax), herein we may invoke (1.6) to further estimate

χ4

8η

∫

Ω

u4

v
≤ χ4

8ηγ

∫

Ω
u4

≤ χ4K

8ηγ

{∫

Ω
|∇u|2

}
·
{∫

Ω
u2

}
+
χ4K

8ηγ

{∫

Ω
u2

}2

for all t ∈ (0, Tmax). (3.4)

As moreover

∫

Ω
B1u ≤ ‖B1‖L2(Ω)

{∫

Ω
u2

} 1
2

for all t ∈ (0, Tmax)

due to the Cauchy-Schwarz inequality, by straightforward rearrangement we thus infer from (3.2)-(3.4)
that indeed (3.1) is valid. �

Indeed, the expression
∫
Ω u

2v encountered above precisely appears as an ill-signed term in the course of
a second testing process which now operates on the second equation in (1.3):

Lemma 3.2 Let L > 0 be such that (1.7) holds. Then

d

dt

∫

Ω

|∇v|2
v

+

∫

Ω

|∇v|2
v

+
1

2L

∫

Ω

|∇v|4
v3

≤ L+ 4

2

∫

Ω
u2v + 4

∫

Ω
|∇

√
B2|2 for all t ∈ (0, Tmax). (3.5)

Proof. Using the identity ∇v ·∇∆v = 1
2∆|∇v|2−|D2v|2, from the second equation in (1.3) we obtain

that

d

dt

∫

Ω

|∇v|2
v

= 2

∫

Ω

1

v
∇v · ∇(∆v − v + uv +B2)−

∫

Ω

1

v2
|∇v|2(∆v − v + uv +B2)

=

∫

Ω

1

v
∆|∇v|2 − 2

∫

Ω

1

v
|D2v|2 − 2

∫

Ω

1

v
|∇v|2 + 2

∫

Ω
∇u · ∇v + 2

∫

Ω

u

v
|∇v|2 + 2

∫

Ω

1

v
∇v · ∇B2

−
∫

Ω

1

v2
|∇v|2∆v +

∫

Ω

1

v
|∇v|2 −

∫

Ω

u

v
|∇v|2 −

∫

Ω

B2

v2
|∇v|2

=

∫

Ω

1

v2
∇v · ∇|∇v|2 − 2

∫

Ω

1

v
|D2v|2 −

∫

Ω

1

v2
|∇v|2∆v +

∫

∂Ω

1

v

∂|∇v|2
∂ν

−
∫

Ω

1

v
|∇v|2 + 2

∫

Ω
∇u · ∇v +

∫

Ω

u

v
|∇v|2

+2

∫

Ω

1

v
∇v · ∇B2 −

∫

Ω

B2

v2
|∇v|2 for all t ∈ (0, Tmax), (3.6)

where due to the convexity of Ω, we know that ∂|∇v|2

∂ν
≤ 0 on ∂Ω× (0,∞) ([20]) and hence

∫

∂Ω

1

v

∂|∇v|2
∂ν

≤ 0 for all t ∈ (0, Tmax).

Since by straightforward computation one can verify that
∫

Ω

1

v2
∇v · ∇|∇v|2 − 2

∫

Ω

1

v
|D2v|2 −

∫

Ω

1

v2
|∇v|2∆v = −2

∫

Ω
v|D2 ln v|2 for all t ∈ (0, Tmax)
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(cf. e.g. [33, Lemma 3.2] for details), since we again integrate by parts and use Young’s inequality as
well as the pointwise |∆ ln v|2 ≤ 2|D2 ln v|2 to estimate

2

∫

Ω
∇u · ∇v = 2

∫

Ω
v∇u · ∇ ln v

= −2

∫

Ω
uv∆ ln v − 2

∫

Ω
u∇v · ∇ ln v

= −2

∫

Ω
uv∆ ln v − 2

∫

Ω

u

v
|∇v|2

≤ −2

∫

Ω
uv∆ ln v

≤ 1

2

∫

Ω
v|∆ ln v|2 + 2

∫

Ω
u2v

≤
∫

Ω
v|D2 ln v|2 + 2

∫

Ω
u2v for all t ∈ (0, Tmax),

and since (1.7) entails that

∫

Ω
v|D2 ln v|2 ≥ 1

L

∫

Ω

|∇v|4
v3

for all t ∈ (0, Tmax),

from (3.6) it thus follows that

d

dt

∫

Ω

|∇v|2
v

+

∫

Ω

|∇v|2
v

+
1

L

∫

Ω

|∇v|4
v3

≤
∫

Ω

u

v
|∇v|2 + 2

∫

Ω
u2v

+2

∫

Ω

1

v
∇v · ∇B2 −

∫

Ω

B2

v2
|∇v|2 (3.7)

for all t ∈ (0, Tmax). Here two applications of Young’s inequality show that

∫

Ω

u

v
|∇v|2 ≤ 1

2L

∫

Ω

|∇v|4
v3

+
L

2

∫

Ω
u2v for all t ∈ (0, Tmax)

and

2

∫

Ω

1

v
∇v · ∇B2 −

∫

Ω

B2

v2
|∇v|2 ≤

∫

Ω

|∇B2|2
B2

= 4

∫

Ω
|∇

√
B2|2 for all t ∈ (0, Tmax).

Therefore, (3.7) easily leads to (3.5). �

Favorably, by suitable linear combination of (3.1) and (3.5) the first expression on the right-hand side
of (3.5) can be eliminated, hence leading to an already quite propitious inequality for the quantity from
(1.29).
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Lemma 3.3 Let (u, v) denote the solution of (1.3). Then the function y defined by

y(t) :=

∫

Ω
u2(·, t) + b

∫

Ω

|∇v(·, t)|2
v(·, t) , t ∈ [0, Tmax), (3.8)

with

b :=
2

L+ 4
(3.9)

satisfies

y′(t) +

{
1− KL(L+ 4)χ4

4γ
· y(t)

}
·
∫

Ω
|∇u(·, t)|2 + λy(t)

≤ KL(L+ 4)χ4

4γ
· y2(t) + 2

γ
sup
s>0

∫

Ω
B2

1(·, s)

+
8

L+ 4
· sup
s>0

∫

Ω
|∇

√
B2(·, s)|2 for all t ∈ (0, Tmax), (3.10)

where

γ := inf
(x,t)∈Ω×(0,Tmax)

v(x, t) and λ := min
{
1,
γ

2

}
.

Proof. We take an appropriate linear combination of the inequalities from Lemma 3.1 and Lemma

3.2, choosing η := 1
L(L+4) in the former, to see that writing c1 :=

KL(L+4)χ4

4γ we have

y′(t) +

{
1− c1

∫

Ω
u2

}
·
∫

Ω
|∇u|2 + 2

∫

Ω
u2v

+b

∫

Ω

|∇v|2
v

+
b

2L

∫

Ω

|∇v|4
v3

≤ 1

L(L+ 4)

∫

Ω

|∇v|4
v3

+ c1

{∫

Ω
u2

}2

+ 2‖B1‖L2(Ω)

{∫

Ω
u2

} 1
2

+
(L+ 4)b

2

∫

Ω
u2v + 4b

∫

Ω
|∇

√
B2|2 for all t ∈ (0, Tmax), (3.11)

where the first summand on the right is precisely cancelled by the last one on the left due to our choice
(3.9) of b. Since (3.9) moreover says that (L+4)b

2 = 1, from (3.11) we thus obtain that

y′(t) +

{
1− c1

∫

Ω
u2

}
·
∫

Ω
|∇u|2 +

∫

Ω
u2v + b

∫

Ω

|∇v|2
v

≤ c1

{∫

Ω
u2

}2

+ 2‖B1‖L2(Ω)

{∫

Ω
u2

} 1
2

+ 4b

∫

Ω
|∇

√
B2|2 for all t ∈ (0, Tmax). (3.12)

Here we use the definition of γ to estimate
∫

Ω
u2v ≥ γ

∫

Ω
u2 for all t ∈ (0, Tmax),

10



and then employ Young’s inequality to find that

2‖B1‖L2(Ω)

{∫

Ω
u2

} 1
2

≤ γ

2

∫

Ω
u2 +

2

γ

∫

Ω
B2

1 for all t ∈ (0, Tmax).

Since

γ

2

∫

Ω
u2 + b

∫

Ω

|∇v|2
v

≥ λy(t) for all t ∈ (0, Tmax)

by definition of λ, and since
∫

Ω
u2 ≤ y(t) for all t ∈ (0, Tmax),

from (3.12) we easily derive (3.10). �

Now smallness assumptions in the style of those in Theorem 1.1 warrant that both the initial value of y
and the y-independent forcing terms in (3.10) remain conveniently small, hence enforcing bounds for y
through a simple ODE comparison.

Lemma 3.4 Suppose that for some δ > 0, the functions B1, B2, u0 and v0 are such that beyond (1.4)
and (1.5), the assumptions (1.9)-(1.14) from Theorem 1.1 are satisfied with K > 0, L > 0 and Γ ∈ (0, 1]
such that (1.6), (1.7) and (1.8) hold, and with λ := min{1, Γδ4e }. Then there exists C > 0 such that for
the solution of (1.3) we have

∫

Ω
u2(·, t) ≤ C for all t ∈ (0, Tmax) (3.13)

and ∫

Ω

|∇v(·, t)|2
v(·, t) ≤ C for all t ∈ (0, Tmax). (3.14)

Proof. Writing γ := Γδ
2e , in view of Lemma 2.2 we obtain from the assumptions (1.10) and (1.12)

that

v ≥ γ in Ω× (0, Tmax),

whereas (1.9) and (1.11) warrant that abbreviating c1 := KL(L+4)χ4

4γ and c2 := 2
γ
sups>0

∫
ΩB

2
1(·, s) +

8
L+4 · sups>0

∫
Ω |∇

√
B2(·, s)|2, we have

4c1c2 =
KL(L+ 4)χ4e

2Γδ
·
{
4e

Γδ
· sup
s>0

∫

Ω
B2

1(·, s) +
8

L+ 4
· sup
s>0

∫

Ω
|∇

√
B2(·, s)|2

}

≤ KL(L+ 4)χ4e

2Γδ
·
{
4e

Γδ
· Γ2

4KL(L+ 4)χ4e2
· δ2 + 8

L+ 4
· Γ

8KLχ4e
· δ
}
· λ2

=
KL(L+ 4)χ4e

2Γδ
·
{

Γδ

KL(L+ 4)χ4e
+

Γδ

KL(L+ 4)χ4e

}
· λ2

= λ2. (3.15)

11



Now defining y as in (3.8) with b taken from (3.9), invoking (3.10) we see that

y′(t) +
{
1− c1y(t)

}
·
∫

Ω
|∇u|2 + λy(t) ≤ c1y

2(t) + c2 for all t ∈ (0, Tmax), (3.16)

while (1.13) and (1.14) ensure that

y(0) =

∫

Ω
u20 +

8

L+ 4

∫

Ω
|∇√

v0|2

≤ Γ

2KL(L+ 4)χ4e
· δ + 8

L+ 4
· Γ

16KLχ4e
· δ

=
1

4c1
+

1

4c1
=

1

2c1
(3.17)

and thus, in particular, y(0) < 1
c1
. Therefore,

T := sup
{
T̃ ∈ (0, Tmax)

∣∣∣ y(t) <
1

c1
for all t ∈ [0, T̃ )

}

is a well-defined element of (0, Tmax], and to verify that actually T = Tmax we assume that this be false
and then obtain from (3.16) that since 1− c1y is nonnegative on (0, T ), we have

y′(t) + λy(t) ≤ c1y
2(t) + c2 for all t ∈ (0, T ).

Since

y(t) :=
λ

2c1
, t ≥ 0,

satisfies

y′(t) + λy(t)− c1y
2(t)− c2 =

λ2

2c1
− λ2

4c1
− c2 =

λ2

4c1
− c2 ≥ 0 for all t > 0

due to (3.15), in view of (3.17) we may employ an ODE comparison argument to see that y ≤ y

throughout [0, T ] and thus, in particular, y(T ) ≤ y(T ) < 1
c1
. This contradiction to the definition of T

shows that indeed T = Tmax and thereby implies both (3.13) and (3.14) upon an evident choice of C. �

4 Improved regularity estimates. Proof of Theorem 1.1

Forming a second place in which we explicitly rely on the presence of the absorptive term −uv in the
first equation from (1.3), the following lemma asserts a basic L1 boundedness property of v which will
pave our way toward an appropriate further exploitation of the estimates from Lemma 3.4.

Lemma 4.1 Suppose that the assumptions of Theorem 1.1 hold. Then there exists C > 0 such that the
solution of (1.3) satisfies ∫

Ω
v(·, t) ≤ C for all t ∈ (0, Tmax). (4.1)

12



Proof. We integrate the first two equations in (1.3) over Ω to see that

d

dt

∫

Ω
u+

∫

Ω
u = −

∫

Ω
uv +

∫

Ω
B1 +

∫

Ω
u

≤ −
∫

Ω
uv + c1 for all t ∈ (0, Tmax) (4.2)

and

d

dt

∫

Ω
v +

∫

Ω
v =

∫

Ω
uv +

∫

Ω
B2

≤
∫

Ω
uv + c2 for all t ∈ (0, Tmax), (4.3)

respectively, where

c1 := sup
t>0

∫

Ω
B1(·, t) + sup

t∈(0,Tmax)

∫

Ω
u(·, t)

and

c2 := sup
t>0

∫

Ω
B2(·, t)

are finite according to (1.4) and Lemma 3.4. On adding (4.3) to (4.2) we therefore obtain

d

dt

{∫

Ω
u+

∫

Ω
v

}
+

{∫

Ω
u+

∫

Ω
v

}
≤ c1 + c2 for all t ∈ (0, Tmax),

so that by means of an ODE comparison argument we conclude that
∫

Ω
u(·, t) +

∫

Ω
v(·, t) ≤ max

{∫

Ω
u0 +

∫

Ω
v0 , c1 + c2

}
for all t ∈ (0, Tmax),

which implies (4.1). �

In fact, interpolating between (4.1) and (3.14) yields Lp bounds for v with arbitrary finite p.

Lemma 4.2 Under the assumptions of Theorem 1.1, for each p > 1 one can find C(p) > 0 such that
∫

Ω
vp(·, t) ≤ C(p) for all t ∈ (0, Tmax).

Proof. Since the Gagliardo-Nirenberg inequality implies the existence of c1 > 0 such that
∫

Ω
vp = ‖

√
v‖2p

L2p(Ω)
≤ c1‖∇

√
v‖2(p−1)

L2(Ω)
‖
√
v‖2L2(Ω) + c1‖

√
v‖2p

L2(Ω)

=
c1

4p−1

{∫

Ω

|∇v|2
v

}p−1

·
∫

Ω
v + c1

{∫

Ω
v

}p
for all t ∈ (0, Tmax),

this follows by combining Lemma 3.4 with Lemma 4.1. �

Along with the L2 estimate for u from Lemma 3.4, the latter information warrants integrability features
of the source term uv in the second equation from (1.3) which are sufficient to assert bounds even for
∇v in Lp spaces with arbitrarily large p > 1.
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Lemma 4.3 Suppose that the assumptions of Theorem 1.1 are met. Then for any p > 1 there exists
C(p) > 0 with the property that

∫

Ω
|∇v(·, t)|p ≤ C(p) for all t ∈ (0, Tmax). (4.4)

Proof. We pick any q > 2p
p+2 such that q < 2 and then obtain from Lemma 4.2 that with some c1 > 0

we have

‖v(·, t)‖
L

2q
2−q (Ω)

≤ c1 for all t ∈ (0, Tmax).

Since in view of our hypotheses we may invoke Lemma 3.4 to find c2 > 0 fulfilling

‖u(·, t)‖L2(Ω) ≤ c2 for all t ∈ (0, Tmax),

by means of the Hölder inequality we can estimate

‖u(·, t)v(·, t)‖Lq(Ω) ≤ ‖u(·, t)‖L2(Ω)‖v(·, t)‖
L

2q
2−q (Ω)

≤ c1c2 for all t ∈ (0, Tmax). (4.5)

We now recall known regularization features of the Neumann heat semigroup ([30, Lemma Lemma 1.3
(ii) and (iii)]) to see that there exists c3 > 0 satisfying

‖∇v(·, t)‖Lp(Ω) =

∥∥∥∥∇e
t(∆−1)v0 +

∫ t

0
∇e(t−s)(∆−1)u(·, s)v(·, s)ds+

∫ t

0
∇e(t−s)(∆−1)B2(·, s)ds

∥∥∥∥
Lp(Ω)

≤ c3‖∇v0‖Lp(Ω) + c3

∫ t

0
(t− s)

− 1
2
−( 1

q
− 1

p
)
e−(t−s)‖u(·, s)v(·, s)‖Lq(Ω)ds

+c3

∫ t

0
(t− s)−

1
2 e−(t−s)‖B2(·, s)‖Lp(Ω)ds for all t ∈ (0, Tmax).

Hence, using (4.5) we infer that with c4 := supt>0 ‖B2(·, t)‖Lp(Ω) we have

‖∇v(·, t)‖Lp(Ω) ≤ c3‖∇v0‖Lp(Ω) + c1c2c3

∫ t

0
(t− s)

− 1
2
−( 1

q
− 1

p
)
e−(t−s)ds

+c3c4

∫ t

0
(t− s)−

1
2 e−(t−s)ds

≤ c3‖∇v0‖Lp(Ω) + c1c2c3c5 + c3c4c6 for all t ∈ (0, Tmax),

where c5 :=
∫∞
0 σ

− 1
2
−( 1

q
− 1

p
)
e−σdσ and c6 :=

∫∞
0 σ−

1
2 e−σdσ are finite thanks to our restriction that

q > 2p
p+2 . �

Through the latter and Lemma 2.2 thus able to suitably control the cross-diffusive flux in (1.3), we can
proceed to derive an estimate for u with respect to the norm in L∞(Ω).

Lemma 4.4 Under the assumptions of Theorem 1.1, we can fix C > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (4.6)
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Proof. Given T ∈ (0, Tmax), we estimate

M(T ) := sup
t∈(0,T )

‖u(·, t)‖L∞(Ω)

by using a variation-of-constants representation associated with the identity ut = (∆−1)u−χ∇·(u
v
∇v)−

uv + B1 + u and employing three comparison arguments and two well-known smoothing properties of
the Neumann heat semigroup ([30, Lemma 1.3 (ii) and (iv)]) to firstly obtain that

u(·, t) = et(∆−1)u0 − χ

∫ t

0
e(t−s)(∆−1)∇ ·

(u(·, s)
v(·, s)∇v(·, s)

)
ds−

∫ t

0
e(t−s)(∆−1)u(·, s)v(·, s)ds

+

∫ t

0
e(t−s)(∆−1)B1(·, s)ds+

∫ t

0
e(t−s)(∆−1)u(·, s)ds

≤ ‖u0‖L∞(Ω) + c1

∫ t

0
(t− s)−

3
4 e−(t−s)

∥∥∥
u(·, s)
v(·, s)∇v(·, s)

∥∥∥
L4(Ω)

ds

+

∫ t

0
e−(t−s)‖B1(·, s)‖L∞(Ω)ds+ c1

∫ t

0
(t− s)−

1
2 e−(t−s)‖u(·, s)‖L2(Ω)ds in Ω (4.7)

for some c1 > 0 and all t ∈ (0, Tmax). Here since the assumption (1.12) together with Lemma 2.2
warrants the existence of c2 > 0 fulfilling

v(x, t) ≥ c2 for all x ∈ Ω and t ∈ (0, Tmax),

twice invoking the Hölder inequality we can estimate

∥∥∥
u(·, t)
v(·, t)∇v(·, t)

∥∥∥
L4(Ω)

≤ 1

c2
‖u(·, t)‖L8(Ω)‖∇v(·, t)‖L8(Ω)

≤ 1

c2
‖u(·, t)‖

3
4

L∞(Ω)‖u(·, t)‖
1
4

L2(Ω)
‖∇v(·, t)‖L8(Ω) for all t ∈ (0, Tmax).

As Lemma 3.4 and Lemma 4.3 yield c3 > 0 and c4 > 0 such that

‖u(·, t)‖L2(Ω) ≤ c3 for all t ∈ (0, Tmax) (4.8)

and

‖∇v(·, t)‖L8(Ω) ≤ c4 for all t ∈ (0, Tmax),

it thus follows that

c1

∫ t

0
(t− s)−

3
4 e−(t−s)

∥∥∥
u(·, s)
v(·, s)∇v(·, s)

∥∥∥
L4(Ω)

ds ≤ c1c
1
4

3 c4

c2
M

3
4 (T )

∫ t

0
(t− s)−

3
4 e−(t−s)ds

≤ c1c
1
4

3 c4c5

c2
M

3
4 (T ) for all t ∈ (0, T ),

with c5 :=
∫∞
0 σ−

3
4 e−σdσ. Since (4.8) furthermore entails that writing c6 :=

∫∞
0 σ−

1
2 e−σdσ we have

∫ t

0
(t− s)−

1
2 e−(t−s)‖u(·, s)‖L2(Ω)ds ≤ c3c6 for all t ∈ (0, Tmax),
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from (4.7) we therefore conclude that there exists c7 > 0 such that

M(T ) ≤ c7 + c7M
3
4 (T ) for all T ∈ (0, Tmax)

and that hence

M(T ) ≤ max
{
1 , (2c7)

4
}

for all T ∈ (0, Tmax),

which on taking T ր Tmax results in (4.6). �

Our main result on global existence and boundedness has thereby actually been completed already:

Proof of Theorem 1.1. In view of the assumptions (1.9)-(1.14), we may apply Lemma 4.4 and Lemma
4.3 which together with Lemma 2.1 firstly imply the statement on global existence. Thereupon, the
boundedness properties in (1.16) result from (4.6) and (4.4) when combined with the outcome of Lemma
4.1. �

5 Large time behavior. Proof of Theorems 1.2 and 1.3

In order to prepare our analysis of large time features enjoyed by global bounded smooth solutions in
the flavor of Theorem 1.2, let us first make sure that bounded trajectories in fact are eventually bounded
in Hölder spaces.

Lemma 5.1 Let B1 and B2 satisfy (1.4), (1.17) and (1.18), and suppose that with some u0 and v0
fulfilling (1.5), (u, v) is a global and bounded solution of (1.3) in the sense that (1.15) and (1.16) hold.
Then there exist t0 ≥ 1, γ ∈ (0, 1) and C > 0 such that

‖u(·, t)‖Cγ(Ω) + ‖v(·, t)‖Cγ(Ω) ≤ C for all t > t0, (5.1)

and that

v(x, t) ≥ 1

C
for all x ∈ Ω and t > t0. (5.2)

Proof. When combined with the dominated convergence theorem, (1.18) entails that
∫
ΩB2(·, t) →∫

ΩB2,∞ as t → ∞, so that since B2,∞ is continuous in Ω with 0 ≤ B2,∞ 6≡ 0, for some t1 > 0
we obtain inft>t1

∫
ΩB2(·, t) > 0. Replacing (B1, B2, u, v)(·, t) with (B1, B2, u, v)(·, t1 + t) if necessary,

in view of the uniqueness statement in Theorem 1.1 and Lemma 2.2 we may henceforth assume that
inft>0

∫
ΩB2(·, t) > 0 and that

v ≥ c1 in Ω× (0,∞) (5.3)

with some c1 > 0.

Now thanks to (1.4) and the assumed boundedness properties of u and v in (1.15), by referring to
standard regularity theory for linear parabolic equations ([17]) we find γ ∈ (0, 1) and c2 > 0 such that

‖v(·, t)‖Cγ(Ω) ≤ c2 for all t > 1 (5.4)

and that
‖∇v(·, t)‖L∞(Ω) ≤ c2 for all t > 1. (5.5)
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Relying on (5.5), (5.3), (1.4) and again the boundedness assumptions on (u, v), from well-known Hölder
estimates for bounded solution of semilinear parabolic equations ([23, Theorem 1.3]), we obtain c3 > 0
satisfying

‖u(·, t)‖Cγ(Ω) ≤ c3 for all t > 2,

which along with (5.4) leads to (5.1), while (5.2) is implied by (5.3). �

In appropriately making use of the latter by means of compactness arguments, we shall utilize the
following elementary result on decay in a linear ODE, a proof of which can be found e.g. in [6, Lemma
4.6].

Lemma 5.2 Let y ∈ C1([0,∞)) and h ∈ L1
loc([0,∞)) be nonnegative functions satisfying

y′(t) + ay(t) ≤ h(t) for all t > 0

with some a > 0. Then if

∫ t+1

t

h(s)ds→ 0 as t→ ∞,

we have

y(t) → 0 as t→ ∞.

We can thereby indeed turn the hypothesis (1.17) into a statement on uniform decay of u in the intended
form:

Lemma 5.3 Assume that (1.4), (1.17) and (1.18) hold, and that (u, v) is as in Lemma 5.1. Then

u(·, t) → 0 in L∞(Ω) as t→ ∞. (5.6)

Proof. As Lemma 5.1 provides t0 > 0 and c1 > 0 such that v ≥ c1 in Ω × (t0,∞), integrating the
first equation in (1.3) we see that

d

dt

∫

Ω
u = −

∫

Ω
uv +

∫

Ω
B1 ≤ −c1

∫

Ω
u+

∫

Ω
B1 for all t > t0.

Since
∫ t+1
t

∫
ΩB1(x, s)dxds→ 0 as t→ ∞ according to (1.17), an application of Lemma 5.2 shows that

∫

Ω
u(·, t) → 0 as t→ ∞.

The claimed property (5.6) now results from this and the precompactness of (u(·, t))t>1 in L∞(Ω), as
guaranteed by Lemma 5.1 and the Arzelà-Ascoli theorem. �

By means of an energy method, we can next verify the convergence property of the second solution
component claimed in Theorem 1.2.
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Lemma 5.4 Let B1 and B2 satisfy (1.4), (1.17), and let (u, v) be as in Lemma 5.1. Then

v(·, t) → v∞ in L∞(Ω) as t→ ∞, (5.7)

where v∞ denotes the solution of (1.21).

Proof. Following an idea from [25], in contrast to the approach in the latter we shall here use Lemma
5.3 and the assumed boundedness of the solution to appropriately cope with with the integral

∫
Ω(uv)

2

related to the nonlinear production term of signal in the second equation of (1.3). In particular, on the
basis of (1.3) and (1.21) we compute

1

2

d

dt

∫

Ω
(v − v∞)2 =

∫

Ω
(v − v∞) · (∆v − v + uv +B2)

=

∫

Ω
(v − v∞) ·

{
∆(v − v∞)− (v − v∞) + uv + (B2 −B2,∞)

}

= −
∫

Ω
|∇(v − v∞)|2 −

∫

Ω
(v − v∞)2 +

∫

Ω
(v − v∞) ·

{
uv + (B2 −B2,∞)

}

for all t > 0, where the first term on the right is nonpositive, and where the rightmost integral can be
estimated by Young’s inequality according to

∫

Ω
(v − v∞) ·

{
uv + (B2 −B2,∞)

}
≤ 1

2

∫

Ω
(v − v∞)2 +

1

2

∫

Ω

{
uv + (B2 −B2,∞)

}2

≤ 1

2

∫

Ω
(v − v∞)2 +

∫

Ω
(uv)2 +

∫

Ω
(B2 −B2,∞)2

for all t > 0. Therefore, y(t) :=
∫
Ω(v−v∞)2 and h(t) := 2

∫
Ω(u(·, t)v(·, t))2+2

∫
Ω(B2(·, t)−B2,∞)2, t ≥ 0,

satisfy

y′(t) + y(t) ≤ h(t) for all t > 0,

so that since Lemma 5.3 along with the boundedness of u and v yields c1 > 0 such that

∫ t+1

t

∫

Ω
(uv)2 ≤ c1

∫ t+1

t

∫

Ω
u→ 0 as t→ ∞

and that thus
∫ t+1

t

h(s)ds→ 0 as t→ ∞

thanks to (1.18), an application of Lemma 5.2 enables us to conclude that y(t) → 0 and hence

v(·, t) → v∞ in L2Ω) as t→ ∞.

In conjunction with the relative compactness of (v(·, t))t>t0 in C0(Ω), as asserted by Lemma 5.1 with
some suitably large t0 > 0, this yields (5.7). �

Our proof of Theorem 1.2 thereby becomes complete:
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Proof of Theorem 1.2. The conclusion immediately results from Lemma 5.3 and Lemma 5.4. �

Our main result concerning asymptotic stability of equilibria finally reduces to suitably dealing with the
explicit requirements made in Theorem 1.1 in its essential part.

Proof of Theorem 1.3. Given η > 0, we fix δ > 0 such that

δ ≤ η

2
(5.8)

and

δ ≤ η|Ω|
2
, (5.9)

and thereupon let

c1 :=
Γ

8KLχ4e
· δ · λ2, c2 :=

Γ

2KL(L+ 4)χ4e
· δ and c3 :=

Γ

16KLχ4e
· δ, (5.10)

with λ := min{1, Γδ4e }. We then take ε = ε(η, χ,Ω) > 0 small enough such that

ε ≤ η

2(c4 + 1)
(5.11)

and
ε2 ≤ c3η

c25 + 1
(5.12)

as well as
ε2 ≤ c2, (5.13)

where in accordance with standard elliptic regularity theory, c4 > 0 and c5 > 0 are such that whenever
f ∈ C1(Ω) and ψ ∈ C2(Ω) satisfy

{
−∆ψ + ψ = f(x), x ∈ Ω,
∂ψ
∂ν

= 0, x ∈ ∂Ω.

we have
‖ψ‖L∞(Ω) ≤ c4‖f‖L∞(Ω) (5.14)

and
‖∇ψ‖L2(Ω) ≤ c5‖f‖L∞(Ω). (5.15)

Now assuming that φ ∈ C2(Ω) is a given function fulfilling (1.22) and (1.23), we let B1, B2, B2,∞ and
v∞ be as defined through (1.27), (1.28) and (1.21), and suppose that u0 and v0 comply with (1.5) and
moreover satisfy (1.24)-(1.26).

We then firstly note that ψ := v∞ − η satisfies −∆ψ + ψ = −∆v∞ + v∞ − η = B2,∞ − η = φ in Ω with
∂ψ
∂ν

= 0 on ∂Ω, whence (5.14) and (5.15) apply so as to warrant that thanks to (1.22),

‖ψ‖L∞(Ω) ≤ c4‖φ‖L∞(Ω) ≤ c4ε (5.16)
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and ∫

Ω
|∇ψ|2 ≤ c25‖φ‖2L∞(Ω) ≤ c25ε

2. (5.17)

Therefore, (1.25) and (1.26) especially entail that due to (5.11) and (5.8),

v0 ≥ v∞ − ‖v0 − v∞‖L∞(Ω)

= η + ψ − ‖v0 − v∞‖L∞(Ω)

≥ η − c4ε− ε

≥ η

2
≥ δ in Ω, (5.18)

and that thus also
∫

Ω
|∇√

v0|2 =
1

4

∫

Ω

|∇v0|2
v0

≤ 1

2η

∫

Ω
|∇v0|2

≤ 1

η

∫

Ω
|∇v∞|2 + 1

η

∫

Ω
|∇(v0 − v∞)|2

=
1

η

∫

Ω
|∇ψ|2 + 1

η

∫

Ω
|∇(v0 − v∞)|2

≤ c25ε
2

η
+
ε2

η

≤ c3 (5.19)

by (5.12). Moreover, using that (5.11) in particular entails that ε ≤ η
2 , from (1.28) and (1.22) we infer

that

B2,∞ = η + φ ≥ η − ε ≥ η

2
in Ω,

which firstly guarantees that
∫

Ω
B2(·, t) =

∫

Ω
B2,∞ ≥ η|Ω|

2
≥ δ for all t > 0 (5.20)

according to (5.9), and which secondly, in conjunction with (1.23), implies that

∫

Ω
|∇

√
B2(·, t)|2 =

1

4

∫

Ω

|∇B2,∞|2
B2,∞

≤ 1

2η

∫

Ω
|∇B2,∞|2

=
1

2η

∫

Ω
|∇φ|2

≤ ε2

2η

≤ c1 for all t > 0. (5.21)
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Now since (5.20) and (5.21) ensure validity of (1.10) and (1.11), and since (1.12), (1.13) and (1.14)
are fulfilled thanks to (5.18), (1.24), (5.13) and (5.19), noting that (1.9), (1.17) and (1.18) are trivially
satisfied due to (1.27) and (1.28) we may employ Theorem 1.1 and Theorem 1.2 to see that that indeed
a global classical solution with the claimed asymptotic properties exists. �
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