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Abstract

We propose and study a class of parabolic-ODE models involving chemotaxis and haptotaxis of a
species following signals indirectly produced by another, non-motile one. The setting is motivated
by cancer invasion mediated by interactions with the tumor microenvironment, but has much wider
applicability, being able to comprise descriptions of biologically quite different problems. As a main
mathematical feature consituting a core difference to both classical Keller-Segel chemotaxis systems
and Chaplain-Lolas type chemotaxis-haptotaxis systems, the considered model accounts for certain
types of indirect signal production mechanisms.

The main results assert unique global classical solvability under suitably mild assumptions on the
system parameter functions in associated spatially two-dimensional initial-boundary value prob-
lems. In particular, this rigorously confirms that at least in two-dimensional settings, the consi-
dered indirectness in signal production induces a significant blow-up suppressing tendency also in
taxis systems substantially more general than some particular examples for which corresponding
effects have recently been observed.
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1 Introduction

We study here a general class of parabolic-parabolic-ODE-ODE systems (see (1.3) below) containing
the following model of cancer invasion with chemotaxis and haptotaxis:

ut = ∆u− χ∇ · (u∇h)− ξ∇ · (u∇v) + µu(1− u− v − w),

ht = ∆h− h+ αw,

vt = −hv + ηv(1− u− v) + β w
1+w ,

wt = u,

(1.1)

supplemented with adequate initial conditions and no-flux boundary conditions. The model variables
are: u: density of tumor cells, h: concentration of matrix metalloproteinases (MMP), v: density of
tissue fibers (extracellular matrix, ECM), w: density of cancer associated fibroblasts (CAFs). The
chemotactic bias of the cells is in the direction of the MMP gradient, while haptotaxis means as usual
following the gradient of tissue density. In most of the previous chemotaxis and chemotaxis-haptotaxis
models the chemoattractant is directly produced by the population performing diffusion and taxis,
thereby involving ([40]) or not ([33], [45], [47]) the ECM in this production. In our present model the
chemoattractant is generated in an indirect way, by the CAFs, which are activated by the tumor cells.
In [5] was introduced a complex model for the evolution of a population of tumor cells interacting with
two chemoattractants and also performing haptotaxis. One of the chemoattractants therein is directly
produced by the cells, while the other’s production is mediated by another substance, the latter being
in turn produced by the cells under the influence of the first chemoattractant. All model variables
(except tissue) are diffusing in a linear way; in particular, the producers of all chemoattractants are
diffusive. This is not the case in our model (1.1); moreover, both signals are completely (h) or partially
(v) obtained from the non-diffusing, indirect producer w.

Model (1.1) is motivated by the problem of investigating CAF-mediated cancer invasion into the
surrounding tissue. CAFs are major components of the neoplasm microenvironment. They secrete
a variety of extracellular matrix components and are involved in the formation of the desmoplastic
stroma characterizing many advanced carcinomas ([16]). For a long time the general belief was that
tumor development, invasion, and metastasis occur as a result of cancer progression. Recent studies
revealed, however, that CAFs contribute instead of tumor cells to these processes, via expression of
various growth factors, cytokines, chemokines, and degradation of ECM ([7], [16], [36], [38]), but also
by restructuring the latter to facilitate migration ([24]). Fibronectin (Fn) assembled by CAFs mediates
cell association and directional migration. Compared with normal fibroblasts, CAFs produce an Fn-
rich ECM with anisotropic fiber orientation, along which the tumor cells preferentially migrate ([11]).
The origin of CAFs is not completely elucidated; we refer e.g. to [6, 22] for a couple of reviews. There
is evidence that they can arise among others from carcinoma cells through epithelial-mesenchymal
transition (EMT) ([25]), thus allowing the cancer cells to adopt a mesenchymal phenotype associated
to enhanced migratory capacity and invasiveness ([9], [32]). It has also been shown (cf. e.g. [31]) that
cancer cells can reprogram resident tissue fibroblasts to become CAFs through the actions of miRNAs.
MMPs are primarily derived from CAFs in various types of tumor ([25], [28], [44]). In particular, it
has been shown e.g., that MMP-9, an endoproteinase involved in ECM degradation and implicated
as a prerequisite of metastasis, has very limited or no expression in various cancer cell lines. Instead,
MMP-9 is well-known to be secreted from cancer stromal fibroblasts and endothelial cells ([41]). For
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further information about CAFs and their MMP production we refer, e.g., to the review [28]. The
main features of CAF-mediated tumor invasion mentioned above are captured in our model (1.1)
below.

Closely related from a mathematical viewpoint is the chemotaxis-haptotaxis model
ut = Du∆u+ χ∇ · (u∇h)− ξ∇ · (u∇v)− k1u+ k2

hw
1+hw ,

ht = Dh∆h+ k3w − k4h,

vt = −k5(h+ u+ w)v + k6v(1− v)2
+,

wt = k7u− k8hw + k9w(1− u− v − w)2
+,

(1.2)

which describes the evolution of two cancer cell subpopulations either proliferating (w) or migrating
(u), with the corresponding transitions between the two phenotypes, and in interaction with tissue
(v) and acidity (h). The latter is mainly produced by the highly glycolytic proliferating tumor cells –
hence indirect signal production. The proliferation/migration (also known as go-or-grow) dichotomy
asserting that moving cells defer their proliferation seems to be a relevant feature for some types of
cancer ([14], [23],[51]) and can lead to interesting mathematical problems in connection to modeling
and qualitative behavior of the corresponding heterogeneous tumor ([10], [21], [39], [53]). The migrat-
ing cells in (1.2) perform haptotaxis and pH-taxis: they move towards increasing ECM gradient and
away from acidic (thus hypoxic) areas. The conversion from proliferating to migrating cells depends on
the concentration h of protons in the peritumoral region and infers limitations, as only a rather small
part of the tumor becomes motile -usually cells situated at the tumor margins. Moreover, the protons
are buffered by the environment (e.g., uptake by vasculature), contribute to tissue degradation, and
restrict tumor proliferation. Supplementary to hypoxia the tissue can be degraded by chemical or
biological agents directly or indirectly produced or activated by the tumor cells, see e.g. [29] and
[30]. The ECM remodeling also involves limited, logistic-like growth. The latter is also used in (1.2)
to describe tumor cell proliferation. We note here that taking squares of the positive parts of the
proliferation terms is motivated by the mainly technical need of satisfying the regularity assumptions
in Theorem 1.1 and could perhaps be relaxed; in fact, the difference between functions of this type
just involving the positive parts and those taking their squares is rather small. System (1.2) fits in
the theoretical framework proposed and analyzed below.

Thus the general model class to be introduced and studied here includes descriptions of biologically
quite different problems, as exemplified above. It therefore provides a comprehensive mathematical
structure for several issues related to cancer cell migration under the influence of chemo- and hapto-
tactic effects, including some variants of the often addressed Chaplain-Lolas model from [5]. Other
problems characterizing tactic cell migration, e.g. in wound healing and/or angiogenesis or interacting
microbial populations in biofilm formation and persistence, can potentially be cast into this mathe-
matical framework. Models describing the dynamics of a species performing chemotaxis towards the
gradient of a signal produced by another, non-tactic species (see e.g. [20] and [49]) form a subclass of
this setting.

Approaching a mathematical core feature: indirectness of chemoattractant production.
From a purely mathematical perspective, a common feature distinguishing both (1.2) and (1.1) from
classical chemotaxis or chemotaxis-haptotaxis systems of Keller-Segel or Chaplain-Lolas type consists
in the circumstance that the respective mechanisms of chemoattractant production are indirect in
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the sense that the corresponding signal is not produced directly by individuals of the cell population,
but rather through a third agent. Possible implications on the system dynamics, however, have ap-
parently been detected only in some quite particular examples of chemotaxis-only models: Indeed,
the only findings in this direction we are aware of concentrate on associated derivates of the classical
Keller-Segel system, for which substantial blow-up preventing effects of such indirect signal produc-
tion mechanisms have recently been revealed. More precisely, in sharp contrast to what is known for
standard Keller-Segel systems ([18], [2]), regardless of the size of the initial data some corresponding
spatially two-dimensional initial-boundary value problems always possess globally defined classical so-
lutions ([49], [27]).

Complementary to its biological motivation, the main mathematical purpose of the present work is
to rigorously confirm that such relaxing effects of indirect chemoattractant production are actually
not restricted to cases of chemotaxis-only systems, but rather seem to form a much more general
and robust feature of chemotactic interaction also in significantly more contexts involving haptotactic
migration mechanisms with all their potentially regularity-limiting properties due to lack of haptoat-
tractant diffusion.

This will subsequently be examined in the framework of the problem

ut = Du∆u− χ∇ · (u∇h)− ξ∇ · (u∇v) + f(u, v, w, h), x ∈ Ω, t > 0,

ht = Dh∆h+ g(u, v, w, h), x ∈ Ω, t > 0,

vt = −αuv + vφ(u, v, w, h) + Φ(w), x ∈ Ω, t > 0,

wt = βu+ wψ(u, v, w, h), x ∈ Ω, t > 0,

Du
∂u
∂ν − ξu

∂v
∂ν = ∂h

∂ν = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), h(x, 0) = h0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,
(1.3)

in a bounded domain Ω ⊂ R2 with smooth boundary, where the parameters χ, ξ,Du, Dh, α and β are
assumed to be positive, and where for simplicity we suppose throughout this paper that with some
ϑ ∈ (0, 1), 

u0 ∈ C2+ϑ(Ω) is nonnegative with u0 6≡ 0,

h0 ∈ C2+ϑ(Ω) is nonnegative,

v0 ∈ C2+ϑ(Ω) is positive in Ω with ∂v0
∂ν = 0 on ∂Ω, and that

w0 ∈ C2+ϑ(Ω) is positive in Ω.

(1.4)

As for the parameter functions in (1.3), in order to create a setup sufficiently general so as to include
both (1.2) and (1.1), we shall require that

f, g, φ and ψ belong to C1([0,∞)4) and Φ ∈ C1([0,∞)), (1.5)

and are such that{
f0(u) ≤ f(u, v, w, h) ≤ Cf (v) · (u+ w + 1) for all (u, v, w, h) ∈ [0,∞)4

with some f0 ∈ C1([0,∞)) such that f0(0) ≥ 0, and some nondecreasing Cf : [0,∞)→ (0,∞)

(1.6)
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and 
|g(u, v, w, h)| ≤ Cg(v) · (w + h+ 1) for all (u, v, w, h) ∈ [0,∞)4

with some nondecreasing Cg : [0,∞)→ (0,∞) and

g(0, v, w, 0) ≥ 0 for all (v, w) ∈ [0,∞)2,

(1.7)

that 

φ(u, v, w, h) ≤ −cφ · w + Cφ for all (u, v, w, h) ∈ [0,∞)4,

|φu(u, v, w, h)| ≤ Cφ√
uv+1

for all (u, v, w, h) ∈ [0,∞)4,

|φv(u, v, w, h)| ≤ Cφ
v+1 + Cφ for all (u, v, w, h) ∈ [0,∞)4,

|φw(u, v, w, h)| ≤ Cφ√
v+1

+ Cφ for all (u, v, w, h) ∈ [0,∞)4 and

|φh(u, v, w, h)| ≤ Cφ√
v+1

+ Cφ for all (u, v, w, h) ∈ [0,∞)4

with some positive constants cφ and Cφ,

(1.8)

and that {
0 ≤ Φ(w) ≤ CΦ for all w ≥ 0 and

wΦ′2(w) ≤ CΦΦ(w) for all w ≥ 0,
(1.9)

and finally 

ψ(u, v, w, h) ≤ Cψ(v) for all (u, v, w, h) ∈ [0,∞)4,

|ψu(u, v, w, h)| ≤ Cψ(v)√
uw+1

for all (u, v, w, h) ∈ [0,∞)4,

|ψv(u, v, w, h)| ≤ Cψ(v) for all (u, v, w, h) ∈ [0,∞)4,

|ψw(u, v, w, h)| ≤ Cψ(v)
w+1 for all (u, v, w, h) ∈ [0,∞)4 and

|ψh(u, v, w, h)| ≤ Cψ(v)
(w+1)γ for all (u, v, w, h) ∈ [0,∞)4

with some nondecreasing Cψ : [0,∞)→ (0,∞) and some γ ∈ (0, 1
2).

(1.10)

As can readily be verified, indeed both models (1.2) and (1.1) then become special cases of the PDE
system in (1.3) whenever the parameters Du, Dh, χ, ξ, k4 and k6 therein are positive, whereas ki for
i ∈ {1, 2, 3, 5, 7, 8} and η and, in particular, µ is merely required to be nonnegative.

Our main results in this context then read as follows.

Theorem 1.1 Let Ω ⊂ R2 be a bounded domain with smooth boundary, assume that χ, ξ, α, β,Du

and Dh are positive, and suppose that f , g, φ, Φ and ψ satisfy (1.5), (1.6), (1.7), (1.8), (1.9) and
(1.10). Then for any choice of (u0, h0, v0, w0) fulfilling (1.4) with some ϑ ∈ (0, 1), the problem (1.3)
possesses a uniquely determined globally defined classical solution (u, h, v, w) ∈ (C2,1(Ω× [0,∞))4 for
which u, h, v and w are nonnegative.

In particular, Theorem 1.1 asserts that indeed no finite-time blow-up occurs in (1.3) under the above
assumptions, and that in this regard the solution behavior in (1.3) quite drastically differs from
that in the corresponding variants of (1.2) and (1.1) in which the second equation is replaced with
e.g. ht = Dh∆h + u, and in which already in the semi-trivial case when v ≡ 0, known results on the
actually resulting two-component Keller-Segel system for (u, h) assert finite-time blow-up for some
solutions ([17]).
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In line with this, all known results even on global existence, but also on qualitative properties, in the
original Chaplain-Lolas model ([5])

ut = ∆u− χ∇ · (u∇h)− ξ∇ · (u∇v) + µu(1− u− v),

ht = ∆h− h+ u,

vt = −hv + ηv(1− u− v),

(1.11)

seem to strongly rely on the assumption that µ be positive, thus guaranteeing the presence of a
logistic-type quadratic growth restriction on the cell density ([4], [34], [33], [42], [43], [48], [50]). Our
results show that in the context of the variant (1.1) of (1.11) involving indirect chemoattractant pro-
duction, no such additional dampening is necessary: Indeed, even when tissue remodeling is included
by supposing that η > 0 in (1.1), Theorem 1.1 asserts global classical solvability in (1.1) for actually
any nonnegative value of µ.

The paper is structured as follows: After stating a result on local existence and extensibility as well as
some preliminary estimates in Section 2, in Section 3 we shall construct a quasi-energy functional for
(1.3) and draw some immediate conclusions concerning regularity of solutions. The accordingly ob-
tained estimates are used as a starting point for a Moser-type iterative argument yielding L∞ bounds
for the key solution component u in Section 4, and hence paving an essential part of the way toward
our proof of Theorem 1.1 in Section 5. Finally, in Section 6 we illustrate the theoretical findings by
numerical simulations of (1.1) and the corresponding model with direct signal production and provide
some comments about the obtained results.

2 Local existence and basic estimates

Following several precedents in the literature ([12], [13], [33]), in order to establish a preliminary
result on local existence, but also to prepare our subsequent estimation procedure, we note that on
substituting

z := ue−λv with λ :=
ξ

Du
> 0, (2.1)

the problem (1.3) is equivalently transformed to

zt = Due
−λv∇ · (eλv∇z)− χe−λv∇ · (zeλv∇h) + e−λvf(zeλv, v, w, h), x ∈ Ω, t > 0,

ht = Dh∆h+ g(zeλv, v, w, h), x ∈ Ω, t > 0,

vt = −αveλvz + vφ(zeλv, v, w, h) + Φ(w), x ∈ Ω, t > 0,

wt = βeλvz + wψ(zeλv, v, w, h), x ∈ Ω, t > 0,
∂z
∂ν = ∂h

∂ν = 0, x ∈ ∂Ω, t > 0,

z(x, 0) = u0(x)eλv0(x), h(x, 0) = h0(x), v(x, 0) = v0(x), w(x, 0) = w0(x), x ∈ Ω,
(2.2)

In this formulation, with respect to the construction of local-in-time solutions the problem (1.3) indeed
becomes accessible to appropriate fixed point frameworks; by straightforward and minor adaptations
of the corresponding arguments detailed e.g. in [33], it is thereby possible to establish the following
basic statement on unique solvability and extensibility.
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Lemma 2.1 Let χ, ξ, α, β,Du and Dh be positive, let f , g, φ, Φ and ψ comply with (1.5), (1.6), (1.7),
(1.8), (1.9) and (1.10), and suppose that (u0, h0, v0, w0) satisfies (1.4) with some ϑ ∈ (0, 1). Then
there exist Tmax ∈ (0,∞] and a uniquely determined classical solution (z, h, v, w) ∈ (C2,1(Ω× [0,∞)))4

of (2.2) such that

either Tmax =∞, or lim sup
t↗Tmax

{
‖z(·, t)‖L∞(Ω) + ‖v(·, t)‖W 1,5(Ω)

}
=∞. (2.3)

Moreover, we have z > 0, h ≥ 0, v > 0 and w > 0 in Ω× (0, Tmax).

Without any further explicit mentioning, throughout the sequel we shall suppose that the assumptions
of Lemma 2.1 are satisfied, and that (z, v, w, h) and Tmax ∈ (0,∞] are as provided by the latter.
Moreover, we shall tactitly switch between these variables and the quadruple (u, v, w, h) solving (1.3)
classically in Ω× (0, Tmax), as thereby defined through (2.1).

A first boundedness property of this solution is immediate.

Lemma 2.2 The solution of (1.3) satisfies

v(x, t) ≤
{
‖v0‖L∞(Ω) +

Cφ
CΦ

}
· eCφt for all x ∈ Ω and t ∈ (0, Tmax). (2.4)

Proof. As from (1.3), (1.8) and (1.9) we know that

vt ≤ Cφv + CΦ in Ω× (0, Tmax),

by means of a simple comparison argument we conclude that

‖v(·, t)‖L∞(Ω) ≤ ‖v0‖L∞(Ω)e
Cφt + CΦ

∫ t

0
eCφ(t−s)ds for all t ∈ (0, Tmax).

Herein estimating
∫ t

0 e
Cφ(t−s)ds ≤ 1

Cφ
eCφt for t ≥ 0, from this we readily obtain (2.4). �

Next, thanks to (1.6) and (1.7) the first and fourth solution components in (1.3) can at least controlled
with respect to their norm in L1(Ω) in a fairly simple manner.

Lemma 2.3 Let T > 0. Then there exists C(T ) > 0 such that∫
Ω
u(·, t) ≤ C(T ) and

∫
Ω
w(·, t) ≤ C(T ) for all t ∈ (0, T̂ ) (2.5)

as well as ∫
Ω
h(·, t) ≤ C(T ) for all t ∈ (0, T̂ ), (2.6)

where T̂ := min{T, Tmax}.
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Proof. Using that v ≤ c1(T ) :=
{
‖v0‖L∞(Ω) + CΦ

Cφ

}
· eCφT in Ω × (0, T̂ ) due to Lemma 2.2, after

spatial integration in the first and the fourth equation in (1.3) and adding the respective results we
may rely on (1.6) and (1.10) in estimating

d

dt

{∫
Ω
u+

∫
Ω
w

}
=

∫
Ω
f(u, v, w, h) + β

∫
Ω
u+

∫
Ω
wψ(u, v, w, h)

≤ Cf (c1(T )) ·
{∫

Ω
u+

∫
Ω
w + |Ω|

}
+ β

∫
Ω
u+ Cψ(c1(T ))

∫
Ω
w

≤
{
Cf (c1(T )) + β + Cψ(c1(T ))

}
·
{∫

Ω
u+

∫
Ω
w

}
+ |Ω|Cf (c1(T ))

for t ∈ (0, T̂ ). A time integration of this linear ODI for
∫

Ω u +
∫

Ωw directly yields (2.5). Similarly,
(1.7) implies that

d

dt

∫
Ω
h =

∫
Ω
g(u, v, w, h) ≤ Cg(c1(T )) ·

{∫
Ω
w +

∫
Ω
h+ |Ω|

}
for all t ∈ (0, T̂ ), so that (2.6) becomes a consequence of (2.5). �

3 A quasi-energy inequality

The purpose of this section consists in the construction of an Lyapunov-like functional which through
a corresponding energy-dissipation inequality will provide some fundamental regularity information
that will form the starting point of a series of a priori estimates which in the presently considered
spatially two-dimensional setting will finally allow for the conclusion that (u, v, w, h) is actually global
in time.

As our first step in this direction, let us perform a standard testing procedure by which the crucial
haptotactic contribution to the first equation in (1.3) is reduced to an L2 inner product of gradients:

Lemma 3.1 Let η > 0. Then

d

dt

∫
Ω
u lnu+Du

∫
Ω

|∇u|2

u
≤ ξ

∫
Ω
∇u · ∇v +

χ2

2η

∫
Ω
|∆h|2

+η

∫
Ω
u2 + Cf (‖v‖L∞(Ω)) ·

∫
Ω
u lnu+ 2Cf (‖v‖L∞(Ω)) ·

∫
Ω
u

+
C2
f (‖v‖L∞(Ω))

2η
·
∫

Ω
w2 + Cf (‖v‖L∞(Ω)) ·

∫
Ω
w

+|Ω|Cf (‖v‖L∞(Ω)) + |Ω| · ‖f0 · ln ‖L∞((0,1)) (3.1)

for all t ∈ (0, Tmax).

Proof. In the identity

d

dt

∫
Ω
u lnu+Du

∫
Ω

|∇u|2

u
= χ

∫
Ω
∇u · ∇h+ ξ

∫
Ω
∇u · ∇v +

∫
Ω
f(u, v, w, h) lnu+

∫
Ω
f(u, v, w, h),(3.2)
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valid for all t ∈ (0, Tmax) due to (1.3), we use Young’s inequality to estimate

χ

∫
Ω
∇u · ∇h = −χ

∫
Ω
u∆h ≤ η

2

∫
Ω
u2 +

χ2

2η

∫
Ω
|∆h|2 for all t ∈ (0, Tmax). (3.3)

Moreover, by means of (1.6) we see that for all t ∈ (0, Tmax),∫
Ω
f(u, v, w, h) ≤ Cf (‖v‖L∞(Ω)) ·

{∫
Ω
u+

∫
Ω
w + |Ω|

}
(3.4)

and ∫
Ω
f(u, v, w, h) lnu ≤ Cf (‖v‖L∞(Ω)) ·

∫
{u≥1}

(u+ w + 1) · lnu+

∫
{u<1}

f0(u) · lnu

≤ Cf (‖v‖L∞(Ω)) ·
{∫

Ω
u lnu+

∫
Ω
uw +

∫
Ω
u

}
+ |Ω| · ‖f0 · ln ‖L∞((0,1))

≤ Cf (‖v‖L∞(Ω)) ·
{∫

Ω
u lnu+

∫
Ω
u

}
+
η

2

∫
Ω
u2 +

C2
f (‖v‖L∞(Ω))

2η

∫
Ω
w2

+|Ω| · ‖f0 · ln ‖L∞((0,1)),

because ln y ≤ y for all y ≥ 1. In conjunction with (3.2)-(3.4), this establishes (3.1). �

Now in order to achieve a precise cancelation of the integral in (3.1) stemming from haptotactic cross-
diffusion, inspired by several precedent works on similar types of interaction (see e.g. [8], [47] and [40]),
we track the evolution of the Dirichlet integral associated with

√
v.

Lemma 3.2 The solution of (1.3) has the property that

d

dt

∫
Ω

|∇v|2

v
+
cφ
2

∫
Ω

w

v
|∇v|2

≤ −2α

∫
Ω
∇u · ∇v +

αDu

2ξ

∫
Ω

|∇u|2

u

+

{
2Cφ · (2‖v‖L∞(Ω) + 1) +

2ξC2
φ

αDu

}
·
∫

Ω

|∇v|2

v

+
{4C2

φ · (‖v‖L∞(Ω) + 1)

cφ
+ CΦ

}
·
∫

Ω

|∇w|2

w

+2Cφ · (‖v‖L∞(Ω) + 1) ·
∫

Ω
|∇h|2 for all t ∈ (0, Tmax). (3.5)
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Proof. According to the third equation in (1.3), we have

d

dt

∫
Ω

|∇v|2

v

= 2

∫
Ω

∇v
v
· ∇
{
− αuv + vφ(u, v, w, h) + Φ(w)

}
−
∫

Ω

|∇v|2

v2
·
{
− αuv + vφ(u, v, w, h) + Φ(w)

}
= −2α

∫
Ω
∇u · ∇v − α

∫
Ω

u

v
|∇v|2 +

∫
Ω

φ(u, v, w, h)

v
|∇v|2

+2

∫
Ω
φu(u, v, w, h)∇u · ∇v + 2

∫
Ω
φv(u, v, w, h)|∇v|2 (3.6)

+2

∫
Ω
φw(u, v, w, h)∇v · ∇w + 2

∫
Ω
φh(u, v, w, h)∇v · ∇h

−
∫

Ω

Φ(w)

v2
|∇v|2 + 2

∫
Ω

Φ′(w)

v
∇v · ∇w for all t ∈ (0, Tmax). (3.7)

Here from (1.8) we know that∫
Ω

φ(u, v, w, h)

v
|∇v|2 ≤ −cφ ·

∫
Ω

w

v
|∇v|2 + Cφ ·

∫
Ω

|∇v|2

v
for all t ∈ (0, Tmax), (3.8)

and that due to Young’s inequality, for all t ∈ (0, Tmax) we have

2

∫
Ω
φu(u, v, w, h)∇u · ∇v ≤ αDu

2ξ

∫
Ω

|∇u|2

u
+

2ξ

αDu

∫
Ω
uφ2

u(u, v, w, h)|∇v|2

≤ αDu

2ξ

∫
Ω

|∇u|2

u
+

2ξC2
φ

αDu

∫
Ω

|∇v|2

v
(3.9)

and

2

∫
Ω
φv(u, v, w, h)|∇v|2 ≤ 2Cφ

∫
Ω

|∇v|2

v
+ 2Cφ

∫
Ω
|∇v|2

≤ 2Cφ

∫
Ω

|∇v|2

v
+ 2Cφ · ‖v‖L∞(Ω)

∫
Ω

|∇v|2

v
(3.10)

as well as

2

∫
Ω
φw(u, v, w, h)∇v · ∇w ≤

cφ
2

∫
Ω

w

v
|∇v|2 +

2

cφ

∫
Ω

vφ2
w(u, v, w, h)

w
|∇w|2

≤
cφ
2

∫
Ω

w

v
|∇v|2 +

4C2
φ

cφ

∫
Ω

|∇w|2

w
+

4C2
φ

cφ

∫
Ω

v

w
|∇w|2

≤
cφ
2

∫
Ω

w

v
|∇v|2 +

4C2
φ · (‖v‖L∞(Ω) + 1)

cφ

∫
Ω

|∇w|2

w
(3.11)
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and

2

∫
Ω
φh(u, v, w, h)∇v · ∇h ≤ Cφ

∫
Ω

|∇v|2

v
+

1

Cφ

∫
Ω
vφ2

h(u, v, w, h)|∇h|2

≤ Cφ

∫
Ω

|∇v|2

v
+ 2Cφ

∫
Ω
|∇h|2 + 2Cφ

∫
Ω
v|∇h|2

≤ Cφ

∫
Ω

|∇v|2

v
+ 2Cφ · (‖v‖L∞(Ω) + 1) ·

∫
Ω
|∇h|2. (3.12)

Moreover, combining Young’s inequality with (1.9) we can estimate

−
∫

Ω

Φ(w)

v2
|∇v|2 + 2

∫
Ω

Φ′(w)

v
∇v · ∇w ≤

∫
Ω

Φ′2(w)

Φ(w)
|∇w|2

≤ CΦ

∫
Ω

|∇w|2

w
for all t ∈ (0, Tmax). (3.13)

As the second summand on the right of (3.6) is nonpositive, collecting (3.8)-(3.13) we thus infer (3.5)
from (3.6). �

Next, several expressions on the right-hand sides of (3.1) and (3.5) need to be controlled in modulus.
Here the second integral on the right of (3.1) can in fact be absorbed by the dissipation rate appearing
in the following inequality gained by means of a standard procedure.

Lemma 3.3 For all t ∈ (0, Tmax),

d

dt

∫
Ω
|∇h|2 +Dh

∫
Ω
|∆h|2 ≤

3C2
g (‖v‖L∞(Ω))

Dh
·
{∫

Ω
w2 +

∫
Ω
h2 + |Ω|

}
. (3.14)

Proof. On testing the second equation in (1.3) by ∆h and using Young’s inequality in a standard
manner, we obtain

1

2

d

dt

∫
Ω
|∇h|2 +Dh

∫
Ω
|∆h|2 = −

∫
Ω
g(u, v, w, h)∆h

≤ Dh

2

∫
Ω
|∆h|2 +

1

2Dh

∫
Ω
g2(u, v, w, h) for all t ∈ (0, Tmax),

which implies (3.14) due to the fact that by (1.7) and again Young’s inequality,

g2(u, v, w, h) ≤ C2
g (‖v‖L∞(Ω)) · (w + h+ 1)2 ≤ 3C2

g (‖v‖L∞(Ω)) · (w2 + h2 + 1)

in Ω× (0, Tmax). �

The second last summand in (3.5), referring to the component w with evolution governed by an ODE
only, apparently cannot be expected to be absorbed by some suitable dissipation rate. The following
lemma indicates that at least some exponential control thereof will eventually be possible.
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Lemma 3.4 We have

d

dt

∫
Ω

|∇w|2

w
≤ (β + 1)

∫
Ω

|∇u|2

u
+

∫
Ω

w

v
|∇v|2

+
{

3Cψ(‖v‖L∞(Ω)) + C2
ψ(‖v‖L∞(Ω)) + ‖v‖L∞(Ω)C

2
ψ(‖v‖L∞(Ω)) + 1

}
·
∫

Ω

|∇w|2

w

+

∫
Ω
w2 + C

4
1+2γ

ψ (‖v‖L∞(Ω)) ·
∫

Ω
|∇h|

4
1+2γ for all t ∈ (0, Tmax). (3.15)

Proof. Using the fourth equation in (1.3), we compute

d

dt

∫
Ω

|∇w|2

w
= 2

∫
Ω

∇w
w
· ∇
{
βu+ wψ(u, v, w, h)

}
−
∫

Ω

|∇w|2

w2
·
{
βu+ wψ(u, v, w, h)

}
= 2β

∫
Ω

1

w
∇u · ∇w +

∫
Ω

ψ(u, v, w, h)

w
|∇w|2 − β

∫
Ω

u

w2
|∇w|2

+2

∫
Ω
ψu(u, v, w, h)∇u · ∇w + 2

∫
Ω
ψv(u, v, w, h)∇v · ∇w

+2

∫
Ω
ψw(u, v, w, h)|∇w|2 + 2

∫
Ω
ψh(u, v, w, h)∇w · ∇h for all t ∈ (0, Tmax),(3.16)

where by Young’s inequality,

2β

∫
Ω

1

w
∇u · ∇w − β

∫
Ω

u

w2
|∇w|2 ≤ β

∫
Ω

|∇u|2

u
for all t ∈ (0, Tmax), (3.17)

and where by (1.10),∫
Ω

ψ(u, v, w, h)

w
|∇w|2 ≤ Cψ(‖v‖L∞(Ω)) ·

∫
Ω

|∇w|2

w
for all t ∈ (0, Tmax). (3.18)

Apart from that, combining (1.10) with Young’s inequality we see that

2

∫
Ω
ψu(u, v, w, h)∇u · ∇w ≤

∫
Ω

|∇u|2

u
+

∫
Ω
uψ2

u(u, v, w, h)|∇w|2

≤
∫

Ω

|∇u|2

u
+ C2

ψ(‖v‖L∞(Ω)) ·
∫

Ω

|∇w|2

w
(3.19)

and

2

∫
Ω
ψv(u, v, w, h)∇v · ∇w ≤

∫
Ω

w

v
|∇v|2 +

∫
Ω

v

w
ψ2
v(u, v, w, h)|∇w|2

≤
∫

Ω

w

v
|∇v|2 + ‖v‖L∞(Ω)C

2
ψ(‖v‖L∞(Ω)) ·

∫
Ω

|∇w|2

w
(3.20)

as well as

2

∫
Ω
ψw(u, v, w, h)|∇w|2 ≤ 2Cψ(‖v‖L∞(Ω)) ·

∫
Ω

|∇w|2

w
(3.21)
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and

2

∫
Ω
ψh(u, v, w, h)∇w · ∇h ≤

∫
Ω

|∇w|2

w
+

∫
Ω
wψ2

h(u, v, w, h)|∇h|2

≤
∫

Ω

|∇w|2

w
+ C2

ψ(‖v‖L∞(Ω)) ·
∫

Ω
w1−2γ |∇h|2

≤
∫

Ω

|∇w|2

w
+

∫
Ω
w2 + C

4
1+2γ

ψ (‖v‖L∞(Ω)) ·
∫

Ω
|∇h|

4
1+2γ (3.22)

for all t ∈ (0, Tmax). Inserting (3.17)-(3.22) into (3.16) directly yields (3.15). �

A final minor ingredient to our quasi-energy inequality is addressed in the following.

Lemma 3.5 If η > 0, then

d

dt

∫
Ω
w2 ≤ η

∫
Ω
u2 +

{β2

η
+ 2Cψ(‖v‖L∞(Ω))

}
·
∫

Ω
w2 for all t ∈ (0, Tmax). (3.23)

Proof. As

1

2

d

dt

∫
Ω
w2 = β

∫
Ω
uw +

∫
Ω
w2ψ(u, v, w, h) for all t ∈ (0, Tmax)

by (1.3), this follows by observing that

β

∫
Ω
uw ≤ η

2

∫
Ω
u2 +

β2

2η

∫
Ω
w2 for all t ∈ (0, Tmax)

due to Young’s inequality, and that∫
Ω
w2ψ(u, v, w, h) ≤ Cψ(‖v‖L∞(Ω)) ·

∫
Ω
w2 for all t ∈ (0, Tmax)

according to (1.10). �

As a last preparation, let us make use of appropriate parabolic regularization features to estimate
terms of the form appearing in the last integral from (3.15).

Lemma 3.6 Let q ∈ [1, 4). Then there exists θ = θ(q) ∈ (0, 1) with the property that for all T > 0
one can find C(q, T ) > 0 such that∫

Ω
|∇h|q ≤ C(q, t) ·

{∫
Ω
|∆h|2

}θ
for all t ∈ (0, T̂ ), (3.24)

where again T̂ := min{T, Tmax}.

Proof. We first note that according to (1.7), Lemma 2.2 and Lemma 2.3 we can fix positive
constants c1(T ), c2(T ) and c3(T ) such that

|g(u, v, w, h)| ≤ c1(T ) · (w + h+ 1) in Ω× (0, T̂ ), (3.25)
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and that ∫
Ω
w ≤ c2(T ) and

∫
Ω
h ≤ c3(T ) for all t ∈ (0, Tmax), (3.26)

and observe that since q < 4 it is possible to choose r ≡ r(q) ∈ (1, 2) suitably close to 2 satisfying
r > q − 2. In the Duhamel representation

∇h(·, t) = ∇etDh∆h0 +

∫ t

0
∇e(t−s)Dh∆g(u(·, s), h(·, s), v(·, s), w(·, s))ds, t ∈ (0, Tmax),

we may then use standard Lp-Lq estimates for the Neumann heat semigroup (eσ∆)σ≥0 ([52, Lemma

1.3]) to find c4(T ) > 0 such that for all t ∈ (0, T̂ ),

‖∇h(·, t)‖Lr(Ω) ≤ c4(T )‖h0‖W 1,∞(Ω) + c4(T )

∫ t

0
(t− s)−

3
2

+ 1
r

∥∥∥g(u(·, s), h(·, s), v(·, s), w(·, s))
∥∥∥
L1(Ω)

ds.

As (3.25) and (3.26) warrant that∥∥∥g(u(·, s), h(·, s), v(·, s), w(·, s))
∥∥∥
L1(Ω)

≤ c5(T ) := c1(T ) ·
(
c2(T ) + c3(T ) + |Ω|

)
for all s ∈ (0, T̂ ),

this readily entails that

‖∇h(·, t)‖Lr(Ω) ≤ c6(T ) := c4(T )‖h0‖W 1,∞(Ω) +
c4(T )c5(T ) · T

1
r
− 1

2

1
r −

1
2

for all t ∈ (0, T̂ ) (3.27)

with c6(T ) being finite due to our restriction r < 2. Now since a combination of the Gagliardo-
Nirenberg inequality with elliptic regularity theory yields c7 > 0 such that

‖∇h(·, t)‖qLq(Ω) ≤ c7‖∆h(·, t)‖q−r
L2(Ω)

‖∇h(·, t)‖rLr(Ω) for all t ∈ (0, Tmax),

from (3.27) we immediately obtain (3.24) with θ ≡ θ(q) := q−r
2 fulfilling θ ∈ (0, 1) according to the

inequality r > q − 2. �

We can now proceed to our detection of an energy-like structure in (1.3), as expressed in the following
lemma.

Lemma 3.7 Let T > 0. Then there exist a = a(T ) > 0, b > 0 and C = C(T ) > 0 such that for

F(t) :=

∫
Ω
u(·, t) lnu(·, t)+a

∫
Ω
|∇h(·, t)|2+

ξ

2α

∫
Ω

|∇v(·, t)|2

v(·, t)
+b

∫
Ω

|∇w(·, t)|2

w(·, t)
+

∫
Ω
w2(·, t), t ∈ [0, T̂ ),

(3.28)
and

D(t) :=

∫
Ω

|∇u(·, t)|2

u(·, t)
+

∫
Ω
|∆h(·, t)|2, t ∈ (0, T̂ ), (3.29)

we have
d

dt
F(t) +

1

C(T )
· D(t) ≤ C(T ) · F(t) + C(T ) for all t ∈ (0, T̂ ), (3.30)

where T̂ := min{T, Tmax}.
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Proof. Thanks to Lemma 2.3 and Lemma 2.2, we can fix positive constants c1(T ), c2(T ) and c3(T )
such that ∫

Ω
u ≤ c1(T ) and

∫
Ω
w ≤ c2(T ) for all t ∈ (0, T̂ ) (3.31)

as well as
‖v(·, t)‖L∞(Ω) ≤ c3(T ) for all t ∈ (0, T̂ ). (3.32)

Then in accordance with the Gagliardo-Nirenberg inequality, choosing c4 > 0 such that∫
Ω
ϕ4 ≤ c4 ·

{∫
Ω
|∇ϕ|2

}
·
{∫

Ω
ϕ2

}
+ c4 ·

{∫
Ω
ϕ2

}2

for all ϕ ∈W 1,2(Ω), (3.33)

we define

η ≡ η(T ) :=
Du

2c1(T )c4
(3.34)

and take a ≡ a(T ) > 0 large enough fulfilling

χ2

2η
≤ aDh

4
. (3.35)

Finally picking b > 0 small such that both

b(β + 1) ≤ Du

4
(3.36)

and

b ≤
ξcφ
4α

(3.37)

hold, we let F and D be as determined through (3.28) and (3.29) and claim that then (3.30) is valid
with some suitably large C(T ) > 0.
To this end, we first take an appropriate linear combination of the inequalities provided by Lemma
3.1, Lemma 3.3, Lemma 3.2, Lemma 3.4 and Lemma 3.5, which when applied to our particular value
of η namely show that

d

dt
F(t) ≤

{
−Du

∫
Ω

|∇u|2

u
+ ξ

∫
Ω
∇u · ∇v +

χ2

2η

∫
Ω
|∆h|2

+ η

∫
Ω
u2 + Cf (c3(T )) ·

∫
Ω
u lnu+ 2Cf (c3(T )) · c1(T )

+
C2
f (c3(T ))

2η
·
∫

Ω
w2 + Cf (c3(T )) · c1(T )

+ |Ω|Cf (c3(T )) + |Ω| · ‖f0 · ln ‖L∞((0,1))

}
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+

{
− aDh

∫
Ω
|∆h|2 +

3aC2
g (c3(T ))

Dh
·
∫

Ω
w2 +

3aC2
g (c3(T ))

Dh
·
∫

Ω
h2 +

3a|Ω|C2
g (c3(T ))

Dh

}
+

{
−
ξcφ
4α

∫
Ω

w

v
|∇v|2 − ξ

∫
Ω
∇u · ∇v

+
Du

4

∫
Ω

|∇u|2

u
+

ξ

2α
·
{

2Cφ · (2c3(T ) + 1) +
2ξC2

φ

αDu

}
·
∫

Ω

|∇v|2

v

+
ξ

2α
·
{4C2

φ(c3(T ) + 1)

cφ
+ CΦ

}∫
Ω

|∇w|2

w
+
ξCφ · (c3(T ) + 1)

α

∫
Ω
|∇h|2

}
+

{
b(β + 1)

∫
Ω

|∇u|2

u
+ b

∫
Ω

w

v
|∇v|2

+b ·
{

3Cψ(c3(T )) + C2
ψ(c3(T )) + c3(T )C2

ψ(c3(T )) + 1
}
·
∫

Ω

|∇w|2

w

+b

∫
Ω
w2 + bC

4
1+2γ

ψ (c3(T )) ·
∫

Ω
|∇h|

4
1+2γ

}
+

{
η

∫
Ω
u2 +

{β2

η
+ 2Cψ(c3(T ))

}
·
∫

Ω
w2

}

=
{
− 3Du

4
+ b(β + 1)

}
·
∫

Ω

|∇u|2

u
+ 2η

∫
Ω
u2

+
{
− aDh +

χ2

2η

}
·
∫

Ω
|∆h|2 + c5(T )

∫
Ω
|∇h|

4
1+2γ

+
{
−
ξcφ
4α

+ b
}
·
∫

Ω

w

v
|∇v|2

+c6(T )

∫
Ω
u lnu+ c7(T )

∫
Ω

|∇v|2

v
+ c8(T )

∫
Ω

|∇w|2

w
+ c9(T )

∫
Ω
w2

+c10(T )

∫
Ω
|∇h|2 + c11(T )

∫
Ω
h2 + c12(T ) for all t ∈ (0, T̂ ) (3.38)

with obvious definitions of ci(T ) for i ∈ {5, ..., 12}, where we have made use of a favorable cancelation
in some contributions stemming from the haptotactic interaction.
Now employing (3.33) we see that due to (3.31) and (3.34) we have

2η

∫
Ω
u2 ≤ c4η

2
·
{∫

Ω

|∇u|2

u

}
·
{∫

Ω
u

}
+ 2c4η ·

{∫
Ω
u

}2

≤ c1(T )c4η

2

∫
Ω

|∇u|2

u
+ 2c2

1(T )c4η

=
Du

4

∫
Ω

|∇u|2

u
+ 2c2

1(T )c4η for all t ∈ (0, T̂ ), (3.39)

whereas Lemma 3.6 says that as 4
1+2γ < 4, there exist θ ∈ (0, 1) and c13(T ) > 0 such that

c5(T )

∫
Ω
|∇h|

4
1+2γ ≤ c13(T ) ·

{∫
Ω
|∆h|2

}θ
for all t ∈ (0, T̂ ),
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whence by Young’s inequality,

c5(T )

∫
Ω
|∇h|

4
1+2γ ≤ aDh

4

∫
Ω
|∆h|2 + c14(T ) for all t ∈ (0, T̂ ) (3.40)

with some c14(T ) > 0. Since moreover the Poincaré inequality provides c15(T ) > 0 satisfying

c11(T )

∫
Ω
h2 ≤ c15(T )

∫
Ω
|∇h|2 + c15(T ) for all t ∈ (0, T̂ ),

thanks to the restrictions in (3.35), (3.36) and (3.37) we conclude from (3.38), (3.39) and (3.40) that
there exists c16(T ) > c6(T ) such that

d

dt
F(t) ≤ −Du

4

∫
Ω

|∇u|2

u
− aDh

2

∫
Ω
|∆h|2

+c6(T )

∫
Ω
u lnu+ c16(T ) ·

{
a

∫
Ω
|∇h|2 +

ξ

2α

∫
Ω

|∇v|2

v
+ b

∫
Ω

|∇w|2

w
+

∫
Ω
w2

}
+ c16(T )

for all t ∈ (0, T̂ ). Using that y ln y ≥ −1
e for all y > 0 and thus

∫
Ω u lnu ≥ − |Ω|e for all t ∈ (0, Tmax),

from this we finally obtain that for all t ∈ (0, T̂ ),

d

dt
F(t) + min

{Du

4
,
aDh

2

}
· D(t) ≤ c16(T ) · F(t)−

(
c16(T )− c6(T )

)
·
∫

Ω
u lnu+ c16(T )

≤ c16(T ) · F(t) +
|Ω| · (c16(T )− c6(T ))

e
+ c16(T ),

as intended. �

Upon integration, the latter implies several a priori estimates, significantly going beyond those from
Lemma 2.2 and Lemma 2.3, among which we explicitly state only those three inequalities that will be
referred to later on.

Lemma 3.8 For all T > 0 there exists C(T ) > 0 such that again writing T̂ := min{T, Tmax} we have∫
Ω
u(·, t)| lnu(·, t)| ≤ C(T ) for all t ∈ (0, T̂ ) (3.41)

and ∫
Ω
|∇h(·, t)|2 ≤ C(T ) for all t ∈ (0, T̂ ) (3.42)

as well as ∫ T̂

0

∫
Ω
|∆h|2 ≤ C(T ). (3.43)

Proof. Upon integrating (3.30) in time, we can find c1(T ) > 0 such that with F and D taken from
(3.28) and (3.29) we have

F(t) ≤ c1(T ) for all t ∈ (0, T̂ ) and

∫ T̂

0
D(t)dt ≤ c1(T ).
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Once more using that y ln y ≥ −1
e for y > 0, from this we readily obtain the claimed inequalities as

particular consequences. �

As an immediate consequence, let us add the following observation about regularity of h.

Corollary 3.9 Let p ≥ 1 and T > 0. Then there exists C(p, T ) > 0 such that with T̂ := min{T, Tmax},∫
Ω
hp(·, t) ≤ C(p, T ) for all t ∈ (0, T̂ ). (3.44)

Proof. As W 1,2(Ω) ↪→ Lp(Ω), combining (2.6) with (3.42) immediately yields (3.44). �

4 L∞ bounds for u

In this section we intend to make use of the information from Lemma 3.8 in order to finally achieve
an a priori bound for the quantity z from (2.1), and hence for u, with respect to the norm in L∞(Ω).
Here a key role will be played by the following implication of the estimate (3.41) on a Gagliardo-
Nirenberg-type interpolation, as expressed in the following.

Lemma 4.1 Let p > 1 and T > 0. Then for all η > 0 one can find C(η, p, T ) > 0 such that∫
Ω
zp+1 ≤ η

∫
Ω
zp−2|∇z|2 + C(η, p, T ) for all t ∈ (0, T̂ ) (4.1)

with T̂ := min{T, Tmax}.

Proof. This follows in a standard manner from the boundedness property of z in L logL(Ω) as
implied by Lemma 3.8 and Lemma 2.2, by means of a refined interpolation inequality of Gagliardo-
Nirenberg type, the latter going back to [3] and extended to a version applicable to the present setting
in [47, Lemma A.5] (for details, see e.g. [47, p.800]). �

In order to make appropriate use of this, let us perform another well-established testing procedure to
(2.2), a basic outcome of which is the following.

Lemma 4.2 Let T > 0. Then there exists C(T ) > 0 such that for all p ≥ 2 and all t ∈ (0, T̂ ) with
T̂ := min{T, Tmax},

d

dt

∫
Ω
eλvzp +

p(p− 1)Du

2

∫
Ω
zp−2|∇z|2 ≤ C(T ) · p ·

{∫
Ω
zp +

∫
Ω
wp + 1

}
+C(T ) · p2 ·

∫
Ω
zp|∇h|2. (4.2)

18



Proof. By means of (2.2), we obtain

d

dt

∫
Ω
eλvzp = p

∫
Ω
eλvzp−1 ·

{
Due

−λv∇ · (eλv∇z)− χe−λv∇ · (zeλv∇h) + e−λvf(zeλv, h, v, w)
}

+λ

∫
Ω
eλvzp ·

{
− αveλvz + vφ(zeλv, h, v, w) + Φ(w)

}
= −p(p− 1)Du

∫
Ω
eλvzp−2|∇z|2 + p(p− 1)χ

∫
Ω
eλvzp−1∇z · ∇h

+p

∫
Ω
zp−1f(zeλv, h, v, w)− α

∫
Ω
ve2λvzp+1

+λ

∫
Ω
veλvzpφ(zeλv, h, v, w) + λ

∫
Ω
veλvzpΦ(w) (4.3)

for all t ∈ (0, Tmax), where by Young’s inequality,

p(p− 1)χ

∫
Ω
eλvzp−1∇z · ∇h ≤ p(p− 1)Du

2

∫
Ω
eλvzp−2|∇z|2 +

p(p− 1)χ2

2Du

∫
Ω
eλvzp|∇h|2

≤ p(p− 1)Du

2

∫
Ω
eλvzp−2|∇z|2 +

p2χ2

2Du
eλc1(T )

∫
Ω
zp|∇h|2 (4.4)

for all t ∈ (0, T̂ ), with c1(T ) := ‖v‖
L∞(Ω×(0,T̂ ))

being finite according to Lemma 2.2. Furthermore,

(1.6) and Young’s inequality warrant that for all t ∈ (0, T̂ ),

p

∫
Ω
zp−1f(zeλv, h, v, w) ≤ pCf (c1(T )) ·

{∫
Ω
eλvzp +

∫
Ω
zp−1w +

∫
Ω
zp−1

}
≤ pCf (c1(T )) ·

{
eλc1(T )

∫
Ω
zp +

∫
Ω
zp +

∫
Ω
wp +

∫
Ω
zp + |Ω|

}
, (4.5)

while from (1.8) and (1.9) we know that

λ

∫
Ω
veλvφ(zeλv, h, v, w) ≤ λc1(T )eλc1(T ) for all t ∈ (0, T̂ ) (4.6)

and that

λ

∫
Ω
eλvzpΦ(w) ≤ λeλc1(T ) · CΦ

∫
Ω
zp for all t ∈ (0, T̂ ). (4.7)

As clearly eλv ≥ 1, by nonnegativity of α we therefore infer (4.2) from (4.3) when combined with (4.4),
(4.5), (4.6) and (4.7). �

Here a suitable control of the crucial rightmost summand in (4.2) will rely, besides on Lemma 4.1,
also on the following statement which can be viewed as partially generalizing Lemma 3.5.

Lemma 4.3 Let p ≥ 1 and T > 0. Then writing T̂ := min{T, Tmax} and τ := 1
2 T̂ , with some

C(p, T ) > 0 we have∫
Ω
wp(·, t) ≤ C(p, T )

∫ t

τ

∫
Ω
zp + C(p, T ) for all t ∈ (τ, T̂ ). (4.8)
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Proof. Choosing c1(T ) > 0 large enough fulfilling v ≤ c1(T ) in Ω × (0, T̂ ) according to Lemma
2.2, equation (1.3), and due to Young’s inequality and (1.10) we can estimate

d

dt

∫
Ω
wp = pβ

∫
Ω
eλvwp−1z + p

∫
Ω
wpψ(eλvz, h, v, w)

≤ pβeλc1(T )

∫
Ω
wp−1z + pCψ(c1(T )) ·

∫
Ω
wp

≤ pβeλc1(T ) ·
{∫

Ω
wp +

∫
Ω
zp
}

+ pCψ(c1(T )) ·
∫

Ω
wp for all t ∈ (0, T̂ ),

so that with some c2(p, T ) > 0 we have

d

dt

∫
Ω
wp ≤ c2(p, T )

∫
Ω
wp + c2(T )

∫
Ω
zp for all t ∈ (0, T̂ ).

An integration thereof shows that∫
Ω
wp(·, t) ≤ ec2(p,T )·(t−τ) ·

∫
Ω
wp(·, τ) + c2(T )

∫ t

τ
ec2(p,T )·(t−s) ·

∫
Ω
zp(·, s)ds

≤ ec2(p,T )·T ·
∫

Ω
wp(·, τ) + c2(T )ec2(p,T )·T ·

∫ t

τ

∫
Ω
zp for all t ∈ (τ, T̂ )

and hence implies (4.8). �

We can thereby use Lemma 4.2 along with Lemma 4.1 to derive the following Lp estimate for z, at
this stage yet involving bounds possibly depending on the finite number p ≥ 2.

Lemma 4.4 Let p ≥ 2 and T > 0. Then there exists C(p, T ) > 0 such that∫
Ω
zp(·, t) ≤ C(p, T ) for all t ∈ (0, T̂ ), (4.9)

where again T̂ := min{T, Tmax}.

Proof. From Lemma 4.2 we obtain c1(p) > 0 and c2(p, T ) > 0 such that

d

dt

∫
Ω
eλvzp + c1(p)

∫
Ω
zp−2|∇z|2 ≤ c2(p, T )

∫
Ω
eλvzp + c2(p, T ) ·

{∫
Ω
wp + 1

}
+c2(p, T )

∫
Ω
zp|∇h|2 for all t ∈ (0, T̂ ), (4.10)

again because eλv ≥ 1. Here since Lemma 3.8 provides c3(T ) > 0 such that∫
Ω
|∇h|2 ≤ c3(T ) for all t ∈ (0, T̂ ),
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by means of Young’s inequality and the Gagliardo-Nirenberg inequality we infer that with some
c4(p, T ) > 0 we have

c2(p, T )

∫
Ω
zp|∇h|2 ≤ c2(p, T )

∫
Ω
zp+1 + c2(p, T )

∫
Ω
|∇h|2p+2

≤ c2(p, T )

∫
Ω
zp+1 + c4(p, T ) ·

{∫
Ω
|∆h|p+1

}
·
{∫

Ω
|∇h|2

} p+1
2

≤ c2(p, T )

∫
Ω
zp+1 + (c3(T ))

p+1
2 c4(p, T )

∫
Ω
|∆h|p+1 for all t ∈ (0, T̂ ).

Therefore, (4.10) shows that there exists c5(p, T ) > 0 such that y(t) :=
∫

Ω e
λv(·,t)zp(·, t), t ∈ [0, Tmax),

satisfies

y′(t) + c1(p)

∫
Ω
zp−2|∇z|2 ≤ c2(p, T )y(t) + c5(p, T ) ·

{∫
Ω
zp+1 +

∫
Ω
wp+1 +

∫
Ω
|∆h|p+1 + 1

}
(4.11)

for all t ∈ (0, T̂ ) and thus, upon integration,

y(t) + c1(p)

∫ t

τ

∫
Ω
zp−2|∇z|2

≤ y(t) + c1(p)

∫ t

τ
ec2(p,T )(t−s) ·

∫
Ω
zp−2(·, s)|∇z(·, s)|2ds

≤ y(τ)ec2(p,T )·(t−τ)

+c5(p, T )

∫ t

τ
ec2(p,T )·(t−s) ·

{∫
Ω
zp+1(·, s) +

∫
Ω
wp+1(·, s) +

∫
Ω
|∆h(·, s)|p+1 + 1

}
ds

≤ y(τ)ec2(p,T )·T

+c5(p, T )ec2(p,T )·T ·
{∫ t

τ

∫
Ω
zp+1 +

∫ t

τ

∫
Ω
wp+1 +

∫ t

τ

∫
Ω
|∆h|p+1 + T

}
(4.12)

for all t ∈ (τ, T̂ ), where again we have set τ := 1
2 T̂ . As thus τ is positive, a well-known result

on maximal Sobolev regularity in the parabolic subproblem of (1.3) satisfied by h ([15]) becomes
applicable so as to yield c6(p, T ) > 0 satisfying∫ t

τ

∫
Ω
|∆h|p+1 ≤ c6(p, T )

∫ t

τ

∫
Ω
|g(eλvz, h, v, w)|p+1 + c6(p, T )

≤ c6(p, T ) · (p+ 1)Cp+1
g (‖v‖

L∞(Ω×(0,T̂ ))
) ·
∫ t

τ

∫
Ω

(wp+1 + hp+1 + 1) + c6(p, T )

for all t ∈ (τ, T̂ ) because of (1.7). Since Corollary 3.9 and Lemma 4.3 provide c7(p, T ) > 0 and
c8(p, T ) > 0 such that ∫ t

τ

∫
Ω
hp+1 ≤ c7(p, T ) for all t ∈ (τ, T̂ )
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and that ∫ t

τ

∫
Ω
wp+1 ≤ c8(p, T ) ·

{∫ t

τ

∫
Ω
zp+1 + 1

}
for all t ∈ (τ, T̂ ),

this means that with some c9(p, T ) > 0 we have∫ T

τ

∫
Ω
|∆h|p+1 ≤ c9(p, T ) ·

{∫ t

τ

∫
Ω
zp+1 + 1

}
for all t ∈ (τ, T̂ ),

so that from (4.12) we infer the existence of c10(p, T ) > 0 satisfying

y(t) + c1(p)

∫ t

τ

∫
Ω
zp−2|∇z|2 ≤ c10(p, T )

∫ t

τ

∫
Ω
zp+1 + c10(p, T ) for all t ∈ (τ, T̂ ). (4.13)

We now employ Lemma 4.1 to see that with some c11(p, T ) > 0,

c10(p, T )

∫ t

τ

∫
Ω
zp+1 ≤ c1(p)

∫ t

τ

∫
Ω
zp−2|∇z|2 + c11(p, T ) for all t ∈ (τ, T̂ ),

whence (4.13) ensures that

y(t) ≤ c10(p, T ) + c11(p, T ) for all t ∈ (τ, T̂ )

and that thus, clearly, (4.9) holds. �

By adapting a well-established Moser-type iteration ([1], [46]) to the present context, however, one
can readily turn the latter into estimates in L∞.

Lemma 4.5 Given T > 0, one can find C(T ) > 0 such that with T̂ := min{T, Tmax} we have

‖z(·, t)‖L∞(Ω) ≤ C(T ) for all t ∈ (0, T̂ ). (4.14)

Proof. We first fix any p? > 2 and then obtain upon combining Lemma 4.4 with Lemma 4.3,
Lemma 2.2, (1.7) and Corollary 3.9 that∫ t

τ

∫
Ω
|g|p? ≤ c1(T ) for all t ∈ (τ, T̂ )

with τ := 1
2 T̂ and some c1(T ) > 0. As a consequence thereof, standard regularization features of the

Neumann heat semigroup ([52, Lemma 1.3], [19, Lemma 4.1]) entail boundedness of ∇h in Ω× (τ, T̂ ),
so that from Lemma 4.2 we infer the existence of c2(T ) > 0 and c3(T ) > 0 such that for p := 2k+1

and any nonnegative integer k,

d

dt

∫
Ω
eλvzp + c2(T )

∫
Ω
|∇z

p
2 |2 ≤ c3(T ) · p2 ·

{∫
Ω
zp +

∫
Ω
wp + 1

}
for all t ∈ (τ, T̂ ).
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On integrating and recalling Lemma 2.2 and Lemma 4.3, we see that with some c4(T ) > 0, for any
such p and arbitrary t ∈ (τ, T̂ ) we have∫

Ω
zp(·, t) + c2(T )

∫ t

τ

∫
Ω
|∇z

p
2 |2 ≤

∫
Ω
eλv(·,t)zp(·, t) + c2(T )

∫ t

τ

∫
Ω
|∇z

p
2 |2

≤
∫

Ω
eλv(·,τ)zp(·, τ)

+c3(T ) · p2 ·
∫ t

τ

∫
Ω
zp + c3(T ) · p2 ·

∫ t

τ

∫
Ω
wp + c3(T ) · p2

≤ c4(T )

∫
Ω
zp(·, τ) + c4(T ) · p2 ·

∫ t

τ

∫
Ω
zp + c3(T ) · p2. (4.15)

The remaining part now follows a well-established reasoning: According to the Gagliardo-Nirenberg
inequality and Young’s inequality, we can find c5(T ) > 0 such that introducing the numbers

Mk := max

{
1 , sup

t∈(τ,T̂ )

∫
Ω
zpk(·, t)

}
, k ∈ {0, 1, 2, ...},

all finite due to Lemma 4.4, for p = pk and each k ∈ {1, 2, 3, ...} we have

c4(T ) · p2 ·
∫ t

τ

∫
Ω
zp ≤ c5(T ) · p2 ·

∫ t

τ
‖∇z

p
2 (·, s)‖L2(Ω)‖z

p
2 (·, s)‖L1(Ω)ds

≤ c5(T ) · p2 ·Mk−1 ·
∫ t

τ
‖∇z

p
2 (·, s)‖L2(Ω)ds

≤ c2(T )

∫ t

τ

∫
Ω
|∇z

p
2 |2 + c2

5(T )T · p4 ·M2
k−1 for all t ∈ (τ, T̂ ),

whence (4.15) entails that for some c6(T ) > 0,

Mk ≤ c4(T )

∫
Ω
zpk(·, τ) + c6(T ) · p4

k ·M2
k−1 for all k ≥ 1.

By means of a standard recursive argument, both when p4
kM

2
k−1 ≤ ‖z(·, τ)‖pkL∞(Ω) for infinitely many

k ≥ 1, and as well in the opposite case this can readily be seen to imply the existence of c7(T ) > 0
such that

‖z(·, t)‖L∞(Ω) ≤ c7(T ) for all t ∈ (τ, T̂ ),

from which the claim immediately follows. �

5 Global extensibility. Proof of Theorem 1.1

Having thus ruled out blow-up of the first quantity appearing in the second alternative from (2.3), it
hence remains to derive appropriate bounds for the haptotactic gradient. A first observation relates
the latter to some spatio-temporal regularity properties of z and h.
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Lemma 5.1 Let T > 0 and q ≥ 1. Then there exists C(q, T ) > 0 fulfilling

‖∇v(·, t)‖Lq(Ω) + ‖∇w(·, t)‖Lq(Ω) ≤ C(q, T )

∫ T

τ

{
‖∇z(·, s)‖Lq(Ω) + ‖∇h(·, s)‖Lq(Ω)

}
ds+C(q, T ) (5.1)

for all t ∈ (τ, T̂ ), with T̂ := min{T, Tmax} and τ := 1
2 T̂ .

Proof. Differentiating in (1.3) and recalling (2.1), we see that throughout Ω× (0, Tmax),

∂t∇v = (−αv+vφue
λv)∇z+ (−αλuv−αu+λuvφu+vφv +φ)∇v+ (vφw + Φ′(w))∇w+vφh∇h (5.2)

and

∂t∇w = (βeλv + weλvψu)∇z + (βλu+ λuw + wψv)∇v = (wψw + ψ)∇w + wφh∇h, (5.3)

where we have suppressed the argument (u, v, w, h) in φ, ψ and the derivatives thereof. Now as a
consequence of Lemma 2.2, Lemma 4.5 and (2.1), our requirements (1.8), (1.9) and (1.10) guarantee
that herein all the functions −αv + vφue

λv, −αλuv − αu + λuvφu + vφv + φ, vφw + Φ′(w), vφh,
βeλv + weλvψu, βλu + λuw + wψv, wψw + ψ and wψh are bounded in Ω × (0, T̂ ), so that (5.2) and
(5.3) imply that with some c1(T ) > 0 we have

‖∇v(·, t)‖Lq(Ω) =

∥∥∥∥∇v(·, τ) +

∫ t

τ
∂t∇v(·, s)ds

∥∥∥∥
Lq(Ω)

≤ c1(T ) + c1(T )

∫ t

τ

{
‖∇z(·, s)‖Lq(Ω) + ‖∇v(·, s)‖Lq(Ω)

+‖∇w(·, s)‖Lq(Ω) + ‖∇h(·, s)‖Lq(Ω)

}
ds

and, similarly,

‖∇w(·, t)‖Lq(Ω) ≤ c1(T ) + c1(T )

∫ t

τ

{
‖∇z(·, s)‖Lq(Ω) + ‖∇v(·, s)‖Lq(Ω)

+‖∇w(·, s)‖Lq(Ω) + ‖∇h(·, s)‖Lq(Ω)

}
ds

for all t ∈ (τ, T̂ ). Adding these inequalities and invoking Gronwall’s lemma readily leads to (5.1). �

Here the crucial ingredient containing ∇z will ultimately be controlled by using the following result
which extends a corresponding statement from [47, Lemma 3.14] to the present more complex system
(2.2).

Lemma 5.2 Let T > 0. Then there exists C(T ) > 0 with the property that∫
Ω
|∇z(·, t)|2 ≤ C(T ) for all t ∈ (τ, T̂ ) and

∫ T

τ

∫
Ω
|∆z|2 ≤ C(T ), (5.4)

where again T̂ := min{T, Tmax} and τ := 1
2 T̂ .
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Proof. Defining

A(x, t) := λDu∇v − χ∇h and B(x, t) := −χz∆h− χλz∇v · ∇h+ e−λvf(eλvz, v, w, h)

for (x, t) ∈ Ω× (0, Tmax), we see that the first equation in (2.2) simplifies to the identity

zt = Du∆z +A(x, t) · ∇z +B(x, t), x ∈ Ω, t ∈ (0, Tmax),

which we multiply by −∆z and integrate to find using Young’s inequality that for all t0 ∈ [0, Tmax)
and any t ∈ (t0, Tmax),∫

Ω
|∇z(·, t)|2 +Du

∫ t

t0

∫
Ω
|∆z|2 =

∫
Ω
|∇z(·, t0)|2 −

∫ t

t0

∫
Ω

(A · ∇z)∆z −
∫ t

t0

∫
Ω
B∆z

≤
∫

Ω
|∇z(·, t0)|2 +Du

∫ t

t0

∫
Ω
|∆z|2 +

1

2Du

∫ t

t0

∫
Ω
|A · ∇z|2

+
1

2Du

∫ t

t0

∫
Ω
B2. (5.5)

Here we note that given T > 0, in view of the boundedness property of z in Ω × (0, T̂ ) asserted by
Lemma 4.5 we can fix c1(T ) > 0 such that due to Young’s inequality,

1

Du

∫ t

t0

∫
Ω
B2 ≤ c1(T )

∫ T̂

t0

∫
Ω
|∆h|2 + c1(T )

∫ t

t0

∫
Ω
|∇v · ∇h|2 + c1(T )

≤ c1(T )

∫ T̂

t0

∫
Ω
|∆h|2 + c1(T )

∫ t

t0

∫
Ω
|∇v|4 +

c1(T )

4

∫ t

t0

∫
Ω
|∇h|4

+c1(T ) for all t0 ∈ [0, T̂ ) and t ∈ (t0, T̂ ). (5.6)

Moreover, as the Gagliardo-Nirenberg inequality together with elliptic estimates and Lemma 4.5 pro-
vides c2 > 0 and c3(T ) > 0 such that∫

Ω
|∇z|4 ≤ c2‖∆z‖2L2(Ω)‖z‖

2
L∞(Ω) + c2‖z‖4L∞(Ω)

≤ c3(T )‖∆z‖2L2(Ω) + c3(T ) for all t ∈ (0, T̂ ), (5.7)
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by combining the Cauchy-Schwarz inequality with Young’s inequality we obtain

1

Du

∫ t

t0

∫
Ω
|A · ∇z|2 ≤ 1

Du

∫ t

t0

‖A(·, s)‖2L4(Ω)‖∇z(·, s)‖
2
L4(Ω)ds

≤
√
c3(T )

Du

∫ t

t0

‖A(·, s)‖2L4(Ω)

√
‖∆z(·, s)‖2

L2(Ω)
+ 1ds

≤ Du

4
·
{∫ t

t0

∫
Ω
|∆z|2 + (t− t0)

}
+
c3(T )

D3
u

∫ t

t0

∫
Ω
|A|4

≤ Du

4

∫ t

t0

∫
Ω
|∆z|2 +

DuT

4

+4c3(T )λ4Du

∫ t

t0

∫
Ω
|∇v|4

+
4c3(T )χ4

D3
u

∫ t

t0

∫
Ω
|∇h|4 for all t0 ∈ [0, T̂ ) and t ∈ (t0, T̂ ),

which along with (5.6) shows that (5.5) implies the inequality∫
Ω
|∇z(·, t)|2 +

Du

4

∫ t

t0

∫
Ω
|∆z|2

≤
∫

Ω
|∇z(·, t0)|2 + c4(T )

∫ T̂

τ

∫
Ω
|∆h|2 + c4(T )

∫ T̂

τ

∫
Ω
|∇h|4

+c4(T )

∫ t

t0

∫
Ω
|∇v|4 + c4(T ) for all t0 ∈ [τ, T̂ ) and t ∈ (t0, T̂ ) (5.8)

with some appropriately large c4(T ) > 0.
To proceed from this, we observe that as a consequence of Lemma 5.1 we can find c5(T ) > 0 such that∫

Ω
|∇v|4 ≤ c5(T ) + c5(T )

∫ t

τ

∫
Ω
|∇z|4 + c5(T )

∫ T̂

τ

∫
Ω
|∇h|4 for all t ∈ (τ, T̂ ),

and that another application of the Gagliardo-Nirenberg inequality in conjunction with Lemma 3.8
provides c6 > 0 and c7(T ) > 0 fulfilling∫

Ω
|∇h|4 ≤ c6 ·

{∫
Ω
|∆h|2

}
·
{∫

Ω
|∇h|2

}
≤ c7(T ) ·

∫
Ω
|∆h|2 for all t ∈ (0, T̂ ).

Therefore, again through Lemma 3.8, (5.8) reduces to∫
Ω
|∇z(·, t)|2 +

Du

4

∫ t

t0

∫
Ω
|∆z|2 ≤

∫
Ω
|∇z(·, t0)|2 + c8(T )

∫ t

t0

∫ s

τ

∫
Ω
|∇z(x, σ)|4dxdσds

+c8(T ) for all t0 ∈ [τ, T̂ ) and t ∈ (t0, T̂ ), (5.9)
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where by the Fubini theorem and, again, (5.7),

c8(T )

∫ t

t0

∫ s

τ

∫
Ω
|∇z(x, σ)|4dxdσds

= c3(T )c8(T )

∫ t

t0

(t− σ) ·
∫

Ω
|∇z(x, σ)|4dxdσ

+c8(T ) · (t− t0)

∫ t0

τ

∫
Ω
|∇z|4

≤ c8(T ) · (t− t0) ·
∫ t

t0

∫
Ω
|∇z|4

+c8(T ) · (t− t0) ·
∫ t0

τ

∫
Ω
|∇z|4

≤ c3(T )c8(T ) · (t− t0) ·
∫ t

t0

∫
Ω
|∆z|2 + c8(T )C3(T )T (t− t0)

+c3(T )c8(T )T

∫ t0

τ

∫
Ω
|∆z|2 + c8(T )C3(T )T (t0 − τ) for all t0 ∈ [τ, T̂ ) and t ∈ (t0, T̂ ).(5.10)

We now let δ > 0 be small enough such that c3(T )c8(T )δ ≤ Du
8 , and choose N ∈ N and (ti)i∈{1,...,N} ⊂

[τ, T̂ ] such that t1 = τ, tN = T̂ and 0 < ti+1 − ti ≤ δ for all i ∈ {1, ..., N − 1}. Then inserting (5.10)
into (5.9) shows that

Ii := sup
t∈(ti,ti+1)

∫
Ω
|∇z(·, t)|2 and Ji :=

Du

8

∫ ti+1

ti

∫
Ω
|∆z|2, i ∈ {1, ..., N},

along with I0 :=
∫

Ω |∇z(·, τ)|2 and J0 := 0 satisfy

max{Ii, Ji} ≤ Ii−1 + c3(T )c8(T )T ·
i−1∑
j=0

Jj + c8(T ) for all i ∈ {1, ..., N − 1},

whence if we let

Ki :=
i∑

k=1

max{Ik, Jk}+ 1 for i ∈ {1, ..., N − 1},
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then

Ki ≤
i∑

k=1

Ik−1 + c3(T )c8(T )T ·
i∑

k=1

k−1∑
j=0

Jj + ic8(T ) + 1

≤ I0 +
i−1∑
j=1

Ij + c3(T )c8(T )T ·
i−1∑
j=1

i∑
k=j+1

Jj + (N − 1)c8(T ) + 1

=
i−1∑
j=1

{
Ij + c3(T )c8(T )T · (i− j)Jj

}
+ I0 + (N − 1)c8(T ) + 1

≤
{

1 + (N − 2)c3(T )c8(T )T
}
·Ki−1 + I0 + (N − 1)c8(T ) + 1

≤ c9(T ) ·Ki−1 for all i ∈ {1, ..., N − 1}

with c9(T ) := max{1 + (N − 2)c3(T )c8(T )T , I0 + (N − 1)c8(T ) + 1}. Therefore, Ki ≤ K0 · cN−1
9 (T )

for all i ∈ {1, ..., N − 1}, which in view of the definitions of (Ii)i∈{1,...,N−1} and (Ji)i∈{1,...,N−1} yields
(5.4). �

Combining this with Lemma 5.1 readily implies the following.

Lemma 5.3 For all q ≥ 1 and T > 0 one can fix C(q, T ) > 0 such that with T̂ := min{T, Tmax} and
τ := 1

2 T̂ we have

‖∇v(·, t)‖Lq(Ω) ≤ C(q, T ) for all t ∈ (τ, T̂ ). (5.11)

Proof. From Lemma 5.2 in conjunction with elliptic regularity theory we obtain c1(T ) > 0 such
that ∫ T̂

τ
‖z(·, t)‖2W 2,2(Ω)dt ≤ c1(T ),

which we combine with the continuity of the embedding W 2,2(Ω) ↪→W 1,q(Ω) and the Cauchy-Schwarz
inequality to conclude that with some c2(q) > 0 we have∫ T̂

τ
‖∇z(·, t)‖Lq(Ω)dt ≤ c2(q)

∫ T̂

τ
‖z(·, t)‖W 2,2(Ω)dt

≤ c2(q)
√
T ·
{∫ T̂

τ
‖z(·, t)‖2W 2,2(Ω)dt

} 1
2

≤
√
c1(T )c2(q) ·

√
T .

Since Lemma 3.8 in quite a similar fashion yields the existence of c3(q, T ) > 0 such that∫ T̂

τ
‖∇h(·, t)‖Lq(Ω) ≤ c3(q, T ),

the claimed estimate is a consequence of Lemma 5.1. �
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Now our main result has actually already been established:

Proof of Theorem 1.1. Thanks to Lemma 2.1, and in particular the extensibility criterion (2.3)
therein, we only need to combine the outcome of Lemma 4.5 with an application of Lemma 5.3 to
q := 5. �

6 Simulations and discussion

To illustrate our theoretical results we also performed some numerical simulations of the version
ut = Du∆u− χ∇ · (u∇h)− ξ∇ · (u∇v) + µu(1− u− v − w),

ht = Dh∆h− h+ αw,

vt = −hv + ηv(1− u− v) + β w
1+w ,

wt = γu,

(6.12)

of the indirect signal production model (1.1) and – for comparison purposes – we also simulated some
solutions of the system

ut = Du∆u− χ∇ · (u∇h)− ξ∇ · (u∇v) + µu(1− u− v − w),

ht = Dh∆h− h+ αu,

vt = −hv + ηv(1− u− v),

(6.13)

in which the signal (MDEs) is directly produced by the tumor cells. Since for both models there is no
blow-up as long as µ > 0 (see [26] for the result concerning (6.13)), we only considered here the case
with no tumor cell proliferation, i.e. µ = 0.

The simulations were performed using a discontinuous Galerkin FEM method. Thereby, the diffusion
was discretized in space by using a symmetric interior penalty Galerkin (SIPG) method (see [37]), while
for the drift term we did an upwind discretization. The time was discretized with an IMEX procedure
handling the diffusion implicitly and the reaction and taxis terms explicitly. The computational
domain was Ω = [0, 1]2 and the initial conditions for tumor cells and MDEs were chosen in the form

u0(x) = exp(− |x|
2

2εu
), h0(x) = exp(− |x|

2

2εh
), with εu = 0.05, εh = 0.1. For the initial density of CAFs we

considered a radially symetric form w0(r) = exp(− (r−r0)2

2εw
) with εw = 0.01 and r0 = 0.5. Finally, the

initial tissue density was characterized by v0(x) =

{
vmax, x ∈ Ωv

vmin, x 6∈ Ωv
, with vmax = 1 and vmin = 0.2,

thus Ωv ⊂ Ω representing the stripes shown in the second columns of Figures 1 and 2. Together
these initial conditions describe a heterogeneous tissue structure, in which a Gaussian-shaped tumor
is embedded, surrrounded by activated CAFs and featuring higher MDE concentration in the areas
with many tumor cells. We considered for both models (where applicable) the following parameters:
χ = 0.6; ξ = 0.5; Du = 10−10; Dh = 0.1; η = 10.6; α = 5; β = 1; γ = 1.0. The results are shown
in Figure 1 for system (6.12) and in Figure 2 for system (6.13). The first rows represent the initial
conditions, and the subsequent rows illustrate the solution behavior at several successive time steps.
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Figure 1: Evolution of tumor (first column), tissue (2nd column), MDEs (3rd column), and CAFs (last
column) for model (6.12) with µ = 0. Succesive times from top to bottom, top row: initial conditions.
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The simulations of (6.12) depicture an increase in tumor cell density, which is, however, limited.
Same applies to the MDE concentration and CAFs density, but with smaller rates. The tissue is
correspondingly degraded, and the CAFs spread into the region containing the main tumor mass, at
the same time building up some tissue (for a sufficiently large β, as in these simulations) at the sites
where they are abundant enough. In contrast, model (6.13) predicts localized tumor cell aggregates
of very high density which are almost three orders of magnitude higher than the initial condition and
keep growing in time, thus hinting on blow-up of the solution. Likewise, in this latter setting the
MDE concentration is directly produced by the tumor cells and keeps growing as well, although to a
much smaller rate than the cell density. The tissue degradation is much more localized and – where
it happens – stronger. These results are conform with the theoretical findings in this and previous
papers predicting blow-up of solutions when the signal was directly produced by the agents performing
chemotaxis ([2]), while the solutions stay bounded in the case of indirect signal production.

From a biological viewpoint the tumor cells use CAFs (which are originally ’harmless’ stroma cells
only becoming supporters of tumor invasion upon activation) to produce matrix degrading factors.
As mentioned above, the production of the latter seems to be decisively controled by CAFs, hence is
rather indirect, as the neoplastic cells first need to activate the CAFs, which then enhance degradation
of surrounding tissue and cell motility, including chemotaxis towards the gradient of proteolytic agents.
Our mathematical result actually tells that such mediation of invasion leads to avoidance of blow-up,
unlike previous models where the direct production of chemoattractant let the solution(s) become
unbounded, a rather unrealistic biological scenario. The result is in line with many in vivo and in
vitro observations that cancer cells ’hijack’ their environment in order to gain migratory, survival, and
proliferative advantages.

We considered here that CAFs were non-diffusing, although they are indeed able to spread [44].
Accounting for diffusion of the chemoattractant producer w does not pose, however, any further
challenge to the analysis of our model (1.1); in that case our setting belongs to the same mathematical
class as the one in [5], to which it is also biologically related: both describe the evolution of a tumor
under chemotaxis and haptotaxis, the chemoattractant(s) – of which MDEs are considered in both
models – being supposed to diffuse.

Further chemotaxis-haptotaxis models belonging to the class studied here can be considered, of which
(1.2) is just one example. As mentioned above, a diffusing signal producer can be easily accomodated
to this model class – if the diffusion is linear. Solution-dependent diffusions of either involved species
need further investigation; in [35] one such system extending that from [49] to allow for nonlinear
diffusion of the chemotactic species has been studied, however without haptotaxis.
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[27] Laurençot, Ph.: Global bounded and unbounded solutions to a chemotaxis system with indirect
signal production. Preprint

[28] Lecomte, J., Masset, A., Edwards, D.R., Noël, A.: Tumor Fibroblast-Associated Metallo-
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Figure 2: Evolution of tumor (first column), tissue (2nd column), and MDEs (last column) for model
(6.13) with µ = 0. Successive times from top to bottom, top row: initial conditions.
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