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Abstract

This paper deals with the Neumann initial-boundary value problem for a classical chemotaxis system
with signal consumption in a disk. In contrast to previous studies which have established a compre-
hensive theory of global classical solutions for suitably regular nonnegative initial data, the focus in
the present work is on the question to which extent initially prescribed singularities can be regularized
despite the presence of the nonlinear cross-diffusive interaction.

The main result in this paper asserts that at least in the framework of radial solutions immediate reg-
ularization occurs under an essentially optimal condition on the initial distribution of the population
density. More precisely, it will turn out that for any radially symmetric initial data belonging to the
space of regular signed Borel measures for the population density and to L2 for the signal density,
there exists a classical solution to the Neumann initial-boundary value problem, which is smooth and
approaches the given initial data in an appropriate trace sense.
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1 Introduction

Cross-diffusion vs. dissipation in Keller-Segel systems with regular initial data. Effects
of collective behavior resulting from chemotactic motion of individuals are known to be of essential
relevance in numerous biological contexts, especially involving pattern formation, at various lengthscales
([14]). At macroscopic levels, processes of this type are commonly modeled by the celebrated Keller-
Segel system ([16]) which, when exclusively concentrating on the description of the population density
u = u(x, t) and the concentration v = v(x, t) of the corresponding signal, in a general form consists of
the two parabolic equations

{
ut = ∇ · (Du(u, v)∇u− χ(u, v)u∇v) +H(u, v),

vt = Dv(u, v)∆v +K(u, v).
(1.1)

Here specific application contexts may suggest quite different choices of the diffusion rates Du and Dv,
the chemotactic sensitivity χ and the coefficient functions H and K measuring cell proliferation and
signal kinetics ([14]), and an accordingly large literature is concerned with the question how far the
cross-diffusive interaction in respectively obtained particular versions of (1.1) supports spatial struc-
tures.

Most precedent studies in this direction concentrate on either detecting or ruling out effects of spon-
taneous formation of structures, usually interpreted mathematically as corresponding to blow-up phe-
nomena, that is, to evolution of initially regular solutions into some singular profiles within finite time.
Among the relevant versions of (1.1), the one possibly best understood in this regard appears to be the
paradigmatic Keller-Segel model accounting for signal production through cells, as given by

{
ut = ∆u−∇ · (u∇v),
vt = ∆v − v + u,

(1.2)

and the literature has in fact revealed a certain ability of this system to describe spontaneous aggregation
in two- and higher-dimensional settings: Namely, it is well-known that for all suitably regular initial data
(u0, v0) an associated Neumann-type initial-boundary value problem, posed in a smooth n-dimensional
domain Ω, always admits a global bounded classical solution if either n = 1 ([21]), or n = 2 and

∫
Ω u0 is

small ([20]), or n ≥ 3 and ‖u0‖Ln
2 (Ω)

+ ‖v0‖W 1,n(Ω) does not exceed some threshold ([6]); this is comple-

mented by corresponding findings on the occurrence of finite-time blow-up of some solutions emanating
from smooth but appropriately large initial data ([13, 34]). This particular system, and to a yet larger
extent some parabolic-elliptic simplifications thereof, even allows for describing the respective sets of
set explosion-enforcing initial data much more precisely ([34, 38]), and for characterizing corresponding
blow-up asymptotics in more detail ([25, 26, 27]).

For some close relatives of (1.2) involving different diffusion and cross-diffusion rates, several results
indicate similar dichotomies (see e.g. [8] and [28], and also [3] for a survey addressing further versions of
(1.1)). A significant weakening of this singularity-supporting feature in chemotaxis-production systems,
however, can be observed upon passing from (1.2) to those variants of (1.1) which account for signal con-
sumption, rather than production, of the chemoattractant by individuals in the considered population.
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In one of the prototypical representatives of this model class, as given by

{
ut = ∆u−∇ · (u∇v),
vt = ∆v − uv,

(1.3)

the interplay of the dissipative mechanisms of diffusion and absorption is indeed known to suppress
any blow-up phenomenon in two-dimensional Neumann problems, for which, namely, global bounded
classical solutions are known to exist for all reasonably regular initial data; for the three-dimensional
analogue, it is after all possible to construct global weak solutions which eventually become smooth and
bounded ([29]). That this tendency toward blow-up inhibition is not limited to (1.3), but rather con-
stitutes a more general property of chemotaxis-consumption models, is indicated by several additional
findings on similar effects in related systems coupling the attractant absorption mechanism from (1.3)
to various further components and processes, such as interplay with liquid environments ([9, 35, 37]), or
multi-species interaction ([15]).

Chemotaxis-consumption interaction in presence of measures as initial data. Still attempt-
ing to further understand the structure-supporting potential of the interplay between chemoattraction
and the dissipative mechanisms in chemotaxis-consumption models, in slight contrast to that in the
above developments the purpose of the present work is to investigate this interaction in the context of
a supposedly present singular setting. Thus prescribing initial data with accordingly irregular behavior,
this study will examine how far the joint action of diffusion and signal absorption is able to overbal-
ance potentially destabilizing effects of nonlinear cross-diffusion even in presence of singularities. Here
focusing on the particular system (1.3) throughout, we note that any relaxation of requirements on the
initial data should at least be consistent with an evident mass conservation property enjoyed by the
first solution component thereof. In consequence, we are led to the ambition to analyze the behavior in
(1.3) near initial population distributions merely assumed to satisfy some finite-mass hypothesis. When
viewed from a purely mathematical and more general perspective, we thus pursue the goal of describing
nonlinearly driven parabolic evolution out of measure-type initial data, as indeed having born consid-
erable fruit in various different contexts (cf. [1, 5, 12, 17], for instance); in frameworks of Keller-Segel
type systems, however, the few existing precedents dealing with such very singular data seem to concen-
trate on production-type chemotaxis models deviating from (1.2), in which smoothing can be expected
to occur, if at all, only for small initial data, or in one-dimensional cases, or in presence of additional
dissipative mechanisms such as superlinear cell degradation ([2, 19, 24]).

Main results. The goal of the present paper consists in deriving a result which indicates that in
the context of the two-dimensional version of (1.3), unlike in (1.2) dissipation dominates over tactic
aggregation also near measure-like structures, even of arbitrary size. To make this more precise, we
consider 




ut = ∆u−∇ · (u∇v), x ∈ Ω, t > 0,

vt = ∆v − uv, x ∈ Ω, t > 0,
∂u
∂ν

= ∂v
∂ν

= 0, x ∈ ∂Ω, t > 0,

u(·, 0) = µ0 and v(·, 0) = v0, x ∈ Ω.

(1.4)
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in the disk Ω = BR(0) ⊂ R
2, R > 0, with initial data such that

{
µ0 ∈ M(Ω) is nonnegative and radially symmetric with µ0 6≡ 0, and where

v0 ∈ L2(Ω) is nonnegative and radially symmetric,
(1.5)

where M(Ω) denotes the space of all Radon regular signed Borel measures on Ω, and throughout we
make use of the identification M(Ω) = (C0(Ω))⋆ according to the Riesz representation theorem ([4,
Theorem 4.31]). Here an element µ ∈ M(Ω) will be called radially symmetric if and only if for all
ψ ∈ C0(Ω) we have µ(ψ) = µ(Sψ), where the spherical average operator S : C0(Ω) → C0(Ω) is defined
through the relation

(Sψ)(x) :=
1

|∂B|x|(0)|

∫

∂B|x|(0)
ψ for ψ ∈ C0(Ω) and x ∈ Ω. (1.6)

In this setting, we shall see that indeed instantaneous and persistent regularization occurs in that a
global classical solution exists which attains (µ0, v0) in the apparently best possible topology compatible
with (1.5):

Theorem 1.1 Let R > 0 and Ω = BR(0) ⊂ R
2, and suppose that µ0 and v0 satisfy (1.5). Then there

exists at least one pair of nonnegative functions

{
u ∈ C2,1(Ω× (0,∞)) and

v ∈ C2,1(Ω× (0,∞)) ∩ L2
loc([0,∞);W 1,2(Ω))

(1.7)

such that u(·, t) and v(·, t) are radially symmetric for all t > 0, that (u, v) solves the boundary value
problem in (1.4) in the classical sense in Ω × (0,∞), and that furthermore with m > 0 as defined in
(2.1) we have ∫

Ω
u(·, t) = m for all t > 0 (1.8)

as well as
u(·, t) ⋆

⇀ µ0 in M(Ω) as tց 0 (1.9)

and
v(·, t) → v0 in L2(Ω) as tց 0. (1.10)

Main ideas and structure of the paper. The first step toward our construction of a solution via
approximation by smooth solutions (uε, vε) emanating from regularized initial data (u0ε, v0ε), (0, 1) ∋ εց
0, will be based on the well-known observation that within the class of smooth solutions the problem (1.4)
admits a favorable Lyapunov-type inequality (Lemma 2.5). Although the fact that the energy functional
appearing therein may initially be unbounded in the limit ε ց 0 impedes straightforward conclusions
thereof, an appropriately careful exploitation of this structural property, followed by temporally localized
bootstrap arguments, will enable us to derive some ε-independent estimates for (uε, vε) in regions where
t ≥ τ with arbitrary but fixed positive τ (Section 2.2), and to accordingly pass to the limit in any such
region (Section 2.3).
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A major challenge will thereafter be encountered in Section 3 when addressing the question how far the
limit function thereby obtained satisfies the initial conditions in (1.4). Our analysis in this direction
will firstly concentrate on the second solution component: By means of two quite standard regularity
arguments (Lemma 2.2 and Lemma 2.4), namely, v can be seen to actually enjoy some basic temporally
global regularity features which are sufficient to warrant fulfillment of its respective initial-boundary
sub-problem in (1.4) at least in an adequately weak sense. In conjunction with an additional reasoning
that asserts validity of a fundamental energy inequality associated with the evolution of the functional∫
Ω v

2 (Lemma 3.2), this will not only ensure (1.10), but moreover also imply, a posteriori, some strong
L2 convergence property of ∇vε (Lemma 3.4).

The latter will subsequently play a significant role in our verification of (1.9): Namely, when verifying
that also u solves the desired initial-boundary value problem in a certain generalized sense (Lemma
3.7), we shall rely on this as well as on a further fundamental and quite weak but temporally global L2

estimate for ∇uε
uε

(Lemma 2.3). Here essential use is made of the assumed radial symmetry, which in

fact warrants that via one-dimensional embeddings, the latter implies a space-time L2 estimate for uε in
arbitrary annuli (Lemma 3.6). On the basis of the obtained integral identity thus satisfied by the limit
(u, v), (1.9) will finally be derived in a two-step procedure involving approximation of test functions from
C0(Ω) by functions supported in such annuli (Lemma 3.8 and Lemma 3.10).

2 A priori estimates for regularized problems

2.1 Regularized problems and their basic properties

In order to suitably approximate solutions to (1.4), let us fix families (u0ε)ε∈(0,1) ⊂ C0(Ω) and (v0ε)ε∈(0,1) ⊂
W 1,∞(Ω) such that




u0ε is positive and radially symmetric in Ω with
∫
Ω u0ε = m := µ0(1) for all ε ∈ (0, 1) and

u0ε
⋆
⇀ µ0 in (C0(Ω))⋆ as εց 0, and that

v0ε is positive and radially symmetric in Ω with v0ε → v0 in L2(Ω) as εց 0

(2.1)

(see [4, Problem 24] for approximation of measures by smooth functions).

For ε ∈ (0, 1), we then consider





∂tuε = ∆uε −∇ · (uε∇vε), x ∈ Ω, t > 0,

∂tvε = ∆vε − uεvε, x ∈ Ω, t > 0,
∂uε
∂ν

= ∂vε
∂ν

= 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x), x ∈ Ω.

(2.2)

In the context of these regularized problems, global solvability is then asserted by known results:

Lemma 2.1 Let ε ∈ (0, 1). Then the problem (2.2) admits a global classical solution (uε, vε) ∈ (C0(Ω×
[0,∞)) ∩ C2,1(Ω × (0,∞)))2 such that both uε(·, t) and vε(·, t) are positive and radially symmetric in Ω
for all t > 0, and such that moreover

∫

Ω
uε(·, t) = m for all t > 0 (2.3)
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with m > 0 as defined in (2.1).

Proof. According to the regularity and positivity of (u0ε, v0ε) required in (2.1), a well-known result
([33]) asserts the global existence of a global classical solution, uniquely determined by the inclusions

{
uε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) and

vε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)) ∩⋃
q>2 L

∞
loc([0,∞);W 1,q(Ω)),

(2.4)

which has the claimed positivity features due to the strong maximum principle. The identity in (2.3)
thereupon becomes obvious by integrating the first equation in (2.2) over Ω × (0, t) for t > 0, and
the radial symmetry of the obtained solution is a straightforward consequence of the above uniqueness
property. �

Beyond (2.3), the problem (2.2) possesses some further basic but important features, the first among
which has extensively been used in the literature on this and closely related chemotaxis-consumption
systems ([18, 36]):

Lemma 2.2 The solutions of (2.2) satisfy

1

2

∫

Ω
v2ε(·, t) +

∫ t

0

∫

Ω
|∇vε|2 +

∫ t

0

∫

Ω
uεv

2
ε =

1

2

∫

Ω
v20ε for all ε ∈ (0, 1) and each t > 0. (2.5)

In particular, ∫ ∞

0

∫

Ω
|∇vε|2 +

∫ ∞

0

∫

Ω
uεv

2
ε ≤

1

2

∫

Ω
v20ε for any ε ∈ (0, 1). (2.6)

Proof. We multiply the second equation in (2.2) by vε and integrate by parts to find that

1

2

d

dt

∫

Ω
v2ε +

∫

Ω
|∇vε|2 +

∫

Ω
uεv

2
ε = 0 for all t > 0,

from which (2.5) and hence also (2.6) directly follow. �

As observed in [36], the L2 bound for ∇vε thereby implied can be used to derive some information on
the regularity of ∇uε, though yet involving a strongly dampening weight function at this stage.

Lemma 2.3 We have
∫ ∞

0

∫

Ω

|∇uε|2
(uε + 1)2

≤ 2m+
1

2

∫

Ω
v20ε for all ε ∈ (0, 1), (2.7)

where m > 0 is as in (2.1).

Proof. Following [36], we compute

d

dt

∫

Ω
ln(uε + 1) +

∫

Ω

uε

(uε + 1)2
∇uε · ∇vε =

∫

Ω

|∇uε|2
(uε + 1)2

for all t > 0, (2.8)

and use Young’s inequality to estimate
∣∣∣∣
∫

Ω

uε

(uε + 1)2
∇uε · ∇vε

∣∣∣∣ ≤
1

2

∫

Ω

u2ε
(uε + 1)4

|∇uε|2 +
1

2

∫

Ω
|∇vε|2 ≤

1

2

∫

Ω

|∇uε|2
(uε + 1)2

+
1

2

∫

Ω
|∇vε|2
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for all t > 0. As 0 ≤ ln(ξ + 1) ≤ ξ for all ξ ≥ 0, (2.8) therefore implies that

1

2

∫ t

0

∫

Ω

|∇uε|2
(uε + 1)2

≤
∫

Ω
ln
(
uε(·, t) + 1

)
−
∫

Ω
ln(u0ε + 1) +

1

2

∫ t

0

∫

Ω
|∇vε|2 ≤

∫

Ω
uε(·, t) +

1

2

∫ t

0

∫

Ω
|∇vε|2

for all t > 0, whence using (2.3) and Lemma 2.2 we arrive at (2.7). �

Most previous studies on (1.4) and its relatives have been relying in a more or less essential way on
the fact that the second equation therein preserves supposedly available L∞ bounds on v due to the
maximum principle ([18, 22, 29, 32, 33]). In the present setting of comparatively weak hypotheses on
initial regularity of v, we may accordingly resort to the following somewhat restricted boundedness
statement only.

Lemma 2.4 There exists C > 0 such that whenever ε ∈ (0, 1),

‖vε(·, t)‖L∞(Ω) ≤ C · (t− 1
2 + 1) for all t > 0. (2.9)

Proof. Relying on a well-known smoothing property of the Neumann heat semigroup (et∆)t≥0 on
the two-dimensional domain Ω, we can find c1 > 0 such that

‖et∆ψ‖L∞(Ω) ≤ c1 · (t−
1
2 + 1)‖ψ‖L2(Ω) for all ψ ∈ C0(Ω).

Since according to the nonnegativity of uεvε the comparison principle ensures the pointwise inequality
vε(·, t) ≤ et∆v0ε in Ω for all t > 0, by nonnegativity of vε we can therefore estimate

‖vε(·, t)‖L∞(Ω) ≤ ‖et∆v0ε‖L∞(Ω) ≤ c1 · (t−
1
2 + 1)‖v0ε‖L2(Ω) for all t > 0,

so that (2.9) becomes a consequence of (2.1). �

2.2 Estimates away from t = 0 via a refined energy analysis

Our analysis of solutions in space-time regions separated from the temporal origin will be based on the
following natural energy inequality associated with (1.4). Variants thereof have played essential roles in
numerous studies concerned with (1.4) and even with slightly more complex relatives ([9, 10, 29, 31]).

Lemma 2.5 For arbitrary ε ∈ (0, 1), we have

d

dt

{∫

Ω
uε lnuε +

1

2

∫

Ω

|∇vε|2
vε

}
+

∫

Ω

|∇uε|2
uε

+
1

(2 +
√
2)2

∫

Ω

|∇vε|4
v3ε

≤ 0 for all t > 0. (2.10)

Proof. Combining the first two equations from (2.2) in a straightforward manner (cf. [33, Lemma
3.2] for details), one can readily verify the identity

d

dt

{∫

Ω
uε lnuε +

1

2

∫

Ω

|∇vε|2
vε

}
+

∫

Ω

|∇uε|2
uε

+

∫

Ω
vε|D2 ln vε|2 +

1

2

∫

Ω

uε

vε
|∇vε|2 =

1

2

∫

∂Ω

1

vε
· ∂|∇vε|

2

∂ν

for all t > 0. Since ∂|∇vε|2

∂ν
= 0 throughout ∂Ω × (0,∞) by (2.2) and radial symmetry of vε, and since,

by a functional inequality established in [33, Lemma 3.3],
∫

Ω

|∇vε|4
v3ε

≤ (2 +
√
2)2

∫

Ω
vε|D2 ln vε|2 for all t > 0,
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this implies (2.10). �

Unlike in most precedent exploitations of inequalities like (2.10), the current situation of lacking infor-
mation on appropriate initial regularity gives rise to the considerations to be carried out in the next
three lemmata, the goal of which is to prepare the identification of small positive times at which the
energy functional in (2.10) remains conveniently small.

Our first step in this direction relies on the two-dimensional Moser-Trudinger inequality to conclude
from Lemma 2.3 and (2.3) that the first ingredient of the energy can be controlled as follows.

Lemma 2.6 For all τ ∈ (0, 1) there exists C(τ) > 0 with the property that for all ε ∈ (0, 1),

∣∣∣∣∣

{
t ∈ (0, τ)

∣∣∣∣
∫

Ω
uε(·, t) lnuε(·, t) ≤ C(τ)

}∣∣∣∣∣ ≥
3τ

4
. (2.11)

Proof. By means of Lemma 2.3 and (2.1), we may fix c1 > 0 such that

∫ 1

0

∫

Ω

|∇uε|2
(uε + 1)2

≤ c1 for all ε ∈ (0, 1), (2.12)

which we exploit as follows: Thanks to the Moser-Trudinger inequality ([7]) and the Poincaré inequality,
there exists c2 > 0 such that

∫

Ω
e|ψ| ≤ c2 exp

{
c2

∫

Ω
|∇ψ|2 + c2 ·

(∫

Ω
|ψ|

)2
}

for all ψ ∈W 1,2(Ω), (2.13)

and therein for t > 0 and ε ∈ (0, 1) we choose

ψ := ln
{
(uε(·, t) + 1) ln (uε(·, t) + e)

}
.

For that purpose we observe that then ψ ≥ 0 and
∫

Ω
ψ ≤

∫

Ω
ln
{
(uε + 1) · (uε + e)

}
≤ 2

∫

Ω
ln(uε + e) ≤ 2

∫

Ω
uε + 2e|Ω| ≤ c3 := 2m+ 2e|Ω| (2.14)

due to (2.3) and the rough estimate ln(ξ + e) ≤ ξ + e for ξ ≥ 0. Moreover, noting that

∣∣∣∣
d

dξ
ln
{
(ξ + 1) ln(ξ + e)

}∣∣∣∣ =
ln(ξ + e) + ξ+1

ξ+e

(ξ + 1) ln(ξ + e)
≤ ln(ξ + e) + 1

(ξ + 1) ln(ξ + e)
≤ 2

ξ + 1

for all ξ ≥ 0, we find that

∫

Ω
|∇ψ|2 ≤

∫

Ω

( 2

uε + 1

)2
|∇uε|2 = 4

∫

Ω

|∇uε|2
(uε + 1)2

,

so that (2.13) along with (2.14) implies that

ln

{
1

|Ω|

∫

Ω
(uε + 1) ln(uε + e)

}
≤ ln

c2

|Ω| + 4c2

∫

Ω

|∇uε|2
(uε + 1)2

+ c2c
2
3 for all ε ∈ (0, 1) and t > 0.
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In light of (2.12), this entails that if we let c4 := | ln c2
|Ω| |+4c1c2 + c2c

2
3, then hε(t) := ln

{
1
|Ω|

∫
Ω(uε(·, t)+

1) ln(uε(·, t) + e)
}
, ε ∈ (0, 1), t ∈ (0, 1), satisfies

∫ 1

0
hε(t)dt ≤ c4 for all ε ∈ (0, 1).

As hε evidently is nonnegative, if given any τ ∈ (0, 1) and ε ∈ (0, 1) we let S(τ, ε) := {t ∈ (0, τ) | hε(t) ≤
4c4
τ
}, then we can estimate

c4 ≥
∫ 1

0
hε(t)dt ≥

∫

(0,τ)\S(τ,ε)
hε(t)dt ≥ |(0, τ) \ S(τ, ε)| · 4c4

τ

and thus infer that |(0, τ) \ S(τ, ε)| ≤ τ
4 . Since therefore |S(τ, ε)| ≥ τ − τ

4 = 3τ
4 for all τ ∈ (0, 1) and

ε ∈ (0, 1), and since for any such τ and ε we trivially have

∫

Ω
uε(·, t) lnuε(·, t) ≤

∫

Ω
(uε(·, t) + 1) ln (uε(·, t) + e) ≤ |Ω|ehε(t) ≤ |Ω|e

4c4
τ for all t ∈ S(τ, ε),

the claimed inequality in (2.11) holds if we let C(τ) := |Ω|e
4c4
τ , for instance. �

In order to next derive a similar result for the second contribution
∫
Ω

|∇vε|2

vε
to the energy functional in

Lemma 2.5, in view of the singular factor 1
vε

therein we refine our information on gradient regularity of
vε by means of another testing procedure.

Lemma 2.7 Let ε ∈ (0, 1). Then with m > 0 taken from (2.1), we have

∫ t

0

∫

Ω

|∇vε|2
vε

≤ m

e
· t+

∫

Ω
v20ε +

|Ω|
e

for all t > 0. (2.15)

Proof. Using that vε is positive in Ω×(0,∞) by Lemma 2.1, we may integrate by parts in computing

d

dt

∫

Ω
vε ln vε =

∫

Ω
ln vε · (∆vε − uεvε) +

∫

Ω
(∆vε − uεvε)

= −
∫

Ω

|∇vε|2
vε

−
∫

Ω
uεvε ln vε −

∫

Ω
uεvε for all t > 0. (2.16)

Here the rightmost summand is nonpositive, whereas the validity of ξ ln ξ ≥ −1
e
for all ξ > 0 warrants

that

−
∫

Ω
uεvε ln vε ≤

1

e

∫

Ω
uε =

m

e
for all t > 0

according to (2.3). Upon integration in time, from (2.16) we thus infer that

∫ t

0

∫

Ω

|∇vε|2
vε

≤ m

e
· t+

∫

Ω
v0ε ln v0ε −

∫

Ω
vε(·, t) ln vε(·, t) for all t > 0,

9



which readily results in (2.15) due to the fact that the inequalities −1
e
≤ ξ ln ξ ≤ ξ2 for ξ > 0 ensure that

∫

Ω
v0ε ln v0ε −

∫

Ω
vε(·, t) ln vε(·, t) ≤

∫

Ω
v20ε +

|Ω|
e

for any t > 0. �

We can thereby establish our counterpart of Lemma 2.6 as follows.

Lemma 2.8 For all τ ∈ (0, 1) one can find C(τ) > 0 such that for all ε ∈ (0, 1),

∣∣∣∣∣

{
t ∈ (0, τ)

∣∣∣∣
∫

Ω

|∇vε(·, t)|2
vε(·, t)

≤ C(τ)

}∣∣∣∣∣ ≥
3τ

4
. (2.17)

Proof. This is an evident consequence of Lemma 2.7: Fixing c1 > 0 such that

∫ 1

0

∫

Ω

|∇vε|2
vε

≤ c1 for all ε ∈ (0, 1),

and writing hε(t) :=
∫
Ω

|∇vε(·,t)|2

vε(·,t)
as well as S(τ, ε) := {t ∈ (0, τ) | hε(t) ≤ 4c1

ε
} for τ ∈ (0, 1) and

ε ∈ (0, 1), we see that

c1 ≥
∫ 1

0
hε(t)dt ≥

∣∣∣(0, τ) \ S(τ, ε)
∣∣∣ · 4c1

τ
for all τ ∈ (0, 1) and ε ∈ (0, 1).

As thus |S(τ, ε)| ≥ 3τ
4 for all τ ∈ (0, 1) and ε ∈ (0, 1), (2.17) follows with C(τ) := 4c1

τ
. �

We are now in the position to draw suitable consequences from Lemma 2.5 through integration.

Lemma 2.9 For all τ ∈ (0, 1) there exists C(τ) > 0 such that

∫ ∞

τ

∫

Ω

|∇uε|2
uε

≤ C(τ) for all ε ∈ (0, 1) (2.18)

and ∫ ∞

τ

∫

Ω
|∇vε|4 ≤ C(τ) for all ε ∈ (0, 1) (2.19)

Proof. Given τ ∈ (0, 1), we first employ Lemma 2.6 and Lemma 2.8 to fix c1(τ) > 0 and c2(τ) >
0 with the properties that for each ε ∈ (0, 1), the sets S1(ε) := {t ∈ (0, τ) |

∫
Ω uε(·, t) lnuε(·, t) ≤

c1(τ)} and S2(ε) := {t ∈ (0, τ) |
∫
Ω

|∇vε(·,t)|2

vε(·,t)
≤ c2(τ)} satisfy |S1(ε)| ≥ 3τ

4 and |S2(ε)| ≥ 3τ
4 . As

thus |S1(ε) ∩ S2(ε)| ≥ τ
2 , for any such ε we can hence find some t0(ε) ∈ (0, τ) simultaneously fulfilling∫

Ω uε(·, t0(ε)) lnuε(·, t0(ε)) ≤ c1(τ) and
∫
Ω

|∇vε(·,t0(ε))|2

vε(·,t0(ε))
≤ c2(τ), so that yε(t) :=

∫
Ω uε(·, t) lnuε(·, t) +

1
2

∫
Ω

|∇vε(·,t)|2

vε(·,t)
, ε ∈ (0, 1), t > 0, satisfies

yε(t0(ε)) ≤ c1(τ) +
1

2
c2(τ) for all ε ∈ (0, 1).

10



As, on the other hand, again using that ξ ln ξ ≥ −1
e
for all ξ > 0 we see that

yε(t) ≥ −|Ω|
e

for all ε ∈ (0, 1) and t > 0,

on integrating (2.10) in time we find that for all ε ∈ (0, 1) and each t > t0(ε),

∫ t

t0(ε)

∫

Ω

|∇uε|2
uε

+
1

(2 +
√
2)2

∫ t

t0(ε)

∫

Ω

|∇vε|4
v3ε

≤ yε(t0(ε))− yε(t) ≤ c3(τ) := c1(τ) +
1

2
c2(τ) +

|Ω|
e
.

Since t0(ε) < τ , this shows that

∫ t

τ

∫

Ω

|∇uε|2
uε

≤ c3(τ) for all ε ∈ (0, 1) and t > τ,

and that moreover
∫ t

τ

∫

Ω
|∇vε|4 ≤ (2 +

√
2)2c3(τ) · sup

s>τ
‖vε(·, s)‖3L∞(Ω) for all ε ∈ (0, 1) and t > τ,

and thereby entails both (2.18) and (2.19). �

A careful refinement of a standard testing procedure next turns the two inequalities from the previous
lemma into Lp bounds on uε for arbitrary p > 1, locally away from t = 0.

Lemma 2.10 Let p > 1. Then for all τ ∈ (0, 1) one can find C(p, τ) > 0 such that whenever ε ∈ (0, 1),
∫

Ω
upε(·, t) ≤ C(p, τ) for all t > τ. (2.20)

Proof. On the basis of an integration by parts in the first equation from (2.2) we see that due to
Young’s inequality and the Hölder inequality,

1

p

d

dt

∫

Ω
upε + (p− 1)

∫

Ω
up−2
ε |∇uε|2

= (p− 1)

∫

Ω
up−1
ε ∇uε · ∇vε

≤ p− 1

2

∫

Ω
up−2
ε |∇uε|2 +

p− 1

2

∫

Ω
upε|∇vε|2

≤ p− 1

2

∫

Ω
up−2
ε |∇uε|2 +

p− 1

2
·
{∫

Ω
u2pε

} 1
2

·
{∫

Ω
|∇vε|4

} 1
2

(2.21)

for all t > 0. Here by the Gagliardo-Nirenberg inequality, (2.3) and Young’s inequality, we can find
positive constants c1(p), c2(p) and c3(p) such that whenever ε ∈ (0, 1),

p− 1

2
·
{∫

Ω
u2pε

} 1
2

·
{∫

Ω
|∇vε|4

} 1
2

=
p− 1

2
‖u

p
2
ε ‖2L4(Ω)‖∇vε‖2L4(Ω)

11



≤ c1(p) ·
{
‖∇u

p
2
ε ‖L2(Ω)‖u

p
2
ε ‖L2(Ω) + ‖u

p
2
ε ‖2

L
2
p (Ω)

}
· ‖∇vε‖2L4(Ω)

≤ c2(p)‖∇u
p
2
ε ‖L2(Ω)‖u

p
2
ε ‖L2(Ω)‖∇vε‖2L4(Ω) + c2(p)‖∇vε‖2L4(Ω)

≤ p− 1

p2
‖∇u

p
2
ε ‖2L2(Ω) + c3(p)‖u

p
2
ε ‖2L2(Ω)‖∇vε‖4L4(Ω) + c2(p)‖∇vε‖4L4(Ω) + c2(p)

=
p− 1

4

∫

Ω
up−2
ε |∇uε|2 +

{
c3(p)

∫

Ω
upε + c2(p)

}
·
∫

Ω
|∇vε|4 + c2(p) for all t > 0,

and similarly we obtain c4(p) > 0 and c5(p) > 0 such that for all ε ∈ (0, 1),
∫

Ω
upε = ‖u

p
2
ε ‖2L2(Ω) ≤

p− 1

p2
‖∇u

p
2
ε ‖2L2(Ω) + c4(p)‖u

p
2
ε ‖2

L
2
p (Ω)

≤ p− 1

4

∫

Ω
up−2
ε |∇uε|2 + c5(p)

for all t > 0. Therefore, (2.21) implies that yε(t) :=
∫
Ω u

p
ε(·, t) and hε(t) :=

∫
Ω |∇vε(·, t)|4, (t > 0), satisfy

1

p
y′ε(t) + yε(t) ≤ c3(p)yε(t)hε(t) + c2(p)hε(t) + c2(p) + c5(p) for all t > 0

and hence

y′ε(t) ≤
{
− p+ c6(p)hε(t)

}
· yε(t) + c6(p)hε(t) + c6(p) for all ε ∈ (0, 1) and t > 0 (2.22)

with c6(p) := p ·max{c3(p), c2(p) + c5(p)}.
Now for any fixed τ ∈ (0, 1), Lemma 2.9 provides c7(τ) > 0 such that

∫ ∞

τ
2

hε(t)dt ≤ c7(τ) for all ε ∈ (0, 1), (2.23)

and such that moreover ∫ τ

τ
2

∫

Ω
|∇√

uε|2 ≤ c7(τ) for all ε ∈ (0, 1),

where the latter in conjunction with (2.3) and the continuity of the embedding W 1,2(Ω) →֒ L2p(Ω)
ensures the existence of c8(p, τ) > 0 such that

∫ τ

τ
2

y
1
p
ε (t)dt =

∫ τ

τ
2

‖
√
uε(·, t)‖2L2p(Ω)dt ≤ c8(p, τ) for all ε ∈ (0, 1).

Therefore, given any ε ∈ (0, 1) we can find t0(ε) ∈ ( τ2 , τ) such that yε(t0(ε)) ≤ c9(p, τ) := (2c8(p,τ)
p

)p,
whence integrating (2.22) using (2.23) we may estimate yε(t) for t > t0(ε) according to

yε(t) ≤ yε(t0(ε)) · e
∫ t

t0(ε)
{−p+c6(p)hε(s)}ds + c6(p) ·

∫ t

t0(ε)
e
∫ t

s
{−p+c6(p)hε(σ)}dσ ·

{
hε(s) + 1

}
ds

≤ c9(p, τ) · e
c6(p)

∫ t
τ
2
hε(s)ds

+ c6(p) ·
∫ t

τ
2

e−p(t−s) · ec6(p)
∫ t

s
hε(σ)dσ ·

{
hε(s) + 1

}
ds

≤ c9(p, τ) · ec6(p)c7(τ) + c6(p) · ec6(p)c7(τ) ·
{∫ t

τ
2

hε(s)ds+

∫ t

τ
2

e−p(t−s)ds

}

≤ c9(p, τ) · ec6(p)c7(τ) + c6(p) · ec6(p)c7(τ) ·
{
c7(τ) +

1

p

}
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and conclude as intended. �

Based on the latter, we can additionally improve our knowledge on ∇vε.

Lemma 2.11 For all τ ∈ (0, 1) there exists C(τ) > 0 such that for each ε ∈ (0, 1),

∫

Ω
|∇vε(·, t)|4 ≤ C(τ) for all t > τ. (2.24)

Proof. Following a well-established testing procedure (cf. e.g. [33]), we use the pointwise relations

∇vε · ∇∆vε =
1
2∆|∇vε|2 − |D2vε|2 and |∆vε| ≤

√
2|D2vε| as well as, again, the fact that ∂|∇vε|2

∂ν
= 0 on

∂Ω× (0,∞) due to radial symmetry, to derive from (2.2) by means of Young’s inequality that

1

4

d

dt

∫

Ω
|∇vε|4 +

∫

Ω
|∇vε|4

=

∫

Ω
|∇vε|2∇vε · ∇(∆vε − uεvε) +

∫

Ω
|∇vε|4

=
1

2

∫

Ω
|∇vε|2∆|∇vε|2 −

∫

Ω
|∇vε|2|D2vε|2 +

∫

Ω
uεvε ·

{
2∇vε · (D2vε · ∇vε) + |∇vε|2∆vε

}
+

∫

Ω
|∇vε|4

≤ −1

2

∫

Ω

∣∣∣∇|∇vε|2
∣∣∣
2
−
∫

Ω
|∇vε|2|D2vε|2 + (2 +

√
2)

∫

Ω
uεvε|∇vε|2|D2vε|+

∫

Ω
|∇vε|4

≤ (2 +
√
2)2

4

∫

Ω
u2εv

2
ε |∇vε|2 +

∫

Ω
|∇vε|4

≤ 2

∫

Ω
|∇vε|4 +

(2 +
√
2)4

16

∫

Ω
u4εv

4
ε for all t > 0.

According to Lemma 2.10 and Lemma 2.4, this means that for each τ ∈ (0, 1) one can find c1(τ) > 0
such that the functions yε and hε defined by yε(t) :=

∫
Ω |∇vε(·, t)|4 and hε(t) := 8yε(t), t > 0 satisfy

y′ε(t) + 4yε(t) ≤ hε(t) + c1(τ) for all t >
τ

2
, (2.25)

and invoking Lemma 2.9 we can furthermore pick c2(τ) > 0 fulfilling

∫ ∞

τ
2

yε(t)dt =
1

8

∫ ∞

τ
2

hε(t)dt ≤ c2(τ) for all ε ∈ (0, 1).

This, namely, particularly enables us to choose t0(ε) ∈ ( τ2 , τ) such that yε(t0(ε)) ≤ 2c2
τ
, and moreover

allows us to infer upon integrating (2.25) that indeed

yε(t) ≤ yε(t0(ε)) · e−4(t−t0(ε)) +

∫ t

t0(ε)
e−4(t−s) ·

{
hε(s) + c1(τ)

}
ds

≤ 2c2
τ

+

∫ t

τ
2

hε(s)ds+ c1(τ)

∫ t

τ
2

e−4(t−s)ds

≤ 2c2
τ

+ 8c2(τ) +
c1(τ)

4

13



for all ε ∈ (0, 1) and any t > τ > t0(ε). �

Using that the integrability exponent in (2.24) is large than 2, by localizing an essentially well-established
argument we can assert L∞ bounds for uε:

Lemma 2.12 Let τ ∈ (0, 1). Then there exists C(τ) > 0 such that for any choice of ε ∈ (0, 1), we have

‖uε(·, t)‖L∞(Ω) ≤ C(τ) for all t > τ. (2.26)

Proof. We fix any q ∈ (2, 4) and then obtain from known theory of parabolic smoothing estimate([11])
that there exist c1 = c1(q) > 0 and c2 > 0 such that for the Neumann heat semigroup (et∆)t≥0 in Ω we
have

‖et∆∇·ψ‖L∞(Ω) ≤ c1t
− 1

2
− 1

q ‖ψ‖Lq(Ω) for all t ∈ (0, 1) and any ψ ∈ C1(Ω;R2) with ∂ψ
∂ν

|∂Ω = 0 (2.27)

and
‖et∆ψ‖L∞(Ω) ≤ c2t

−1‖ψ‖L1(Ω) for all t ∈ (0, 1) and each ψ ∈ C0(Ω). (2.28)

Apart from that, given τ ∈ (0, 1), relying on the fact that q < 4 we may use the Hölder inequality and
combine Lemma 2.10 with Lemma 2.11 to see that with some c3(τ) > 0 we have

‖uε(·, t)∇vε(·, t)‖Lq(Ω) ≤ ‖uε(·, t)‖
L

4q
4−q (Ω)

‖∇vε(·, t)‖L4(Ω) ≤ c3(τ) for all ε ∈ (0, 1) and t >
τ

2
.

In view of (2.3), again taking m > 0 from (2.1) we can thus estimate uε(·, t) for arbitrary t > τ by means
of a associated variation-of-constants representation according to

‖uε(·, t)‖L∞(Ω) =

∥∥∥∥e
τ
2
∆uε

(
·, t− τ

2

)
−
∫ t

t− τ
2

e(t−s)∆∇ ·
(
uε(·, s)∇vε(·, s)

)
ds

∥∥∥∥
L∞(Ω)

≤ c2 ·
(τ
2

)−1∥∥∥uε
(
·, t− τ

2

)∥∥∥
L1(Ω)

+ c1

∫ t

t− τ
2

(t− s)−
1
2
− 1

q ‖uε(·, s)∇vε(·, s)‖Lq(Ω)ds

≤ 2c2m

τ
+ c1c3(τ)

∫ t

t− τ
2

(t− s)
− 1

2
− 1

q ds for all ε ∈ (0, 1).

Since herein
∫ t
t− τ

2
(t − s)

− 1
2
− 1

q ds =
∫ τ

2
0 σ

− 1
2
− 1

q dσ = 2q
q−2 · ( τ2 )

q−2
2q according to the restriction q > 2, this

establishes (2.26). �

As a final bootstrapping step, in quite a standard manner we achieve higher-order estimates.

Lemma 2.13 For all τ ∈ (0, 1) and T > 1 there exist θ = θ(τ, T ) ∈ (0, 1) and C(τ, T ) > 0 such that

‖uε‖
C2+θ,1+ θ

2 (Ω×[τ,T ])
+ ‖vε‖

C2+θ,1+ θ
2 (Ω×[τ,T ])

≤ C(τ, T ) for all ε ∈ (0, 1). (2.29)

Proof. This can be obtained by following a straightforward bootstrap procedure: According to
the boundedness results from Lemma 2.12 and Lemma 2.11, for each τ ∈ (0, 1) and T > 1 standard

parabolic Hölder regularity theory ([23]) asserts boundedness of (uε)ε∈(0,1) in Cθ1,
θ1
2 (Ω × [ τ4 , 4T ]) for

some θ1 = θ1(τ, T ) ∈ (0, 1). Thereupon, classical interior parabolic Schauder theory applies so as

to yield bounds firstly for (vε)ε∈(0,1) in C2+θ2,1+
θ2
2 (Ω × [ τ2 , 2T ]), and secondly also for (uε)ε∈(0,1) in

C2+θ3,1+
θ3
2 (Ω× [τ, T ]), with some suitably small θ2 = θ2(τ, T ) ∈ (0, 1) and θ3 = θ3(τ, T ) ∈ (0, 1). �
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2.3 Constructing a limit and identifying its solution properties for t > 0

Now a standard extraction process enables us to identify a limit with the desired solution properties for
positive times.

Lemma 2.14 There exists (εj)j∈N ⊂ (0, 1) such that εj ց 0 as j → ∞, and such that

uε → u in C2,1
loc (Ω× (0,∞)) (2.30)

and
vε → v in C2,1

loc (Ω× (0,∞)) (2.31)

as well as
∇vε ⇀ ∇v in L2(Ω× (0,∞)) (2.32)

as ε = εj ց 0, where u and v are nonnegative radially symmetric functions from C2,1(Ω × (0,∞)),
with ∇v ∈ L2(Ω × (0,∞)), which satisfy the boundary value problem in (1.4) in the classical sense in
Ω× (0,∞), and which moreover have the mass conservation property (1.8).

Proof. In view of the Arzelà-Ascoli theorem and weak sequential precompactness of bounded sets in
L2(Ω× (0,∞)), due to (2.2), (2.1) and (2.3) all statements are immediate consequences of Lemma 2.13
and Lemma 2.2. �

3 Solution properties near t = 0

The key part of our analysis now consists in verifying that despite the poor regularity information on the
initial data, the limit functions u and v obtained in Lemma 2.14 are sufficiently well-behaved near t = 0
so as to allow for the claimed statements (1.10) and, especially, (1.9) concerning their initial traces. Our
reasoning in this direction will be characterized by some significant interrelation, firstly concentrating
on aspects related to the second solution component, and thereafter crucially relying on parts thereof
when addressing the first.

3.1 Initial behavior of v

We first make sure that indeed v solves its sub-problem of the initial-boundary value problem in (1.4)
in a suitably generalized sense:

Lemma 3.1 Let u and v be as provided by Lemma 2.14. Then v and uv belong to L1
loc(Ω× [0,∞)) with

∫ ∞

0

∫

Ω
vϕt +

∫

Ω
v0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇v · ∇ϕ+

∫ ∞

0

∫

Ω
uvϕ for all ϕ ∈ C∞

0 (Ω× [0,∞)). (3.1)

Proof. The claimed integrability properties are immediate consequences of Lemma 2.14, because
Lemma 2.4 along with Fatou’s lemma warrants that actually v ∈ L1

loc([0,∞);L∞(Ω)).

To derive (3.1), we fix ϕ ∈ C∞
0 (Ω× [0,∞)) and then obtain from (2.2) that

∫ ∞

0

∫

Ω
vεϕt +

∫

Ω
v0εϕ(·, 0) =

∫ ∞

0

∫

Ω
∇vε · ∇ϕ+

∫ ∞

0

∫

Ω
uεvεϕ for all ε ∈ (0, 1), (3.2)
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and here (2.1) guarantees that
∫

Ω
v0εϕ(·, 0) →

∫

Ω
v0ϕ(·, 0) as εց 0. (3.3)

Moreover, taking (εj)j∈N ⊂ (0, 1) as given by Lemma 2.14 we know from the latter that ∇vε ⇀ ∇v in
L2(Ω× (0,∞)) and hence infer that

∫ ∞

0

∫

Ω
∇vε · ∇ϕ→

∫ ∞

0

∫

Ω
∇v · ∇ϕ as ε = εj ց 0. (3.4)

To prepare an appropriate limit procedure in the first and last summand in (3.2), in accordance with
Lemma 2.4 we pick c1 > 0 such that

‖vε(·, t)‖L∞(Ω) ≤ c1t
− 1

2 for all ε ∈ (0, 1) and any t ∈ (0, 1), (3.5)

and let η > 0 be given. Then fixing τ ∈ (0, 1) in such a way that with m > 0 as in (2.1) we have

2c1m‖ϕ‖L∞(Ω×(0,∞))

√
τ <

η

3
, (3.6)

m‖ϕ‖L∞(Ω×(0,∞))

∫ τ

0
‖v(·, t)‖L∞(Ω)dt <

η

3
, (3.7)

2c1‖ϕt‖L∞(Ω×(0,∞))

√
τ <

η

3
(3.8)

and

‖ϕt‖L∞(Ω×(0,∞))

∫ τ

0
‖v(·, t)‖L∞(Ω)dt <

η

3
, (3.9)

we split ∫ ∞

0

∫

Ω
uεvεϕ =

∫ τ

0

∫

Ω
uεvεϕ+

∫ ∞

τ

∫

Ω
uεvεϕ for all ε ∈ (0, 1), (3.10)

where in view of the compactness of suppϕ, Lemma 2.14 implies the existence of ε0 ∈ (0, 1) such that
∣∣∣∣
∫ ∞

τ

∫

Ω
uεvεϕ−

∫ ∞

τ

∫

Ω
uvϕ

∣∣∣∣ <
η

3
for all ε ∈ (εj)j∈N such that ε < ε0.

Since, apart from that, (2.3) together with (3.5), (3.6) and (3.7) ensures that
∣∣∣∣
∫ τ

0

∫

Ω
uεvεϕ

∣∣∣∣ ≤ m‖ϕ‖L∞(Ω×(0,∞))

∫ τ

0
‖vε(·, t)‖L∞(Ω)dt

≤ m‖ϕ‖L∞(Ω×(0,∞)) · c1
∫ τ

0
t−

1
2dt = m‖ϕ‖L∞(Ω×(0,∞)) · 2c1

√
τ

<
η

3
for all ε ∈ (0, 1)

and that
∣∣∣∣
∫ τ

0

∫

Ω
uvϕ

∣∣∣∣ ≤ m‖ϕ‖L∞(Ω×(0,∞))

∫ τ

0
‖v(·, t)‖L∞(Ω)dt <

η

3
,
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and since η > 0 was arbitrary, it follows from (3.10) that

∫ ∞

0

∫

Ω
uεvεϕ→

∫ ∞

0

∫

Ω
uvϕ as ε = εj ց 0. (3.11)

Relying of (3.8) and (3.9), in quite a similar manner we can verify that also

∫ ∞

0

∫

Ω
vεϕt →

∫ ∞

0

∫

Ω
vϕt as ε = εj ց 0,

which in conjunction with (3.3), (3.4) and (3.11) shows that (3.2) in fact implies (3.1). �

By adapting an argument from [36], we can next verify that the limit v from lemma 2.14 actually satisfies
the expected counterpart of (2.5).

Lemma 3.2 If u and v are as in Lemma 2.14, then uv2 ∈ L1(Ω× (0,∞)), and the identity

1

2

∫

Ω
v2(·, t) +

∫ t

0

∫

Ω
|∇v|2 +

∫ t

0

∫

Ω
uv2 =

1

2

∫

Ω
v20 (3.12)

holds for all t > 0.

Proof. In view of Lemma 2.2, the convergence properties from Lemma 2.14 together with Fatou’s
lemma entail that indeed uv2 belongs to L1(Ω× (0,∞)), and that

1

2

∫

Ω
v2(·, t) +

∫ t

0

∫

Ω
|∇v|2 +

∫ t

0

∫

Ω
uv2 ≤ 1

2

∫

Ω
v20 for all t > 0. (3.13)

In order to verify that moreover

1

2

∫

Ω
v2(·, t) +

∫ t

0

∫

Ω
|∇v|2 +

∫ t

0

∫

Ω
uv2 ≥ 1

2

∫

Ω
v20 for all t > 0, (3.14)

for η > 0 we introduce Φη(ξ) :=
1
2 · ξ2

1+ηξ , ξ ≥ 0, and compute

Φ′
η(ξ) =

1

2
· 2ξ + ηξ2

(1 + ηξ)2
= ξ − η

2
· ξ

2(3 + 2ηξ)

(1 + ηξ)2
, ξ ≥ 0, (3.15)

as well as

Φ′′
η(ξ) =

1

(1 + ηξ)3
, ξ ≥ 0. (3.16)

Since thus, in particular, Φη is convex on [0,∞), we may follow a straightforward approximation pro-
cedure, as detailed e.g. in [30, 36] in closely related settings, to firstly derive from the weak identity in
Lemma 3.1 that for each η > 0,

∫

Ω
Φη(v(·, t)) +

∫ t

0

∫

Ω
Φ′′
η(v)|∇v|2 +

∫ t

0

∫

Ω
uvΦ′

η(v) ≥
∫

Ω
Φη(v0) for a.e. t > 0, (3.17)
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which clearly extends so as to remain valid actually for all t > 0 due to the continuity of v in Ω× (0,∞)
asserted by Lemma 2.14. Since using (3.16) we find that for all ξ ≥ 0 we have Φη(ξ) ր 1

2ξ
2 and

Φ′′
η(ξ) ր 1 as η ց 0, we may invoke Beppo Levi’s theorem to infer that for each t > 0, we herein have

∫

Ω
Φη(v(·, t)) ր

1

2

∫

Ω
v2(·, t) and

∫

Ω
Φη(v0) ր

1

2

∫

Ω
v20 (3.18)

as well as ∫ t

0

∫

Ω
Φ′′
η(v)|∇v|2 ր

∫ t

0

∫

Ω
|∇v|2 (3.19)

as η ց 0. Moreover, (3.15) entails that

∫ t

0

∫

Ω
uvΦ′

η(v) =

∫ t

0

∫

Ω
uv2 − 1

2

∫ t

0

∫

Ω

ηv(3 + 2ηv)

(1 + ηv)2
· uv2 for all t > 0 and η > 0,

where noting that

ηv(3 + 2ηv)

(1 + ηv)2
· uv2 → 0 a.e. in Ω× (0,∞) as η ց 0,

and that

∣∣∣ηv(3 + 2ηv)

(1 + ηv)2
· uv2

∣∣∣ ≤ 2uv2 in Ω× (0,∞) for all η > 0,

in view of the inclusion uv2 ∈ L1(Ω× (0,∞)) we infer from the dominated convergence theorem that for
any t > 0,

∫ t

0

∫

Ω
uvΦ′

η(v) →
∫ t

0

∫

Ω
uv2 as η ց 0.

In combination with (3.18) and (3.19), this shows that (3.17) indeed implies (3.14), and hence completes
the proof. �

A first conclusion thereof already establishes (1.10).

Lemma 3.3 With v taken from Lemma 2.14, we have

v(·, t) → v0 in L2(Ω) as tց 0. (3.20)

Proof. Since |∇v|2 and uv2 are elements of L1(Ω× (0, 1)) according to Lemma 3.2, and since thus,
in particular,

∫ t

0

∫

Ω
|∇v|2 → 0 and

∫ t

0

∫

Ω
uv2 → 0 as tց 0,

from (3.12) we obtain that
‖v(·, t)‖L2(Ω) → ‖v0‖L2(Ω) as tց 0. (3.21)
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Apart from that, fixing t0 > 0 and an arbitrary ψ ∈ C∞(Ω) we can readily verify by means of a standard
approximation procedure that the weak identity (3.1) remains valid also for ϕ(x, t) := ζh(t) · ψ(x),
(x, t) ∈ Ω× [0,∞), where h ∈ (0, 1) is arbitrary and

ζh(t) :=





1 if t ∈ [0, t0],

1− t−t0
h

if t ∈ (t0, t0 + h),

0 if t ≥ t0 + h.

(3.22)

Accordingly,

−1

h

∫ t0+h

t0

∫

Ω
vψ +

∫

Ω
v0ψ =

∫ t0

0

∫

Ω
∇v · ∇ψ +

∫ t0

0

∫

Ω
uvψ + λ(h) for all h ∈ (0, 1), (3.23)

where

λ(h) :=

∫ t0+h

t0

∫

Ω
ζh(t) ·

{
∇v(x, t) · ∇ψ(x) + u(x, t)v(x, t)ψ(x)

}
dxdt, h ∈ (0, 1),

satisfies

|λ(h)| ≤ ‖∇ψ‖L∞(Ω) ·
∫ t0+h

t0

∫

Ω
|∇v|+ ‖ψ‖L∞(Ω) ·

∫ t0+h

t0

∫

Ω
uv → 0 as hց 0

due to, e.g., the inclusions ∇v ∈ L1(Ω× (t0, t0+1);R2) and uv ∈ L1(Ω× (t0, t0+1)) asserted by Lemma
3.1. Since furthermore v is continuous on Ω× {t0} according to Lemma 2.14, we also know that

−1

h

∫ t0+h

t0

∫

Ω
vψ → −

∫

Ω
v(·, t0)ψ as hց 0,

so that (3.23) implies that for any such ψ,

∫

Ω
v(·, t0)ψ −

∫

Ω
v0ψ = −

∫ t0

0

∫

Ω
∇v · ∇ψ −

∫ t0

0

∫

Ω
uvψ for all t0 > 0.

Again relying on the local integrability of ∇v and uv on Ω× [0,∞), from this we infer in a way similar
to the above that indeed

∫

Ω
v(·, t0)ψ −

∫

Ω
v0ψ → 0 as t0 ց 0.

Since C∞(Ω) is dense in L2(Ω), and since (v(·, t))t∈(0,1) is bounded in L2(Ω) by e.g. (3.12), this ensures
that v(·, t0)⇀ v0 in L2(Ω) as t0 ց 0, and thereby, when combined with (3.21), establishes (3.20). �

Apart from that, Lemma 3.2 secondly implies strong L2 convergence of ∇vε along the sequence from
Lemma 2.14.

Lemma 3.4 Let v and (εj)j∈N ⊂ (0, 1) be as given by Lemma 2.14. Then for each T > 0,

∇vε → ∇v in L2(Ω× (0, T )) as ε = εj ց 0. (3.24)
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Proof. By relying on (3.12), our argument follows the basic approach from [36], but in contrast to
the situation addressed there, due to lacking information on boundedness of v0, and hence on possible
convergence of uεv

2
ε in L1 as ε = εj ց 0, we need to adequately cope with the rightmost summand on

the left of (3.12).

To achieve this, we start with the observation that thanks to Lemma 2.14 and Fatou’s lemma, for each
T > 0 we separately have

∫ T

0

∫

Ω
|∇v|2 ≤ lim inf

ε=εjց0

∫ T

0

∫

Ω
|∇vε|2 and

∫ T

0

∫

Ω
uv2 ≤ lim inf

ε=εjց0

∫ T

0

∫

Ω
uεv

2
ε , (3.25)

whereas Lemma 2.14 moreover entails that
∫

Ω
v2ε(·, T ) →

∫

Ω
v2(·, T ) as ε = εj ց 0.

Therefore, by once more using (2.2) we find that due to (2.1) and Lemma 3.2,

∫ T

0

∫

Ω
|∇v|2 +

∫ T

0

∫

Ω
uv2 ≤ lim inf

ε=εjց0

{∫ T

0

∫

Ω
|∇vε|2 +

∫ T

0

∫

Ω
uεv

2
ε

}

≤ lim sup
ε=εjց0

{∫ T

0

∫

Ω
|∇vε|2 +

∫ T

0

∫

Ω
uεv

2
ε

}

= lim sup
ε=εjց0

{
1

2

∫

Ω
v20ε −

1

2

∫

Ω
v2ε(·, T )

}

=
1

2

∫

Ω
v20 −

1

2

∫

Ω
v2(·, T ) =

∫ T

0

∫

Ω
|∇v|2 +

∫ T

0

∫

Ω
uv2.

In consequence, both inequalities in (3.25) must actually be identities, whence in particular

∫ T

0

∫

Ω
|∇vε|2 →

∫ T

0

∫

Ω
|∇v|2 as ε = εj ց 0,

so that (3.24) results from (2.32). �

3.2 Initial behavior of u

Now the verification of (1.9) turns out to be somewhat more subtle, and our reasoning in this context
will strongly rely on the assumed radial symmetry, although our first and basic step toward this is yet
quite independent of this additional hypothesis, merely combining Lemma 2.3 with (2.3):

Lemma 3.5 There exists C > 0 such that
∫ ∞

0

∥∥∥∇
√
uε(·, t) + 1

∥∥∥
2

L1(Ω)
dt ≤ C for all ε ∈ (0, 1). (3.26)
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Proof. By employing the Cauchy-Schwarz inequality and recalling (2.3) we see that with m > 0 from
(2.1) we have

∫ ∞

0

∥∥∥∇
√
uε(·, t) + 1

∥∥∥
2

L1(Ω)
dt =

1

4

∫ ∞

0

{∫

Ω

|∇uε|√
uε + 1

}2

≤ 1

4

∫ ∞

0

{∫

Ω

|∇uε|2
(uε + 1)2

}
·
{∫

Ω
(uε + 1)

}
=

m+ |Ω|
4

∫ ∞

0

∫

Ω

|∇uε|2
(uε + 1)2

for all ε ∈ (0, 1). Therefore, (3.26) results from Lemma 2.3. �

From now on, we make essential use of our assumption on radial symmetry of solutions, and in order
to avoid abundant notation during our subsequent arguments in this direction, whenever convenient we
switch to the usual radial notation in writing, e.g., uε(r, t) instead of uε(x, t) with r = |x| ∈ [0, R].

By viewing (3.26) as an integral inequality involving the de facto spatially one-dimensional gradient
∂r
√
uε + 1, namely, through suitable interpolation we may exploit the latter in annular regions excluding

the origin so as to obtain the following spatio-temporal L2 bound for uε.

Lemma 3.6 For all δ ∈ (0, R) and any T > 0 one can find C(δ, T ) > 0 such that

∫ T

0

∫

Ω\Bδ(0)
u2ε ≤ C(δ, T ) for all ε ∈ (0, 1). (3.27)

Proof. According to the one-dimensional Gagliardo-Nirenberg inequality, given δ ∈ (0, R) we can fix
c1(δ) > 0 such that

‖ψ‖4L4((δ,R)) ≤ c1(δ)‖ψr‖2L1((δ,R))‖ψ‖2L2((δ,R)) + c1(δ)‖ψ‖4L2((δ,R)) for all ψ ∈W 1,1((δ,R)). (3.28)

Apart from that, from Lemma 3.5 and (2.3) we obtain c2 > 0 and c3 > 0 such that

∫ ∞

0

{∫ R

0
r ·

∣∣∣∂r
√
uε(r, t) + 1

∣∣∣dr
}2

dt ≤ c2 for all ε ∈ (0, 1)

as well as

∫ R

0
r ·

∣∣∣
√
uε(r, t) + 1

∣∣∣
2
dr ≤ c3 for all ε ∈ (0, 1) and any t > 0.

These inequalities in particular imply that whenever ε ∈ (0, 1),

∫ ∞

0

∥∥∥∂r
√
uε(·, t) + 1

∥∥∥
2

L1((δ,R))
dt ≤ c2

δ2

and

∥∥∥
√
uε(·, t) + 1

∥∥∥
L2((δ,R))

≤
√
c3

δ
for all t > 0,
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whence an application of (3.28) shows that

∫ T

0

∫

Ω\Bδ(0)
(uε + 1)2 = 2π

∫ T

0

∫ R

δ

r ·
(
uε(r, t) + 1

)2
drdt

≤ 2πR

∫ T

0

∫ R

δ

(
uε(r, t) + 1

)2
drdt = 2πR

∫ T

0

∥∥∥
√
uε(·, t) + 1

∥∥∥
4

L4((δ,R))
dt

≤ 2πRc1

∫ T

0

∥∥∥∂r
√
uε(·, t) + 1

∥∥∥
2

L1((δ,R))

∥∥∥
√
uε(·, t) + 1

∥∥∥
2

L2((δ,R))
dt

+2πRc1

∫ T

0

∥∥∥
√
uε(·, t) + 1

∥∥∥
4

L2((δ,R))
dt

≤ 2πRc1 ·
c2

δ2
· c3
δ

+ 2πRc1 ·
c23
δ2

· T for all ε ∈ (0, 1)

and thereby entails (3.27). �

Along with the strong convergence statement from Lemma 3.4, the weak compactness property thereby
implied enables us to make sure that at least outside the spatial origin, also u satisfies a certain weak
formulation of the initial-boundary value problem in (1.4):

Lemma 3.7 Let u and v be as given by Lemma 2.14. Then the identity

−
∫ ∞

0

∫

Ω
uϕt − µ0(ϕ(·, 0)) =

∫ ∞

0

∫

Ω
u∆ϕ+

∫ ∞

0

∫

Ω
u∇v · ∇ϕ (3.29)

is valid for each ϕ ∈ C∞
0 ((Ω \ {0})× [0,∞)) fulfilling ∂ϕ

∂ν
= 0 on ∂Ω× (0,∞).

Proof. According to (2.2), given any such ϕ we have

−
∫ ∞

0

∫

Ω
uεϕt −

∫

Ω
u0εϕ(·, 0) =

∫ ∞

0

∫

Ω
uε∆ϕ+

∫ ∞

0

∫

Ω
uε∇vε · ∇ϕ for all ε ∈ (0, 1), (3.30)

where by (2.1), ∫

Ω
u0εϕ(·, 0) → µ0(ϕ(·, 0)) as εց 0. (3.31)

Moreover, using that suppϕ ⊂ (Ω \ Bδ(0)) × [0, T ] for some δ > 0 and T > 0, we may employ Lemma
3.6, which namely guarantees that with (εj)j∈N ⊂ (0, 1) taken from Lemma 2.14,

uε ⇀ u in L2
(
(Ω \Bδ(0))× (0, T )

)
, (3.32)

and that hence

−
∫ ∞

0

∫

Ω
uεϕt = −

∫ T

0

∫

Ω\Bδ(0)
uεϕt → −

∫ T

0

∫

Ω\Bδ(0)
uϕt = −

∫ ∞

0

∫

Ω
uϕt (3.33)

and, similarly, ∫ ∞

0

∫

Ω
uε∆ϕ→

∫ ∞

0

∫

Ω
u∆ϕ (3.34)
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as ε = εj ց 0. Since furthermore ∇vε → ∇v in L2(Ω × (0, T )) as ε = εj ց 0 by Lemma 3.4, again by
means of (3.32) we conclude that also

∫ ∞

0

∫

Ω
uε∇vε · ∇ϕ→

∫ ∞

0

∫

Ω
u∇v · ∇ϕ as ε = εj ց 0,

and that therefore (3.29) results from (3.30), (3.31), (3.33) and (3.34). �

Properly evaluating the latter, we can next make sure that u indeed attains µ0 as its initial trace, albeit
yet in a topology weaker than that claimed in Theorem 1.1.

Lemma 3.8 The function u gained in Lemma 2.14 has the property that for each ψ ∈ C∞
0 (Ω \ {0})

satisfying ∂ψ
∂ν

= 0 on ∂Ω, ∫

Ω
u(·, t)ψ → µ0(ψ) as tց 0. (3.35)

Proof. Similar to the proof of Lemma 3.1, for t0 > 0 and h ∈ (0, 1) we let ζh(t) := 1 for t ∈ [0, t0],
ζh(t) := 1 − t−t0

h
for t ∈ (t0, t0 + h) and ζh(t) := 0 for t ≥ t0 + h, and then see through a standard

approximation that (3.29) remains valid for ϕ(x, t) := ζh(t) · ψ(x), (x, t) ∈ (Ω \ {0}) × [0,∞), and thus
yields the identity

1

h

∫ t0+h

t0

∫

Ω
uψ − µ0(ψ) =

∫ t0

0

∫

Ω
u∆ψ +

∫ t0

0

∫

Ω
u∇v · ∇ψ

+

∫ t0+h

t0

ζh(t) ·
∫

Ω

{
u∆ψ + u∇v · ∇ψ

}
for all h ∈ (0, 1). (3.36)

Here using the continuity of u and of ∇v on Ω×{t0}, as asserted by Lemma 2.14, we see that as hց 0,

1

h

∫ t0+h

t0

∫

Ω
uψ →

∫

Ω
u(·, t0)ψ

and
∫ t0+h

t0

ζh(t) ·
∫

Ω

{
u∆ψ + u∇v · ∇ψ

}
→ 0,

whence (3.36) implies that
∫

Ω
u(·, t0)ψ − µ0(ψ) =

∫ t0

0

∫

Ω
u∆ψ +

∫ t0

0

∫

Ω
u∇v · ∇ψ for all t0 > 0.

But since suppψ ⊂ Ω \Bδ(0) for some δ ∈ (0, R) by hypothesis, and since from Lemma 3.6 and Lemma
2.14 we know that the functions u and u|∇v| belong to L1((Ω \Bδ(0))× (0, 1)), this implies that indeed

∫

Ω
u(·, t0)ψ − µ0(ψ) → 0

as t0 ց 0. �

In order to turn the above into the statement actually intended in (1.9), let us include a brief argument
ensuring that any continuous radial function on Ω vanishing at the origin can be suitably approximated
by functions complying with the assumptions from Lemma 3.8.
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Lemma 3.9 Let R > 0 and ρ ∈ C0([0, R]) be such that ρ(0) = 0. Then for all η > 0 one can find
ρη ∈ C∞

0 ((0, R]) fulfilling
‖ρη − ρ‖L∞((0,R)) < η (3.37)

as well as
ρ′η(R) = 0. (3.38)

Proof. Since ρ ∈ C0([0, R]), for each η > 0 the Weierstraß approximation theorem provides ρ̂η ∈
C∞([0, R]) such that

‖ρ̂η − ρ‖L∞((0,R)) <
η

4
. (3.39)

As then also ρ̂′η in particular belongs to L1((0, R)), by density of C∞
0 ((0, R)) in L1((0, R)) we can find

Pη ∈ C∞
0 ((0, R)) satisfying

‖Pη − ρ̂′η‖L1((0,R)) <
η

2
. (3.40)

Letting

ρη(r) :=

∫ r

0
Pη(s)ds, r ∈ [0, R],

we then immediately see that ρη ∈ C∞([0, R]) vanishes in some neighborhood of r = 0 and moreover
satisfies ρ′η = Pη ≡ 0 near r = R, which especially warrants (3.38). Moreover, combining (3.39) with
(3.40) and our assumption that ρ(0) = 0, we infer that indeed

|ρη(r)− ρ(r)| ≤ |ρη(r)− ρ̂η(r)|+ |ρ̂η(r)− ρ(r)|

=

∣∣∣∣
∫ r

0

{
Pη(s)− ρ̂′η(s)

}
ds− ρ̂η(0)

∣∣∣∣+ |ρ̂η(r)− ρ(r)|

≤
∫ r

0
|Pη(s)− ρ̂′η(s)|ds+ |ρ̂η(0)− ρ(0)|+ |ρ̂η(r)− ρ(r)|

≤ ‖Pη − ρ̂′η‖L1((0,R)) + 2‖ρ̂η − ρ‖L∞((0,R))

<
η

2
+ 2 · η

4
= η

for all r ∈ (0, R). �

By means of suitable approximation based on the latter, we can now finally derive the claimed conver-
gence property of the first solution component near the temporal origin.

Lemma 3.10 For arbitrary ψ ∈ C0(Ω), the function u obtained in Lemma 2.14 satisfies
∫

Ω
u(·, t)ψ → µ0(ψ) as tց 0. (3.41)

Proof. For fixed ψ ∈ C0(Ω) and η > 0, we let the spherical average Sψ ∈ C0(Ω) be as defined
through (1.6), and abbreviating ψ0 := ψ(0) we infer from the continuity of the mapping µ0 : C

0(Ω) → R

at Sψ − ψ0 that there exists η1(η) > 0 such that
∣∣∣µ0(ψ̂)− µ0(Sψ − ψ0)

∣∣∣ < η

3
for all ψ̂ ∈ C0(Ω) fulfilling ‖ψ̂ − (Sψ − ψ0)‖L∞(Ω) ≤ η1(η), (3.42)
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where taking m > 0 from (2.1) we may also assume that

η1(η) <
η

3m
. (3.43)

Moreover, using that with the vector e1 := (1, 0), ρ(r) := (Sψ)(re1) − ψ0, r ∈ [0, R], defines a function
ρ ∈ C0([0, R]) fulfilling ρ(0) = 0, by means of Lemma 3.9 we can find ρη ∈ C∞

0 ((0, R]) with the properties
that ρ′η(R) = 0 and

‖ρη − ρ‖L∞((0,R)) <
η1(η)

3
. (3.44)

Therefore,

ψ̂(x) := ρη(|x|), x ∈ Ω,

belongs to C∞
0 (Ω\{0}) and satisfies ∂ψ̂

∂ν
(x) = 0 for all x ∈ ∂Ω, whence Lemma 3.8 applies so as to ensure

the existence of t0(η) > 0 such that

∣∣∣∣
∫

Ω
u(·, t)ψ̂ − µ0(ψ̂)

∣∣∣∣ <
η

3
for all t ∈ (0, t0(η)). (3.45)

Now since (3.44) together with the radial symmetry of Sψ guarantees that

‖ψ̂ − (Sψ − ψ0)‖L∞(Ω) = sup
r∈(0,R)

∣∣∣ψ̂(re1)−
{
(Sψ)(re1)− ψ0

}∣∣∣ < η1(η)

3
, (3.46)

and since µ0(Sψ) = µ0(ψ) as well as
∫
Ω u(·, t)ψ =

∫
Ω u(·, t) · Sψ for all t > 0 by radial symmetry of µ0

and u, by using (1.8) and combining (3.46) with (3.45), (3.42) and (3.43) we can estimate

∣∣∣∣
∫

Ω
u(·, t)ψ − µ0(ψ)

∣∣∣∣ =

∣∣∣∣
∫

Ω
u(·, t) · Sψ − µ0(Sψ)

∣∣∣∣

=

∣∣∣∣∣

{ ∫

Ω
u(·, t) · (Sψ − ψ0) + ψ0 ·

∫

Ω
u(·, t)

}
−
{
µ0(Sψ − ψ0) + µ0(ψ0)

}∣∣∣∣∣

=

∣∣∣∣
∫

Ω
u(·, t) · (Sψ − ψ0)− µ0(Sψ − ψ0)

∣∣∣∣

≤
∣∣∣∣
∫

Ω
u(·, t) · (Sψ − ψ0 − ψ̂)

∣∣∣∣+
∣∣∣∣
∫

Ω
u(·, t)ψ̂ − µ0(ψ̂)

∣∣∣∣+
∣∣∣µ0(ψ̂)− µ0(Sψ − ψ0)

∣∣∣

≤ ‖ψ̂ − (Sψ − ψ0)‖L∞(Ω) ·m+

∣∣∣∣
∫

Ω
u(·, t)ψ̂ − µ0(ψ̂)

∣∣∣∣+
∣∣∣µ0(ψ̂)− µ0(Sψ − ψ0)

∣∣∣

<
η1(η)

3
·m+

η

3
+
η

3
< η for all t ∈ (0, t0(η)),

and hence conclude that in fact (3.41) holds, for η > 0 was arbitrary. �
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3.3 Proof of Theorem 1.1

We finally only need to collect suitable among the above results to arrive at our main result:

Proof of Theorem 1.1. Taking u and v as constructed in Lemma 2.14, from the latter we directly
obtain that (u, v) ∈ (C2,1(Ω× (0,∞))2 has the claimed symmetry and mass conservation properties and
solves the first three lines from (1.4) classically in Ω×(0,∞). The identification of its initial trace in (1.9)
and (1.10) has been achieved in Lemma 3.10 and Lemma 3.3, respectively, where the latter in conjunction
with (2.32) finally ensures that v enjoys the additional regularity property v ∈ L2((0, T );W 1,2(Ω)) for
arbitrary T > 0. �
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[4] Brézis H. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, 2011
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