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Abstract

This paper is concerned with the Keller-Segel-Navier-Stokes system





nt + u · ∇n = ∆n+∇ · (n∇c), x ∈ Ω, t > 0,

u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,

(⋆)

with a given smooth gravitational potential Φ.

It is shown that for all suitably regular initial data, a corresponding no-flux/no-flux/Dirichlet
initial-boundary value problem posed in a smoothly bounded planar domain admits a uniquely
determined global classical solution (n, c, u, P ) which has the additional property that n remains
uniformly bounded.

This partially goes beyond a recent result asserting global classical solvability, but without any
boundedness information, in a related slightly more complex variant of (⋆) accounting for parabolic
evolution of the quantity c. In particular, the obtained outcome thereby provides further evidence
indicating that the considered fluid interaction does not substantially reduce a certain explosion-
avoiding character of the Keller-Segel-type chemorepulsion mechanisms, as known to form an es-
sential feature of corresponding fluid-free analogues.

The reasoning at its core relies on the use of a quasi-Lyapunov inequality which operates at reg-
ularity levels that seem rather unusual in this and related contexts, but which in the considered
two-dimensional setting can be seen to serve as a starting point sufficient for a bootstrap-type series
of arguments finally providing global boundedness.
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1 Introduction

The interaction between populations of chemotactically migrating individuals and liquid environments
has been the objective of considerable developments in the mathematical literature during the past
decade. With to date persisting motivation originating from experimental findings that report non-
trivial effects of such types of interplay, including support of pattern generation but also quantitative
influences on spreading properties ([39], [6], [7], [29], [38]), analytical studies in this field on the one
hand have been concerned with widely nontrivial questions related to corresponding existence theo-
ries, but beyond this, on the other hand, have partially been addressing aspects of qualitative solution
behavior. Apart from some simulation-endorsed predictions on possibly blow-up preventing effects
of fluid flows on Keller-Segel type models ([28]), in certain particular cases characterized by suitably
weak coupling, in which only the motion of the liquid influences migration of cells and signals but not
vice versa, some recent analytical results have rigorously confirmed nontrivial consequences of suitably
chosen given fluid velocity fields on aggregation and spreading behavior in chemotaxis systems ([20],
[21], [22], [17]).

In situations characterized by a genuinely mutual interaction in the sense that additionally also cells
influence the fluid flow through buoyancy, as forming a core assumption in the modeling approaches
e.g. from [39] and [1], in line with an accordingly increased complexity the knowledge is yet consider-
ably sparser, with a predominant focus on aspects from mere existence theory in many cases. Indeed,
already for a model coupling a chemotaxis-consumption process to the Navier-Stokes equations in the
context of the system





nt + u · ∇n = ∆n−∇ · (n∇c),

ct + u · ∇c = ∆c− nc,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0,

(1.1)

for the cell population density n, the signal concentration c and the fluid variables u and P , establish-
ing a reasonably comprehensive theory of global weak solvability has only been achieved quite recently,
and only after a series of partial results relying on various types of simplifications or restrictions on
sizes of either the initial data or some key model ingredients ([9], [3], [23], [44], [47]), although the cor-
responding fluid-free nutrient taxis system is known to admit quite a straightforward existence theory
according to a substantially dissipative character going along with the considered signal absorption
mechanism ([33]).

Whereas beyond deriving similar existence statements for several more general chemotaxis-consumption-
fluid systems ([10], [40], [8], [36]), the literature for (1.1) and some close relatives meanwhile even
provides some results on large time stabilization toward homogeneous equilibria ([54], [46], [48], [25],
[51]), the knowledge seems yet at a significantly more rudimentary level in cases when unlike in (1.1),
the respective signal evolution is determined by production through cells, rather than consumption. In
fact, rigorous conclusions concerned with accordingly obtained Keller-Segel-fluid systems of the form





nt + u · ∇n = ∇ · (D(n)∇n)−∇ · (nS(n)∇c) + f(u),

ct + u · ∇c = ∆c− c+ n,

ut + κ(u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0,

(1.2)
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have so far mainly been restricted to statements on global solvability, with information on further
properties such as boundedness limited to a few respective subcases, under appropriate hypotheses
on smallness of initial data when f ≡ 0, D ≡ S ≡ 1 and κ = 1 ([23]), on suitably strong growth
restrictions implied by considering logistic-type proliferation terms f of the form f(n) = ρn − µn2

with ρ ∈ R and µ > 0 when D ≡ S ≡ 1 and either κ = 0 or κ = 1 ([34], [35]), or on adequately efficient
enhancement of diffusion or saturation of taxis at large cell denisties when f ≡ 0 ([27], [42], [43], [55],
[2], [41], [49]). Clearly, this lack of comprehensiveness with regard to unconditionally smooth solution
behavior partially reflects the circumstance that in comparison to the respective fluid-free version
of (1.1), the signal production mechanism in the Keller-Segel chemotaxis-only subsystem of (1.2) is
known to enforce singularity formation in the sense of finite-time blow-up throughout various ranges
of its ingredients ([19], [45], [5]).

Now in contrast to the latter, Keller-Segel-production systems are known to exhibit significantly
more regular solution behavior in cases when instead of attractive cross-diffusive mechanisms, as
characterized by choices of positive S, rather chemorepulsion processes are accounted for. Fluid-free
variants of (1.2) obtained on letting S ≡ −1, for instance, have been found to admit global classical
and bounded solutions in two-dimensional domains in the paradigmatic setting when D ≡ 1 and f ≡ 0
for which the corresonding chemoattraction system with S ≡ 1 possesses some exploding solutions;
even in its three-dimensional version, this repulsive Keller-Segel system still allows at least for global
weak solvability, regardless of the size of the respective initial data ([4]). Also in the presence of more
general parameter functions D and S, some significantly relaxing effects of repulsion in comparison to
attraction have been identified in the literature ([37], [11], [24]).

Absence of blow-up in two-dimensional chemorepulsion-Navier-Stokes systems. Main
results. In such contexts of chemorepulsion, possible effects of fluid coupling in the style of (1.2)
have recently been studied in [53], and the main outcome thereof indicated that some unconditionality
of finite-time blow-up suppression in fact persists also in the presence of buoyancy-induced interaction
with the Navier-Stokes system in spatially two-dimensional frameworks. Indeed, that main results
from [53] assert global classical solvability in an initial-boundary value problem for the fully parabolic
system (1.2) in bounded planar domains in the apparently most prototypical situation determined by
the choices D ≡ 1, f ≡ 0 and κ = 1.

The present work intends to provide one step further in this direction by investigating the question how
far apart from this, also infinite-time blow-up, well-known as a possible feature of various attractive
Keller-Segel type systems ([5], [26], [50]) can be ruled out in two-dimensional chemorepulsion-Navier-
Stokes systems. In order to make this advanced problem accessible to our analysis, we shall address
this issue in the framework of a simplified variant of (1.2) in which the signal evolution is governed by
an associated elliptic equation, and which hence reflects the assumption that the considered chemical
diffuses much faster than cells and fluid particles, as having formed a technically essential fundament
already in numerous precedents from the chemotaxis(-fluid) literature (cf. e.g. [30] and [22] for two
representative examples).

Throughout the sequel, in a bounded domain Ω ⊂ R
2 with smooth boundary we shall accordingly be
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concerned with the initial-boundary value problem





nt + u · ∇n = ∆n+∇ · (n∇c), x ∈ Ω, t > 0,

u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.3)

where our standing hypothesis on the gravitational potential Φ will be that

Φ ∈W 2,∞(Ω), (1.4)

and where concerning the initial data we shall assume that

{
n0 ∈ C0(Ω) is nonnegative with n0 > 0, and that

u0 ∈W 2,2(Ω;R2) ∩W 1,2
0,σ (Ω).

(1.5)

Here and below, as usual we write ϕ := 1
|Ω|

∫
Ω ϕ for ϕ ∈ L1(Ω), and letW 1,2

0,σ (Ω) :=W
1,2
0 (Ω;R2)∩L2

σ(Ω),

with L2
σ(Ω) := {ϕ ∈ L2(Ω;R2) | ∇ · ϕ = 0 in D(Ω)} denoting the space of all solenoidal vector fields

in L2(Ω;R2). To complete our collection of notational conventions in this respect, let us furthermore
announce that throughout the sequel, we let A = −P∆ denote the realization of the Stokes operator
in L2(Ω;R2), with its domain given by D(A) = W 2,2(Ω;R2) ∩ W

1,2
0,σ (Ω), and with P denoting the

Helmholtz projection on L2(Ω;R2), and for α > 0 we let Aα represent the corresponding sectorial
fractional powers.

In this form, (1.3) will turn out to enjoy a certain basic quasi-Lyapunov inequality which, though
operating at yet quite low regularity levels, will enable us to adequately cope with the key challenge to
establish some first time-independent estimates suitably going beyond the L1 boundedness information
gained from an evident mass conservation feature in (1.3). Specifically, our analysis will be based on
the observation that thanks to some rudimentary but time-independent basic regularity features of c,
available due to ellipticity of its sub-problem in (1.3) (Section 3), for appropriately chosen a > 0 and
C > 0 the quantities

F(t) := −

∫

Ω
ln(n+ 1) + a

∫

Ω
|u|2 and D(t) :=

∫

Ω
n ln(n+ 1) +

∫

Ω
|∇u|2 (1.6)

satisfy

F ′(t) +
1

C
F(t) +

1

C
D(t) ≤ C

throughout the life span of a smooth solution to (1.3) (Lemma 4.4), the existence of which, as well as
an associated extensibility criterion, is asserted in the preliminary Section 2. Accordingly implied a
priori estimates for the dissipation rate functional D (Lemma 4.5) will thereafter be seen to constitute
a starting point for a series of arguments acting at successively higher stages of regularity, inter alia
addressing the time evolution of the functionals

∫
Ω n ln

n
n0

+ b
∫
Ω |∇u|2 + 1, for some b > 0 (Lemma
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5.4), and
∫
Ω n

2 (Lemma 5.5), as seeming to be more closely related to approaches pursued in precedent
studies.

This will finally reveal the following main result which indeed warrants boundedness of solutions
irrespective of the size of their initial data, and hence excludes any possibility of infinite-time blow-up
in (1.3):

Theorem 1.1 Let Ω ⊂ R
2 be a bounded domain with smooth boundary, and assume that (1.4) holds

and that n0 and u0 comply with (1.5). Then there exist functions





n ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

c ∈ C2,0(Ω× (0,∞)),

u ∈
⋂

α∈( 1
2
,1)C

0([0,∞);D(Aα)) ∩ C2,1(Ω× (0,∞);R2) and

P ∈ C1,0(Ω× (0,∞)),

uniquely determined up to addition of constants to P , such that n > 0 and c > 0 in Ω × (0,∞), that
(n, c, u, P ) solves (1.3) classically in Ω× (0,∞), and that

sup
t>0

‖n(·, t)‖L∞(Ω) <∞. (1.7)

2 Local existence and extensibility

A theory of local existence in (1.3) can be obtained by adapting basically well-established arguments
involving a contraction-type reasoning in a suitable function space framework. As we could not find
a reference reasonably close to the situation addressed here, however, we include at least the essential
part of a corresponding proof here.

Our approach will address the main difference in comparison to fully parabolic relatives, such as e.g. the
class of problems considered in detail in [44], through the following statement on unique solvability in
a variant of the elliptic sub-problem contained in (1.3).

Lemma 2.1 Let α ∈ (12 , 1). Then there exists C > 0 with the property that whenever T > 0, for each
n̂ ∈ C0(Ω× [0, T ]) and û ∈ C0([0, T ];D(Aα)) the problem

{
−∆c+ c = n̂− û · ∇c, x ∈ Ω, t ∈ [0, T ],
∂c
∂ν

= 0, x ∈ ∂Ω, t ∈ [0, T ],
(2.1)

possesses a unique weak solution c ∈ C0([0, T ];W 2,2(Ω)), and such that this solution satisfies

‖c(·, t)‖W 2,2(Ω) ≤ C · sup
s∈(0,T )

‖n̂(·, s)‖L∞(Ω) ·

{
1 + sup

s∈(0,T )
‖Aαû(·, s)‖L2(Ω)

}
for all t ∈ [0, T ]. (2.2)

Proof. Given any such T, n̂ and û, recalling that

D(Aα) →֒ C0(Ω;R2) (2.3)
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([14], [18]) we see that for each fixed t ∈ [0, T ] letting

B(ϕ, ψ) :=

∫

Ω
∇ϕ · ∇ψ +

∫

Ω
ϕψ +

∫

Ω
(û(·, t) · ∇ϕ)ψ, ϕ ∈W 1,2(Ω), ψ ∈W 1,2(Ω),

introduces a well-defined and continuous bilinear form on W 1,2(Ω) × W 1,2(Ω). By solenoidality of
û(·, t) and the fact that û(·, t) = 0 on ∂Ω, B moreover is corecive, because

B(ϕ,ϕ) =

∫

Ω
|∇ϕ|2 +

∫

Ω
ϕ2 +

1

2

∫

Ω
û(·, t) · ∇ϕ2

=

∫

Ω
|∇ϕ|2 +

∫

Ω
ϕ2 for all ϕ ∈W 1,2(Ω), (2.4)

whence according to the Lax-Milgram lemma there exists a unique c(·, t) ∈W 1,2(Ω) such that

∫

Ω
∇c(·, t) · ∇ϕ+

∫

Ω
c(·, t)ϕ =

∫

Ω
n̂(·, t)ϕ−

∫

Ω

(
û(·, t) · ∇c(·, t)

)
ϕ for all ϕ ∈W 1,2(Ω). (2.5)

As a first estimate for c(·, t), in view of (2.4) we obtain from (2.5) and Young’s inequality that

∫

Ω
|∇c(·, t)|2 +

∫

Ω
c2(·, t) =

∫

Ω
n̂(·, t)c(·, t) ≤

1

2

∫

Ω
c2(·, t) +

|Ω|

2
‖n̂(·, t)‖2L∞(Ω),

which implies that ∫

Ω
|∇c(·, t)|2 +

∫

Ω
c2(·, t) ≤ |Ω| ·R2

1, (2.6)

where R1 := sups∈(0,T ) ‖n(·, s)‖L∞(Ω).

Apart from that, (2.4) and (2.5) ensure that for arbitrary t ∈ [0, T ] and s ∈ [0, T ], d := c(·, t)− c(·, s)
satisfies
∫

Ω
|∇d|2 +

∫

Ω
d2 =

∫

Ω

(
n̂(·, t)− n̂(·, s)

)
d−

∫

Ω

{(
û(·, t)− û(·, s)

)
· ∇c(·, t)

}
d−

∫

Ω

(
û(·, s) · ∇d

)
d

=

∫

Ω

(
n̂(·, t)− n̂(·, s)

)
d−

∫

Ω

{(
û(·, t)− û(·, s)

)
· ∇c(·, t)

}
d

≤
1

2

∫

Ω
d2 + ‖n̂(·, t)− n̂(·, s)‖2L2(Ω) + ‖û(·, t)− û(·, s)‖2L∞(Ω)‖∇c(·, t)‖

2
L2(Ω),

which together with (2.6) entails that

c ∈ C0([0, T ];W 1,2(Ω)), (2.7)

because our assumptions in particular guarantee that

n̂ ∈ C0([0, T ];L2(Ω)) and û ∈ C0(Ω× [0, T ];R2) (2.8)

due to (2.3).

We next recall standard elliptic regularity theory ([16]) to fix C1 > 0 with the property that if
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f ∈ L2(Ω) and v ∈ W 1,2(Ω) are such that
∫
Ω∇v · ∇ϕ =

∫
Ω fϕ for all ϕ ∈ W 1,2(Ω), then actually

v ∈W 2,2(Ω) with
‖v‖W 2,2(Ω) ≤ C1‖f‖L2(Ω). (2.9)

In view of (2.6), a first application of this yields, as our second estimate for c, the inequality

‖c(·, t)‖W 2,2(Ω) ≤ C1

∥∥∥n̂(·, t)− û(·, t) · ∇c(·, t)
∥∥∥
L2(Ω)

≤ C1‖n̂(·, t)‖L2(Ω) + C1‖û(·, t)‖L∞(Ω)‖∇c(·, t)‖L2(Ω)

≤ C1|Ω|
1
2R1 + C1C2R1R2 for all t ∈ [0, T ], (2.10)

with R2 := sups∈(0,T ) ‖A
αû(·, s)‖L2(Ω), and with C2 := |Ω|

1
2 · sup06=ϕ∈D(Aα)

‖ϕ‖L∞(Ω)

‖Aαϕ‖
L2(Ω)

being finite due

to (2.3). This establishes (2.2), so that it remains to verify the claimed continuity property. To this
end, we note that as a second consequence of (2.9) we obtain that for all t ∈ [0, T ] and s ∈ [0, T ],

‖c(·, t)− c(·, s)‖W 2,2(Ω) ≤ C1

∥∥∥n̂(·, t)− n̂(·, s)− û(·, t) · ∇c(·, t) + û(·, s) · ∇c(·, s)
∥∥∥
L2(Ω)

≤ C1‖n̂(·, t)− n̂(·, s)‖L2(Ω)

+C1‖û(·, t)− û(·, s)‖L∞(Ω)‖∇c(·, s)‖L2(Ω)

+C1‖û(·, t)‖L∞(Ω)‖∇c(·, t)−∇c(·, s)‖L2(Ω),

so that relying on (2.7) and once more on our assumption we conclude that indeed c is continuous on
[0, T ] as a W 2,2(Ω)-valued function. �

We can thereby establish a local theory by means of a rather straightforward reasoning based on
Banach’s fixed point theorem.

Lemma 2.2 Suppose that (1.4) and (1.5) hold. Then there exist Tmax ∈ (0,∞] and functions





n ∈ C0(Ω× [0, Tmax)) ∩ C
2,1(Ω× (0, Tmax)),

c ∈ C2,0(Ω× (0, Tmax)),

u ∈
⋂

α∈( 1
2
,1)C

0([0, Tmax);D(Aα)) ∩ C2,1(Ω× (0, Tmax);R
2) and

P ∈ C1,0(Ω× (0, Tmax)),

(2.11)

uniquely determined up to addition of constants to P , such that n > 0 and c > 0 in Ω × (0, Tmax),
that (n, c, u, P ) forms a classical solution of (1.3) in Ω× (0, Tmax), and that

if Tmax <∞, then lim sup
tրTmax

{
‖n(·, t)‖L∞(Ω) + ‖Aαu(·, t)‖L2(Ω)

}
for all α ∈ (12 , 1). (2.12)

Moreover, ∫

Ω
n(·, t) =

∫

Ω
n0 for all t ∈ (0, Tmax) (2.13)

and ∫

Ω
c(·, t) =

∫

Ω
n0 for all t ∈ (0, Tmax). (2.14)
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Proof. As our reasoning follows quite a well-established line of arguments, we restrict ourselves to
sketching the main aspects. For fixed α ∈ (12 , 1) and with T ∈ (0, 1) to be chosen below and

R := ‖n0‖L∞(Ω) + ‖Aαu0‖L2(Ω) + 1,

on the closed subset

S :=
{
(n, u) ∈ X

∣∣∣ ‖n(·, t)‖L∞(Ω) + ‖Aαu(·, t)‖L2(Ω) ≤ R for all t ∈ [0, T ]
}

of the Banach space X := C0([0, T ];C0(Ω) × D(Aα)), equipped with the norm defined by setting

‖(n, u)‖X := supt∈(0,T )

{
‖n(·, t)‖L∞(Ω) + ‖Aαu(·, t)‖L∞(Ω)

}
for (u, v) ∈ X, we introduce a mapping

Ψ = (Ψ1,Ψ2) by letting

(Ψ1[n̂, û])(·, t) := et∆n0 +

∫ t

0
e(t−s)∆∇ ·

{
n̂(·, s)

(
∇c(·, s)− û(·, s)

)}
ds

and

(Ψ2[n̂, û])(·, t) := e−tAu0 −

∫ t

0
e−(t−s)AP

{
(û(·, s) · ∇)û(·, s)− n̂(·, s)∇Φ

}
ds

for (n̂, û) ∈ S and t ∈ [0, T ], where (et∆)t≥0 and (e−tA)t≥0 represent the Neumann heat semigroup
and the Dirichlet Stokes semigroup on Ω, and where according to Lemma 2.1, c ∈ C0([0, T ];W 2,2(Ω))
denotes the correspondingly obtained weak solution of (2.1).

To see that Ψ in fact maps S into itself, we fix any r > 2 and observe that by well-known regularization
properties of (et∆)t≥0 ([13]), by (2.2) and by continuity of the embeddings W 2,2(Ω) →֒ W 1,r(Ω) and
D(Aα) →֒ Lr(Ω;R2), we can find C1 > 0 and C2 = C2(R) > 0 such that regardless of our subsequent
choice of T ∈ (0, 1),

∥∥∥(Ψ1[n̂, û])(·, t)
∥∥∥
L∞(Ω)

≤ ‖n0‖L∞(Ω) + C1

∫ t

0
(t− s)−

1
2
− 1

r

∥∥∥n̂(·, t)
(
∇c(·, s)− û(·, s)

)∥∥∥
Lr(Ω)

ds

≤ ‖n0‖L∞(Ω)

+C1

∫ t

0
(t− s)−

1
2
− 1

r ‖n̂(·, s)‖L∞(Ω) ·
{
‖∇c(·, s)‖Lr(Ω) + ‖û(·, s)‖Lr(Ω)

}
ds

≤ ‖n0‖L∞(Ω) + C2T
1
2
− 1

r for all t ∈ [0, T ]. (2.15)

Likewise, the smoothing action of the semigroup (e−tA)t≥0 ([12]) along with the continuity of the
embeddings D(Aα) →֒ L∞(Ω;R2) and D(Aα) →֒ W 1,2(Ω;R2) as well as the boundedness of ∇Φ
ensures the existence of C3 > 0 and C4 = C4(R) > 0, again independent of T ∈ (0, 1), such that
∥∥∥(AαΨ2[n̂, û])(·, t)

∥∥∥
L2(Ω)

≤ ‖Aαu0‖L2(Ω) + C3

∫ t

0
(t− s)−α

∥∥∥P
{
(û(·, s) · ∇)û(·, s)− n̂(·, s)∇Φ

}∥∥∥
L2(Ω)

ds

≤ ‖Aαu0‖L2(Ω) + C3

∫ t

0
(t− s)−α

{
‖û(·, s)‖L∞(Ω)‖∇û(·, s)‖L2(Ω) + ‖n̂(·, s)‖L2(Ω)‖∇Φ‖L∞(Ω)

}
ds

≤ ‖Aαu0‖L2(Ω) + C4T
1−α for all t ∈ [0, T ]. (2.16)
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Therefore, if we fix T1 ∈ (0, 1) small enough fulfilling max{C2T
1
2
− 1

r , C4T
1−α} ≤ 1

2 , then for any choice
of T ∈ (0, T1) we infer from (2.15) and (2.16) that indeed

‖Ψ[n̂, û]‖X ≤
{
‖n0‖L∞(Ω) +

1

2

}
+
{
‖Aαu0‖L2(Ω) +

1

2

}
= R for all (n̂, û) ∈ S.

By quite straightforward modification of the above procedure, it can furthermore readily be shown that
there exists T2 ∈ (0, T1) such that whenever T ∈ (0, T2), Ψ even becomes a contraction on S, meaning
that fixing any such T we obtain a unique (n, u) ∈ S such that (n, u) = Ψ[n, u]. Standard prolongation
and regularity arguments thereafter show that (n, u) can be extended up to some Tmax ∈ (0,∞]
fulfilling (2.12), that actually n, c and u satisfy the inclusions in (2.11), and that (n, c, u, P ) solves
(1.3) classically in Ω× (0, Tmax) with some appropriately chosen P ∈ C1,0(Ω× (0, Tmax)) enjoying the
claimed uniqueness property ([31]).

The statements on positivity and the mass conservation features in (2.13) and (2.14), finally, result
from applications of the parabolic and elliptic strong maximum principles, and from integration of the
first two equations in (1.3). �

3 Making use of ellipticity: Basic time-independent estimates for c

The following lemma documents an observation of quite basic character, but of essential importance
for our approach, by stating a regularity feature of c which is implied by nonnegativity of n and c and
by solenoidality of u, and which due to ellipticity of the second equation in (1.3) is independent with
respect to time.

Lemma 3.1 Let p ∈ (0, 1). Then there exists C(p) > 0 such that
∫

Ω

∣∣∣∇
(
c(·, t) + 1

) p

2
∣∣∣
2
≤ C(p) for all t ∈ (0, Tmax). (3.1)

Proof. We multiply the second equation in (1.3) by (c+ 1)p−1 to see that since ∇ · u = 0 as well
as n ≥ 0 and c ≥ 0, due to (2.14) we have

(1− p)

∫

Ω
(c+ 1)p−2|∇c|2 =

∫

Ω
c(c+ 1)p−1 −

∫

Ω
n(c+ 1)p−1 +

1

p

∫

Ω
u · ∇(c+ 1)p

=

∫

Ω
c(c+ 1)p−1 −

∫

Ω
n(c+ 1)p−1 +

1

p

∫

Ω
u · ∇(c+ 1)p

≤

∫

Ω
c(c+ 1)p−1

≤

∫

Ω
c

=

∫

Ω
n0 for all t ∈ (0, Tmax),

from which (3.1) follows. �

By straightforward interpolation relying on (2.14), this implies time-independent bounds for c in any
Lq space with finite q.
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Lemma 3.2 For all q ∈ (1,∞) there exists C(q) > 0 such that

‖c(·, t)‖Lq(Ω) ≤ C(q) for all t ∈ (0, Tmax). (3.2)

Proof. Since the two-dimensional Gagliardo-Nirenberg inequality provides C1 = C1(q) > 0 fulfill-
ing

‖c‖
q

2(q−1)

Lq(Ω) ≤ ‖c+ 1‖
q

2(q−1)

Lq(Ω)

=
∥∥∥(c+ 1)

1
4

∥∥∥
2q
q−1

L4q(Ω)

≤ C1

∥∥∥∇(c+ 1)
1
4

∥∥∥
2

L2(Ω)

∥∥∥(c+ 1)
1
4

∥∥∥
2

q−1

L4(Ω)
+ C1

∥∥∥(c+ 1)
1
4

∥∥∥
2q
q−1

L4(Ω)
for all t ∈ (0, Tmax),

and since
∥∥∥(c+ 1)

1
4

∥∥∥
4

L4(Ω)
=

∫

Ω
(c+ 1) =

∫

Ω
n0 + |Ω| for all t ∈ (0, Tmax)

by (2.14), this is a consequence of Lemma 3.1 when applied to p := 1
2 . �

Again combined with Lemma 3.1, this in fact enables us to derive bounds for ∇c, without any weight
functions, with respect to the norm in Lr(Ω) for arbitrary r < 2.

Lemma 3.3 For each r ∈ [1, 2) one can find C(r) > 0 with the property that

‖∇c(·, t)‖Lr(Ω) ≤ C(r) for all t ∈ (0, Tmax). (3.3)

Proof. Using that r < 2, we may employ Young’s inequality to estimate
∫

Ω
|∇c|r =

∫

Ω

{
(c+ 1)−

3
2 |∇c|2

} r
2
· (c+ 1)

3r
4

≤

∫

Ω
(c+ 1)−

3
2 |∇c|2 +

∫

Ω
(c+ 1)

3r
2(2−r)

≤

∫

Ω
(c+ 1)−

3
2 |∇c|2 + 2

3r
2(2−r)

∫

Ω
c

3r
2(2−r) + 2

3r
2(2−r) |Ω| for all t ∈ (0, Tmax),

whence another application of Lemma 3.1 to p := 1
2 entails (3.3). �

4 Basic boundedness features relying on a quasi-energy inequality

Next approaching the core of our analysis, let us state the direct outcome of a testing procedure which
addresses the time evolution of the first contribution to the functional F in (1.6), and which again
relies on the elliptic character of the second equation in (1.3).

Lemma 4.1 We have

−
d

dt

∫

Ω
ln(n+ 1) +

∫

Ω

|∇n|2

(n+ 1)2
+

∫

Ω
n ln(n+ 1) +

∫

Ω

n

n+ 1

=

∫

Ω

{
ln(n+ 1) +

1

n+ 1

}
· (c+ u · ∇c) for all t ∈ (0, Tmax). (4.1)
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Proof. According to the first equation in (1.3) and the identity ∇ · u = 0, we see that

−
d

dt

∫

Ω
ln(n+ 1) +

∫

Ω

|∇n|2

(n+ 1)2
= −

∫

Ω

n

(n+ 1)2
∇n · ∇c+

∫

Ω
u · ∇ ln(n+ 1)

= −

∫

Ω

n

(n+ 1)2
∇n · ∇c for all t ∈ (0, Tmax), (4.2)

where rewriting

n

(n+ 1)2
∇n = ∇ ln(n+ 1) +∇

1

n+ 1
in Ω× (0, Tmax)

we may integrate by parts once more and use the second equation from (1.3) to obtain that
∫

Ω

n

(n+ 1)2
∇n · ∇c =

∫

Ω

{
ln(n+ 1) +

1

n+ 1

}
·∆c

=

∫

Ω

{
ln(n+ 1) +

1

n+ 1

}
· (−n+ c+ u · ∇c) for all t ∈ (0, Tmax).

Inserted into (4.2) this yields (4.1). �

As for the evolution of the respective second integral in (1.6), we may import the following basic
information from the literature concerned with the fully parabolic analogue of (1.3), without repeating
details of a proof which, according to the identical form of the respective Navier-Stokes-subproblem,
can in fact be copied word by word from the considered precedent.

Lemma 4.2 There exists C > 0 such that

d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2 ≤ C

∫

Ω
n ln

n

n0
+ C for all t ∈ (0, Tmax). (4.3)

Proof. On the basis of a functional inequality from [52, Lemma 2.2], this can be seen by precisely
repeating the argument from [53, Lemma 3.4]. �

Now thanks to the a priori information on c and ∇c from Lemma 3.2 and Lemma 3.3, the right-hand
side in (4.1) can be estimated in terms of a sublinear power of the dissipation rate appearing in (4.3).

Lemma 4.3 There exists C > 0 such that
∫

Ω

{
ln(n+ 1) +

1

n+ 1

}
· (c+ u · ∇c) ≤ C‖∇u‖L2(Ω) + C for all t ∈ (0, Tmax). (4.4)

Proof. We use the elementary inequality ln6 ξ ≤ C1ξ, valid for all ξ > 0 with C1 := (6
e
)6, to see

that thanks to (2.13),
∫

Ω

{
ln(n+ 1) +

1

n+ 1

}6
≤ 32

∫

Ω
ln6(n+ 1) + 32

∫

Ω

1

(n+ 1)6

≤ 32C1

∫

Ω
(n+ 1) + 32|Ω|

= C2 := 32C1

∫

Ω
(n0 + 1) + 32|Ω| for all t ∈ (0, Tmax).
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Therefore, the Hölder inequality implies that

∫

Ω

{
ln(n+ 1) +

1

n+ 1

}
· (c+ u · ∇c) ≤

{∫

Ω

{
ln(n+ 1) +

1

n+ 1

}6
} 1

6

· ‖c+ u · ∇c‖
L

6
5 (Ω)

≤ C
1
6
2 ‖c+ u · ∇c‖

L
6
5 (Ω)

≤ C
1
6
2 ‖c‖L

6
5 (Ω)

+ C
1
6
2 ‖u‖L6(Ω)‖∇c‖

L
3
2 (Ω)

≤ C
1
6
2 C3 + C

1
6
2 C4‖u‖L6(Ω) for all t ∈ (0, Tmax)

with C3 := supt∈(0,Tmax) ‖c(·, t)‖L
6
5 (Ω)

and C4 := supt∈(0,Tmax) ‖∇c(·, t)‖L
3
2 (Ω)

being finite due to

Lemma 3.2 and Lemma 3.3. Since clearly W 1,2(Ω) →֒ L6(Ω), this entails (4.4) with some appro-
priately large C > 0. �

Therefore, adding a suitably small multiple of the inequality (4.3) to (4.1) reveals the announced
property of the functional in (1.6):

Lemma 4.4 There exist a > 0 and C > 0 such that

d

dt

{
−

∫

Ω
ln(n+ 1) + a

∫

Ω
|u|2

}
+

1

C
·

{
−

∫

Ω
ln(n+ 1) + a

∫

Ω
|u|2

}
+

1

2

∫

Ω
n ln(n+ 1) +

a

2

∫

Ω
|∇u|2

≤ C for all t ∈ (0, Tmax). (4.5)

Proof. On the basis of Lemma 4.1, Lemma 4.3, Lemma 4.2 and (2.13), let us pick C1 > 0, C2 > 0
and C3 > 0 such that

−
d

dt

∫

Ω
ln(n+ 1) +

∫

Ω
n ln(n+ 1) ≤ C1‖∇u‖L2(Ω) + C1 for all t ∈ (0, Tmax) (4.6)

and
d

dt

∫

Ω
|u|2 +

∫

Ω
|∇u|2 ≤ C2

∫

Ω
n lnn+ C3 for all t ∈ (0, Tmax), (4.7)

and thereupon let

a :=
1

2C2
, C4 :=

C2
1

a
+ C1 + aC3 and C5 := max{4C6 , C3}, (4.8)

where according to the Poincaré inequality, C6 > 0 is such that

∫

Ω
|ϕ|2 ≤ C6

∫

Ω
|∇ϕ|2 for all ϕ ∈W

1,2
0 (Ω;R2). (4.9)

Then combining (4.6) with (4.7) and using Young’s inequality along with (4.9) and our definition of
C4 shows that since ln(n+ 1) ≥ max{0, lnn},

d

dt

{
−

∫

Ω
ln(n+ 1) + a

∫

Ω
|u|2

}
+

1

C5
·

{
−

∫

Ω
ln(n+ 1) + a

∫

Ω
|u|2

}
+

∫

Ω
n ln(n+ 1) + a

∫

Ω
|∇u|2
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≤ −
1

C5

∫

Ω
ln(n+ 1) +

a

C5

∫

Ω
|u|2

+C1‖∇u‖L2(Ω) + C1 + aC2

∫

Ω
n lnn+ aC3

≤
a

C5

∫

Ω
|u|2 +

a

4

∫

Ω
|∇u|2 +

C2
1

a
+ C1 + aC2

∫

Ω
n ln(n+ 1) + aC3

=
a

C5

∫

Ω
|u|2 +

a

4

∫

Ω
|∇u|2 +

1

2

∫

Ω
n ln(n+ 1) + C4

≤
aC6

C5

∫

Ω
|∇u|2 +

a

4

∫

Ω
|∇u|2 +

1

2

∫

Ω
n ln(n+ 1) + C4

=
a

2

∫

Ω
|∇u|2 +

1

2

∫

Ω
n ln(n+ 1) + C4 for all t ∈ (0, Tmax), (4.10)

because (4.8) inter alia says that aC6
C5

≤ a
4 . As (4.8) furthermore implies that C4 ≤ C5, (4.10)

immediately leads to (4.5) with C := C5. �

By straightforward integration, the latter entails the following estimates, the second and third ones
among which will be of predominant importance for our subsequent analysis.

Lemma 4.5 There exists C > 0 such that
∫

Ω
|u(·, t)|2 ≤ C for all t ∈ (0, Tmax) (4.11)

and ∫ t+τ

t

∫

Ω
n ln(n+ 1) ≤ C for all t ∈ [0, Tmax − τ) (4.12)

as well as ∫ t+τ

t

∫

Ω
|∇u|2 ≤ C for all t ∈ [0, Tmax − τ), (4.13)

where τ := min{1, 12Tmax}.

Proof. From Lemma 4.4 we obtain a > 0, C1 > 0 and C2 > 0 such that writing

F(t) := −

∫

Ω
ln
(
u(·, t) + 1

)
+ a

∫

Ω
|u(·, t)|2, t ∈ [0, Tmax),

and

g(t) :=
1

2

∫

Ω
n(·, t) ln

(
n(·, t) + 1

)
+
a

2

∫

Ω
|∇u(·, t)|2, t ∈ (0, Tmax),

we have
F ′(t) + C1F(t) + g(t) ≤ C2 for all t ∈ (0, Tmax). (4.14)

Since g ≥ 0, through an ODE comparison this firstly implies that

F(t) ≤ C3 := max
{
F(0) ,

C2

C1

}
for all t ∈ (0, Tmax) (4.15)
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and thus entails (4.11) due to the fact that

F(t) ≥ −

∫

Ω

(
n(·, t) + 1

)
+ a

∫

Ω
|u(·, t)|2

= −

∫

Ω
(n0 + 1) + a

∫

Ω
|u(·, t)|2 for all t ∈ (0, Tmax) (4.16)

thanks to the validity of ln(ξ + 1) ≤ ξ for all ξ ≥ 0, and to (2.13).

As (4.16) moreover means that −F(t) ≤ C4 :=
∫
Ω(n0+1) for all t ∈ (0, Tmax), an integration of (4.14)

finally shows that

∫ t+τ

t

g(s)ds ≤ F(t)−F(t+ τ)− C1

∫ t+τ

t

F(s)ds+ C2τ

≤ C3 + C4 + C1C4τ + C2τ for all t ∈ [0, Tmax − τ)

and that thus also (4.13) and (4.12) are valid, because τ ≤ 1. �

5 Higher regularity information. Proof of Theorem 1.1

With the information from Lemma 4.5 at hand, we can now proceed to derive improved regularity
properties on the basis of more standard testing procedures. Our first step in this respect is concernd
with a functional of classical logarithmic entropy type.

Lemma 5.1 We have

d

dt

∫

Ω
n ln

n

n0
+

∫

Ω

|∇n|2

n
+

1

2

∫

Ω
n2 ≤

∫

Ω
c2 +

∫

Ω
|u · ∇c|2 for all t ∈ (0, Tmax). (5.1)

Proof. Once more using that ∇ · u = 0, from (2.13) and the first two equations in (1.3) we obtain
that

d

dt

∫

Ω
n ln

n

n0
+

|∇n|2

n
= −

∫

Ω
∇n · ∇c−

∫

Ω
u · ∇(n lnn)

=

∫

Ω
n∆c

= −

∫

Ω
n2 +

∫

Ω
nc−

∫

Ω
n(u · ∇c) for all t ∈ (0, Tmax).

This implies (5.1) upon two applications of Young’s inequality, which namely show that
∫

Ω
nc ≤

1

4

∫

Ω
n2 +

∫

Ω
c2 and −

∫

Ω
n(u · ∇c) ≤

1

4

∫

Ω
n2 +

∫

Ω
|u · ∇c|2

for all t ∈ (0, Tmax). �

In order to appropriately absorb the rightmost contribution therein, we shall linearly combine (5.1)
with the following outcome of a standard testing procedure performed to the Navier-Stokes subsystem
of (1.3).
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Lemma 5.2 There exists C > 0 such that

d

dt

∫

Ω
|∇u|2 +

∫

Ω
|Au|2 ≤ C ·

{∫

Ω
|∇u|2

}2

+ C

∫

Ω
n2 for all t ∈ (0, Tmax). (5.2)

Proof. As a proof of this can be built on (4.11) through a rather standard argument, we may
confine ourselves to referring to e.g. [44, Proof of Theorem 1.1] and [53, Lemma 4.2] for details in two
closely related situations. �

In fact, the crucial term on the right of (5.1), even when augmented by some second-order expression
containing c, can be estimated in terms of a quadratic power of the functional on the left of (5.2), and
of an integral involving an essentially arbitrary subquadratic power of n:

Lemma 5.3 For all p ∈ (1, 2) there exists C(p) > 0 such that

∫

Ω
|u · ∇c|2 + ‖c‖p

W 2,p(Ω)
≤ C(p)

∫

Ω
np + C(p) ·

{∫

Ω
|∇u|2

}2

+ C(p) for all t ∈ (0, Tmax). (5.3)

Proof. Given p ∈ (1, 2), using that then 4 > 4− p+ 2− p we can pick r ∈ (1, 2) suitably close to
2 such that 4 > 8

r
− p+ 2− 2p

r
. This in turn enables us to fix s > 2 close enough to 2 such that

8

s
>

8

r
− p+ 2−

2p

r
, (5.4)

and we thereupon let

λ :=
2
r
− 2

s

1− 2
p
+ 2

r

.

Then λ > 0 since r < 2 < s, and (5.4) asserts that moreover

(
1−

2

p
+

2

r

)
· (4λ− p) =

8

r
−

8

s
− p+ 2−

2p

r
< 0

and thus 4λ < p. In consequence, after employing the Gagliardo-Nirenberg inequality and relying on
the fact that r < 2 in applying Lemma 3.3, we may use Young’s inequality to see that with some
positive constants C1 = C1(p), C2 = C2(p) and C3 = C3(p) we have

‖∇c‖4Ls(Ω) ≤ C1‖c‖
4λ
W 2,p(Ω)‖∇c‖

4(1−λ)
Lr(Ω)

≤ C2‖c‖
4λ
W 2,p(Ω)

≤
1

2
‖c‖p

W 2,p(Ω)
+ C3 for all t ∈ (0, Tmax).

Thanks to the continuity of the embedding W 1,2(Ω) →֒ L
2s
s−2 (Ω), by once more utilizing Young’s

inequality we therefore obtain C4 = C4(p) > 0 such that
∫

Ω
|u · ∇c|2 ≤ ‖u‖4

L
2s
s−2 (Ω)

+ ‖∇c‖4Ls(Ω)

≤ C4‖∇u‖
4
L2(Ω) +

1

2
‖c‖p

W 2,p(Ω)
+ C4 for all t ∈ (0, Tmax). (5.5)

15



Independently, we next employ standard elliptic regularity theory to the second equation in (1.3) to
find C5 = C5(p) > 0 such that due to Young’s inequality and the restriction that p < 2,

2‖c‖p
W 2,p(Ω)

≤ C5‖n− u · ∇c‖p
Lp(Ω)

≤ 2p−1C5‖n‖
p
Lp(Ω) + 2p−1C5‖u · ∇c‖p

Lp(Ω)

≤ 2p−1C5‖n‖
p
Lp(Ω) + ‖u · ∇c‖2L2(Ω) + C6 for all t ∈ (0, Tmax)

with some C6 = C6(p) > 0. When added to (5.5), this shows that for all t ∈ (0, Tmax),
∫

Ω
|u · ∇c|2 + 2‖c‖p

W 2,p(Ω)
≤ 2

∫

Ω
|u · ∇c|2 + 2p−1C5

∫

Ω
np + C6

≤ 2C4 ·

{∫

Ω
|∇u|2

}2

+ ‖c‖p
W 2,p(Ω)

+ 2C3 + 2p−1C5

∫

Ω
np + C6,

and thereby implies (5.3) with C(p) := max{2p−1C5(p) , 2C4(p) , 2C3(p) + C6(p)}. �

Thanks to the spatio-temporal L2 bound for ∇u available due to Lemma 4.5, in view of Lemma
5.3 a suitable combination of the inequalities from Lemma 5.1 and Lemma 5.2 yields the following
improvement on our knowledge about the regularity of the fluid flow.

Lemma 5.4 There exists C > 0 such that
∫

Ω
|∇u(·, t)|2 ≤ C for all t ∈ (0, Tmax). (5.6)

Proof. We apply Lemma 5.2 and Lemma 5.3 to fix C1 > 0 and C2 > 0 such that

d

dt

∫

Ω
|∇u|2 +

∫

Ω
|Au|2 ≤ C1 ·

{∫

Ω
|∇u|2

}2

+ C1

∫

Ω
n2 for all t ∈ (0, Tmax) (5.7)

and ∫

Ω
|u · ∇c|2 ≤ C2

∫

Ω
n

3
2 + C2 ·

{∫

Ω
|∇u|2

}2

+ C2 for all t ∈ (0, Tmax), (5.8)

and let b := 1
4C1

. Then taking an appropriate linear combination of the inequality from Lemma 5.1
with (5.7) shows that

d

dt

{∫

Ω
n ln

n

n0
+ b

∫

Ω
|∇u|2 + 1

}
+

1

2

∫

Ω
n2

≤

∫

Ω
c2 +

∫

Ω
|u · ∇c|2 + bC1 ·

{∫

Ω
|∇u|2

}2

+ bC1

∫

Ω
n2

≤

∫

Ω
c2 + (C2 + bC1) ·

{∫

Ω
|∇u|2

}2

+ C2

∫

Ω
n

3
2 + C2 +

1

4

∫

Ω
n2 for all t ∈ (0, Tmax),

and that thus y(t) :=
∫
Ω n(·, t) ln

n(·,t)
n0

+ b
∫
Ω |∇u(·, t)|2 + 1, t ∈ [0, Tmax), satisfies

y′(t) +
1

4

∫

Ω
n2 ≤ (C2 + bC1) ·

{∫

Ω
|∇u|2

}
· y(t) + C2

∫

Ω
n

3
2 +

∫

Ω
c2 + C2 for all t ∈ (0, Tmax).
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Since here Young’s inequality provides C4 > 0 such that

C2

∫

Ω
n

3
2 ≤

1

4

∫

Ω
n2 + C4 for all t ∈ (0, Tmax),

and since C5 := supt∈(0,Tmax)

∫
Ω c

2(·, t) is finite by Lemma 3.2, this entails that

y′(t) ≤ h(t)y(t) for all t ∈ (0, Tmax) (5.9)

with h(t) := (C2 + bC1)
∫
Ω |∇u(·, t)|2 + C2 + C4 + C5, t ∈ (0, Tmax), because y ≥ 1.

Now Lemma 4.5 ensures the existence of C6 > 0 and C7 > 0 such that again writing τ := min{1, 12Tmax}
we have

∫ t

(t−τ)+

h(s)ds ≤ C6 for all t ∈ [0, Tmax),

and that for any choice of t ∈ (0, Tmax) we can fix t0(t) ∈ (t− τ, t) ∩ [0, Tmax) fulfilling

y(t0(t)) ≤ C7.

Integrating in (5.9) hence shows that

y(t) ≤ y(t0(t)) · e
∫ t

t0(t)
h(s)ds

≤ C7e
C6 for all t ∈ (0, Tmax)

and thereby establishes (5.6), because t ∈ (0, Tmax) was arbitrary. �

The latter in turn provides bounds sufficient for estimating the contribution of u to the forcing terms
arising in the course of a standard L2 testing procedure applied to the first equation in (1.3):

Lemma 5.5 There exists C > 0 such that
∫

Ω
n2(·, t) ≤ C for all t ∈ (0, Tmax). (5.10)

Proof. We integrate by parts in the first equation from (1.3) and again rely on the solenoidality
of u to obtain that

1

2

d

dt

∫

Ω
n2 +

∫

Ω
|∇n|2 = −

∫

Ω
n∇n · ∇c

=
1

2

∫

Ω
n2∆c

=
1

2

∫

Ω
n2c−

1

2

∫

Ω
n3 +

1

2

∫

Ω
n2(u · ∇c)

=
1

2

∫

Ω
n2c−

1

2

∫

Ω
n3 −

∫

Ω
nc(u · ∇n) for all t ∈ (0, Tmax), (5.11)

and using Young’s inequality we find C1 > 0, C2 > 0 and C3 > 0 such that
∫

Ω
n2 ≤

1

6

∫

Ω
n3 + C1 for all t ∈ (0, Tmax)
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and

1

2

∫

Ω
n2c ≤

1

6

∫

Ω
n3 + C2

∫

Ω
c3 for all t ∈ (0, Tmax)

as well as

−

∫

Ω
nc(u · ∇n) ≤

∫

Ω
|∇n|2 +

1

4

∫

Ω
n2 +

1

4

∫

Ω
n2c2|u|2

≤

∫

Ω
|∇n|2 +

1

6

∫

Ω
n3 + C3

∫

Ω
c6|u|6

≤

∫

Ω
|∇n|2 +

1

6

∫

Ω
n3 +

C3

2

∫

Ω
c12 +

C3

2

∫

Ω
|u|12 for all t ∈ (0, Tmax).

Observing that the constants C4 := supt∈(0,Tmax)

∫
Ω c

3(·, t), C5 := supt∈(0,Tmax)

∫
Ω c

12(·, t) and C6 :=

supt∈(0,Tmax)

∫
Ω |u(·, t)|12 are all finite thanks to Lemma 3.2, Lemma 5.4 and the continuity of the

embedding W 1,2(Ω) →֒ L12(Ω), from (5.11) we thus infer that

1

2

d

dt

∫

Ω
n2 +

∫

Ω
n2 ≤ C1 + C2C4 +

C3C5

2
+
C3C6

2
for all t ∈ (0, Tmax)

and that therefore (5.10) follows by means of an ODE comparison argument. �

We can thereby easily improve our knowledge about regularity of the signal gradient:

Lemma 5.6 Let r > 2. Then there exists C(r) > 0 fulfilling

‖∇c(·, t)‖Lr(Ω) ≤ C(r) for all t ∈ (0, Tmax). (5.12)

Proof. Using that p := 2r
r+2 satisfies p ∈ (1, 2) by assumption on r, we see that Lemma 5.3 in

conjunction with Lemma 5.5 and Lemma 5.4 ensures the existence of C1 = C1(r) > 0 such that
‖c‖W 2,p(Ω) ≤ C1 for all t ∈ (0, Tmax). Since W

2,p(Ω) →֒W 1,r(Ω), this implies (5.12). �

The ultimate step within our bootstrap process yields bounds not only sufficient to assert global
extensibility via Lemma 2.2, but moreover also covering the intended boundedness feature in (1.7):

Lemma 5.7 Given any α ∈ (12 , 1), one can find C(α) > 0 such that

‖Aαu(·, t)‖2L2(Ω) ≤ C(α) for all t ∈ (0, Tmax). (5.13)

Moreover,
sup

t∈(0,Tmax)
‖n(·, t)‖L∞(Ω) <∞. (5.14)

Proof. The inequality in (5.13) can be derived in quite a standard manner from the regularity
properties obtained in Lemma 5.4 and Lemma 5.5 (see e.g. [44, Proof of Theorem 1.1] or also [53,
Lemma 4.3] for closely related precedents). As D(Aα) →֒ L12(Ω;R2) for any such α, this particularly
entails the existence of C1 > 0 such that ‖u‖L12(Ω) ≤ C1 for all t ∈ (0, Tmax), so that according to
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Lemma 5.6 we can find C2 > 0 such that h := ∇c − u satisfies ‖h‖L12(Ω) ≤ C2 for all t ∈ (0, Tmax).
Therefore, using the Hölder inequality along with (2.13) we can estimate

‖nh‖L3(Ω) ≤ ‖n‖L4(Ω)‖h‖L12(Ω) ≤ ‖n‖
3
4

L∞(Ω)‖n‖
1
4

L1(Ω)
‖h‖L12(Ω) ≤ C3‖u‖

3
4

L∞(Ω) for all t ∈ (0, Tmax)

with C3 := C2‖n0‖
1
4

L1(Ω)
, so that employing known smoothing properties of the Neumann heat semi-

group (et∆)t≥0 on Ω ([13]), we see that for some C4 > 0 and all t ∈ (0, Tmax) we have

‖n(·, t)‖L∞(Ω) =

∥∥∥∥e
t(∆−1)n0 +

∫ t

0
e(t−s)(∆−1)∇ ·

(
n(·, s)h(·, s)

)
ds+

∫ t

0
e(t−s)(∆−1)n(·, s)ds

∥∥∥∥
L∞(Ω)

≤ e−t‖n0‖L∞(Ω) + C4

∫ t

0

(
1 + (t− s)−

5
6

)
e−(t−s)‖n(·, s)h(·, s)‖L3(Ω)ds

+C4

∫ t

0

(
1 + (t− s)−

1
2

)
e−(t−s)‖n(·, s)‖L2(Ω)ds

≤ ‖n0‖L∞(Ω) + C3C4C5 sup
s∈(0,t)

‖n(·, s)‖
3
4

L∞(Ω) + C4C6 sup
s∈(0,t)

‖n(·, s)‖L2(Ω)

with C5 :=
∫∞
0 (1+σ−

5
6 )e−σdσ and C6 :=

∫∞
0 (1+σ−

1
2 )e−σdσ. Now since C7 := supt∈(0,Tmax) ‖n(·, t)‖L2(Ω)

is finite due to Lemma 5.5, this shows that writing C8 := max{‖n0‖L∞(Ω) + C4C6C7 , C3C4C5} and
M(T ) := supt∈(0,T ) ‖n(·, t)‖L∞(Ω), T ∈ (0, Tmax), we have

M(T ) ≤ C8 + C8M
3
4 (T ) for all T ∈ (0, Tmax).

This implies that M(T ) ≤ max{1 , (2C8)
4} for all T ∈ (0, Tmax) and hence completes the proof. �

Our main goal has thereby been accomplished:

Proof of Theorem 1.1. The claim directly results from Lemma 5.7 and Lemma 5.6 upon an
application of Lemma 2.2. �
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