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Abstract

This work is concerned with a two-component parabolic system accounting for a doubly cross-
diffusive interaction mechanism which was was predicted in Physical Review Letters 91, 218102
(2003) as responsible for the occurrence of certain solitary propagating waves in so-called pursuit-
evasion systems. This system formally possesses two basic entropy-like structures, but especially in
the presence of large data the regularity features thereby implied seem insufficient to ensure global
extensibility of local-in-time classical solutions provided by known results on classical solvability in
general parabolic systems of not necessarily tridiagonal type.

Attempting to nevertheless develop a basic theory of existence and qualitative behavior, the
manuscript firstly constructs global solutions within a natural concept of weak solvability and for
arbitrarily large data, and secondly derives a result on large-time stabilization toward homogeneous
equilibria. A major challenge connected with this appears to consist in designing a suitable regular-
ization which complies with the two requirements of asserting global solvability in the corresponding
approximate systems on the one hand, and of retaining consistency with essential structural prop-
erties on the other. To adequately cope with this, a fourth-order regularization is pursued which,
besides essentially respecting said entropy features, conforms to the fundamental sine qua non of
positivity preservation by involving thin-film type degeneracies in the associated artificial diffusion
operators.

Here the use of embeddings enforces a restriction to spatially one-dimensional settings, in which an
apparently novel refinement of Gagliardo-Nirenberg interpolation reveals a crucial L1 compactness
feature of corresponding cross-diffusive fluxes.
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1 Introduction

Beyond classical reaction-diffusion processes: Cross-diffusion and taxis in science. Taxis-
type cross-diffusion mechanisms are known to play a fundamental role at several levels of complexity in
various branches of science. Prominent examples range from the dynamics of aggregation phenomena
in contexts of self-gravitating systems or biological self-organization ([45], [11], [41], [33]), electro-
diffusion of ions in electrolytes ([16]), and transport of electrons and holes in semiconductors ([50]),
to intelligent migration of macroscopic individuals in living systems ([31]). Beyond this, related types
of cross-diffusive motion have been identified as a non-negligible constituent at more subtle stages of
relevance in numerous further models in, e.g., mechanical, electrochemical, magnetohydrodynamical
or also multi-physical frameworks (see [28], [21], [10], [24], [51] and [29] for some examples).

As indicated by a correspondingly considerable mathematical literature, the evident additional chal-
lenges originating from taxis-type interaction can be coped with to a relatively comprehensive extent
if the collection of all migration mechanisms results in a triangular diffusion matrix. Indeed, due to
their accessibility to arguments from scalar parabolic theories in essential parts, several important
subclasses of such triangular taxis systems have allowed for the development of quite thorough un-
derstanding. Accordingly, beyond quite far-reaching statements concerned with questions from basic
solution theories, occasionally yet providing essentially optimal criteria for global existence ([39], [30],
[5], [40], [27], [9], [7], [8], [52]), or including irregular initial data ([38], [6]), in various relevant cases
the literature moreover contains noticeably detailed information on qualitative aspects of solution be-
havior ([46], [22], [23], [32]), partially even in contexts of couplings to further delicate processes such
as fluid interaction ([20], [35], [53], [54]).

Doubly tactic interaction vs. Shigesada-Kawasaki-Teramoto cross-diffusion. As con-
trasted to the latter class of situations, the present study will be concerned with doubly taxis-driven
dynamics by considering constellations in which not only the motion of particles or individuals within
one group is biased in a taxis-type manner by members of a second group, but that moreover the
former similarly influence movement of the latter. A context of paradigmatic character in this regard
was originally addressed in [48], where as a description of pursuit-evasion dynamics in two-component
predator-prey systems the authors proposed the doubly cross-diffusive parabolic system

{
ut = D1∆u− χ1∇ · (u∇v) + f(u, v),

vt = D2∆v + χ2∇ · (v∇u) + g(u, v),
(1.1)

with positive parameters D1, D2, χ1, χ2 and local kinetics functions f and g, and with u = u(x, t) and
v = v(x, t) denoting the population densities of predators and preys, respectively. As indicated by
numerical evidence and formal linearized analysis, the simultaneous presence of two taxis terms can
significantly affect the solution behavior, e.g. by facilitating a novel type of solitary waves, both in
(1.1) ([48]) and in some close relatives ([49], [26] and [55]).

Through its thus fully cross-diffusive character, (1.1) can be viewed as a far relative of the renowned
Shigesada-Kawasaki-Teramoto ([43]) class of reaction-diffusion systems given by

{
ut = ∆[(d1 + a11u+ a12v)u] + f(u, v),

vt = ∆[(d2 + a21u+ a22v)v] + g(u, v).
(1.2)
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In fact, both in (1.1) and in (1.2) some quite fundamental obstructions for the analysis stem from the
circumstance that unlike in triangular relatives, the use of scalar parabolic techniques seems rather
limited. In particular, for general and especially large data an application of classical theory on ab-
stract parabolic problems seems to at most provide results on local existence of classical solutions,
with the option of their global extensibility typically relying on time-independent W 1,p boundedness
properties of both solution components, for some p exceeding the spatial dimension ([1]); only in ex-
ceptionally favorable situations, such as those generated by appropriate smallness assumptions on f
and g and either the initial data or the cross-diffusion coefficients, it can be expected – and in fact has
partially been confirmed for (1.2) in [17] – that straightforward perturbation arguments can efficiently
make use of the essentially quadratic character of the cross-diffusion terms in (1.1) to construct global
smooth solutions. For wider ranges of parameters and initial data, an apparent need to resort to so-
lution theories in adequately generalized frameworks, as successfully concretized for (1.2) in [12] and
[13] (cf. also [14] and [18]), seems to form one crucial methodology-related feature that (1.1) shares
with (1.2).

Essential differences to (1.2), however, originate from the particular taxis-type interaction mechanisms
in (1.1): Firstly, unlike in (1.2) the second-order terms in (1.1) can apparently not be interpreted as
resulting from the action of a single Laplacian on some appropriate function of (u, v); in fact, by pro-
viding access to duality-based arguments in the style of those developed in [42] this latter structural
property has been forming an essential ingredient in the apparently only result on global classical
solvability available for a multi-dimensional version of (1.2) in the presence of arbitrary positive cross-
diffusion rates a12 and a21 ([37]). Secondly, through their mere nature, pursuit-evasion systems of
the form in (1.1) need to account for one cross-diffusion process which in contrast to both of those
in (1.2) is attractive, rather than repulsive; in light of the rich knowledge collected for corresponding
Keller-Segel type systems concentrating on single taxis mechanisms, actually even reporting on some
blow-up phenomena in attractive but exclusively providing global existence results in repulsive cases
([27], [52], [15]), it may be expected that choosing χ1 to be positive will go along with a significant
tendency toward destabilization. This is further indicated by a result on nonexistence, even of local-
in-time solutions and even in one-dimensional contexts, for (1.1) in the case when both taxis processes
are assumed to be attractive in the sense that χ1 > 0 and χ2 < 0 (cf. Proposition 1.3 below).

The challenge of designing structure-consistent approximations. The purpose of the
present work now consists in creating an analytical approach which despite these obstacles is ca-
pable of establishing a basic theory not only of global solvability, but also of some essential qualitative
features. To address this in a framework which captures the apparently most essential features of (1.1)
but beyond this remains as simple as possible, we concentrate on the source-free case when f = g = 0
in a spatially one-dimensional setting, and hence subsequently consider the initial-boundary value
problem 




ut = D1uxx − χ1(uvx)x, x ∈ Ω, t > 0,

vt = D2vxx + χ2(vux)x, x ∈ Ω, t > 0,

ux = vx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3)

in an open bounded interval Ω ⊂ R, where D1, D1, χ1 and χ2 are positive parameters.

A major challenge to be adequately dealt with in this regard will be connected to the design of
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a suitable approximation procedure on the basis of which appropriate generalized solutions can be
obtained through a limit process. Here especially in view of our ambition to include a qualitative
analysis, the approximation we are seeking for should simultaneously comply with several system-
inherent stuctural properties: Besides evident basic features of nonnegativity and mass conservation,
namely, (1.3) formally enjoys two entropy-like features potentially blazing a trail not only toward the
construction of global weak solutions, but also toward a description of their large time behavior in quite
a strong topological setting. Going in search of a parabolic regularization in order to adequately respect
this, we firstly observe that second-order parabolic smoothing procedures, as frequently performed
in previous literature on taxis-type cross-diffusion systems ([19], [36], [47]), seem to go along with
substantial difficulties already at the level of asserting global solvability in the respective approximate
systems.

Therefore preferring to pursue an essentially fourth-order regularization, as newly arising problems
we then naturally encounter the requirements of positivity and mass conservation. Fortunately, it will
turn out that the introduction of carefully chosen degeneracies of the respective artificial diffusion
mechanisms, quite in the style of the well-studied thin film equation ([4], [3]; cf. also [25] and [34])),
does not only solve these problems but also provides convenient consistency with both of said entropy
properties. The obtained fourth-order parabolic approximation thereby seems to become more efficient
here than, for instance, discretization-based approaches such as those which have been underlying the
analysis for (1.2) in [12] and [13], but for which it seems unclear how far they can retain applicability
also in the present setting, mainly because of the characteristic differences due to a deviating general
structure of the migration operators in (1.3) and (1.2), and due to the simultaneous presence of a
repulsive and an attractive cross-diffusive mechanism in (1.3). In particular, it appears unsure whether
such discretization strategies can be hoped for to adequately cooperate with higher-order nonlinear
testing procedures, as already at a formal level required, e.g., for the derivation of (1.8) below.

Main results I: Global existence. To describe this essential part of our approach in more detail,
and to formulate our main results obtained on the basis thereof, with parameters n > 0,m ∈ (0, n), α >
0 and β > 0 to be specified below and for ε ∈ (0, 1), let us consider the regularized versions of (1.3)
given by





uεt = −ε
(

un
ε

un−m
ε +ε

uεxxx

)
x
+ εβ(u−α

ε uεx)x +D1uεxx − χ1

(
un−m+1
ε

un−m
ε +ε

vεx

)
x
, x ∈ Ω, t > 0,

vεt = −ε
(

vnε
vn−m
ε +ε

vεxxx

)
x
+ εβ(v−α

ε vεx)x +D2vεxx + χ2

(
vn−m+1
ε

vn−m
ε +ε

uεx

)
x
, x ∈ Ω, t > 0,

uεx = uεxxx = vεx = vεxxx = 0, x ∈ ∂Ω, t > 0,

uε(x, 0) = u0ε(x), vε(x, 0) = v0ε(x). x ∈ Ω,
(1.4)

Here the particular choice of the degenerate fourth-order operators is inspired by quite well-established
approaches to adequately approximate thin-film evolution ([4], [3]), whereupon the particular design
of the regularization in the respective cross-diffusive contributions has been motivated by the ambition
to maintain entropy consistency at approximate levels within suitable ranges of the free parameters
n and m (see, e.g., Lemma 3.1). The artifical second-order diffusion operators of fast-diffusion type,
finally, can be viewed as instruments to provide convenient control over some ill-signed contributions
which due to the latter modification appear in the justification of positivity preservation (Lemma 2.3).

Apart from that, to appropriately regularize the initial data we shall here and throughout the sequel,
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given {u0, v0} ⊂ W 1,2(Ω) fulfilling u0 > 0 and v0 > 0 in Ω, fix families (u0ε)ε∈(0,1) and (v0ε)ε∈(0,1)
such that





u0ε ∈ C5(Ω) and v0ε ∈ C5(Ω) satisfy u0ε > 0 and v0ε > 0 in Ω for all ε ∈ (0, 1) and

u0εx = u0εxxx = v0εx = v0εxxx = 0 on ∂Ω for all ε ∈ (0, 1), that∫
Ω u0ε =

∫
Ω u0 and

∫
Ω v0ε =

∫
Ω v0 for all ε ∈ (0, 1), and that

u0ε → u0 and v0ε → v0 in W 1,2(Ω) as εց 0.

(1.5)

A first and constitutive observation will reveal that in accordance with well-known results on posi-
tivity of solutions to scalar thin film equations in one-dimensional settings ([4], [3]), suitably strong
degeneracies in the considered fourth-order diffusion mechanisms warrant preservation of positivity
also in the coupled system (1.4). More precisely, Lemma 2.6 will reveal that whenever n > 7

2 , under
the additional assumptions that m ∈ (0, n − 1], α ∈ (0, 12) and β > 0 are such that m ≤ n+2

2 and
α ≥ 4 − n, for each suitably small ε ∈ (0, 1) the problem (1.4) admits a globally defined positive
classical solution.

Now a key question in the course of our existence analysis for the original problem will be how far this
approximation is consistent with a first and fundamental entropy structure inherent to (1.3), formally
becoming manifest in the identity

d

dt

{
χ2

∫

Ω
u lnu+ χ1

∫

Ω
v ln v

}
+ χ2D1

∫

Ω

u2x
u

+ χ1D2

∫

Ω

v2x
v

= 0 (1.6)

satisfied by smooth positive solutions to the boundary value problem in (1.3). Indeed, we shall see
that under the above assumptions on n, α and β, this structure will be adequately respected by
(1.4) if m satisfies the stronger restriction that m ∈ (12 , 2]. Accordingly implied a priori estimates,
inter alia relying on an apparently novel Gagliardo-Nirenberg-type interpolation inequality involving
certain Orlicz space norms (Lemma 7.5), will thereby lead us to our following main result on global
solvability in (1.3). Here and below, as usual we shall let C0

w(J ;L
1(Ω)) denote the space of L1(Ω)-

valued functions on the interval J ⊂ R which are continuous with respect to the weak topology in
L1(Ω), and let the Orlicz space L logL(Ω) consist of all measurable functions ϕ on Ω which are such
that

∫
Ω |ϕ| ln(|ϕ|+ 1) <∞.

Theorem 1.1 Let Ω ⊂ R be a bounded open interval, and let D1 > 0, D2 > 0, χ1 > 0 and χ2 > 0.
Then for any choice of u0 ∈W 1,2(Ω) and v0 ∈W 1,2(Ω) satisfying u0 > 0 and v0 > 0 in Ω, in the sense
of Definition 4.1 the problem (1.3) possesses a global weak solution which has the additional properties
that

{u, v} ⊂ C0
w([0,∞);L1(Ω)) ∩ L3

loc(Ω× [0,∞)) ∩ L
3
2
loc([0,∞);W 1, 3

2 (Ω)) ∩ L∞((0,∞);L logL(Ω)).
(1.7)

Moreover, given families (u0ε)ε∈(0,1) and (v0ε)ε∈(0,1) fulfilling (1.5), and parameters n > 7
2 , m ∈ (12 , 2],

α ∈ (0, 12) and β > 0 such that α ≥ 4 − n, one can find (εj)j∈N ⊂ (0, 1) such that εj ց 0 as j → ∞,
and such that for the solutions (uε, vε) of (1.4) we have uε → u as well as vε → v a.e. in Ω× (0,∞)
as ε = εj ց 0.

Even in the considered one-dimensional setting, the regularity information implied by entropy dissipa-
tion, as here expressed through (1.7) seems rather moderate only; accordingly, we have to leave open
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here the interesting question whether solutions are unique.

Main results II: Eventual boundedness and uniform stabilization. Addressing qualitative
aspects of the solution behavior in (1.3) requires to adequately respect the evident circumstance that
due to their essentially quadratic growth with respect to the unknown (u, v), the cross-diffusive con-
tributions to (1.3) can in general apparently not be viewed as reasonably small perturbations to a
predominantly diffusion-driven system; accordingly, we do not expect the solutions gained above to be
smooth near the initial time, especially in cases when χ1 and χ2 and the initial data are inconveniently
large. On the other hand, the basic dissipation process implicitly expressed through (1.6) indicates a
certain global relaxation property at least in a suitable weak sense, inter alia excluding any collapse
into persistent singular profiles unbounded in space. At a formal level, a second fundamental gradient
structure, corresponding to a now conditional entropy inequality of the form

d

dt
F(t) +

{
1

K
−KF(t)

}
·
{∫

Ω

u2xx
u

+

∫

Ω

v2xx
v

}
≤ 0, (1.8)

along smooth and positive trajectories satisfied by

F(t) := χ2

∫

Ω

u2x
u

+ χ1

∫

Ω

v2x
v

with some K > 0, suggests that the weak decay information on the dissipation rate in (1.6) can
actually be turned into genuine decay.

The second of our objectives will consist in revealing that this heuristic argument can be transferred
to a rigorous stage for arbitrary ingredients to (1.3), provided that the approximation parameters in
(1.4) are chosen appropriately. In particular, we shall see that (1.4) is essentially consistent with the
structural property (1.8) if beyond further requirements, mainly on the parameters α and β referring
to the artificial second-order fast diffusion therein, the crucial restrictions m ≥ 2 and m > n − 2 are
satisfied (Lemma 5.1). Fortunately, these further assumptions are all compatible with Theorem 1.1,
thus enabling us to achieve the following second of our main results, in which we adopt the commonly
used notational convention to write ϕ := 1

|Ω|
∫
Ω ϕ for ϕ ∈ L1(Ω):

Theorem 1.2 Let n ∈ (72 , 4) and m = 2, and let α ∈ (0, 12) and β > 0 be such that α ≥ 4−n, α > n−3
2

and β < α
n−2 . Then if Ω ⊂ R is a bounded open interval, D1, D2, χ1 and χ2 are positive and u0 ∈

W 1,2(Ω) and v0 ∈ W 1,2(Ω) are such that u0 > 0 and v0 > 0 in Ω, and if (u0ε)ε∈(0,1) and (v0ε)ε∈(0,1)
satisfy (1.5), then the global weak solution (u, v) of (1.3) obtained in Theorem 1.1 has the additional
properties that there exist T > 0 and C > 0 such that

‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) ≤ C for all t > T, (1.9)

and that (u, v) stabilizes toward (u0, v0) in the sense that

u(·, t) → u0 in L∞(Ω) and v(·, t) → v0 in L∞(Ω) as t→ ∞. (1.10)

In light of the above, a natural question seems to consist in deciding how far the approximation
properties (1.10), and especially the topological framework therein, may imply that solutions even
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become smooth eventually. Appropriately addressing this challenging topic in the context of the
approximation procedure pursued here, however, would go beyond the scope of the present work and
will thus be left for future researach.

Let us finally add a simple observation indicating a crucial importance, also beyond technical issues,
of our overall assumption on the cross-diffusive interplay in (1.3), namely that χ1 and χ2 both be
positive. In fact, in order to briefly address a prototypical situation in which unlike in (1.3) two
taxis-type cross-diffusive mechanisms both act attractively, let us consider the variant of (1.3) given
by 




ut = uxx − (uvx)x, x ∈ Ω, t > 0,

vt = vxx − (vux)x, x ∈ Ω, t > 0,

ux = vx = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω.

(1.11)

In sharp contrast to large classes of related triangular chemotaxis models or more general cross-diffusion
systems to which Amann’s theory ([1]) applies, problems of this form cannot be expected to admit
local-in-time regular solutions, not even for initial data in C∞(Ω). This is an evident consequence of
the following.

Proposition 1.3 Let Ω ⊂ R be a bounded open interval, and suppose that φ ∈ C0(Ω) is such that
φ > 1 in Ω, that T > 0, and that u and v are nonnegative functions on Ω× [0, T ) fulfilling

{u, v} ⊂ C0(Ω× [0, T )) ∩ C2,1(Ω× (0, T )) ∩ L∞
loc([0, T );W

1,2(Ω)), (1.12)

which are such that (u, v) solves (1.11) classically in Ω× (0, T ) with u0 ≡ v0 ≡ φ. Then necessarily φ
is analytic in Ω.

2 Global existence in the approximate problems

To begin with, let us first employ standard abstract parabolic theory to obtain local existence of
smooth positive solutions to (1.4), as well as a handy criterion for their extensibility.

Lemma 2.1 Let n > 0,m ∈ (0, n), α > 0, β > 0 and s ∈ (32 , 2), and suppose that (1.5) holds. Then
for all ε ∈ (0, 1) there exist Tmax,ε ∈ (0,∞] and a pair (uε, vε) of functions

{
uε ∈ C0([0, Tmax,ε);W

s,2(Ω)) ∩ C4,1(Ω× (0, Tmax,ε)) and

vε ∈ C0([0, Tmax,ε);W
s,2(Ω)) ∩ C4,1(Ω× (0, Tmax,ε)),

satisfying uε > 0 and vε > 0 in Ω× [0, Tmax,ε), which are such that (uε, vε) solves (1.4) classically in
Ω× (0, Tmax,ε), and that

either Tmax,ε = ∞, or

lim sup
tրTmax,ε

{
‖uε(·, t)‖W s,2(Ω) +

∥∥∥ 1

uε(·, t)
∥∥∥
L∞(Ω)

+ ‖vε(·, t)‖W s,2(Ω) +
∥∥∥ 1

vε(·, t)
∥∥∥
L∞(Ω)

}
= ∞.(2.1)

Moreover,
∫

Ω
uε(x, t)dx =

∫

Ω
u0 and

∫

Ω
vε(x, t)dx =

∫

Ω
v0 for all t ∈ (0, Tmax,ε). (2.2)

7



Proof. To apply the theory for abstract quasilinear parabolic problems developed in [1], for
ε ∈ (0, 1) we let

gε(s) := ε
sn

sn−m + ε
, g1ε(s) := εβs−α and g2ε(s) :=

sn−m+1

sn−m + ε
for s > 0

and introduce matrix-valued functions Aε, A1ε and A2ε by defining

Aε

(
ξ

η

)
:=

(
gε(ξ) 0
0 gε(η)

)

as well as

A1ε

((
ξ

η

)
,
(
κ

λ

))
:=

(
g′ε(ξ)κ 0

0 g′ε(η)λ

)
and A2ε

(
ξ

η

)
:=

(
g1ε(ξ) +D1 −χ1g2ε(ξ)
χ2g2ε(η) g1ε(η) +D2

)

for positive numbers ξ, η, κ and λ. When rewritten in the new variable Uε :=

(
uε
vε

)
, (1.4) then takes

the divergence form





Uεt = −(Aε(Uε)Uεxx)xx + (A1ε(Uε, Uεx)Uεxx +A2ε(Uε)Uεx)x, x ∈ Ω, t > 0,

Uεx = Uεxxx = 0, x ∈ ∂Ω, t > 0,

Uε(x, 0) =

(
u0ε(x)
v0ε(x)

)
, x ∈ Ω.

(2.3)

Given s ∈ (32 , 2), we now let δ := s
4 and can then pick some ϑ ∈ (38 ,

1
2) fulfilling ϑ < δ, and define

E0 := L2(Ω), E1 :=W 4,2(Ω), Eϑ :=W 4ϑ,2(Ω) and Eδ :=W 4δ,2(Ω).

As long as uε and vε have a positive lower bound, the matrix Aε(Uε) is positive definite due to the fact
that g′ε(s) > 0 for all s > 0, and thereby an application of Amann’s theory (cf. [1, Theorem 12.1 and
Theorem 12.5]) asserts the existence of Tmax,ε ∈ (0,∞] such that Uε possesses the claimed positivity
and regularity properties and solves (2.3) classically in Ω× (0, Tmax,ε), and that moreover

either Tmax,ε = ∞, or

Uε(·, t) → ∂ domAε or ‖Uε(·, t)‖W 4δ,2(Ω) → ∞ as tր Tmax,ε,

where the latter entails (2.1) due to the fact that 3
2 < 4ϑ < 4δ < 2 . Finally, (2.2) follows from

straightforward integration in (1.4). �

2.1 ε-dependent a priori estimates: H
1 regularity and positivity

In view of (2.1), in order to assert global extensibility of the above solutions it will be sufficient to
establish bounds, possibly depending on ε, for 1

uε
and 1

vε
in L∞ and for uε and vε with respect to the

spatial H2 norm. In a first step toward the latter, we shall extend a standard H1 testing procedure,
well-known as a fundamental constituent in the analysis of scalar thin film equations ([4]), to the
present context:
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Lemma 2.2 Let n > 0 and m ∈ (0, n) be such that m ≤ n+2
2 , and let α ∈ (0, 12) and β > 0. Then for

all ε ∈ (0, 1) and each T > 0 one can find C(ε, T ) > 0 such that
∫

Ω
u2εx(x, t)dx+

∫

Ω
v2εx(x, t)dx ≤ C(ε, T ) for all t ∈ (0, T̂ε) (2.4)

and ∫ t

0

∫

Ω

unε

un−m
ε + ε

u2εxxx +

∫ t

0

∫

Ω

vnε

vn−m
ε + ε

v2εxxx ≤ C(ε, T ) for all t ∈ (0, T̂ε) (2.5)

as well as ∫ t

0

∫

Ω
u−α
ε u2εxx +

∫ t

0

∫

Ω
v−α
ε v2εxx ≤ C(ε, T ) for all t ∈ (0, T̂ε) (2.6)

and ∫ t

0

∫

Ω
u−α−2
ε u4εx +

∫ t

0

∫

Ω
v−α−2
ε v4εx ≤ C(ε, T ) for all t ∈ (0, T̂ε), (2.7)

where T̂ε := min{T, Tmax,ε}.
Proof. We multiply the first equation in (1.4) by −uεxx to see upon integrating by parts that

1

2

d

dt

∫

Ω
u2εx = −ε

∫

Ω

unε

un−m
ε + ε

u2εxxx − εβ
∫

Ω
u−α
ε u2εxx + αεβ

∫

Ω
u−α−1
ε u2εxuεxx

−D1

∫

Ω
u2εxx − χ1

∫

Ω

un−m+1
ε

un−m
ε + ε

vεxuεxxx for all t ∈ (0, Tmax,ε), (2.8)

where another integration by parts together with an application of Lemma 7.1 shows that

−εβ
∫

Ω
u−α
ε u2εxx + αεβ

∫

Ω
u−α−1
ε u2εxuεxx

= −εβ
∫

Ω
u−α
ε u2εxx −

α(α+ 1)

3
εβ

∫

Ω
u−α−2
ε u4εx

≤ −εβ
∫

Ω
u−α
ε u2εxx +

3α

α+ 1
εβ

∫

Ω
u−α
ε u2εxx

= −1− 2α

α+ 1
εβ

∫

Ω
u−α
ε u2εxx for all t ∈ (0, Tmax,ε), (2.9)

and where by Young’s inequality,

−χ1

∫

Ω

un−m+1
ε

un−m
ε + ε

vεxuεxxx ≤ ε

2

∫

Ω

unε

un−m
ε + ε

u2εxxx +
χ2
1

2ε

∫

Ω

un−2m+2
ε

un−m
ε + ε

v2εx for all t ∈ (0, Tmax,ε).

Here we note that if un−m
ε ≤ ε, then since m < n and m ≤ n+2

2 we can estimate

un−2m+2
ε

un−m
ε + ε

≤ 1

ε
un−2m+2
ε ≤ 1

ε
· ε

n−2m+2
n−m ,

while at points where un−m
ε > ε,

un−2m+2
ε

un−m
ε + ε

≤ u2−m
ε ,

9



so that regardless of the sign of 2−m, for each ε ∈ (0, 1) we can find c1(ε) > 0 such that

un−2m+2
ε

un−m
ε + ε

≤ c1(ε) · (1 + upε) in Ω× (0, Tmax,ε)

with p := max{1, 2 − m} ∈ [1, 2). We may therefore use the Gagliardo-Nirenberg inequality along
with (2.2) to see that with some c2(ε) > 0 and c3(ε) > 0 we have

χ2
1

2ε

∫

Ω

un−2m+2
ε

un−m
ε + ε

v2εx

≤ χ2
1

2ε
‖vεx‖2L∞(Ω) · c1(ε) ·

{
|Ω|+

∫

Ω
upε

}

≤ c2(ε) ·
{
‖vεxx‖

8
5

L2(Ω)
‖vε‖

2
5

L1(Ω)
+ ‖vε‖2L1(Ω)

}
·
{
1 + ‖uεxx‖

2(p−1)
5

L2(Ω)
‖uε‖

3p+2
5

L1(Ω)
+ ‖uε‖pL1(Ω)

}

≤ c3(ε) ·
{
‖vεxx‖

8
5

L2(Ω)
+ 1

}
·
{
‖uεxx‖

2(p−1)
5

L2(Ω)
+ 1

}
for all t ∈ (0, Tmax,ε).

As 8
5 + 2(p−1)

5 < 2 due to the fact that m > 0, two applications of Young’s inequality thus readily
reveal the existence of c4(ε) > 0 such that

χ2
1

2ε

∫

Ω

un−2m+2
ε

un−m
ε + ε

v2εx ≤ D1

2

∫

Ω
u2εxx +

D2

2

∫

Ω
v2εxx + c4(ε) for all t ∈ (0, Tmax,ε), (2.10)

whence combining (2.8) with (2.9) and (2.10) we infer that

1

2

d

dt

∫

Ω
u2εx +

ε

2

∫

Ω

unε

un−m
ε + ε

u2εxxx +
1− 2α

α+ 1
εβ

∫

Ω
u−α
ε u2εxx +

D1

2

∫

Ω
u2εxx

≤ D2

2

∫

Ω
v2εxx + c4(ε) for all t ∈ (0, Tmax,ε).

Since in quite a similar manner we obtain c5(ε) > 0 satisfying

1

2

d

dt

∫

Ω
v2εx +

ε

2

∫

Ω

vnε

vn−m
ε + ε

v2εxxx +
1− 2α

α+ 1
εβ

∫

Ω
v−α
ε v2εxx +

D2

2

∫

Ω
v2εxx

≤ D1

2

∫

Ω
u2εxx + c5(ε) for all t ∈ (0, Tmax,ε),

upon an addition followed by an integration we conclude that

1

2
·
{∫

Ω
u2εx(·, t) +

∫

Ω
v2εx(·, t)

}
+
ε

2
·
{∫ t

0

∫

Ω

unε

un−m
ε + ε

u2εxxx +

∫ t

0

∫

Ω

vnε

vn−m
ε + ε

v2εxxx

}

+
1− 2α

α+ 1
εβ ·

{∫ t

0

∫

Ω
u−α
ε u2εxx +

∫ t

0

∫

Ω
v−α
ε v2εxx

}

≤ 1

2
·
{∫

Ω
u20εx +

∫

Ω
v20εx

}
+
(
c4(ε) + c5(ε)

)
· t for all t ∈ (0, Tmax,ε).
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As α < 1
2 , this directly yields (2.4), (2.6) and (2.5), whereafter (2.7) results from (2.6) by once more

employing Lemma 7.1. �

Now if the degeneracy in the fourth-order operators in (1.4) is suitably strong, then a second standard
testing procedure can be imported from the analysis of thin film problems ([4], [3]) so as to warrant
L2 bounds for 1

uε
and 1

vε
. Here we emphasize that somewhat in contrast to corresponding arguments

in the thin film analysis, an appropriate treatment of contributions stemming from the second-order
diffusion and cross-diffusion mechanisms in (1.4) seems to require utilization of the estimates provided
by Lemma 2.2, and thereby particularly rely on the presence of the fast diffusion operators in (1.4).

Lemma 2.3 Let n > 7
2 , m ∈ (0, n − 1] and α ∈ (0, 12) be such that m ≤ n+2

2 and α ≥ 4 − n, and let
β > 0. Then for all ε ∈ (0, 1) and T > 0 there exists C(ε, T ) > 0 such that

∫

Ω

1

u2ε(x, t)
dx+

∫

Ω

1

v2ε(x, t)
dx ≤ C(ε, T ) for all t ∈ (0, T̂ε), (2.11)

where again T̂ε := min{T, Tmax,ε}.

Proof. Using (1.4) we see that

1

6

d

dt

∫

Ω

1

u2ε
= −1

3

∫

Ω

1

u3ε
·
{
− ε

unε

un−m
ε + ε

uεxxx + εβu−α
ε uεx +D1uεx − χ1

un−m+1
ε

un−m
ε + ε

vεx

}
x

= ε

∫

Ω

un−4
ε

un−m
ε + ε

uεxuεxxx − εβ
∫

Ω
u−α−4
ε u2εx

−D1

∫

Ω
u−4
ε u2εx + χ1

∫

Ω

un−m−3
ε

un−m
ε + ε

uεxvεx for all t ∈ (0, Tmax,ε), (2.12)

where due to Young’s inequality, our assumption that m ≤ n− 1 entails that

χ1

∫

Ω

un−m−3
ε

un−m
ε + ε

uεxvεx ≤ χ1

ε

∫

Ω
un−m−3
ε |uεxvεx|

≤ D1

∫

Ω
u−4
ε u2εx +

χ2
1

4ε2D1

∫

Ω
u2n−2m−2
ε v2εx

≤ D1

∫

Ω
u−4
ε u2εx +

χ2
1

4ε2D1
‖uε‖2n−2m−2

L∞(Ω)

∫

Ω
v2εx for all t ∈ (0, Tmax,ε).(2.13)

Moreover, using that with c1 := max{|m− 4|, |n− 4|} we have

∣∣∣∣
d

ds

( sn−4

sn−m + ε

)∣∣∣∣ =

∣∣∣∣
(m− 4)s2n−m−5 + (n− 4)εsn−5

(sn−m + ε)2

∣∣∣∣

≤ c1s
2n−m−5 + c1εs

n−5

(sn−m + ε)2

=
c1s

n−5

sn−m + ε
≤ c1

ε
sn−5 for all s > 0,
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once again integrating by parts we obtain

ε

∫

Ω

un−4
ε

un−m
ε + ε

uεxuεxxx = −ε
∫

Ω

un−4
ε

un−m
ε + ε

u2εxx − ε

∫

Ω

d

ds

( sn−4

sn−m + ε

)∣∣∣∣
s=uε

u2εxuεxx

≤ c1

∫

Ω
un−5
ε u2εx|uεxx| for all t ∈ (0, Tmax,ε), (2.14)

and here thanks to Young’s inequality,
∫

Ω
un−5
ε u2εx|uεxx| ≤ 1

2

∫

Ω
u−α
ε u2εxx +

1

2

∫

Ω
u2n+α−10
ε u4εx

≤ 1

2

∫

Ω
u−α
ε u2εxx +

1

2
‖uε‖2n+2α−8

L∞(Ω)

∫

Ω
u−α−2
ε u4εx for all t ∈ (0, Tmax,ε), (2.15)

because α ≥ 4 − n by hypothesis. As the constant numbers c2(ε, T ) := sup
t∈(0,T̂ε)

‖uε(·, t)‖L∞(Ω),

c3(ε, T ) := sup
t∈(0,T̂ε)

∫
Ω v

2
εx(·, t), c4(ε, T ) :=

∫ T̂ε

0

∫
Ω u

−α
ε u2εxx and c5(ε, T ) :=

∫ Tmax,ε

0

∫
Ω u

−α−2
ε u4εx are

all finite according to Lemma 2.2 and the continuity of W 1,2(Ω) →֒ L∞(Ω), collecting (2.12)-(2.15) we
thus infer upon an integration that

1

6

∫

Ω

1

u2ε(·, t)
≤ 1

6

∫

Ω

1

u20ε
+

χ2
1

4ε2D1
c2n−2m−2
2 (ε, T ) · c3(ε, T ) · T

+
c1

2
· c4(ε, T ) +

c1

2
· c2n+2α−8

2 (ε, T ) · c5(ε, T ) for all t ∈ (0, T̂ε),

which along with an analogous argument for the second solution component establishes (2.11). �

Thanks to the H1 estimates from Lemma 2.2, the latter extends so as to warrant boundedness of 1
uε

and 1
vε

actually in L∞ for each suitably small ε.

Lemma 2.4 Let n > 7
2 , m ∈ (0, n− 1] and α ∈ (0, 12) be such that m ≤ n+2

2 and α ≥ 4−n, let β > 0,
and let ε⋆ ∈ (0, 1) be as in Lemma 2.3. Then for all ε ∈ (0, ε⋆) and T > 0 there exists C(ε, T ) > 0
such that again writing T̂ε := min{T, Tmax,ε} we have

uε(x, t) ≥ C(ε, T ) and vε(x, t) ≥ C(ε, T ) for all x ∈ Ω and t ∈ (0, T̂ε). (2.16)

Proof. For fixed ε ∈ (0, ε⋆) and T > 0, Lemma 2.2 and Lemma 2.3 provide c1(ε, T ) > 0 and
c2(ε, T ) > 0 fulfilling ∫

Ω
u2εx ≤ c1(ε, T ) for all t ∈ (0, T̂ε) (2.17)

and ∫

Ω

1

u2ε
≤ c2(ε, T ) for all t ∈ (0, T̂ε). (2.18)

Now for ε ∈ (0, ε⋆) and t ∈ (0, T̂ε) we let uε(t) := minx∈Ω uε(x, t) and pick x0(ε, t) ∈ Ω in such a
way that uε(x0(ε, t), t) = uε(t), where without loss of generality, for definiteness we may assume that

Ω = (− |Ω|
2 ,

|Ω|
2 ) and x0(ε, t) ≤ 0. Then using (2.17) we can estimate

uε(x, t) = uε(x0(ε, t), t) +

∫ x

x0(ε,t)
uεx(y, t)dy ≤ uε(t) +

√
c1(ε, T )|x− x0(ε, t)|

1
2 for all x ∈ Ω

12



and hence particularly obtain that

uε(x, t) ≤ 2
√
c1(ε, T )(x− x0(ε, t))

1
2 whenever x ∈ Ω is such that x ≥ x0 +

4u2ε(t)

c1(ε, T )
. (2.19)

Under the hypothesis that
u2ε(t)

c1(ε, T )
≤ |Ω|

4
, (2.20)

however, the latter region is conveniently large and enables us to infer from (2.18) and (2.19) that

c2(ε, T ) ≥
∫

Ω

1

u2ε(x, t)
dx

≥ 1

4c1(ε, T )

∫ |Ω|
2

x0(ε,t)+
u2ε(t)

c1(ε,T )

dx

x− x0(ε, t)

=
1

4c1(ε, T )
ln

( |Ω|
2 − x0(ε, t)

u2
ε(t)

c1(ε,T )

)

≥ 1

4c1(ε, T )
ln
c1(ε, T )|Ω|
2u2ε(t)

,

because x0(ε, t) ≤ 0. In this case, we thus conclude that

u2ε(t) ≥ c3(ε, T ) :=
c1(ε, T )|Ω|

2
· e−4c1(ε,T )c2(ε,T ),

which in conjunction with (2.20) implies that in any event,

uε(x, t) ≥ min
{√

c3(ε, T ) ,

√
c1(ε, T )|Ω|

2

}
for all x ∈ Ω and t ∈ (0, T̂ε).

A corresponding lower bound for vε can be found similarly. �

2.2 ε-dependent a priori estimates: H
2 bounds

We now slightly exceed the realm of classical thin film analysis by proceeding toward the derivation of
H2 estimates. In the course of a corresponding third testing-based argument, we shall make substantial
use not only of the first-order estimates from Lemma 2.2, but also of the two-sided pointwise bounds
for uε and vε implied by the latter in conjunction with Lemma 2.4.

Lemma 2.5 Let n > 7
2 , m ∈ (0, n − 1] and α ∈ (0, 12) be such that m ≤ n+2

2 and α ≥ 4 − n, and
let β > 0. Then with ε⋆ ∈ (0, 1) taken from Lemma 2.3, for all ε ∈ (0, ε⋆) and T > 0 one can find
C(ε, T ) > 0 such that

∫

Ω
u2εxx(x, t)dx+

∫

Ω
v2εxx(x, t)dx ≤ C(ε, T ) for all t ∈ (0, T̂ε), (2.21)

where again T̂ε := min{T, Tmax,ε}.
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Proof. We first make use of Lemma 2.4, Lemma 2.2 and the fact that W 1,2(Ω) →֒ L∞(Ω) to find
positive constants c1(ε, T ), c2(ε, T ) and c3(ε, T ) such that

c1(ε, T ) ≤ uε(x, t) ≤ c2(ε, T ) and c1(ε, T ) ≤ vε(x, t) ≤ c2(ε, T ) for all x ∈ Ω and t ∈ (0, T̂ε),
(2.22)

and that ∫

Ω
u2εx +

∫

Ω
v2εx ≤ c3(ε, T ) for all t ∈ (0, T̂ε). (2.23)

In particular, (2.22) entails that e.g. with c4(ε, T ) :=
εcn1 (ε,T )

cn−m
2 (ε,T )+ε

we have

ε · unε

un−m
ε + ε

≥ c4(ε, T ) in Ω× (0, T̂ε),

and that moreover

ε · mu
2n−m−1
ε + nεun−1

ε

(un−m
ε + ε)2

≤ c5(ε, T ) := ε · mc
2n−m−1
2 (ε, T ) + nεcn−1

2 (ε, T )

ε2
in Ω× (0, T̂ε)

as well as

χ1
u2n−2m
ε + (n−m+ 1)εun−m

ε

(un−m
ε + ε)2

≤ c6(ε, T )

:= χ1 ·
c2n−2m
2 (ε, T ) + (n−m+ 1)εcn−m

2 (ε, T )

ε2
in Ω× (0, T̂ε).

Therefore, testing the first equation in (1.4) against uεxxxx and using Young’s inequality shows that

1

2

d

dt

∫

Ω
u2εxx = −ε

∫

Ω

unε

un−m
ε + ε

u2εxxxx − ε

∫

Ω

mu2n−m−1
ε + nεun−1

ε

(un−m
ε + ε)2

uεxuεxxxuεxxxx

+εβ
∫

Ω
(u−α

ε uεx)xuεxxxx −D1

∫

Ω
u2εxxx

−χ1

∫

Ω

un−m+1
ε

un−m
ε + ε

vεxxuεxxxx − χ1

∫

Ω

u2n−2m
ε + (n−m+ 1)εun−m

ε

(un−m
ε + ε)2

uεxvεxuεxxxx

≤ −c4(ε, T )
∫

Ω
u2εxxxx + c5(ε, T )

∫

Ω
|uεxuεxxxuεxxxx|+ εβ

∫

Ω
(u−α

ε uεx)xuεxxxx

+c2(ε, T )χ1

∫

Ω
|vεxxuεxxxx|+ c6(ε, T )

∫

Ω
|uεxvεxuεxxxx|

≤ −c4(ε, T )
2

∫

Ω
u2εxxxx +

2c25(ε, T )

c4(ε, T )

∫

Ω
u2εxu

2
εxxx

+
2ε2β

c4(ε, T )

∫

Ω

∣∣∣(u−α
ε uεx)x

∣∣∣
2
+

2c22(ε, T )

c4(ε, T )
χ2
1

∫

Ω
v2εxx +

2c26(ε, T )

c4(ε, T )

∫

Ω
u2εxv

2
εx

for all t ∈ (0, T̂ε). As herein, once more by (2.22) and Young’s inequality,
∫

Ω

∣∣∣(u−α
ε uεx)x

∣∣∣
2

=

∫

Ω
|u−α

ε uεxx − αu−α−1
ε u2εx|2
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≤ 2

∫

Ω
u−2α
ε u2εxx + 2α2

∫

Ω
u−2α−2
ε u4εx

≤ 2c−2α
1 (ε, T )

∫

Ω
u2εxx + 2α2c−2α−2

1 (ε, T )

∫

Ω
u4εx for all t ∈ (0, T̂ε)

and
∫
Ω u

2
εxv

2
εx ≤ 1

2

∫
Ω u

4
εx + 1

2

∫
Ω v

4
εx for all t ∈ (0, Tmax,ε), on performing a similar procedure to the

second solution component we infer the existence of c7(ε, T ) > 0 and c8(ε, T ) > 0 such that for all
t ∈ (0, T̂ε),

d

dt

{∫

Ω
u2εxx +

∫

Ω
v2εxx

}
+ c7(ε, T ) ·

{∫

Ω
u2εxxxx +

∫

Ω
v2εxxxx

}

≤ c8(ε, T )

∫

Ω
u2εxu

2
εxxx + c8(ε, T )

∫

Ω
v2εxv

2
εxxx

+c8(ε, T )

∫

Ω
u2εxx + c8(ε, T )

∫

Ω
v2εxx + c8(ε, T )

∫

Ω
u4εx + c8(ε, T )

∫

Ω
v4εx. (2.24)

We now invoke the Gagliardo-Nirenberg inequality along with (2.23) and again Young’s inequality to
see that with some c9(ε, T ) > 0 and c10(ε, T ) > 0,

c8(ε, T )

∫

Ω
u2εxu

2
εxxx ≤ c8(ε, T )‖uεx‖2L2(Ω)‖uεxxx‖2L∞(Ω)

≤ c9(ε, T )‖uεx‖2L2(Ω) ·
{
‖uεxxxx‖

5
3

L2(Ω)
‖uεx‖

1
3

L2(Ω)
+ ‖uεx‖2L2(Ω)

}

≤ c
7
6
3 (ε, T )c9(ε, T )‖uεxxxx‖

5
3

L2(Ω)
+ c23(ε, T )c9(ε, T )

≤ c7(ε, T )

2

∫

Ω
u2εxxxx + c10(ε, T ) for all t ∈ (0, T̂ε),

while similarly

c8(ε, T )

∫

Ω
u4εx ≤ c11(ε, T )‖uεxxxx‖

1
3

L2(Ω)
‖uεx‖

11
3

L2(Ω)
+ c11(ε, T )‖uεx‖4L2(Ω)

≤ c
11
6
3 (ε, T )c11(ε, T )‖uεxxxx‖

1
3

L2(Ω)
+ c23(ε, T )c11(ε, T )

≤ c7(ε, T )

2

∫

Ω
u2εxxxx + c12(ε, T ) for all t ∈ (0, T̂ε)

with appropriately large constants c11(ε, T ) and c12(ε, T ). Along with essentially identical arguments
for vε, from (2.24) we thus conclude that with some c13(ε, T ) > 0 we have

d

dt

{∫

Ω
u2εxx +

∫

Ω
v2εxx

}
≤ c13(ε, T ) ·

{∫

Ω
u2εxx +

∫

Ω
v2εxx

}
+ c13(ε, T ) for all t ∈ (0, T̂ε),

which upon an integration directly leads to (2.21) in view of the assumed inclusions u0ε ∈ W 2,2(Ω)
and v0ε ∈W 2,2(Ω) asserted by (1.5). �

Within the parameter setting created above, we can thereby complete our reasoning concerning global
solvability in the approximate problems:
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Lemma 2.6 Let n > 7
2 , m ∈ (0, n − 1], α ∈ (0, 12) and β > 0 be such that m ≤ n+2

2 and α ≥ 4 − n,
and let ε⋆ ∈ (0, 1) ba as given by Lemma 2.3. Then for each ε ∈ (0, ε⋆), the solution (uε, vε) of (1.4)
from Lemma 2.1 is global in time.

Proof. By means of the extensibility criterion (2.1), in view of the continuity of the embedding
W 2,2(Ω) →֒ W s,2(Ω) for any s ∈ (32 , 2) we immediately obtain this as a consequence of Lemma 2.5,
Lemma 2.4 and (2.2). �

3 Consistency with a global entropy structure: The condition m ≤ 2

We shall next focus on the question how far the fundamental identity (1.6) is respected by the chosen
approximation scheme. Our first observation in this regard reveals that indeed a suitably modified
variant of (1.6) can rigorously be derived for solutions to (1.4) whenever the requirements on the
parameter m therein are suitably sharepened in comparison to the above. Let us underline already
here that of particular importance for our qualitative analysis in Section 5 will be the fortunate
circumstance that the range of admissible m includes some conveniently large number by containing
the value m = 2.

Lemma 3.1 Let n > 7
2 , m ∈ (12 , 2] and α ∈ (0, 12) be such that α ≥ 4 − n, and let β > 0. For

ε ∈ (0, 1), define

Eε(t) := χ2

∫

Ω
uε(·, t) lnuε(·, t) + χ1

∫

Ω
vε(·, t) ln vε(·, t)

+
χ2ε

(n−m)(n−m− 1)

∫

Ω

1

un−m−1
ε (·, t)

+
χ1ε

(n−m)(n−m− 1)

∫

Ω

1

vn−m−1
ε (·, t)

, t ≥ 0, (3.1)

and

Dε(t) := χ2D1

∫

Ω

u2εx(·, t)
uε(·, t)

+ χ1D2

∫

Ω

v2εx(·, t)
vε(·, t)

+χ2D1ε

∫

Ω
u−n+m−1
ε (·, t)u2εx(·, t) + χ1D2ε

∫

Ω
v−n+m−1
ε (·, t)v2εx(·, t)

+min
{
1 ,

2m− 1

2−m

}
·
{
χ2ε

∫

Ω
um−1
ε (·, t)u2εxx(·, t) + χ1ε

∫

Ω
vm−1
ε (·, t)v2εxx(·, t)

}
, t > 0.(3.2)

Then
E ′
ε(t) ≤ −Dε(t) for all t > 0 and any ε ∈ (0, 1). (3.3)

Proof. Using (1.4) and (2.2), we compute

d

dt

∫

Ω
uε lnuε +

ε

(n−m)(n−m− 1)

d

dt

∫

Ω

1

un−m−1
ε

=

∫

Ω

{
lnuε + 1− ε

(n−m)un−m
ε

}
· uεt

=

∫

Ω

{
lnuε + 1− ε

(n−m)un−m
ε

}
·
{
− ε

unε

un−m
ε + ε

uεxxx + εβu−α
ε uεx +D1uεx − χ1

un−m+1
ε

un−m
ε + ε

vεx

}
x
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= −
∫

Ω

{ 1

uε
+

ε

un−m+1
ε

}
uεx ·

{
− ε

unε

un−m
ε + ε

uεxxx + εβu−α
ε uεx +D1uεx − χ1

un−m+1
ε

un−m
ε + ε

vεx

}

= ε

∫

Ω
um−1
ε uεxuεxxx

−εβ
∫

Ω
u−α−1
ε u2εx − εβ+1

∫

Ω
u−n+m−α−1
ε u2εx

−D1

∫

Ω

u2εx
uε

−D1ε

∫

Ω
u−n+m−1
ε u2εx

+χ1

∫

Ω
uεxvεx for all t > 0. (3.4)

Here two more integrations by parts show that

ε

∫

Ω
um−1
ε uεxuεxxx = −ε

∫

Ω
um−1
ε u2εxx − (m− 1)ε

∫

Ω
um−2
ε u2εxuεxx

= −ε
∫

Ω
um−1
ε u2εxx +

(m− 1)(m− 2)ε

3

∫

Ω
um−3
ε u4εx for all t > 0,

where the last summand is nonpositive if m ∈ [1, 2], while in the case when m < 1 we invoke Lemma
7.1 to see that then

−ε
∫

Ω
um−1
ε u2εxx +

(m− 1)(m− 2)ε

3

∫

Ω
um−3
ε u4εx ≤ −

{
1− 3(1−m)

2−m

}
· ε

∫

Ω
um−1
ε u2εxx

for all t > 0, with the factor 1− 3(1−m)
2−m

= 2m−1
2−m

being positive thanks to the assumption that m > 1
2 .

On dropping nonpositive summands, from (3.4) we thus infer that for arbitrary m ∈ (12 , 2] and any
t > 0,

d

dt

∫

Ω
uε lnuε +

ε

(n−m)(n−m− 1)

d

dt

∫

Ω

1

un−m−1
ε

≤ −min
{
1 ,

2m− 1

2−m

}
· ε

∫

Ω
um−1
ε u2εxx −D1

∫

Ω

u2εx
uε

−D1ε

∫

Ω
u−n+m−1
ε u2εx + χ1

∫

Ω
uεxvεx,

so that since similarly

d

dt

∫

Ω
vε ln vε +

ε

(n−m)(n−m− 1)

d

dt

∫

Ω

1

vn−m−1
ε

≤ −min
{
1 ,

2m− 1

2−m

}
· ε

∫

Ω
vm−1
ε v2εxx −D2

∫

Ω

v2εx
vε

−D2ε

∫

Ω
v−n+m−1
ε v2εx − χ2

∫

Ω
uεxvεx

for all t > 0, by taking a suitable linear combination of these two inequalities we arrive at (3.3). �

An integration of the latter immediately implies some first ε-independent regularity features beyond
those from (2.2):
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Corollary 3.2 Let n > 7
2 , m ∈ (12 , 2] and α ∈ (0, 12) be such that α ≥ 4 − n, and let β > 0. Then

there exist C > 0 and ε⋆ ∈ (0, 1) such that if ε ∈ (0, ε⋆), then
∫

Ω
uε(x, t) ln

(
uε(x, t) + e

)
+

∫

Ω
vε(x, t) ln

(
vε(x, t) + e

)
≤ C for all t > 0 (3.5)

and ∫ t

0

∫

Ω

u2εx
uε

+

∫ t

0

∫

Ω

v2εx
vε

≤ C for all t > 0 (3.6)

as well as

ε

∫ t

0

∫

Ω
u−n+m−1
ε u2εx + ε

∫ t

0

∫

Ω
v−n+m−1
ε v2εx ≤ C for all t > 0 (3.7)

and

ε

∫ t

0

∫

Ω
um−1
ε u2εxx + ε

∫ t

0

∫

Ω
vm−1
ε v2εxx ≤ C for all t > 0. (3.8)

Proof. Integrating (3.3), we obtain that for all ε ∈ (0, 1),

Eε(t) +
∫ t

0
Dε(s)ds ≤ Eε(0) for all t > 0, (3.9)

where since (1.5) ensures that (u0ε, v0ε) → (u0, v0) in (L∞(Ω))2 as εց 0, by positivity of both u0 and
v0 in Ω it follows that

Eε(0) → c1 := χ2

∫

Ω
u0 lnu0 + χ1

∫

Ω
v0 ln v0 as εց 0,

and that hence there exists ε⋆ ∈ (0, 1) such that

Eε(0) ≤ c1 + 1 for all ε ∈ (0, ε⋆). (3.10)

Moreover, using that ξ ln ξ ≥ −1
e
for all ξ > 0, by recalling (2.2) we can estimate

∫

Ω
uε ln(uε + e) =

∫

{uε>e}
uε ln(uε + e) +

∫

{uε≤e}
uε ln(uε + e)

≤
∫

{uε>e}
uε ln(2uε) + ln(2e)

∫

{uε≤e}
uε

=

∫

Ω
uε lnuε −

∫

{uε≤e}
uε lnuε + ln 2 ·

∫

Ω
uε +

∫

{uε≤e}
uε

≤
∫

Ω
uε lnuε +

|Ω|
e

+ (ln 2 + 1)

∫

Ω
u0 for all t > 0 and ε ∈ (0, 1),

which combined with a similar inequality for vε shows that

Eε(t) ≥ χ2

∫

Ω
uε ln(uε + e) + χ1

∫

Ω
vε ln(vε + e)

−(χ1 + χ2) ·
|Ω|
e

− (ln 2 + 1) ·
{
χ2

∫

Ω
u0 + χ1

∫

Ω
v0

}
for all t > 0 and ε ∈ (0, 1).
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In view of our definition (3.2) of Dε, both (3.5) as well as (3.6), (3.7) and (3.8) thus result from (3.9)
and (3.10). �

Our derivation of further implications thereof will, besides utilizing a straightforward Hölder inter-
polation, make essential use of a Gagliardo-Nirenberg type inequality containing certain logarithmic
corrections to standard Lebesgue norms. In view of its potential independent interest, we formulate
and verify this apparently novel type of interpolation inequality in a separate appendix below, within
a context slightly more general than needed here (cf. Corollary 7.6).

Corollary 3.3 Suppose that n > 7
2 , m ∈ (12 , 2], α ∈ (0, 12) and β > 0 are such that α ≥ 4− n, and let

ε⋆ ∈ (0, 1) be as given by Corollary 3.2. Then for all T > 0 there exist C(T ) > 0 such that

∫ T

0

∫

Ω
u3ε ln(uε + e) +

∫ T

0

∫

Ω
v3ε ln(vε + e) ≤ C(T ) for all ε ∈ (0, ε⋆) (3.11)

and ∫ T

0

∫

Ω
|uεx|

3
2 +

∫ T

0

∫

Ω
|vεx|

3
2 ≤ C(T ) for all ε ∈ (0, ε⋆). (3.12)

Proof. According to the refined Gagliardo-Nirenberg type inequality from Corollary 7.6 below,
(3.11) readily follows from (3.5) and (3.6). As a Hölder interpolation ensures that

∫ T

0

∫

Ω
|uεx|

3
2 =

∫ T

0

∫

Ω

∣∣∣ uεx√
uε

∣∣∣
3
2 · |√uε|

3
2

≤
{∫ T

0

∫

Ω

u2εx
uε

} 3
4

·
{∫ T

0

∫

Ω
u3ε

} 1
4

for all ε ∈ (0, ε⋆),

combining an evident consequence of the inequality in (3.11) with (3.6) thereafter yields (3.12). �

In preparation of a subsequence extraction procedure based on Aubin-Lions-type compactness state-
ments, let us draw a further and conclusion of Corollary 3.2 and Corollary 3.3 on regularity properties
of time derivatives in (1.4). Due to the structure of the fourth-order diffusion terms in (1.4), our ar-
gument in this regard needs to slightly deviate from fully straightforward reasonings by involving two
further interpolation inequalities, now essentially based on the Hölder inequality and again swapped
out to an appendix (Lemma 7.4), which allow for a convenient control of corresponding highest-order
contributions in terms of the quantities addressed in (3.11) and (3.8).

Lemma 3.4 Suppose that n > 7
2 , m ∈ (12 , 2], α ∈ (0, 12) and β > 0 are such that α ≥ 4 − n, and let

ε⋆ ∈ (0, 1) be as given by Corollary 3.2. Then for all T > 0 there exist C(T ) > 0 such that

∫ T

0
‖uεt(·, t)‖(W 3,2

0 (Ω))⋆
dt+

∫ T

0
‖vεt(·, t)‖(W 3,2

0 (Ω))⋆
dt ≤ C(T ) for all ε ∈ (0, ε⋆). (3.13)

Proof. Given t > 0 and ψ ∈ C∞
0 (Ω), we use (1.4) and integrate by parts to see that writing

Fε(s) :=
sn

sn−m+ε
for s ≥ 0 and ε ∈ (0, 1), we have

∣∣∣∣
∫

Ω
uεt(·, t)ψ

∣∣∣∣ =

∣∣∣∣∣− ε

∫

Ω
F ′
ε(uε)uεxuεxxψx − ε

∫

Ω
Fε(uε)uεxxψxx +

εβ

1− α

∫

Ω
u1−α
ε ψxx
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−D1

∫

Ω
uεxψx + χ1

∫

Ω

un−m+1
ε

un−m
ε + ε

vεxψx

∣∣∣∣∣

≤ ε ·
{∫

Ω
|F ′

ε(uε)uεxuεxx|
}
· ‖ψx‖L∞(Ω) + ε ·

{∫

Ω
|Fε(uε)uεxx|

}
· ‖ψxx‖L∞(Ω)

+
εβ

1− α
·
{∫

Ω
u1−α
ε

}
· ‖ψxx‖L∞(Ω)

+D1 ·
{∫

Ω
|uεx|

}
· ‖ψx‖L∞(Ω) + χ1 ·

{∫

Ω
|uεvεx|

}
· ‖ψx‖L∞(Ω), (3.14)

because un−m+1
ε

un−m
ε +ε

≤ uε. Here employing the two interpolation properties asserted by Lemma 7.4,

followed by applying Young’s inequality, shows that with c1 :=
n|Ω|

2−m
12√

m
and c2 := |Ω| 2−m

6 ,

ε

∫

Ω
|F ′

ε(uε)uεxuεxx| ≤ c1ε ·
{∫

Ω
um−1
ε u2εxx

} 3
4

·
{∫

Ω
u3ε

}m+1
12

≤ c1ε

∫

Ω
um−1
ε u2εxx + c1

∫

Ω
u3ε + c1|Ω| (3.15)

and that

ε

∫

Ω
|Fε(uε)uεxx| ≤ c2ε ·

{∫

Ω
um−1
ε u2εxx

} 1
2

·
{∫

Ω
u3ε

}m+1
6

≤ c2ε

∫

Ω
um−1
ε u2εxx + c2

∫

Ω
u3ε + c2|Ω| (3.16)

for all ε ∈ (0, 1), because 3
4 + m+1

12 = m+10
12 ≤ 1 and 1

2 + m+1
6 = m+4

6 ≤ 1. Moreover, several further
applications of Young’s inequality imply that

εβ

1− α

∫

Ω
u1−α
ε ≤ 1

1− α

∫

Ω
u3ε +

|Ω|
1− α

(3.17)

and

D1

∫

Ω
|uεx| ≤ D1

∫

Ω
|uεx|

3
2 +D1|Ω| (3.18)

as well as

χ1

∫

Ω
|uεvεx| ≤ χ1

∫

Ω
u3ε + χ1

∫

Ω
|vεx|

3
2 . (3.19)

As W 3,2
0 (Ω) →֒W 2,∞(Ω), inserting (3.15)-(3.19) into (3.14) thus entails that with some c3 > 0, for all

ε ∈ (0, 1) and any t > 0 we have

‖uεt(·, t)‖(W 3,2
0 (Ω))⋆

≤ c3 ·
{
ε

∫

Ω
um−1
ε u2εxx +

∫

Ω
|uεx|

3
2 +

∫

Ω
|vεx|

3
2 +

∫

Ω
u3ε + 1

}
,

so that recalling Corollary 3.2 and Corollary 3.3 we infer that indeed for each T > 0, (uεt)ε∈(0,ε⋆) has
the boundedness property claimed in (3.13). Along with quite a similar reasoning for vεt, this proves
the lemma. �
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4 Global existence. Proof of Theorem 1.1

We can now proceed to appropriately pass to the limit in (1.4) so as to construct a pair of functions
solving (1.3) in the following natural weak sense.

Definition 4.1 Let D1 > 0, D2 > 0, χ1 > 0 and χ2 > 0, and suppose that u0 ∈ L1(Ω) and v0 ∈ L1(Ω)
are nonnegative. Then if u and v are nonnegative functions defined a.e. in Ω× (0,∞) which are such
that

u, v, ux, vx, uvx and vux belong to L1
loc(Ω× [0,∞)), (4.1)

then (u, v) will be called a global weak solution of (1.3) if for all ϕ ∈ C∞
0 (Ω× [0,∞)), the identities

−
∫ ∞

0

∫

Ω
uϕt −

∫

Ω
u0ϕ(·, 0) = −D1

∫ ∞

0

∫

Ω
uxϕx + χ1

∫ ∞

0

∫

Ω
uvxϕx (4.2)

and

−
∫ ∞

0

∫

Ω
vϕt −

∫

Ω
v0ϕ(·, 0) = −D2

∫ ∞

0

∫

Ω
vxϕx − χ2

∫ ∞

0

∫

Ω
vuxϕx (4.3)

hold.

Indeed, the ε-independent estimates collected above imply compactness features sufficient to ensure
the following.

Lemma 4.1 Suppose that n > 7
2 , m ∈ (12 , 2], α ∈ (0, 12) and β > 0 are such that α ≥ 4 − n. Then

there exist (εj)j∈N ⊂ (0, 1), a null set N ⊂ (0,∞) and nonnegative functions u and v defined a.e. in
Ω× (0,∞) such that

{u, v} ⊂ L3
loc(Ω× [0,∞)) ∩ L

3
2
loc([0,∞);W 1, 3

2 (Ω)) ∩ L∞((0,∞);L logL(Ω)), (4.4)

that εj ց 0 as j → ∞ and

uε → u and vε → v a.e. in Ω× (0,∞), (4.5)

uε(·, t) → u(·, t) and vε(·, t) → v(·, t) a.e. in Ω for all t ∈ (0,∞) \N, (4.6)

uε → u and vε → v in L3
loc(Ω× [0,∞)) and (4.7)

uεx ⇀ ux and vεx ⇀ vx in L
3
2
loc(Ω× [0,∞)) (4.8)

as ε = εj ց 0, and such that (u, v) is a global weak solution of (1.3) in the sense of Definition 4.1.
Furthermore, both u and v belong to C0

w([0,∞);L1(Ω)).

Proof. If ε⋆ ∈ (0, 1) is as in Corollary 3.2, then according to Corollary 3.3,

(uε)ε∈(0,ε⋆) and (vε)ε∈(0,ε⋆) are bounded in L
3
2
loc([0,∞);W 1, 3

2 (Ω)), (4.9)

whereas Lemma 3.4 says that

(uεt)ε∈(0,ε⋆) and (vεt)ε∈(0,ε⋆) are bounded in L1
loc([0,∞); (W 3,2

0 (Ω))⋆).
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Therefore, an Aubin-Lions lemma ([44]) applies so as to ensure that (uε)ε∈(0,ε⋆) and (vε)ε∈(0,ε⋆) are

relatively compact in L1
loc(Ω× [0,∞)), whence we can find (εj)j∈N ⊂ (0, ε⋆) such that εj ց 0 as j → ∞

and that both (4.5) and (4.6) are valid with some null set N ⊂ (0,∞) and nonnegative functions u
and v belonging to L1

loc(Ω × [0,∞)). In view of (4.9), it is clear that on passing to a subsequence
if necessary we may also assume that (4.8) holds, and since again from Corollary 3.3 we know that
furthermore

(
u3ε ln(uε + e)

)
ε∈(0,ε⋆)

and
(
v3ε ln(vε + e)

)
ε∈(0,ε⋆)

are bounded in L1
loc(Ω× [0,∞)) (4.10)

and that hence

(u3ε)ε∈(0,ε⋆) and (v3ε)ε∈(0,ε⋆) are equi-integrable over Ω× (0, T ) for all T > 0,

it follows from (4.5) and the Vitali convergence theorem that upon a final extraction we can also achieve

(4.7). It is therefore evident that both u and v belong to L3
loc(Ω× [0,∞))∩L

3
2
loc([0,∞);W 1, 3

2 (Ω)), and
recalling that (uε)ε∈(0,ε⋆) and (vε)ε∈(0,ε⋆) are bounded in L∞((0,∞);L logL(Ω)) by (3.5), an application
of Fatou’s lemma in conjunction with (4.6) shows that u and v also lie in L∞((0,∞);L logL(Ω)). This
establishes (4.4), which in turn immediately implies the regularity requirements in (4.1), because in

view of the Hölder inequality the inclusions {u, v} ⊂ L3
loc(Ω× [0,∞)) and {ux, vx} ⊂ L

3
2
loc(Ω× [0,∞))

ensure that uvx and vux are locally integrable in Ω× [0,∞).

Now in order to verify (4.2), we fix ϕ ∈ C∞
0 (Ω × [0,∞)) and let (ϕk)k∈N ⊂ C∞

0 (Ω × [0,∞)) be such
that

ϕk → ϕ, ϕkt
⋆
⇀ ϕt and ϕkx ⇀ ϕx in L∞(Ω× (0,∞)) as k → ∞, (4.11)

and that in addition
ϕkx = 0 on ∂Ω× (0,∞) for all k ∈ N, (4.12)

which can easily be seen to be possible by means of an essentially elementary construction.
Then for each k ∈ N, thanks to (4.12) we may integrate by parts in (1.4) without encountering nonzero
lateral boundary terms to find that for all ε ∈ (0, 1),

−
∫ ∞

0

∫

Ω
uεϕkt −

∫

Ω
u0εϕk(·, 0) = ε

∫ ∞

0

∫

Ω
Fε(uε)uεxxxϕkx +

εβ

1− α

∫

Ω
u1−α
ε ϕkxx

−D1

∫ ∞

0

∫

Ω
uεxϕkx + χ1

∫ ∞

0

∫

Ω

un−m+1
ε

un−m
ε + ε

vεxϕkx, (4.13)

where again we have abbreviated Fε(s) =
sn

sn−m+ε
for s ≥ 0 and ε ∈ (0, 1).

Here for a second time relying on (4.12), we may once more apply Lemma 7.4 to see that if we let
Tk > 0 be large enough such that suppϕkx ⊂ Ω× [0, Tk], then due to the Hölder inequality,

∣∣∣∣ε
∫ ∞

0

∫

Ω
Fε(uε)uεxxxϕkx

∣∣∣∣

=

∣∣∣∣− ε

∫ ∞

0

∫

Ω
Fε(uε)uεxxϕkxx − ε

∫ ∞

0

∫

Ω
F ′
ε(uε)uεxuεxxϕkx

∣∣∣∣
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≤ n|Ω| 2−m
12

√
m

‖ϕkx‖L∞(Ω×(0,Tk)) · ε
∫ Tk

0

{∫

Ω
um−1
ε u2εxx

} 3
4

·
{∫

Ω
u3ε

}m+1
12

+|Ω| 2−m
6 ‖ϕkxx‖L∞(Ω×(0,Tk)) · ε

∫ Tk

0

{∫

Ω
um−1
ε u2εxx

} 1
2

·
{∫

Ω
u3ε

}m+1
6

≤ n(|Ω|Tk)
2−m
12

√
m

‖ϕkx‖L∞(Ω×(0,Tk)) · ε ·
{∫ Tk

0

∫

Ω
um−1
ε u2εxx

} 3
4

·
{∫ Tk

0

∫

Ω
u3ε

}m+1
12

+(|Ω|Tk)
2−m

6 ‖ϕkxx‖L∞(Ω×(0,Tk)) · ε ·
{∫ Tk

0

∫

Ω
um−1
ε u2εxx

} 1
2

·
{∫ Tk

0

∫

Ω
u3ε

}m+1
6

for all ε ∈ (0, 1). Recalling that Corollary 3.2 provides c1(k) > 0 fulfilling

∫ Tk

0

∫

Ω
um−1
ε u2εxx ≤ c1(k)

ε
for all ε ∈ (0, ε⋆),

again making use of (4.10) we thereby infer that for each fixed k ∈ N,

ε

∫ ∞

0

∫

Ω
Fε(uε)uεxxxϕkx → 0 as εց 0. (4.14)

Now the limit procedure in the remaining expressions in (4.13) is rather straightforward: From (4.5)
and (4.7) we particularly obtain that uε → u, u1−α

ε → u1−α and uεx ⇀ ux in L1(Ω× (0, Tk)), implying
that

−
∫ ∞

0

∫

Ω
uεϕkt → −

∫ ∞

0

∫

Ω
uϕkt, and

εβ

1− α

∫ ∞

0

∫

Ω
u1−α
ε ϕkxx → 0 (4.15)

and that

−D1

∫ ∞

0

∫

Ω
uεxϕkx → −D1

∫ ∞

0

∫

Ω
uxϕkx (4.16)

as ε = εj ց 0. Moreover, using that evidently | u
n−m+1
ε

un−m
ε +ε

| ≤ uε in Ω× (0,∞) and that hence by (4.10)

(( un−m+1
ε

un−m
ε + ε

)3
)

ε∈(0,ε⋆)
is equi-integrable in Ω× (0, Tk),

again invoking the Vitali convergence theorem and (4.5) we see that un−m+1
ε

un−m
ε +ε

→ u in L3(Ω × (0, Tk))

and that thus, due to (4.8),

χ1

∫ ∞

0

∫

Ω

un−m+1
ε

un−m
ε + ε

vεxϕkx → χ1

∫ ∞

0

∫

Ω
uvxϕkx (4.17)

as ε = εj ց 0. Since clearly
∫
Ω u0εϕk(·, 0) →

∫
Ω u0ϕk(·, 0) and εց 0 by (1.5), collecting (4.14)-(4.17)

we conclude from (4.13) that

−
∫ ∞

0

∫

Ω
uϕkt −

∫

Ω
u0ϕk(·, 0) = −D1

∫ ∞

0

∫

Ω
uxϕkx + χ1

∫ ∞

0

∫

Ω
uvxϕkxx for all k ∈ N.
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In light of (4.11), we may now take k → ∞ here to readily derive (4.2) from this, while (4.3) can be
verified by exactly the same arguments.

To finally make sure that possibly after modification of N , and of u and v outside a null set of times,
it can be achieved that

u and v belong to C0
w([0, T ];L

1(Ω)) (4.18)

for all T > 0, given any such T we use the last boundedness statement contained in (4.4) to see that

(u(·, t))t∈(0,T )\N and (v(·, t))t∈(0,T )\N are relatively compact in L1(Ω)

with respect to the weak topology (4.19)

according to the Dunford-Pettis theorem. Since now knowing (4.2) to be valid, we may infer from
the inclusion {u, uvx} ⊂ L1(Ω× (0, T )) that the distribution ut lies in e.g. L1((0, T ); (W 2,2(Ω))⋆), and
that thus after redefinition of u on a null set of times we have u ∈ C0([0, T ]; (W 2,2(Ω))⋆). Along with
a similar argument for v, a standard approximation argument now readily shows that (4.18) therefore
is a consequence of (4.19). �

Our main result on solvability in (1.3) has thereby actually been fully settled already.

Proof of Theorem 1.1. All statements immediately result as by-products of Lemma 4.1. �

5 Large time behavior. Proof of Theorem 1.2

5.1 Consistency with a conditional energy functional: The requirement m ≥ 2

Next concerned with the large time behavior of the solutions constructed above, in order to follow the
strategy outlined in the introduction we shall launch our analysis in this direction by examining how
far (1.8) can be further developed so as to become rigorously justifiable for solutions to (1.4).

It will turn out that this will in fact be possible upon some suitable modification whenever the auxiliary
parameter m in (1.4), beyond fulfilling m ∈ (n − 2, n − 1), is chosen large enough by satisfying the
condition m ≥ 2 which, fortunately, can be fulfilled simultaneously with the requirements from the
pervious sections. Indeed, we shall see that when tracking the time evolution of a modified variant of F
from (1.8), besides making use of another favorable exact cancellation of corresponding taxis-induced
contributions, for such m one can appropriately relate certain O(ε)-sized error terms to the considered
entropy functional itself (cf. the argument near (5.26) and (5.27) below), and thereby finally derive a
conditional entropy inequality in the following flavor.

Lemma 5.1 Let n > 7
2 , m ∈ (n− 2, n− 1), α ∈ (0, 12) and β > 0 be such that

m ≥ 2, (5.1)

that

α ≥ 4− n and α >
n−m− 1

2
, (5.2)

and that
β <

α

n−m
. (5.3)
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Then there exist K > 0 and ε⋆⋆ ∈ (0, 1) such that for any choice of ε ∈ (0, ε⋆⋆), writing

Fε(t) := χ2

∫

Ω
ψε(uε(·, t))u2εx(·, t) + χ1

∫

Ω
ψε(vε(·, t))v2εx(·, t), t ≥ 0, (5.4)

with

ψε(s) :=
1

s
+

ε

sn−m+1
, s > 0, (5.5)

we have

F ′
ε(t) +

{ 1

K
−KF

m+2
2

ε (t)−KFε(t)
}
·
{∫

Ω

u2εxx
uε

+

∫

Ω

v2εxx
vε

}
≤ 0 for all t > 0. (5.6)

Proof. By means of several integrations by parts, on the basis of (1.4) we compute

d

dt

∫

Ω
ψε(uε)u

2
εx = 2

∫

Ω
ψε(uε)uεxuεxt +

∫

Ω
ψ′
ε(uε)u

2
εxuεt

= −2

∫

Ω
ψε(uε)uεxxuεt −

∫

Ω
ψ′
ε(uε)u

2
εxuεt

= 2ε

∫

Ω
ψε(uε)uεxx ·

( unε

un−m
ε + ε

uεxxx

)
x
+ ε

∫

Ω
ψ′
ε(uε)u

2
εx ·

( unε

un−m
ε + ε

uεxxx

)
x

−2εβ
∫

Ω
ψε(uε)uεxx · (u−α

ε uεx)x − εβ
∫

Ω
ψ′
ε(uε)u

2
εx · (u−α

ε uεx)x

−2D1

∫

Ω
ψε(uε)u

2
εxx −D1

∫

Ω
ψ′
ε(uε)u

2
εxuεxx

+2χ1

∫

Ω
ψε(uε)uεxx ·

( un−m+1
ε

un−m
ε + ε

vεx

)
x
+ χ1

∫

Ω
ψ′
ε(uε)u

2
εx ·

( un−m+1
ε

un−m
ε + ε

vεx

)
x
(5.7)

for all t > 0. Here we first address the third and fourth last summands, in which we perform another
integration by parts to see that since

ψ′
ε(s) = − 1

s2
−(n−m+1)εs−n+m−2 and ψ′′

ε (s) =
2

s3
+(n−m+1)(n−m+2)εs−n+m−3 for all s > 0

(5.8)
by (5.5), we have

−2D1

∫

Ω
ψε(uε)u

2
εxx −D1

∫

Ω
ψ′
ε(uε)u

2
εxuεxx

= −2D1

∫

Ω
ψε(uε)u

2
εxx +

D1

3

∫

Ω
ψ′′
ε (uε)u

4
εx

= −2D1

∫

Ω

u2εxx
uε

− 2D1ε

∫

Ω
u−n+m−1
ε u2εxx

+
2D1

3

∫

Ω

u4εx
u3ε

+
(n−m+ 1)(n−m+ 2)D1ε

3

∫

Ω
u−n+m−3
ε u4εx

≤ −D1

2

∫

Ω

u2εxx
uε

+
(n−m+ 1)(n−m+ 2)D1ε

3

∫

Ω
u−n+m−3
ε u4εx for all t > 0, (5.9)
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because ∫

Ω

u4εx
u3ε

≤ 9

4

∫

Ω

u2εxx
uε

for all t > 0 (5.10)

as a consequence of the elementary functional inequality stated in Lemma 7.1 below.

In order to suitably compensate the ill-signed rightmost summand in (5.9), we now consider the
expressions in (5.7) which originate from the artificial second-order fast diffusion introduced in (1.4):
In fact, by definition of ψε and two further integrations by parts we can rewrite

−2

∫

Ω
ψε(uε)uεxx · (u−α

ε uεx)x −
∫

Ω
ψ′
ε(uε)u

2
εx · (u−α

ε uεx)x

= −2

∫

Ω
u−α−1
ε u2εxx − 2ε

∫

Ω
u−n+m−α−1
ε u2εxx

+(2α+ 1)

∫

Ω
u−α−2
ε u2εxuεxx + (n−m+ 2α+ 1)ε

∫

Ω
u−n+m−α−2
ε u2εxuεxx

−α
∫

Ω
u−α−3
ε u4εx − (n−m+ 1)αε

∫

Ω
u−n+m−α−3
ε u4εx

= −2

∫

Ω
u−α−1
ε u2εxx − 2ε

∫

Ω
u−n+m−α−1
ε u2εxx

+
{(2α+ 1)(α+ 2)

3
− α

}
·
∫

Ω
u−α−3
ε u4εx

+
{(n−m+ 2α+ 1)(n−m+ α+ 2)

3
− (n−m+ 1)α

}
· ε

∫

Ω
u−n+m−α−3
ε u4εx (5.11)

for t > 0, where two more applications of Lemma 7.1 show that

{(2α+ 1)(α+ 2)

3
− α

}
·
∫

Ω
u−α−3
ε u4εx =

2(α2 + α+ 1)

3

∫

Ω
u−α−3
ε u4εx

≤ 2(α2 + α+ 1)

3
· 9

(α+ 2)2

∫

Ω
u−α−1
ε u2εxx (5.12)

and

{(n−m+ 2α+ 1)(n−m+ α+ 2)

3
− (n−m+ 1)α

}
· ε

∫

Ω
u−n+m−α−3
ε u4εx

=
2α2 + 2α+ (n−m+ 1)(n−m+ 2)

3
· ε

∫

Ω
u−n+m−α−3
ε u4εx

≤ 2α2 + 2α+ (n−m+ 1)(n−m+ 2)

3
· 9

(n−m+ α+ 2)2
· ε

∫

Ω
u−n+m−α−1
ε u2εxx (5.13)

for all t > 0. Now since

2(α2 + α+ 1)

3
· 9

(α+ 2)2
− 2 = 2 · (2α+ 1)(α− 1)

α2 + 4α+ 4
≤ 0
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due to the fact that α ∈ [−1
2 , 1], and since

2α2 + 2α+ (n−m+ 1)(n−m+ 2)

3
· 9

(n−m+ α+ 2)2
− 2

=
4

(n−m+ α+ 2)2
·
(
α− n−m+ 2

2

)(
α− n−m− 1

2

)

< 0

thanks to (5.2) and the evident inequality α < 1 < n−m+2
2 , from (5.11)-(5.13) we all in all infer the

existence of c1 > 0 such that for all t > 0 and any ε ∈ (0, 1),

−2εβ
∫

Ω
ψε(uε)uεxx · (u−α

ε uεx)x − εβ
∫

Ω
ψ′
ε(uε)u

2
εx · (u−α

ε uεx)x ≤ −c1εβ+1

∫

Ω
u−n+m−α−3
ε u4εx. (5.14)

In order to take appropriate advantage of this, e.g. by means of Young’s inequality we fix c2 > 0 such
that

(n−m+ 1)(n−m+ 2)D1

3
· s ≤ D1

9
+ c2s

n−m+α
n−m for all s > 0,

and let ε⋆⋆ ∈ (0, 1) be small enough fulfilling

c2ε
n−m+α
n−m ≤ c1ε

β+1 for all ε ∈ (0, ε⋆⋆),

which is possible in view of the fact that β + 1 < α
n−m

+ 1 = n−m+α
n−m

by (5.3). Then resorting to
correspondingly small values of ε, we may again rely on (5.10) in estimating

(n−m+ 1)(n−m+ 2)D1ε

3

∫

Ω
u−n+m−3
ε u4εx =

∫

Ω
u−3
ε ·

{(n−m+ 1)(n−m+ 2)D1

3
· εu−n+m

ε

}
· u4εx

≤
∫

Ω
u−3
ε ·

{D1

9
+ c2(εu

−n+m
ε )

n−m+α
n−m

}
· u4εx

=
D1

9

∫

Ω

u4εx
u3ε

+ c2ε
n−m+α
n−m

∫

Ω
u−n+m−α−3
ε u4εx

≤ D1

4

∫

Ω

u2εxx
uε

+ c1ε
β+1

∫

Ω
u−n+m−α−3
ε u4εx (5.15)

for all t > 0 and any ε ∈ (0, ε⋆⋆).

Next, with regard to the cross-diffusive contributions to (5.7) we note that our particular choice of ψε,
especially thanks to the ε-dependent correction therein, warrants that the crucial second last summand
in (5.7) can be rewritten according to

2χ1

∫

Ω
ψε(uε)uεxx ·

( un−m+1
ε

un−m
ε + ε

vεx

)
x

= 2χ1

∫

Ω
ψε(uε)uεxx ·

un−m+1
ε

un−m
ε + ε

vεxx

+2χ1

∫

Ω
ψε(uε)uεxx ·

d

ds

( sn−m+1

sn−m + ε

)∣∣∣∣∣
s=uε

· uεxvεx
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= 2χ1

∫

Ω
uεxxvεxx

+2χ1

∫

Ω
ψε(uε)uεxx ·

d

ds

( sn−m+1

sn−m + ε

)∣∣∣∣∣
s=uε

· uεxvεx (5.16)

for t > 0. Since here the fact that m ≤ n warrants that

0 ≤ d

ds

( sn−m+1

sn−m + ε

)
=
s2n−2m + (n−m+ 1)εsn−m

(sn−m + ε)2
≤ (n−m+ 1)sn−m

sn−m + ε
for all s > 0,

once more recalling (5.5) we may use Young’s inequality to estimate

2χ1

∫

Ω
ψε(uε)uεxx ·

d

ds

( sn−m+1

sn−m + ε

)∣∣∣∣∣
s=uε

· uεxvεx ≤ 2(n−m+ 1)χ1

∫

Ω

un−m−1
ε + εu−1

ε

un−m
ε + ε

|uεxvεxuεxx|

= 2(n−m+ 1)χ1

∫

Ω

|uεxvεxuεxx|
uε

≤ D1

8

∫

Ω

u2εxx
uε

+
8(n−m+ 1)2χ2

1

D1

∫

Ω

u2εxv
2
εx

uε
(5.17)

for all t > 0. As Lemma 7.3 along with (2.2) asserts that

∫

Ω

u2εxv
2
εx

uε
≤ ‖vεx‖2L∞(Ω)

∫

Ω

u2εx
uε

≤
{∫

Ω
vε

}
·
{∫

Ω

v2εxx
vε

}
·
∫

Ω

u2εx
uε

≤
{∫

Ω
v0

}
· 1

χ2
Fε(t) ·

∫

Ω

v2εxx
vε

for all t > 0, (5.18)

from (5.16) and (5.17) it thus follows that whenever ε ∈ (0, 1),

2χ1

∫

Ω
ψε(uε)uεxx ·

( un−m+1
ε

un−m
ε + ε

vεx

)
x

≤ 2χ1

∫

Ω
uεxxvεxx +

D1

8

∫

Ω

u2εxx
uε

+ c3Fε(t) ·
∫

Ω

v2εxx
vε

for all t > 0 (5.19)

if we let c3 :=
8(n−m+1)2χ2

1
D1χ2

·
∫
Ω v0.

The last integral in (5.7) can similarly be estimated after another integration by parts, observing that
in

χ1

∫

Ω
ψ′
ε(uε)u

2
εx ·

( un−m+1
ε

un−m
ε + ε

vεx

)
x

= −2χ1

∫

Ω
ψ′
ε(uε) ·

un−m+1
ε

un−m
ε + ε

· uεxvεxuεxx

−χ1

∫

Ω
ψ′′
ε (uε) ·

un−m+1
ε

un−m
ε + ε

· u3εxvεx, t > 0, (5.20)
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by (5.8) and again since m ≤ n we have

0 ≤ −ψ′
ε(s) ≤ (n−m+ 1)s−n+m−2 · (sn−m + ε) for all s > 0 (5.21)

and
0 ≤ ψ′′

ε (s) ≤ (n−m+ 1)(n−m+ 2)s−n+m−3 · (sn−m + ε) for all s > 0. (5.22)

Therefore, namely, by the same argument as in (5.17) and (5.18),

−2χ1

∫

Ω
ψ′
ε(uε) ·

un−m+1
ε

un−m
ε + ε

· uεxvεxuεxx ≤ 2(n−m+ 1)χ1

∫

Ω

|uεxvεxuεxx|
uε

≤ D1

16

∫

Ω

u2εxx
uε

+ c4Fε(t) ·
∫

Ω

v2εxx
vε

for all t > 0 (5.23)

with c4 :=
16(n−m+1)2χ2

1
D1χ2

·
∫
Ω v0, whereas once more due to Young’s inequality, (5.10) and (5.18),

−χ1

∫

Ω
ψ′′
ε (uε) ·

un−m+1
ε

un−m
ε + ε

· u3εxvεx ≤ (n−m+ 1)(n−m+ 2)χ1

∫

Ω

|u3εxvεx|
u2ε

≤ D1

72

∫

Ω

u4εx
u3ε

+
18(n−m+ 1)2(n−m+ 2)2χ2

1

D1

∫

Ω

u2εxv
2
εx

uε

≤ D1

32

∫

Ω

u2εxx
uε

+ c5Fε(t) ·
∫

Ω

v2εxx
vε

for all t > 0 (5.24)

if we abbreviate c5 :=
18(n−m+1)2(n−m+2)2χ2

1
D1χ2

·
∫
Ω v0.

It finally remains to adequately cope with the first two summands on the right of (5.7), in which we
firstly again integrate by parts and recall (5.5), (5.21) and (5.8) to see that

2ε

∫

Ω
ψε(uε)uεxx ·

( unε

un−m
ε + ε

uεxxx

)
x
+ ε

∫

Ω
ψ′
ε(uε)u

2
εx ·

( unε

un−m
ε + ε

uεxxx

)
x

= −2ε

∫

Ω
ψε(uε) ·

unε

un−m
ε + ε

u2εxxx − 4ε

∫

Ω
ψ′
ε(uε) ·

unε

un−m
ε + ε

uεxuεxxuεxxx

−ε
∫

Ω
ψ′′
ε (uε) ·

unε

un−m
ε + ε

u3εxuεxxx

≤ −2ε

∫

Ω
um−1
ε u2εxxx + 4(n−m+ 1)ε

∫

Ω
um−2
ε |uεxuεxxuεxxx|

−ε
∫

Ω
ψ′′
ε (uε) ·

unε

un−m
ε + ε

u3εxuεxxx (5.25)

for t > 0. Here Young’s inequality together with Lemma 7.2 guarantees that for all ε ∈ (0, 1) and any
t > 0,

4(n−m+ 1)ε

∫

Ω
um−2
ε |uεxuεxxuεxxx| ≤ ε

2

∫

Ω
um−1
ε u2εxxx + 8(n−m+ 1)2ε

∫

Ω
um−3
ε u2εxu

2
εxx

≤ ε

∫

Ω
um−1
ε u2εxxx + c6

∫

Ω
um−5
ε u6εx (5.26)
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with c6 := 8(n−m+ 1)2 ·
{

|m−3|·|m−4|
15 + 4(n−m+1)2

9

}
, while combining (5.22) with Young’s inequality

shows that for all ε ∈ (0, 1) and t > 0,

−ε
∫

Ω
ψ′′
ε (uε) ·

unε

un−m
ε + ε

u3εxuεxxx ≤ (n−m+ 1)(n−m+ 2)ε

∫

Ω
um−3
ε |u3εxuεxxx|

≤ ε

∫

Ω
um−1
ε u2εxxx + c7

∫

Ω
um−5
ε u6εx (5.27)

if we set c7 := (n−m+1)2(n−m+2)2

4 . Now since we are assuming that m ≥ 2, the rightmost summands
in (5.26) and (5.27) can be related to Fε through an interpolation argument: Indeed, thanks to this
restriction on m we may invoke the Gagliardo-Nirenberg inequality to find c8 > 0 such that for all
ε ∈ (0, 1) and t > 0,

(c6 + c7)

∫

Ω
um−5
ε u6εx

≤ (c6 + c7)‖uε‖m−2
L∞(Ω)

∫

Ω

u6εx
u3ε

= 64(c6 + c7)‖
√
uε‖2(m−2)

L∞(Ω) ‖(
√
uε)x‖6L6(Ω)

≤ c8 ·
{
‖(√uε)x‖m−2

L2(Ω)
‖√uε‖m−2

L2(Ω)
+ ‖√uε‖2(m−2)

L2(Ω)

}
· ‖(√uε)xx‖2L2(Ω)‖(

√
uε)x‖4L2(Ω)

=
c8

16
·
{{

1

4

∫

Ω

u2εx
uε

}m−2
2

·
{∫

Ω
u0

}m−2
2

+

{∫

Ω
u0

}m−2
}

·
{∫

Ω

u2εx
uε

}2

·
∫

Ω
(
√
uε)

2
xx

according to (2.2). As herein by Young’s inequality and again (5.10),

∫

Ω
(
√
uε)

2
xx =

∫

Ω

{ uεxx

2
√
uε

− u2εx

4
√
uε

3

}2

≤ 1

2

∫

Ω

u2εxx
uε

+
1

8

∫

Ω

u4εx
u3ε

≤ 25

32

∫

Ω

u2εxx
uε

for all t > 0,

once more using that
∫
Ω

u2
εx

uε
≤ 1

χ2
Fε(t) and estimating F2

ε (t) ≤ F
m+2

2
ε (t) + Fε(t) for t > 0 we thus

obtain that with some c9 > 0 we have

(c6 + c7)

∫

Ω
um−5
ε u6εx ≤ c9 ·

{
F

m+2
2

ε (t) + Fε(t)
}
·
∫

Ω

u2εxx
uε

for all t > 0 and ε ∈ (0, 1).

In conjunction with (5.9), (5.14)-(5.27) and (5.19)-(5.24), this shows that (5.7) implies the inequality

d

dt

∫

Ω
ψε(uε)u

2
εx ≤ 2χ1

∫

Ω
uεxxvεxx −

D1

32

∫

Ω

u2εxx
uε

+(c3 + c4 + c5)Fε(t) ·
∫

Ω

v2εxx
vε

+ c9 ·
{
F

m+2
2

ε (t) + Fε(t)
}
·
∫

Ω

u2εxx
uε

(5.28)

30



for all t > 0 whenever ε ∈ (0, ε⋆⋆). Since a similar reasoning reveals that upon diminishing ε⋆⋆ if
necessary we can also achieve that with some c10 > 0, for all t > 0 and any ε ∈ (0, ε⋆⋆) we have

d

dt

∫

Ω
ψε(vε)v

2
εx ≤ −2χ2

∫

Ω
uεxxvεxx −

D2

32

∫

Ω

v2εxx
vε

+c10Fε(t) ·
∫

Ω

u2εxx
uε

+ c10 ·
{
F

m+2
2

ε (t) + Fε(t)
}
·
∫

Ω

v2εxx
vε

, (5.29)

on combining (5.28) with (5.29) we readily end up with (5.6). �

5.2 Proof of Theorem 1.2

In view of the fact that Corollary 3.2 warrants a certain eventual smallness property of Fε, possibly be-
yond some suitably large waiting time the inequality in (5.6) can be turned into a genuine monotonicity
feature, in particular implying ultimate boundedness and stabilization even in L∞ topologies:

Lemma 5.2 Let n ∈ (72 , 4) and m = 2, and let α ∈ (0, 12) and β > 0 be such that α ≥ 4− n, α > n−3
2

and β < α
n−2 . Then there exists ε0 ∈ (0, 1) such that for some T0 > 0 we have

sup
t>T0

sup
ε∈(0,ε0)

{
‖uε(·, t)‖L∞(Ω) + ‖vε(·, t)‖L∞(Ω)

}
<∞, (5.30)

and such that moreover

sup
t>T

sup
ε∈(0,ε0)

{
‖uε(·, t)− u0‖L∞(Ω) + ‖vε(·, t)− v0‖L∞(Ω)

}
→ 0 as T → ∞. (5.31)

Proof. Since our parameter restrictions warrant applicability of Lemma 5.1, we may fix K > 0
and ε⋆⋆ ∈ (0, 1) as provided by the latter, and thereupon pick η0 > 0 small enough fulfilling

K · (η0 + η20) ≤
1

2K
. (5.32)

Next, since we have chosen m so as to satisfy m ≤ 2, recalling the definition (5.4) of Fε we may invoke
Corollary 3.2 to find ε⋆ ∈ (0, 1) and c1 > 0 such that whenever ε ∈ (0, ε⋆),

∫ T

0
Fε(t) ≤ c1 for all T > 0.

In particular, this implies that if for η ∈ (0, η0] we let Tη := 2c1
η
, then for arbitrary ε ∈ (0, ε⋆) we can

fix t0(η, ε) ∈ (0, Tη) such that

Fε(t0(η, ε)) ≤
η

2
, (5.33)

and we claim that actually
Fε(t) < η for all t ≥ t0(η, ε) (5.34)

whenever η ∈ (0, η0] and ε ∈ (0, ε0) with ε0 := min{ε⋆, ε⋆⋆}.
Indeed, this follows from a straightforward comparison argument on the basis of Lemma 5.1: According
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to (5.33) and the continuity of Fε, namely, for any such η and ε the set S := {T > t0(η, ε) | Fε(t) <
η for all t ∈ [t0(η, ε), T ]} is not empty and hence T := supS a well-defined element of (t0(η, ε),∞],
and if T was finite, then Fε < η on (t0(η, ε), T ) and Fε(T ) = η. By (5.6), however, due to (5.32) this
would imply that

F ′
ε(t) ≤ −

{ 1

K
−KFε(t)−KF2

ε (t)
}
·
{∫

Ω

u2εxx
uε

+

∫

Ω

v2εxx
vε

}

≤ −
{ 1

K
−Kη −Kη2

}
·
{∫

Ω

u2εxx
uε

+

∫

Ω

v2εxx
vε

}

≤ − 1

2K
·
{∫

Ω

u2εxx
uε

+

∫

Ω

v2εxx
vε

}

≤ 0 for all t ∈ (t0(η, ε), T )

and hence lead to the absurd conclusion that Fε(T ) ≤ Fε(t0(η, ε)) ≤ η
2 < η according to (5.33).

Having thus asserted (5.34), by a first application thereof to e.g. η := η0 we particularly infer that

χ2

∫

Ω

u2εx
uε

+ χ1

∫

Ω

v2εx
vε

≤ η0 for all t > T0 := Tη0 and any ε ∈ (0, ε0). (5.35)

Since the Gagliardo-Nirenberg inequality says that with some c2 > 0 we have

‖√ϕ‖4L∞(Ω) ≤ c2‖(
√
ϕ)x‖2L2(Ω)‖

√
ϕ‖2L2(Ω) + c2‖

√
ϕ‖4L2(Ω) for all ϕ ∈W 1,2(Ω) such that ϕ > 0 in Ω,

in view of (2.2) this entails that for all t > T0 and ε ∈ (0, ε0),

χ2‖uε‖2L∞(Ω) + χ1‖vε‖2L∞(Ω) ≤ c2χ2‖(
√
uε)x‖2L2(Ω) ·

∫

Ω
u0 + c2χ2 ·

{∫

Ω
u0

}2

+c2χ1‖(
√
vε)x‖2L2(Ω) ·

∫

Ω
v0 + c2χ1 ·

{∫

Ω
v0

}2

≤ c3 :=
c2

4
· η0 ·

∫

Ω
u0 + c2χ2 ·

{∫

Ω
u0

}2

+
c2

4
· η0 ·

∫

Ω
v0 + c2χ1 ·

{∫

Ω
v0

}2

, (5.36)

and that hence (5.30) holds.

In order to secondly derive (5.31) from (5.33), given δ > 0 we fix η ∈ (0, η0] small enough such that√
c3
χ3
i

|Ω|η ≤ δ2

4 for i ∈ {1, 2}, and noting that

‖ϕ− ϕ‖2L∞(Ω) ≤ |Ω| ·
∫

Ω
ϕ2
x for all ϕ ∈W 1,2(Ω),

we conclude from (5.36), (5.33) and again (2.2) that

‖uε − u0‖2L∞(Ω) ≤ |Ω| ·
∫

Ω
u2εx ≤ |Ω| · ‖uε‖L∞(Ω)

∫

Ω

u2εx
uε

≤
√
c3

χ2
|Ω| ·

∫

Ω

u2εx
uε

≤
√
c3

χ3
2

|Ω| · Fε(t) ≤
√
c3

χ3
2

|Ω| · η for all t ≥ Tη and each ε ∈ (0, ε0).
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Combined with a similar inequality for the second solution component, according to our restriction
on η this shows that indeed

‖uε − u0‖L∞(Ω) + ‖vε − v0‖L∞(Ω) ≤
δ

2
+
δ

2
= δ for all t ≥ Tη and ε ∈ (0, ε0)

and hence verifies (5.31). �

A simple limit passage leads to our main result on eventual boundedness and uniform stabilization in
(1.3):

Proof of Theorem 1.2. Thanks to the approximation property asserted by Lemma 4.1, both claims
immediately result from Lemma 5.2. �

6 Local nonexistence for doubly attractive systems. Proof of Propo-

sition 1.3

Proof of Proposition 1.3. Given T > 0 and any such solution, we first claim that

u ≡ v in Ω× (0, T ). (6.1)

To verify this, we use (1.11) to see that w := u− v satisfies

wt = wxx − (uvx)x + (vux)x = wxx − uvxx + vuxx = (1 + u)wxx − uxxw

in Ω× (0, T ), which when tested against w implies that

1

2

d

dt

∫

Ω
w2 +

∫

Ω
(1 + u)w2

x = −
∫

Ω
wuxwx −

∫

Ω
uxxw

2 =

∫

Ω
wuxwx (6.2)

for all t ∈ (0, T ). Now for arbitrary T0 ∈ (0, T ), relying on (1.12) we can pick c1 = c1(T0) > 0
such that

∫
Ω u

2
x ≤ c1 for all t ∈ (0, T0), and therefore we may use the compactness of the embedding

W 1,2(Ω) →֒ L∞(Ω) to conclude from an associated Ehrling-type lemma that with some c2 > 0 we
have

‖ϕ‖2L∞(Ω) ≤
1

c1

∫

Ω
ϕ2
x + c2

∫

Ω
ϕ2 for all ϕ ∈W 1,2(Ω).

By Young’ inequality, we can therefore estimate
∫

Ω
wuxwx ≤ 1

2

∫

Ω
w2
x +

1

2

∫

Ω
w2u2x

≤ 1

2

∫

Ω
w2
x +

c1

2
‖w‖2L∞(Ω)

≤
∫

Ω
w2
x +

c1c2

2

∫

Ω
w2 for all t ∈ (0, T0),

so that (6.2) entails that

d

dt

∫

Ω
w2 ≤ c1c2

∫

Ω
w2 for all t ∈ (0, T0),
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because u is nonnegative. As our assumptions in particular warrant continuity of w on Ω× {0} with
w|t=0 ≡ 0, by integration this implies that w ≡ 0 in Ω × (0, T0) and thereby yields (6.1) on taking
T0 ր T .
Next, by continuity of u our hypothesis that φ > 1 in Ω ensures the existence of δ > 0 and t0 ∈ (0, T )
such that u ≥ 1 + δ in Ω× [0, t0], and that accordingly,

z(x, s) := u(x, t0 − s)− 1, x ∈ Ω, s ∈ [0, t0],

satisfies z ≥ δ in Ω× [0, t0]. Since furthermore z belongs to C0(Ω× [0, t0])∩C2,1(Ω× [0, t0)) by (1.12),
with

zs = −ut = −uxx + (uvx)x = (zzx)x in Ω× (0, t0)

and zx|∂Ω×(0,t0) = 0 due to (1.11), well-known arguments asserting analyticity of solutions to one-
dimensional porous medium equations inside their positivity set ([2]) become applicable so as to
assert that z(·, t0) and hence also φ = z(·, t0) + 1 must be analytic throughout Ω. �

7 Appendix: Some functional inequalities

In this appendix we collect some classes of functional inequalities needed for our analysis.

7.1 Bernis-type weighted embedding and interpolation inequalities

In a first group of inequalities, each member is in essence accessible to methods of Hölder-type inter-
polation when suitably combined with integration by parts. Numerous precedents of a similar flavor
have been forming core ingredients in the study of scalar thin film equations (cf. e.g. [4], [3]).

The first inequality from this context which is needed here is quite elementary:

Lemma 7.1 Let λ ∈ R be such that λ 6= 1. Then
∫

Ω
ϕλ−2ϕ4

x ≤ 9

(λ− 1)2

∫

Ω
ϕλϕ2

xx (7.1)

for all ϕ ∈ C2(Ω) which are such that ϕ > 0 in Ω and ϕx = 0 on ∂Ω.

Proof. We integrate by parts and use the Cauchy-Schwarz inequality to see that

∫

Ω
ϕλ−2ϕ4

x = − 3

λ− 1

∫

Ω
ϕλ−1ϕ2

xϕxx ≤ 3

|λ− 1|

{∫

Ω
ϕλ−2ϕ4

x

} 1
2

·
{∫

Ω
ϕλϕ2

xx

} 1
2

,

from which (7.1) immediately follows. �

The derivation of the following interpolation inequality is comparably simple:

Lemma 7.2 Let λ ∈ R and ϕ ∈ C3(Ω) be such that ϕ > 0 in Ω and ϕx = 0 on ∂Ω. Then

∫

Ω
ϕλ−2ϕ2

xϕ
2
xx ≤ η

∫

Ω
ϕλϕ2

xxx +
{(λ− 2)(λ− 3)

15
+

1

36η

}
·
∫

Ω
ϕλ−4ϕ6

x for all η > 0. (7.2)
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Proof. Using that ϕx|∂Ω = 0, we twice integrate by parts to obtain

∫

Ω
ϕλ−2ϕ2

xϕ
2
xx =

1

3

∫

Ω
ϕλ−2(ϕ3

x)xϕxx

= −1

3

∫

Ω
ϕλ−2ϕ3

xϕxxx −
λ− 2

3

∫

Ω
ϕλ−3ϕ4

xϕxx

= −1

3

∫

Ω
ϕλ−2ϕ3

xϕxxx +
(λ− 2)(λ− 3)

15

∫

Ω
ϕλ−4ϕ6

x.

As by Young’s inequality,

−1

3

∫

Ω
ϕλ−2ϕ3

xϕxxx ≤ η

∫

Ω
ϕλϕ2

xxx +
1

36η

∫

Ω
ϕλ−4ϕ6

x for all η > 0,

this implies (7.2). �

Likewise, the following one-dimensional version of a weighted Gagliardo-Nirenberg inequality can be
obtained in quite a simple manner:

Lemma 7.3 Let ϕ ∈ C2(Ω) be such that ϕ > 0 in Ω and ϕx = 0 on ∂Ω. Then

‖ϕx‖L∞(Ω) ≤
{∫

Ω

ϕ2
xx

ϕ

} 1
2

·
{∫

Ω
ϕ

} 1
2

. (7.3)

Proof. Without loss of generality assuming that Ω = (0, |Ω|) and that hence ϕx(0) = 0, by means
of the Cauchy-Schwarz inequality we can estimate

|ϕx(x)| =
∣∣∣∣
∫ x

0
ϕxx(y)dy

∣∣∣∣ ≤
{∫ x

0

ϕ2
xx(y)

ϕ(y)
dy

} 1
2

·
{∫ x

0
ϕ(y)dy

} 1
2

for all x ∈ Ω,

from which (7.3) directly follows. �

The following two inequalities of quite a similar flavor are more specifically designed so as to serve in
the particular frameworks of Lemma 3.4 and Lemma 4.1.

Lemma 7.4 Let n > 0 and m ∈ (0, n) be such that m ≤ 2, and for ε ∈ (0, 1) let

Fε(s) :=
sn

sn−m + ε
, s ≥ 0. (7.4)

Then for any ϕ ∈ C2(Ω) such that ϕ > 0 in Ω and ϕx = 0 on ∂Ω,

∫

Ω
|F ′

ε(ϕ)ϕxϕxx| ≤
n|Ω| 2−m

12

√
m

·
{∫

Ω
ϕm−1ϕ2

xx

} 3
4

·
{∫

Ω
ϕ3

}m+1
12

(7.5)

and ∫

Ω
|Fε(ϕ)ϕxx| ≤ |Ω| 2−m

6 ·
{∫

Ω
ϕm−1ϕ2

xx

} 1
2

·
{∫

Ω
ϕ3

}m+1
6

. (7.6)
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Proof. Since

0 ≤ F ′
ε(s) =

ms2n−m−1 + nεsn−1

(sn−m + ε)2
≤ nsn−1

sn−m + ε
≤ nsm−1

for all s > 0 and ε ∈ (0, 1), given any positive ϕ ∈ C2(Ω) with ϕx|∂Ω = 0 we can use the Cauchy-
Schwarz inequality to see that for arbitrary m > 0,

∫

Ω
|F ′

ε(ϕ)ϕxϕxx| ≤ n ·
{∫

Ω
ϕm−1ϕ2

xx

} 1
2

·
{∫

Ω
ϕm−1ϕ2

x

} 1
2

. (7.7)

Here, integrating by parts and once more relying on the Cauchy-Schwarz inequality we find that since
ϕx = 0 on ∂Ω,

∫

Ω
ϕm−1ϕ2

x = − 1

m

∫

Ω
ϕmϕxx ≤ 1

m
·
{∫

Ω
ϕm−1ϕ2

xx

} 1
2

·
{∫

Ω
ϕm+1

} 1
2

, (7.8)

so that since our assumption m ≤ 2 warrants that

∫

Ω
ϕm+1 ≤ |Ω| 2−m

3 ·
{∫

Ω
ϕ3

}m+1
3

(7.9)

by the Hölder inequality, combining (7.7) with (7.8) yields (7.6).

As for (7.5), we only need to observe that 0 ≤ Fε(s) ≤ sm for s ≥ 0 and ε ∈ (0, 1), and once more use
the Cauchy-Schwarz inequality to see that

∫

Ω
|Fε(ϕ)ϕxx| ≤

∫

Ω
ϕm|ϕxx| ≤

{∫

Ω
ϕm−1ϕ2

xx

} 1
2

·
{∫

Ω
ϕm+1

} 1
2

,

which in view of (7.9) establishes the claimed estimate. �

7.2 A class of Gagliardo-Nirenberg type inequalities in Orlicz spaces

Although its proof is quite simple, the following class of inequalities seems to provide an efficient
means to suitably make use of certain Orlicz space bounds in the course of Gagliardo-Nirenberg type
interpolation.

Lemma 7.5 Let N ≥ 1 and Ω ⊂ R
N be a bounded domain with smooth boundary, and suppose that

p > 0 and q > 0 are such that p < 2N
(N−2)+

and q < p. Assume furthermore that Λ ∈ C0(R) is such

that Λ ≥ 1 on R, and that θ ∈ (0, 1] is such that





θ ≤ 1 if N = 1,

θ < 1 if N = 2,

θ ≤ 2N−(N−2)p
2N−(N−2)q if N ≥ 3.

(7.10)
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Then there exists C > 0 such that for all ϕ ∈W 1,2(Ω),

∫

Ω
|ϕ|pΛθ(ϕ) ≤ C ·

{∫

Ω
|∇ϕ|2

} pa

2

·
{∫

Ω
|ϕ|qΛ(ϕ)

} p(1−a)
q

+ C ·
{∫

Ω
|ϕ|qΛ(ϕ)

} p

q

(7.11)

where

a :=

N
q
− N

p

1− N
2 + N

q

∈ (0, 1). (7.12)

Proof. Writing r := θq ∈ (0, q], from (7.10) we infer that if we let s ∈ (0,∞] be defined by

s := (p−r)q
q−r

, then s ≤ ∞ when N = 1, that s < ∞ if N = 2 and that s ≤ 2N
N−2 in the case N ≥ 3. As

moreover s > q due to our assumption that p > q, the Gagliardo-Nirenberg inequality provides c1 > 0
such that

‖ϕ‖p−r
Ls(Ω) ≤ c1‖∇ϕ‖(p−r)b

L2(Ω)
‖ϕ‖(p−r)(1−b)

Lq(Ω) + c1‖ϕ‖p−r
Lq(Ω) for all ϕ ∈W 1,2(Ω)

with

b :=

N
q
− N

s

1− N
2 + N

q

. (7.13)

Therefore, an application of the Hölder inequality shows that since qθ
r
= 1,

∫

Ω
|ϕ|pΛθ(ϕ) =

∫

Ω
|ϕ|p−r ·

(
|ϕ|rΛθ(ϕ)

)

≤ ‖ϕ‖p−r
Ls(Ω) ·

{∫

Ω
|ϕ|qΛ(ϕ)

} r
q

≤ c1‖∇ϕ‖(p−r)b
L2(Ω)

‖ϕ‖(p−r)(1−b)
Lq(Ω) ·

{∫

Ω
|ϕ|qΛ(ϕ)

} r
q

+c1‖ϕ‖p−r
Lq(Ω) ·

{∫

Ω
|ϕ|qΛ(ϕ)

} r
q

for all ϕ ∈W 1,2(Ω), (7.14)

where we note that by (7.13), our definition of s and (7.12),

(p− r)b = (p− r) ·
N
q
· p−q
p−r

1− N
2 + N

q

=

N
q
· (p− q)

1− N
2 + N

q

= pa. (7.15)

Since the hypothesis Λ ≥ 1 ensures that ‖ϕ‖q
Lq(Ω) ≤

∫
Ω |ϕ|qΛ(ϕ) and thus, by (7.15),

‖ϕ‖(p−r)(1−b)
Lq(Ω) ·

{∫

Ω
|ϕ|qΛ(ϕ)

} r
q

≤
{∫

Ω
|ϕ|qΛ(ϕ)

} p(1−a)
q

and

‖ϕ‖p−r
Lq(Ω) ·

{∫

Ω
|ϕ|qΛ(ϕ)

} r
q

≤
{∫

Ω
|ϕ|qΛ(ϕ)

} p

q
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for any such ϕ, from (7.14) we immediately obtain (7.11) with C := c1. �

Among numerous extractable special cases thereof, let us concentrate on the one explicitly referred to
in the core part of our analysis (cf. Corollary 3.3).

Corollary 7.6 Let Ω ⊂ R be a bounded interval. Then there exists C > 0 such that for all ϕ ∈
W 1,2(Ω) satisfying ϕ > 0 in Ω,

∫

Ω
ϕ3 ln(ϕ+ e) ≤ C ·

{∫

Ω

ϕ2
x

ϕ

}
·
{∫

Ω
ϕ ln(ϕ+ e)

}2

+ C ·
{∫

Ω
ϕ ln(ϕ+ e)

}3

. (7.16)

Proof. We apply Lemma 7.5 to p := 6, q := 2 and θ := 1 and Λ(s) := ln(s2 + e), s ∈ R, to find
c1 > 0 such that whenever ψ ∈W 1,2(Ω),

∫

Ω
ψ6 ln(ψ2 + e) ≤ c1 ·

{∫

Ω
ψ2
x

}
·
{∫

Ω
ψ2 ln(ψ2 + e)

}2

+ c1 ·
{∫

Ω
ψ2 ln(ψ2 + e)

}3

.

For fixed ϕ ∈ W 1,2(Ω) being positive throughout Ω, on setting ψ :=
√
ϕ this directly implies that

(7.16) holds with C := c1, because then
∫
Ω ψ

2
x = 1

4

∫
Ω

ϕ2
x

ϕ
≤

∫
Ω

ϕ2
x

ϕ
. �

In order to indicate the potential strength of Lemma 7.5 beyond the latter particular context, let
us finally demonstrate how it can be used in an almost trivial manner to deduce a well-known and
frequently used variant of a two-dimensional Gagliardo-Nirenberg inequality due to Biler, Hebisch and
Nadzieja ([5]).

Corollary 7.7 Let Ω ⊂ R
2 be a bounded domain with smooth boundary. Then there exists C > 0

such that for each ε ∈ (0, 1) one can pick Cε > 0 with property that

‖ϕ‖3L3(Ω) ≤ ε‖∇ϕ‖2L2(Ω)‖ϕ ln(ϕ+ e)‖L1(Ω) + C‖ϕ ln(ϕ+ e)‖3L1(Ω) + Cε (7.17)

holds for all nonnegative ϕ ∈W 1,2(Ω).

Proof. Applying Lemma 7.5 to N := 2, p := 3, q := 1 and θ := 1
2 and Λ(s) := ln(|s| + e), s ∈ R,

we obtain c1 > 0 such that

∫

Ω
ϕ3 ln

1
2 (ϕ+ e) ≤ c1 ·

{∫

Ω
|∇ϕ|2

}
·
{∫

Ω
ϕ ln(ϕ+ e)

}
+ c1 ·

{∫

Ω
ϕ ln(ϕ+ e)

}3

for all ϕ ∈W 1,2(Ω). Since for each ε > 0 one can find c2(ε) > 0 such that

ξ3 ≤ ε

c1
· ξ3 ln 1

2 (ξ + e) + c2(ε) for all ξ > 0,

this readily yields (7.17) with C := 1 and Cε := c2(ε) · |Ω|. �
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