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Abstract

The Cauchy problem in R
n, n ≥ 1, for the parabolic equation

ut = up∆u (⋆)

is considered in the strongly degenerate regime p ≥ 1.

The focus is firstly on the case of positive continuous and bounded initial data, in which it is known
that a minimal positive classical solution exists, and that this solution satisfies

t
1

p ‖u(·, t)‖L∞(Rn) → ∞ as t→ ∞. (0.1)

The first result of this study complements this by asserting that given any positive f ∈ C0([0,∞))
fulfilling f(t) → +∞ as t→ ∞ one can find a positive nondecreasing function φ ∈ C0([0,∞)) such
that whenever u0 ∈ C0(Rn) is radially symmetric with 0 < u0 < φ(| · |), the corresponding minimal
solution u satisfies

t
1

p ‖u(·, t)‖L∞(Rn)

f(t)
→ 0 as t→ ∞.

Secondly, (⋆) is considered along with initial conditions involving nonnegative but not necessarily
strictly positive bounded and continuous initial data u0. It is shown that if the connected compo-
nents of {u0 > 0} comply with a condition reflecting some uniform boundedness property, then a
corresponding uniquely determined continuous weak solution to (⋆) satisfies

0 < lim inf
t→∞

{
t
1

p ‖u(·, t)‖L∞(Rn)

}
≤ lim sup

t→∞

{
t
1

p ‖u(·, t)‖L∞(Rn)

}
<∞.

Under a somewhat complementary hypothesis, particularly fulfilled if {u0 > 0} contains compo-
nents with arbitrarily small principal eigenvalues of the associated Dirichlet Laplacian, it is finally
seen that (0.1) continues to hold also for such not everywhere positive weak solutions.
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1 Introduction

The dynamical features of the nonlinear parabolic equation

ut = up∆u (1.1)

are known to depend quite crucially on the exponent p > 0 that quantifies the strength of diffusion
degeneracies in regions where the solution is small; indeed, a considerable literature has rigorously
revealed various parabolictiy-diminishing effects going along with an increase of p. Among the most
comprehensively understood aspects in this regard seem to be phenomena related to propagation of
positivity: In striking difference to the borderline case p = 0 of the linear heat equation, throughout
the range p ∈ (0, 1) in which (1.1) is equivalent to the porous medium equation vt = ∆vm with
m = 1

1−p
> 1, compactly supported initial data evolve into continuous solutions ([8]) which at each

point in the considered domain do eventually become positive, but the spatial positivity set of which
propagates at finite speed ([15] and [5]; see also [13], [7], [9] and [2] for more detailed information, and
[1] or [16] for an overview).

In this respect, a second sharp transition in behavior can be observed when further increasing p:
Yet more drastically, namely, the support of solutions remains constant in time whenever p ≥ 1 ([21];
cf. also Proposition 3.1 below), and in the case p > 2 there even exist classical solutions to an associated
homogeneous Dirichlet problem in domains Ω ⊂ R

n which satisfy u(·, t) ∈ C∞
0 (Ω) for all t > 0 ([22]).

Two examples addressing a relative of (1.1) with p ≥ 3 in such Dirichlet problems, augmented by
the zero-oder source term up+1, have unveiled that in such very strongly degenerate cases, the global
behavior may be influenced quite substantially, up to an enforcement of repeated oscillations between
vanishing and everywhere infinite profiles, by the particular manner in which the boundary value 0 is
approached by the initial data ([20], [19]).

Beyond this, however, increasing the degeneracy in (1.1) may considerably affect the dynamics even
of solutions which are strictly positive, and for which (1.1) hence actually is non-degenerate near each
fixed point (x, t). In the context of the Cauchy problem

{
ut = up∆u, x ∈ R

n, t > 0,

u(x, 0) = u0(x), x ∈ R
n,

(1.2)

for instance, the large time asymptotics of positive classical solutions emanating from positive and
sufficiently fast decaying initial data u0 in general differs from that in the heat equation by some
quantitative corrections already in the porous medium regime: When p ∈ (0, 1), namely, any such

solution with u1−p
0 ∈ L1(Rn) satisfies 1

C
t
− n

2+(n−2)p ≤ ‖u(·, t)‖L∞(Rn) ≤ Ct
− n

2+(n−2)p for all t > 1 with
some C > 0 ([16, Theorem I.2.5], [12]), meaning that temporal decay properties of widely arbitrary
solutions with rapidly decreasing initial data rather closely parallel those of the particular explicit
self-similar solutions that form the celebrated family of so-called Barenblatt solutions ([3], [1]).

As some more recent findings have been indicating, however, outside the range p ∈ (0, 1) within which
such Barenblatt solutions are available, some yet more subtle facets in the dependence of large time
decay on spatial asymptotics need to be expected. When p ≥ 1, namely, decay rates of strictly positive
solutions have some common lower bound which can be approached up to errors with arbitrarily small
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algebraic asymptotics, but which can never be attained exactly by any such solution. More precisely,
the following has been shown in [10]:

Proposition A Let n ≥ 1, p ≥ 1 and u0 ∈ C0(Rn) ∩ L∞(Rn) be such that u0(x) > 0 for all x ∈ R
n.

Then (1.2) possesses a classical solution u ∈ C0(Rn × [0,∞)) ∩ C2,1(Rn × (0,∞)) which is such that
u(x, t) > 0 for all x ∈ R

n and t > 0, and which is minimal in the sense that whenever T ∈ (0,∞]
and ũ ∈ C0(Rn × [0, T )) ∩ C2,1(Rn × (0, T )) are such that ũ is positive and solves (1.2) classically in
R
n × (0, T ), we have u ≤ ũ in R

n × (0, T ).
Moreover,

lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
= ∞

and if in addition u0 ∈
⋂

q>0 L
q(Rn), then

lim sup
t→∞

{
t
1
p
−δ‖u(·, t)‖L∞(Rn)

}
<∞ for all δ > 0.

Apart from this, in [11] respective classes of suitably fast decreasing initial data have been identified
within which actually any logarithmic, and even doubly logarithmic, corrections to the algebraic decay

of t
− 1

p is essentially attained by corresponding positive solutions to (1.2) (see [11, Corollaries 1.5, 1.6,
1.8 and 1.9]).

Main results I: Arbitrarily slow increase of t
1
p ‖u(·, t)‖L∞(Ω). The first objective of the

present study now consists in examining whether beyond the latter particular examples, arbitrarily
small deviations of the borderline decay rate indicated in Proposition A can be undercut by some
positive solutions to (1.2). Our main results in this direction show that this indeed is possible in the
following flavor that seems to be the least restricitive conceivable in this regard:

Theorem 1.1 Let n ≥ 1 and p ≥ 1, and suppose that f ∈ C0([0,∞)) is positive and such that
f(t) → +∞ as t → ∞. Then there exists a positive nonincreasing function φ ∈ C0([0,∞)) with the
property that whenever u0 ∈ C0(Rn) is radially symmetric and such that

0 < u0(x) < φ(|x|) for all x ∈ R
n, (1.3)

the corresponding minimal solution u of (1.2) satisfies

t
1
p ‖u(·, t)‖L∞(Rn)

f(t)
→ 0 as t→ ∞. (1.4)

Main results II: Attaining vs. remaining away from critical decay for solutions with
{u0 > 0} 6= R

n. We shall next address the question whether critical decay can be observed at least
when the initial data are not strictly positive throughout Rn. Here we note that already at the level
of basic solution theories, the strong diffusion degeneracies present in the considered range p ≥ 1 give
rise to significant challenges, for the caveat documented in [14] indicates that within straightforward
and seemingly natural adaptations of weak solution concepts to the framework of (1.2), uniqueness
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of solutions can not even be expected for initial data from C∞
0 (Rn). We accordingly resort to a

slightly modified notion of solvability, to be substantiated in Proposition 3.1 below, which inter alia
requires continuity of the considered solution, and for which we thus, in accordance with known results
on discontinuous solution behavior in the presence of initially isolated zeros ([4], [6]), impose some
restrictions on the regularity of the positivity set {u0 > 0} in order to assert the mere existence of
such solutions. More precisely, in this part we shall assume that





0 6≡ u0 ∈ C0(Rn) is nonnegative such that

{u0 > 0} coincides with the interior of suppu0, and that

each Ω ∈ C(u0) is a bounded domain with Lipschitz boundary,

(1.5)

where for 0 ≤ ϕ ∈ C0(Rn) we have set

C(ϕ) :=
{
Ω ⊂ R

n
∣∣∣ Ω is a connected component of {ϕ > 0}

}
, (1.6)

and note that under these hypotheses, a uniquely determined continous weak solution can indeed be
found (Proposition 3.1).

Now our intention in this part is to relate the possibility of exhibiting critical decay to some properties
exclusively referring to features of the connected components of {u0 > 0}, rather than to the size of
u0 nor its overall decay in space. Specifically, our first result in this respect reads as follows.

Proposition 1.2 Let n ≥ 1 and p ≥ 1, and suppose that u0 satisfies (1.5) with

inf
Ω∈C(u0)

sup
0≤ϕ∈C0(Ω)∩C2(Ω)

‖ϕ‖L∞(Ω)=1

inf
x∈Ω

{
− ϕp−1(x)∆ϕ(x)

}
> 0. (1.7)

Then the continous weak solution u of (1.2) has the property that

0 < lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
≤ lim sup

t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
<∞. (1.8)

Indeed, the following consequence thereof establishes a link to the maximum size of all the members
from C(u0):

Corollary 1.3 Let n ≥ 1 and p ≥ 1, and suppose that u0 is such that (1.5) holds, and that there
exists K > 0 with the property that each Ω ∈ C(u0) lies between two parallel hyperplanes with distance
K, that is, for any such Ω one can find x0 ∈ R

n and A ∈ SO(n) such that

Ω ⊂ x0 +AS with S :=
{
x = (x1, ..., xn) ∈ R

n
∣∣∣ 0 < x1 < K

}
.

Then the continuous weak solution u of (1.2) satisfies (1.8). In particular, this conclusion holds if

sup
Ω∈C(u0)

diamΩ <∞.
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We shall next identify a criterion, partially complementary to that from Proposition 1.2, as sufficient
to ensure absence of critical decay speeds also for some not strictly positive initial data. In formulating
this, for notational convenience we abbreviate C0

0 (Ω) := {ϕ ∈ C0(Ω) | ϕ|∂Ω = 0} for open sets Ω ⊂ R
n.

Proposition 1.4 Let n ≥ 1 and p ≥ 1, and let u0 be such that (1.5) holds, and that

inf
Ω∈C(u0)

inf
0≤ϕ∈C0

0 (Ω)∩C2({ϕ>0})

‖ϕ‖L∞(Ω)=1

sup
x∈{ϕ>0}

{
− ϕp−1(x)∆ϕ(x)

}
= 0. (1.9)

Then for the continous weak solution u of (1.2) we have

lim inf
t→∞

{
t
1
p ‖u(·, t)‖L∞(Rn)

}
= ∞. (1.10)

To finally indicate that here the requirement (1.9) again is in close relationship to the component sizes
of {u0 > 0}, let us adopt the standard notation

λ1(Ω) := inf
06≡ϕ∈W 1,2

0 (Ω)

∫
Ω |∇ϕ|2∫
Ω ϕ

2
(1.11)

for the principal Dirichlet eigenvalue of −∆ in a bounded domain Ω ⊂ R
n. In fact, we shall see that

the conclusion of Proposition 1.4 holds whenever {u0 > 0} contains components with arbitrarily small
values of these eigenvalues, and hence whenever {u0 > 0} has infinite inradius:

Corollary 1.5 Let n ≥ 1 and p ≥ 1, and let u0 be such that (1.5) holds, and that

inf
Ω∈C(u0)

λ1(Ω) = 0. (1.12)

Then the continuous weak solution u of (1.2) satisfies (1.10). This especially follows if

sup

{
R > 0

∣∣∣∣ There exist Ω ∈ C(u0) and x0 ∈ R
n such that BR(x0) ⊂ Ω

}
= ∞. (1.13)

2 Slow increase of t
1
p‖u(·, t)‖L∞(Ω). Proof of Theorem 1.1

2.1 Specifying the objective

Our approach toward the derivation of Theorem 1.1 will be based on the following fundamental
observation made in [11, Theorem 1.3].

Theorem B Assume that n ≥ 1 and p ≥ 1, that s0 > 0, and that L ∈ C0([0,∞)) ∩ L∞((0,∞)) ∩
C2((0, s0)) is positive and nondecreasing on (0,∞) and such that L(0) = 0, that there exist a > 0 and
λ0 > 0 fulfilling

L(s) ≤ (1 + aλ)L(s1+λ) for all s ∈ (0, s0) and λ ∈ (0, λ0), (2.1)
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and that furthermore

sL′′(s) ≥ −
3p+ q0 − 2

p+ q0
L′(s) for all s ∈ (0, s0) (2.2)

with a certain q0 > 0. Then whenever u0 ∈ C0(Rn) is positive, radially symmetric and nonincreasing

with respect to |x| and such that u0 < min
{
s

2
p

0 , s
2

p+q0
0

}
in R

n as well as

∫

Rn

L(u0) <∞,

there exist t0 > 0 and C > 0 such that the minimal classical solution u of (1.2) satisfies

‖u(·, t)‖L∞(Rn) ≤ Ct
− 1

pL− 2
np

(1
t

)
for all t ≥ t0. (2.3)

Now in order to appropriately prepare a construction of a function L which on the one hand satisfies
the requirements in Theorem B, and especially the inequalities (2.1) and (2.2), but for which, on the

other hand, the correction factor L− 2
np (1

t
) in (2.3) remains small relative to a given divergent function

f in the style of Theorem 1.1, let us firstly derive a handy criterion sufficient for (2.1).

Lemma 2.1 Let s0 ∈ (0, 1] and a ∈ (0, 1], and suppose that L ∈ C1((0, s0)) is positive and such that

L′(s) ≤ a ·
L(s)

s ln s0
s

for all s ∈ (0, s0). (2.4)

Then
L(s) ≤ (1 + aλ) · L(s1+λ) for all s ∈ (0, s0) and λ > 0. (2.5)

Proof. Since L is positive, letting

H(s) := ln
1

L(s)
, s ∈ (0, s0),

we obtain a well-defined element H of C1((0, s0)) which according to (2.4) satisfies

H ′(s) = −
L′(s)

L(s)
≥ −

a

s ln s0
s

for all s ∈ (0, s0).

Using that s0 ≤ 1, and that thus sa+λ ≤ s for all s ∈ (0, s0) and λ > 0, we can therefore estimate

H(s)−H(s1+λ) =

∫ s

s1+λ

H ′(σ)dσ

≥ −a

∫ s

s1+λ

dσ

σ ln s0
σ

= −a

∫ s
s0

( s
s0

)1+λ

dξ

ξ ln 1
ξ

for all s ∈ (0, s0) and λ > 0. (2.6)
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Since

∫ Σ

Σ1+λ

dξ

ξ ln 1
ξ

= −

[
ln ln

1

ξ

]ξ=Σ

ξ=Σ1+λ

= − ln

(
ln 1

Σ

(1 + λ) ln 1
Σ

)

= ln(1 + λ) for all Σ ∈ (0, 1) and λ > 0,

and since

a ln(1 + λ) = ln
{
(1 + λ)a

}
≤ ln(1 + aλ) for all λ > 0

due to the fact that a ≤ 1 ensures that (1+ λ)a ≤ 1+ aλ for all λ > 0, from (2.6) we thus obtain that

H(s)−H(s1+λ) ≥ − ln(1 + aλ) for all s ∈ (0, s0) and λ > 0.

According to the definition of H, this implies that

ln

(
L(s)

(1 + aλ)L(s1+λ)

)
= H(s1+λ)−H(s)− ln(1 + aλ) ≤ 0 for all s ∈ (0, s0) and λ > 0

and hence establishes (2.5). �

Fortunately, both this condition (2.4) and (2.2) can be reformulated in a rather convenient manner
after a simple variable transformation:

Lemma 2.2 Let h ∈ C2([0,∞)). Then for any choice of s0 > 0, writing

z ≡ z(s) := ln
s0

s
and L(s) := e−h(z), s ∈ (0, s0], (2.7)

defines a positive function L ∈ C2((0, s0]) which is such that whenever κ ∈ R, for all s ∈ (0, s0) we
have

s ln
s0

s
·
L′(s)

L(s)
= zh′(z) (2.8)

and

sL′′(s) + κL′(s) =
1

s
· e−h(z) ·

{
− h′′(z) + (κ− 1)h′(z) + h′2(z)

}
(2.9)

with z = z(s).

Proof. On the basis of (2.7), for s ∈ (0, s0) we compute z′(s) = −1
s
and

L′(s) =
1

s
· e−h(z)h′(z)

and

L′′(s) = −
1

s2
· e−h(z)h′′(z) +

1

s2
· e−h(z)h′2(z)−

1

s2
· e−h(z)h′(z)
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with z = z(s), so that both (2.8) and (2.9) readily follow. �

In line with Theorem B, Lemma 2.1 and Lemma 2.2, we will thus subsequently intend to make sure
that given any function f = f(t) exhibiting arbitrarily slow unbounded growth, after transformation
to a positive divergent function F = F (z) on [0,∞) in the style suggested by (2.3) and (2.7), we
can find a yet unbounded minorant h for which the correspondingly translated version L, as defined
through (2.7), satisfies the requirement in (2.1) in the sharpened sense expressed in Lemma 2.1 and
(2.8), and which simultaneously complies with (2.2) via (2.9). Here we observe that since fortunately
the rightmost summand in (2.9) is nonnegative, and since the factor appearing on the right of (2.2)
satisfies 3p+q0−2

p+q0
≥ 1 for any choice of p ≥ 1 and q0 > 0, with regard to (2.2) it will be sufficient to

construct h in such a way that h′ ≥ 0 and h′′ ≤ 0.

2.2 Construction of slowly increasing minorants

To accomplish the first among two major steps in our design of a smooth minorant with the desired
properties, let us construct a piecewise linear but already concave preliminary candidate.

Lemma 2.3 Let F ∈ C0([0,∞)) be positive and such that F (z) → +∞ as z → ∞. Then there exist a
strictly increasing sequence (zj)j∈N ⊂ [0,∞) and a positive concave function h0 ∈ W

1,∞
loc ([0,∞)) such

that z1 = 0 and zj → ∞ as j → ∞, that for all j ∈ N we have

h0 ∈ C2((zj , zj+1)) with h′′0(z) = 0 for all z ∈ (zj , zj+1) (2.10)

and

0 < h′0(z) ≤
1

z + 1
for all z ∈ (zj , zj+1), (2.11)

and that
h(z) ≤ F (z) for all z > 0 (2.12)

and
h0(z) → +∞ as z → ∞. (2.13)

Proof. We pick b ∈ (0, 1) in such a way that F (z) ≥ 2b for all z ≥ 0, and construct (zj)j∈N and
h0 recursively as follows: Taking z1 := 0, and for notational convenience also introducing z0 := −b,
we assume that for some j ≥ 1 we already have found (zi)i∈{0,...,j} ⊂ R such that zi+1 > zi for all
i ∈ {0, ..., j − 1} and

F (z) ≥ (i+ 1)b for all z ≥ zi and i ∈ {1, ..., j}, (2.14)

and that letting

h0(z) := mi · (z − zi) + i · b, z ∈ (zi, zi+1], i ∈ {0, ..., j − 1}, (2.15)

with

mi :=
b

zi+1 − zi
, i ∈ {0, ..., j − 1}, (2.16)

defines a continuous and concave function h0 on (z0, zj ] which satisfies

0 < h′0(z) ≤
1

z + 1
for all z ∈ (z0, zj) \

{
zi

∣∣∣ i ∈ {1, ..., j − 1}
}
. (2.17)
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Now since F (z) → +∞ as z → ∞, and since b < 1, we can fix zj+1 > zj large enough such that

F (z) ≥ (j + 2)b for all z ≥ zj+1, (2.18)

and that furthermore
zj+1 > 2zj − zj−1 (2.19)

as well as
(1− b)zj+1 ≥ zj + b. (2.20)

Then letting

mj :=
b

zj+1 − zj
and h0(z) := mj · (z − zj) + j · b, z ∈ (zj , zj+1], (2.21)

evidently extends h0 to a function defined on all of (z0, zj+1], in a manner consistent with (2.15) and
(2.16), which is continuous on (z0, zj+1] due to the fact that according to (2.21) and (2.15) we have
h0(z) → j · b = h0(zj) as (zj , zj+1] ∋ z ց zj . To see that h0 is concave on (0, zj+1], in view of (2.15)
and (2.21) it is sufficient to observe that thanks to the definition of (mi)i∈{0,...,j} in (2.16) and (2.21),
the requirement in (2.19) guarantees that

1

mj
−

1

mj−1
=
zj+1 − 2zj + zj−1

b
> 0,

which namely asserts that

lim
zցzj

h′0(z) = mj < mj−1 = lim
zրzj

h′0(z).

We next make use of (2.20) to confirm that

(z + 1) · h′0(z) = (z + 1)mj

≤ (zj+1 + 1)mj

=
b(zj+1 + 1)

zj+1 − zj

= b ·

{
1 +

zj + 1

zj+1 − zj

}

≤ b ·

{
1 +

zj + 1
zj+b

1−b
− zj

}

= 1 for all z ∈ (zj , zj+1),

which together with (2.17) implies that

0 < h′0(z) ≤
1

z + 1
for all z ∈ (z0, zj+1) \

{
zi

∣∣∣ i ∈ {1, ..., j}
}
.

Since (2.18) along with (2.14) clearly ensures that

F (z)≥(i+ 1)b for all z ≥ zi and any i ∈ {1, ..., j + 1},
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this completes our inductive construction of a strictly increasing sequence (zj)j≥0 ⊂ R which satisfies
z1 = 0 and is such that (2.14) holds for all j ∈ N, in particular meaning that necessarily zj → ∞ as
j → ∞.

In view of the fact that (2.15), (2.16) and (2.17) are valid for all j ∈ N, we therefore moreover obtain
a function h0 : (z0,∞) → R which when restricted to [0,∞) belongs to W 1,∞([0,∞)) and satisfies
(2.10) and (2.11) for all j ∈ N, which is concave by construction, and for which (2.13) holds thanks to
the circumstance that h0(zj) = j · b→ +∞ as j → ∞.

In order to finally verify (2.12), given z > 0 we fix j ∈ N such that z ∈ (zj , zj+1], and use the definition
of h0 in (zj , zj+1] implied by (2.15) in estimating

h0(z) = b ·
z − zj

zj+1 − zj
+ j · b ≤ b+ j · b,

because z ≤ zj+1. Since, on the other hand, the inequality z ≥ zj enables us to conclude from (2.14)
that

F (z) ≥ (j + 1)b,

this completes the proof. �

We next prepare an appropriate smoothing procedure, to be finally performed near each discontinuity
point of the function h0 from Lemma 2.3, by means of an explicit construction concentrating on cases
in which only one point of such nonsmooth behavior is present.

Lemma 2.4 Let z⋆ ∈ R and h⋆ ∈ C0(R) ∩ C2(R \ {z⋆}) be concave and such that h′′⋆(z) = 0 for all
z ∈ R \ {z⋆}. Then for any ε > 0 there exists hε ∈ C2(R) such that

hε(z) = h⋆(z) for all z ∈ R \ (z⋆ − ε, z⋆ + ε) (2.22)

and
hε(z) ≤ h⋆(z) for all z ∈ R (2.23)

as well as
h′′ε(z) ≤ 0 for all z ∈ R. (2.24)

Proof. Our hypotheses precisely mean that there exist c1 ∈ R,m ∈ R and m ≤ m such that

h⋆(z) =

{
m · (z − z⋆) + c1 for all z ≤ z⋆,

m · (z − z⋆) + c1 for all z > z⋆,

and we may assume that actually m < m, for otherwise choosing hε ≡ h⋆ clearly warrants validity of
(2.22)-(2.24).

For fixed ε > 0, we then let

A1 :=
ε

2
(m−m), A2 :=

m+m

2
and A3 := c1 −

ε

2
(m−m)−

1

2
(m+m)z⋆
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and observe that, as can easily be verified, these selections ensure that

h⋆(z) = A1 · ĥ⋆
(z − z⋆

ε

)
+A2z +A3 for all z ∈ R, (2.25)

where

ĥ⋆(ξ) := 1− |ξ|, ξ ∈ R.

To see that the normalized situation thus obtained can be coped with by means of an explicit con-
struction, we introduce

ĥ1(ξ) :=





1 + ξ, ξ ∈ (−∞,−1],

−1
3ξ

3 − ξ2 + 2
3 , ξ ∈ (−1, 0],

1
3ξ

3 − ξ2 + 2
3 , ξ ∈ (0, 1],

1− ξ, ξ ∈ (1,∞).

Then straightforward computation shows that ĥ1 belongs to C2(R) and satisfies

ĥ1(ξ) = ĥ⋆(ξ) for all ξ ∈ R \ (−1, 1) (2.26)

and

ĥ1(ξ)− ĥ⋆(ξ) =
{1
3
|ξ|3 − ξ2 +

2

3

}
−
{
1− |ξ|

}

≤
1

3
· (|ξ| − 1)3

≤ 0 for all ξ ∈ (−1, 1) (2.27)

as well as
ĥ′′1(ξ) = 2(|ξ| − 1) ≤ 0 for all ξ ∈ (−1, 1). (2.28)

Therefore, if in reminiscence of (2.25) we let

hε(z) := A1 · ĥ1
(z − z⋆

ε

)
+A2z +A3, z ∈ R, (2.29)

then (2.22) and (2.23) directly result from (2.26), (2.27) and (2.25), whereas (2.24) is a consequence
of (2.28), because

h′′ε(z) =
A1

ε
· ĥ′′1

(z − z⋆

ε2

)
for all z ∈ (z⋆ − ε, z⋆ + ε)

by (2.29). �

Now suitable application of the latter to the function gained in Lemma 2.3 yields the following.

Lemma 2.5 Let F ∈ C0([0,∞)) be such that F (z) > 0 for all z ≥ 0 and F (z) → +∞ as z → ∞.
Then there exists h ∈ C2([0,∞)) such that

0 < h(z) ≤ F (z) for all z ≥ 0 (2.30)
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and

0 < h′(z) ≤
1

z
for all z > 0, (2.31)

and such that moreover
h′′(z) ≤ 0 for all z > 0 (2.32)

and
h(z) → +∞ as z → ∞. (2.33)

Proof. We take (zj)j∈N ⊂ [0,∞) and h0 ∈W
1,∞
loc ([0,∞)) as provided by Lemma 2.3, and for j ∈ N

with j ≥ 2 we then obtain from the linearity of h0 on [zj−1, zj ] and on [zj , zj+1] that

h0(z) = h
(j)
⋆ (z) for all z ∈ [zj−1, zj+1], (2.34)

where

h
(j)
⋆ (z) :=

{
mj · (z − zj) + bj , z ∈ (−∞, zj ],

mj · (z − zj) + bj , z ∈ (zj ,∞),

with bj := h0(zj), and with mj ∈ R and mj ∈ R being the well-defined constants fulfilling h′0 ≡ mj in
(zj−1, zj) and h

′
0 ≡ mj in (zj , zj+1). As the concavity of h0 requires that mj ≥ mj and that thus also

h
(j)
⋆ is concave for any such j, fixing any εj > 0 such that

εj < min

{
zj − zj−1

2
,
zj+1 − zj

2
,
1

2

}
, (2.35)

we may employ Lemma 2.4 to find
h(j) ≡ h(j)εj

∈ C2(R) (2.36)

such that
h(j)(z) = h

(j)
⋆ (z) for all z ∈ R \ (zj − εj , zj + εj), (2.37)

that
h(j)(z) ≤ h

(j)
⋆ (z) for all z ∈ R, (2.38)

and that
(h(j))′′(z) ≤ 0 for all z ∈ R. (2.39)

Then since (2.35) ensures that for all j ≥ 2 we have

zj + εj < zj +
zj+1 − zj

2
=
zj + zj+1

2
= zj+1 −

zj+1 − zj

2
< zj+1 − εj+1,

it follows that

[zj − εj , zj + εj ] ∩ [zk − εk, zk + εk] = ∅ for all j ∈ N and k ∈ N such that j ≥ 2, k ≥ 2 and j 6= k,
(2.40)

and that thus

h(z) :=

{
h(j)(z) if z ∈ [zj − εj , zj + εj ] for some j ≥ 2,

h0(z) if z ∈ [0,∞) \
⋃∞

j=2[zj − εj , zj + εj ],
(2.41)
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introduces a well-defined function h on [0,∞) which due to (2.36), (2.37) and (2.40) belongs to
C2([0,∞)), and for which from (2.39) and the piecewise linearity of h0 we know that (2.32) holds.

This concavity property also entails the left inequality in (2.31) as a particular consequence, because
given any z > 0 we can rely on the unboundedness of (zj)j∈N to find j ≥ 2 such that z ≤ zj + εj , so
that by (2.32), (2.41) and the left inequality in (2.11),

h′(z) ≥ h′(zj + εj) = h′0(zj + εj) > 0.

Likewise, combining (2.32) with the right inequality in (2.11) we see that if z > 0 is such that
z ∈ [zj − εj , zj + εj ] for some j ≥ 2, then due to the rightmost restriction expressed in (2.35),

zh′(z)− 1 ≤ zh′(zj − εj)− 1

= zh′0(zj − εj)− 1

≤
z

(zj − εj) + 1
− 1

≤
zj + εj

zj − εj + 1
− 1

=
2εj − 1

zj − εj + 1

≤ 0,

whereas if z ∈ [0,∞) \
⋃

j≥2[zj − εj , zj + εj ], then clearly zh′(z) ≤ z
z+1 ≤ 1 by (2.11).

Having thereby asserted both inequalities in (2.31) for all z ≥ 0, we proceed to observe that again
thanks to (2.40), we may draw on (2.13) to infer that

lim sup
z→∞

h(z) ≥ lim sup
j→∞

h(zj + εj) = lim sup
j→∞

h0(zj + εj) = +∞,

whence (2.33) becomes a consequence of the upward monotonicity of h guaranteed by (2.31).

Thus left with the verification of (2.30), we first note that for all z ∈ [0,∞) \
⋃∞

j=2[zj − εj , zj + εj ] it
directly follows from (2.12) that

h(z) = h0(z) ≤ F (z),

while if z ∈ [zj − εj , zj + εj ] for some j ≥ 2, then (2.38) and (2.34) enable us to again invoke (2.12)
when concluding that

h(z) = h(j)(z) ≤ h
(j)
⋆ (z) = h0(z) ≤ F (z).

Finally, the left inequality in (2.30) also results from the nonnegativity of h′ when combined with the
observation that since ε2 <

z2−z1
2 = z2

2 by (2.35), and since thus z2− ε2 >
z2
2 > 0, the definition (2.41)

ensures that h(0) = h0(0) and that hence h(0) > 0 due to the positivity of h0, as warranted by Lemma
2.3. �

We can now return to Lemma 2.1 and Lemma 2.2 to verify that indeed for essentially any given f

diverging to +∞ we can find a function L that simultaneously possesses all the intended properties.
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Lemma 2.6 Let n ≥ 1 and p ≥ 1, and suppose that f ∈ C0([1,∞)) is such that f(t) > 1 for all t ≥ 1,
and that f(t) → +∞ as t → ∞. Then one can find L ∈ C0([0,∞)) ∩ C2((0, 1)) with the properties
that

L(0) = 0, L(s) > 0 for all s ∈ (0, 1] and L(s) = L(1) for all s > 1, (2.42)

that

0 < L′(s) ≤
L(s)

s ln 1
s

for all s ∈ (0, 1), (2.43)

that
sL′′(s) ≥ −L′(s) for all s ∈ (0, 1), (2.44)

and that

L(s) ≥ f−
np

4

(1
s

)
for all s ∈ (0, 1). (2.45)

In particular,

L− 2
np

(
1
t

)

f(t)
→ 0 as 1 < t→ ∞. (2.46)

Proof. We let
F (z) :=

np

4
ln f(ez), z ≥ 0, (2.47)

and observe that our assumptions on f ensure that F is continuous and positive on [0,∞) with
F (z) → +∞ as z → ∞. We may therefore employ Lemma 2.5 to obtain a function h ∈ C2([0,∞))
which satisfies (2.30)-(2.33), and thereupon define

L(s) :=





0 if s = 0,

e−h(z), z ≡ z(s) := ln 1
s
, if s ∈ (0, 1],

e−h(0) if s > 1.

(2.48)

Then since h(z) → +∞ as z → ∞, it follows that L is continuous, whereas the inclusion h ∈ C2([0,∞))
clearly implies that L moreover belongs to C2((0, 1)). All three properties in (2.42) and the left
inequality in (2.43) are evident from (2.48) and the strict positivity of h′, and the right inequality in
(2.43) results from the identity in (2.8), applied to s0 := 1, and the fact that zh′(z) ≤ 1 for all z > 0
by (2.31). To verify (2.44), we only need to invoke (2.9) with κ := 1 and use that h′′(z) ≤ 0 for all
z > 0, and (2.45) can be seen by combining (2.48) with (2.47), which thanks to the right inequality
in (2.30), namely, guarantees that

lnL(s) = −h(z(s))

≥ −F (z(s))

= −
np

4
ln f(ez(s))

= ln f−
np

4

(1
s

)
for all s ∈ (0, 1).
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Finally, since f(t) → +∞ as t → ∞, this indeed entails (2.46) as a particular consequence, for by
(2.45),

L− 2
np

(
1
t

)

f(t)
≤
f

1
2 (t)

f(t)
= f−

1
2 (t) → 0

as 1 < t→ ∞. �

The derivation of our main result on arbitrarily small deviations from the critical decay rate thereupon
becomes quite straightforward:

Proof of Theorem 1.1. We take L as given by Lemma 2.6, and note that as a strictly increasing
function, L|[0,1] possesses a strictly increasing inverse Λ defined on [0,L(1)]. Fixing any nonincreasing
ψ ∈ C0([0,∞)) such that 0 < ψ(r) < L(1) for all r ≥ 0 and

∫ ∞

0
rn−1ψ(r)dr <∞, (2.49)

we then see that letting
φ(r) := Λ(ψ(r)), r ≥ 0, (2.50)

introduces a well-defined φ ∈ C0([0,∞)) which is positive and nonincreasing according to the mono-
tonicity properties of Λ.

Now (2.44) together with the nonnegativity of L′ ensures that if we pick any q0 > 0, then

sL′′(s) +
3p+ q0 − 2

p+ q0
· L′(s) ≥ −L′(s) +

3p+ q0 − 2

p+ q0
· L′(s)

=
2(p− 1)

p+ q0
· L′(s) for all s ∈ (0, 1),

whereas (2.43) in conjunction with Lemma 2.1 warrants that

L(s) ≤ (1 + λ)L(s1+λ) for all s ∈ (0, 1) and λ > 0.

We may therefore employ Theorem B to conclude that whenever u0 ∈ C0(Rn) is radially symmetric

and such that (1.3) holds, then since especially also u0(x) < Λ(L(1)) = 1 = max{1
2
p , 1

2
p+q0 } for all

x ∈ R
n by (2.50), and since

∫

Rn

L(u0) ≤

∫

Rn

L(φ(|x|))dx

= n|B1(0)|

∫ ∞

0
rn−1L(φ(r))dr

= n|B1(0)|

∫ ∞

0
rn−1ψ(r)dr

< ∞

due to (2.49), we can find t0 ≥ 1 and c1 > 0 such that

t
1
p ‖u(·, t)‖L∞(Rn) ≤ c1L

− 2
np

(1
t

)
for all t ≥ t0.

In view of (2.46), however, this already establishes (1.4). �
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3 Continuous weak solutions with nontrivial zero sets

The basis for our investigation of solutions emanating from initial data u0 with {u0 > 0} 6= R
n will

be formed by the following statement on existence and uniqueness of continuous weak solutions, as
essentially contained already in the literature, together with a basic lower bound for their temporal
decay.

Proposition 3.1 Given p ≥ 1, let Ξ(s) :=
∫ s

1
dσ
σp , σ > 0, and assume that n ≥ 1 and that u0 ∈ C0(Rn)

is nonnegative and such that {u0 > 0} coincides with the interior of suppu0, and that each connected
component of {u0 > 0} is a bounded domain with Lipschitz boundary. Then there exists a nonnegative
function u ∈ C0(Rn × [0,∞)) ∩ L∞(Rn × (0,∞)), uniquely determined by the additional regularity
requirements that

(u− η)+ ∈W 1,2(Rn × (t1, t2)) for any η > 0, t1 > 0 and t2 > 0,

and that for all bounded domains Ω ⊂ R
n and any ϕ ∈ C2(Ω) with ϕ > 0 in Ω and ϕ|∂Ω = 0,

0 ≤ t 7→

∫

Ω
Ξ(u(·, t))ϕ is continuous as a [−∞,∞)-valued mapping,

such that u forms a continuous weak solution of (1.2) in the sense that u|t=0 = u0 and that whenever
Ω ⊂ R

n is a bounded domain with Lipschitz boundary and ϕ ∈ C2(Ω) satisfies ϕ > 0 in Ω with
ϕ|∂Ω = 0,

∫

Ω
Ξ(u(·, t2))ϕ =

∫ t2

t1

∫

Ω
u∆ϕ−

∫ t2

t1

∫

∂Ω
u
∂ϕ

∂ν
+

∫

Ω
Ξ(u(·, t1))ϕ

holds as an identity in [−∞,∞) for any t1 ≥ 0 and t2 > t1.

In addition, this solution satisfies

u(x, t) = 0 for all x ∈ R
n \ {u0 > 0} and t > 0, (3.1)

and for each connected component Ω0 of {u0 > 0}, u belongs to C2,1(Ω0 × (0,∞)) with u > 0 in
Ω0 × (0,∞). Furthermore, there exists C > 0 such that

t
1
p ‖u(·, t)‖L∞(Rn) ≥ C for all t > 1. (3.2)

Proof. Except for (3.2), all statements can be obtained by means of an almost verbatim transfer
of the arguments from [18, Theorem 1.2.4], as detailed there for homogeneous Dirichlet problems in
bounded domains, to the present Cauchy problem situation (cf. also [21, Theorem 2.1] for a slightly
simpler close relative involving marginally stronger regularity classes).

To derive (3.2), we fix any ball B ⊂ R
n such that B ⊂ {u0 > 0}, and let Θ ∈ C2(B) denote the

principal Dirichlet eigenfunction of −∆ in B with maxx∈B Θ(x) = 1. Then defining

u(x, t) := y(t)Θ(x), x ∈ B, t ≥ 0, where y(t) :=
{
y
−p
0 + pλ1(B)t

}− 1
p
, t ≥ 0, (3.3)
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with y0 := 1
2 minx∈B u0(x) being positive by continuity of u0, we immediately see that u(x, 0) =

y0Θ(x) < u0(x) for all x ∈ B and u(x, t) = 0 < u(x, t) for all x ∈ B and t ≥ 0 by positivity of u
in {u0 > 0} × [0,∞). As moreover the identities −∆Θ = λ1(B)Θ and y′ = −λ1y

p+1 along with the
inequalities 0 ≤ Θ ≤ 1 ensure that

ut − up∆u = Θ ·
{
y′(t) + λ1(B)yp+1(t)Θp

}
≤ Θ ·

{
y′(t) + λ1(B)yp+1(t)

}
= 0

in B × (0,∞), due to the fact that u classically solves ut = up∆u in B × (0,∞) we may conclude
by a comparison argument ([17, Sect. 3.1]) that u(x, t) ≤ u(x, t) for all x ∈ B and t > 0. Since

‖u(·, t)‖L∞(B) = y(t) for all t ≥ 0, and since y is positive with t
1
p y(t) → (pλ1(B))

− 1
p as t → ∞ by

(3.3), this immediately yields (3.2) with suitably small C > 0. �

3.1 Attaining critical decay. Proof of Proposition 1.2 and of Corollary 1.3

Now our general criterion ensuring attainment of critical speed is based on a comparison argument
involving separated supersolutions:

Proof of Proposition 1.2. According to (1.7), there exists c1 > 0 with the property that for any
Ω ∈ C(u0) one can find ϕ ∈ C0(Ω) ∩ C2(Ω) such that

0 ≤ ϕ(x) ≤ 1 for all x ∈ Ω (3.4)

and −ϕp−1(x)∆ϕ(x) ≥ c1 for all x ∈ Ω, where the latter clearly entails that actually ϕ(x) > 0 for all
x ∈ Ω and

−
1

c1
ϕp−1(x)∆ϕ(x) ≥ 1 for all x ∈ Ω. (3.5)

For any such Ω, we now define u ≡ uΩ by letting

u(x, t) := y(t) ·
(
ϕ(x) + 1

)
, x ∈ Ω, t ≥ 0, (3.6)

where

y(t) :=
{
y
−p
0 + pc1t

}− 1
p
, t ≥ 0, (3.7)

with
y0 := ‖u0‖L∞(Rn), (3.8)

and observe that then

u(x, 0) = y0 ·
(
ϕ(x) + 1

)
> y0 ≥ u(x, 0) for all x ∈ Ω (3.9)

by (3.6), (3.7) and (3.8), and that

u(x, t) > u(x, t) for all x ∈ ∂Ω and t ≥ 0 (3.10)
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due to the fact that u|∂Ω×[0,∞) = 0 thanks to Proposition 3.1. Apart from that, using that y′(t) =
−c1y

p+1(t) for all t > 0 by (3.7), from (3.5) we obtain that

ut − up∆u = y′(t) · (ϕ+ 1)− yp+1(t) · (ϕ+ 1)p∆ϕ

= (ϕ+ 1) ·
{
y′(t)− yp+1(t) · (ϕ+ 1)p∆ϕ

}

= c1y
p+1(t) · (ϕ+ 1) ·

{
− 1−

1

c1
(ϕ+ 1)p∆ϕ

}

≥ c1y
p+1(t) · (ϕ+ 1) ·

{
− 1 +

(ϕ+ 1)p−1

ϕp−1

}

> 0 in Ω× (0,∞).

Relying on the strictness of the inequalities both in (3.9) and (3.10), we may therefore employ the
comparison principle from [17, Sect. 3.1] to conclude that whenever Ω ∈ C(u0),

u(x, t) ≤ uΩ(x, t) for all x ∈ Ω and t > 0,

which again due to Proposition 3.1 implies that

‖u(·, t)‖L∞(Rn) = sup
Ω∈C(u0)

‖u(·, t)‖L∞(Ω)

≤ sup
Ω∈C(u0)

‖uΩ(·, t)‖L∞(Ω)

≤ 2(pc1)
− 1

p t
− 1

p for all t > 0, (3.11)

because obviously y(t) ≤ (pc1t)
− 1

p for all t > 0 by (3.7), and because 1 ≤ ϕ + 1 ≤ 2 in Ω by (3.4).
As c1 was positive, (1.8) thus results from (3.11) when combined with the lower estimate provided by
(3.2). �

Indeed, the requirement on boundedness in one direction made in Corollary 1.3 can readily be seen by
means of an explicit construction to ensure a uniform elliptic inequality in the flavor of that required
in (1.7):

Proof of Corollary 1.3. It is sufficient to verify that

sup
0≤ϕ∈C0(Ω)∩C2(Ω)

‖ϕ‖L∞(Ω)=1

inf
x∈Ω

{
− ϕp−1(x)∆ϕ(x)

}
≥ c1 :=

π2

2
p+4
2 K2

for all Ω ∈ C(u0), (3.12)

and to achieve this, we let any Ω ∈ C(u0) be given and first note that upon translating and rotating
that Ω ⊂ S. Then

ϕ0(x) := cos
π · (2x1 −K)

4K
, x = (x1, ..., xn) ∈ Ω,

defines a function ϕ0 ∈ C2(Ω) which satisfies

ϕ0(x) ≥ cos
π

4
= 2−

1
2 for all x ∈ Ω,
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because

−
π

4
=
π · (−K)

4K
≤
π · (2x1 −K)

4K
≤
π · (2K −K)

4K
=
π

4
for all x1 ∈ [0,K].

Since clearly ∆ϕ0(x) = −( π
2K )2ϕ0(x) for all x ∈ Ω, we therefore obtain that

−ϕp−1
0 (x)∆ϕ0(x) =

π2

4K2
ϕ
p
0(x) ≥ c1 for all x ∈ Ω, (3.13)

so that (3.12) results upon observing that

ϕ(x) := c2ϕ0(x), x ∈ Ω, with c2 :=
1

‖ϕ0‖L∞(Ω)
≥ 1,

thus defines a nonnegative function ϕ ∈ C0(Ω) ∩ C2(Ω) with ‖ϕ‖L∞(Ω) = 1 and

−ϕp−1(x)∆ϕ(x) = c
p
2 ·
{
ϕ
p−1
0 (x)∆ϕ0(x)

}
≥ c

p
2c1 ≥ c1 for all x ∈ Ω

by (3.13). Based on the inequality (3.12) thus derived, an application of Proposition 1.2 hence com-
pletes the proof. �

3.2 Decay slower than critical. Proof of Proposition 1.4 and of Corollary 1.5

Conversely, the framework created in the formulation of Proposition 1.4 enables us to derive the
claimed unboundedness feature through comparison from below with separated subsolutions, refining
the corresponding procedure from the proof of Proposition 3.1 so as to yield suitably large lower
bounds.

Proof of Proposition 1.4. Given M > 0, we let

η ≡ ηM :=
1

2p+1pMp
, (3.14)

and then may rely on (1.9) in choosing Ω ∈ C(u0) and a nonnegative ϕ ∈ C0
0 (Ω) ∩ C

2({ϕ > 0}) such
that

max
x∈Ω

ϕ(x) = 1 (3.15)

and −ϕp−1(x)∆ϕ(x)< η for all x ∈ {ϕ > 0}, that is,

−
1

η
∆ϕ(x)<ϕ1−p(x) for all x ∈ {ϕ > 0}. (3.16)

Now since ϕ is continuous in Ω with ϕ = 0 on ∂Ω, the open set Ω0 := {ϕ > 1
2} satisfies Ω0 ⊂ Ω, and

therefore the positivity of the continuous function u0 on Ω0 ensures the existence of y0 > 0 such that

1

2
y0 < u0(x) for all x ∈ Ω0. (3.17)
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Moreover, (3.15) guarantees that

u(x, t) := y(t) ·
(
ϕ(x)−

1

2

)
, x ∈ Ω0, t ≥ 0, (3.18)

with

y(t) :=
{
y
−p
0 + pηt

}− 1
p
, t ≥ 0, (3.19)

satisfies

u(x, 0) = y0 ·
(
ϕ(x)−

1

2

)
≤

1

2
y0 < u0(x) for all x ∈ Ω0 (3.20)

due to (3.17), and
u(x, t) = 0 < u(x, t) for all x ∈ ∂Ω0 and t ≥ 0 (3.21)

according to the definition of Ω0 and the positivity of u inside Ω× [0,∞), as asserted by Proposition
3.1. Forthermore, since y′(t) = −ηyp+1(t) for all t > 0 by (3.19), using (3.16) we see that

ut − up∆u = y′(t) ·
(
ϕ−

1

2

)
−
(
ϕ−

1

2

)p
∆ϕ · yp+1(t)

= η ·
(
ϕ−

1

2

)
· yp+1(t) ·

{
− 1−

1

η
·
(
ϕ−

1

2

)p−1
∆ϕ
}

< η ·
(
ϕ−

1

2

)
· yp+1(t) ·

{
− 1+

(ϕ− 1
2)

p−1

ϕp−1

}

≤ 0 in Ω0 × (0,∞),

whence on the basis of (3.20) and (3.21) we may once more employ the comparison principle from [17,
Sect. 3.1] to infer that

u(x, t) ≥ u(x, t) for all x ∈ Ω0 and t > 0,

and that thus

‖u(·, t)‖L∞(Rn) ≥ ‖u(·, t)‖L∞(Ω0)

= y(t) ·
∥∥∥ϕ−

1

2

∥∥∥
L∞(Ω0)

=
1

2
y(t) for all t > 0

thanks to (3.18) and (3.15). Since (3.19) implies that

y(t) ≥ (2pηM t)
− 1

p for all t ≥ tM :=
1

pηMy
p
0

,

and since (3.14) says that

1

2
· (2pηM )

− 1
p =M,
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this means that

t
1
p ‖u(·, t)‖L∞(Rn) ≥M for all t ≥ tM

and thereby establishes (1.10), for M > 0 was arbitrary. �

Now in the presence of arbitrarily small principal eigenvalues within C(u0), the validity of (1.9) can
be verified by simply using appropriate eigenfunctions of −∆:

Proof of Corollary 1.5. Given ε > 0, due to (1.12) we can find Ω ∈ C(u0) such that λ1(Ω) ≤ ε
2 .

Then taking Θ ∈ W
1,2
0 (Ω) such that 0 < λ1(Ω)

∫
ΩΘ2 =

∫
Ω |∇Θ|2, by definition of W 1,2

0 (Ω) we can

pick (ϕj)j∈N ⊂ C∞
0 (Ω) \ {0} such that ϕj → Θ in W 1,2

0 (Ω) as j → ∞ and hence
∫
Ω |∇ϕj |

2

∫
Ω ϕ

2
j

→

∫
Ω |∇Θ|2∫
ΩΘ2

= λ1(Ω)

as j → ∞. We can therefore fix j0 ∈ N such that
∫
Ω |∇ϕj0 |

2

∫
Ω ϕ

2
j0

≤ ε, (3.22)

and use that then {ϕj0 > 0} is a compact subset of Ω to construct a smoothly bounded subdomain

Ω0 ⊂ Ω such that {ϕj0 > 0} ⊂ Ω0. Since ϕj0 clearly belongs to W 1,2
0 (Ω0), relying on the variational

characterization of λ1(Ω0) we thus infer from (3.22) that λ1(Ω0) ≤

∫
Ω0

|∇ϕj0
|2

∫
Ω0

ϕ2
j0

=
∫
Ω |∇ϕj0

|2
∫
Ω ϕ2

j0

≤ ε, and

since Ω0 has smooth boundary, standard elliptic regularity theory applies so as to ensure the existence
of a function Θ0 ∈ C2(Ω0) fulfilling −∆Θ0(x) = λ1(Ω0)Θ0(x) for all x ∈ Ω0, Θ0(x) = 0 for all
x ∈ ∂Ω0 and 0 ≤ Θ0(x) ≤ 1 = maxy∈Ω0

Θ0(y) for all x ∈ Ω0. Therefore, the nonnegative function

ϕ ∈ C0
0 (Ω) ∩ C

2({ϕ > 0}) defined by

ϕ(x) :=

{
Θ(x), x ∈ Ω0,

0 x ∈ Ω \ Ω0,

satisfies

−ϕp−1(x)∆ϕ(x) =−Θp−1
0 (x)∆Θ0(x) = λ1(Ω0)Θ

p
0(x) ≤ λ1(Ω0) ≤ ε for all x ∈ {ϕ > 0},

so that since ε > 0 was arbitrary, we conclude that (1.9) holds, and that hence (1.12) implies (1.10)
as a consequence of Proposition 1.4.

Finally, assuming (1.13) to be satisfied, for arbitrary η > 0 we can take R > 0 large enough such that
λ1(B1(0))

R2 < η, and then use (1.13) to choose Ω ∈ C(u0) fulfilling Ω ⊃ BR(x0) for some x0 ∈ R
n. Then,

by evident monotonicity and scaling properties of λ1(·), it follows that

λ1(Ω) ≤ λ1(BR(x0)) =
λ1(B1(0))

R2
< η,

and that therefore (1.12) and hence the claimed conclusion holds. �
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