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Abstract

The chemotaxis-Stokes system





nt + u · ∇n = ∆n−∇ · (n∇c),
ct + u · ∇c = ∆c− nc,

ut = ∆u+∇P + n∇φ, ∇ · u = 0,

(⋆)

is considered in a bounded domain Ω ⊂ R
3 with smooth boundary. The corresponding solution

theory is quite well-developed in the case when (⋆) is accompanied by homogeneous boundary
conditions of no-flux type for n and c, and of Dirichlet type for u. In such situations, namely,
a quasi-Lyapunov structure provides regularity features sufficient to facilitate not only a basic
existence theory, but also a comprehensive qualitative analysis.

However, if in line with what is suggested by the modeling literature the boundary condition for
the signal is changed so as to become

c(x, t) = c⋆, x ∈ ∂Ω, t > 0,

with some constant c⋆ ≥ 0, then such structures apparently cease to be present at spatially global
levels. The present work reveals that such properties persist at least in a weakened form of suitably
localized variants, and on the basis of accordingly obtained a priori estimates it is shown that for
widely arbitrary initial data an associated initial-boundary value problem for (⋆) admits a globally
defined generalized solution.
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1 Introduction

Quasi-Lyapunov structures in chemotaxis-fluid systems. This work deals with a mathemat-
ical model for the interaction of bacterial populations with a surrounding fluid in which their nutrient
is dissolved. In fact, experimental studies have revealed partially rather complex facets of the spatio-
temporal behavior in colonies of the aerobic species Bacillus subtilis when suspended in sessile water
drops, and in order to achieve an appropriate description thereof at macroscopic levels, the authors
in [32] proposed the chemotaxis-fluid system





nt + u · ∇n = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nc, x ∈ Ω, t > 0,

ut + κ(u · ∇)u = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,

(1.1)

as a model for for the unknown (n, c, u, P ) in the physical domain Ω ⊂ R
N , with given gravitational

potential φ, and with κ ∈ R. When the fluid motion is slow, the Stokes flow (κ = 0) is used
rather than the Navier-Stokes one. Here the unknown n = n(x, t) denotes the bacteria density, and
u = u(x, t) and P = P (x, t) represent the velocity field of the incompressible fluid and an associated
pressure, respectively. This model is based on the hypothesis that besides all of these components,
the only further component relevant for such phenomena is the oxygen with concentration denoted by
c = c(x, t).

Since their initial introduction in 2005, chemotaxis-fluid systems of this and related types have inspired
considerable activity in the analytical literature (see [2], [8], [10], [12], [22], [24], [36], [46] for instance).
Particularly, when Ω is a bounded domain, questions concerning the global well-posedness of (1.1) have
meanwhile been answered to quite a comprehensive extent in the case when the homogeneous boundary
conditions

∂n

∂ν
=
∂c

∂ν
= 0, u = 0, x ∈ ∂Ω (1.2)

are imposed: Indeed, in the two-dimensional case the corresponding full chemotaxis-Navier-Stokes
system is known to admit uniquely determined global smooth solutions for widely arbitrary initial
data ([37]), whereas for the three-dimensional version of (1.1) it is at least possible to construct global
weak solutions ([40]) which eventually become smooth and classical ([41]). Extensions in various
directions are concerned with global classical solvability for small data ([7], [17]), or address modified
systems involving nonlinear cell diffusion of porous medium type ([9], [11], [30], [42], [45]), or also
accounting for saturation effects in chemotactic migration ([23], [33], [34]).

A core characteristic of (1.1) when accompanied by (1.2) seems to consist in a quasi-Lyapunov structure
formally becoming manifest in the inequality

d

dt

{∫

Ω
n lnn+

1

2

∫

Ω

|∇c|2
c

+α

∫

Ω
|u|2

}
+

1

C

{∫

Ω

|∇n|2
n

+

∫

Ω

|D2c|2
c

+

∫

Ω
|∇u|2

}
≤ C, t > 0, (1.3)

valid for suitably regular solutions to (1.1)-(1.2) in bounded convex domains with certain positive
constants α and C. In fact, a priori estimates implied by (1.3) and appropriately adapted counterparts
have, firstly, constituted crucial ingredients in the development of corresponding existence theories for
(1.1) and several of its close relatives ([3], [19], [35], [30], [40], [45]). A second essential role played
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by inequalities of the form in (1.3), apparently yet more important with regard to aspects related
to model validation, is related to the description of qualitative solution properties: In the particular
context of (1.1)-(1.2), for instance, regularity information gained from (1.3) has proved sufficient to
turn the fundamental relaxation features expressed in the two basic inequalities

∫ ∞

0

∫

Ω
nc ≤

∫

Ω
c(·, 0) and

∫ ∞

0

∫

Ω
|∇c|2 ≤ 1

2

∫

Ω
c2(·, 0), (1.4)

into statements on asymptotic behavior, indeed asserting that both in two- and three-dimensional
frameworks all solutions approach spatially homogeneous equilibria in the large time limit ([38], [41],
[44]; cf. also [39] and [43] for similar conclusions relying on (1.4) also in more general situations).

Results of the latter flavor, however, seem to reflect experimentally observed behavior, inter alia
involving the emergence of large scale coherence patterns and structure formation especially near in-
terfaces, only to a limited extent. Accordingly, in the recent literature an increasing part attempts to
go beyond the first analytical steps concerned with the mathematically convenient boundary condi-
tions in (1.2) by concentrating in a refined manner on more realistic types of assumptions on interface
behavior. For instance, a family of Robin boundary conditions was first discussed in the context of
a chemotaxis-Navier-Stokes system in [4], and more recently a corresponding global existence state-
ment quite precisely addressing (1.1) has been derived in [6]; a steady-state version of a corresponding
fluid-free variant has been analyzed [5].

Dirichlet conditions for the signal: local persistence of energy structure. Main results.
The purpose of the present work is to consider (1.1) along with a set of boundary conditions which in
[32] were proposed as appropriate especially near liquid-air interfaces. In line with the circumstance
that oxygen diffuses substantially faster in air than in water, namely, both the formal and the numer-
ical study in [32] presupposes a fixed given oxygen concentration on such boundary parts. Despite
their correspondingly considerable potential relevance for the comprehension of the phenomena under
consideration, such Dirichlet-type boundary conditions have so far been understood analytically only
to a rudimentary extent, with the available knowledge apparently being restricted to a single result on
global existence of small-data solutions to a problem related to (1.1) in a particular domain bounded
by two parallel planes, involving given data for c on one of these planes ([25]).

In contrast to this intending to include arbitrary bounded domains and initial data of arbitrary size,
in order to limit complexity we shall here assume for simplicity that the entire fluid is surrounded by
air. Accordingly, we shall be concerned with (1.1) under boundary conditions which differ from those
in (1.2) by requiring c to attain a prescribed value c⋆ throughout ∂Ω, and hence we will subsequently
consider the no-flux-Dirichlet-Dirichlet initial-boundary value problem





nt + u · ∇n = ∆n−∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− nc, x ∈ Ω, t > 0,

ut = ∆u+∇P + n∇φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

− n ∂c
∂ν

= 0, c = c⋆, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.5)

in a smoothly bounded domain Ω ⊂ R
3, with c⋆ ≥ 0 and

φ ∈W 2,∞(Ω), (1.6)
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and with initial data such that



n0 ∈W 1,∞(Ω) is nonnegative with n0 6≡ 0,

c0 ∈W 1,∞(Ω) is positive in Ω with c0|∂Ω = c⋆, and that

u0 ∈W 2,∞(Ω;R3) satisfies ∇ · u0 ≡ 0 and u0|∂Ω = 0.

(1.7)

A particular objective, potentially of relevance in wider frameworks of chemotaxis-fluid interaction
under more general boundary conditions, consists in the question how far the apparent loss of global
structural properties of the form in (1.3) can be compensated by the persistence of at least certain
spatially localized variants thereof. In this direction, our analysis will reveal that indeed the natural
candidate ∫

Ω
ζ4n lnn+

1

2

∫

Ω
ζ4

|∇c|2
c

+ α

∫

Ω
ζ4|u|2 (1.8)

can be shown to play a corresponding role of a functional enjoying certain energy-like features whenever
ζ = ζ(x) is suitably smooth and compactly supported in Ω. This observation, forming the core of
our analysis and to be detailed in Section 6, will enable us to supplement some basic regularity
information, to be documented in Section 3, by a crucial strong L1 compactness feature for the first
solution component (Corollary 6.10).

In consequence, we shall see that within an appropriately mild solution concept the problem (1.5)
indeed allows for a fairly comprehensive statement on global existence for widely arbitrary initial
data, as contained in the following main result of this study:

Theorem 1.1 Let Ω ⊂ R
3 be a bounded domain with smooth boundary, let φ ∈W 2,∞(Ω) and c⋆ ≥ 0,

and assume that (n0, c0, u0) is such that (1.7) holds. Then there exist functions




n ∈ L∞((0,∞);L1(Ω)),

c ∈ L∞
loc(Ω× [0,∞)) with c− c⋆ ∈ L2

loc([0,∞);W 1,2
0 (Ω)) and

u ∈ ⋂
p∈[1, 3

2
) L

∞((0,∞);W 1,p
0 (Ω))

(1.9)

such that n ≥ 0 and c ≥ 0 a.e. in Ω× (0,∞), that

ln(n+ 1) ∈ L2
loc([0,∞);W 1,2(Ω)), (1.10)

and that (n, c, u) forms a global generalized solution of (1.5) in the sense of Definition 2.1 below.

2 Approximation and basic estimates

Let us first specify the solution concept which we pursue throughout the sequel, and which by referring
to products of functions simultaneously involving the first two solution components partially parallels
a similar approach designed in [20] for a fluid-free chemotaxis system.

Definition 2.1 Assume that c⋆ ≥ 0, that n0 ∈ L1(Ω) and c0 ∈ L1(Ω) are nonnegative, and that
u0 ∈ L1(Ω;R3). Then a triple of functions





n ∈ L∞((0,∞);L1(Ω)),

c ∈ L∞
loc(Ω̄× [0,∞)) with c− c⋆ ∈ L2

loc([0,∞);W 1,2
0 (Ω)) and

u ∈ L1
loc([0,∞); (W 1,1

0 (Ω));R3)

(2.1)
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will be called a global generalized solution of (1.5) if n ≥ 0 and c ≥ 0 a.e. in Ω× (0,∞) and ∇ · u = 0
a.e. in Ω× (0,∞), if for any ϕ ∈ C∞

0 (Ω× [0,∞)) the equality

∫ ∞

0

∫

Ω
cϕt +

∫

Ω
c0ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇c · ∇ϕ+

∫ ∞

0

∫

Ω
ncϕ−

∫ ∞

0

∫

Ω
c(u · ∇ϕ) (2.2)

holds, if for each ϕ ∈ C∞
0 (Ω× [0,∞);R3) with ∇ · ϕ = 0 the identity

∫ ∞

0

∫

Ω
u · ϕt +

∫

Ω
u0 · ϕ(·, 0) =

∫ ∞

0

∫

Ω
∇u · ∇ϕ−

∫ ∞

0

∫

Ω
n∇φ · ϕ (2.3)

is satisfied, if there exist positive functions ψ ∈ C2([0,∞)) and ρ ∈ C2([0,∞)) fulfilling ψ′ < 0 on
[0,∞) and ρ′(c⋆) = 0 such that

√
|ψ′′(n)|∇n, ψ′(n)∇n, nψ′′(n)∇n and nψ′(n)∇c belong to L2

loc(Ω× [0,∞);R3), (2.4)

and that the inequality

−
∫ ∞

0

∫

Ω
ψ(n)ρ(c)ϕt −

∫

Ω
ψ(n0)ρ(c0)ϕ(·, 0)

≤ −
∫ ∞

0

∫

Ω
ψ′′(n)ρ(c)|∇n|2ϕ

+

∫ ∞

0

∫

Ω

{
− 2ψ′(n)ρ′(c) + nψ′′(n)ρ(c)

}
(∇n · ∇c)ϕ

+

∫ ∞

0

∫

Ω

{
− ψ(n)ρ′′(c) + nψ′(n)ρ′(c)

}
|∇c|2ϕ

−
∫ ∞

0

∫

Ω
ψ′(n)ρ(c)∇n · ∇ϕ+

∫ ∞

0

∫

Ω

{
nψ′(n)ρ(c)− ψ(n)ρ′(c)

}
∇c · ∇ϕ

+

∫ ∞

0

∫

Ω
ψ(n)ρ(c)(u · ∇ϕ)−

∫ ∞

0

∫

Ω
nψ(n)cρ′(c)ϕ (2.5)

is valid for all nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)), and if moreover

∫

Ω
n(·, t) ≤

∫

Ω
n0 for a.e. t > 0. (2.6)

Remark. i) It can readily be verified that the hypotheses in (2.1) and (2.4) are sufficient to warrant
that all expressions in (2.2), (2.3) and (2.5) are indeed well-defined.

ii) By straightforward adaptation of the reasoning in e.g. [20, Lemma 2.5], it can be seen that whenever
(n, c, u) is a global generalized solution in the above sense which has the additional properties that n
and c belong to C0(Ω̄×[0,∞))∩C2,1(Ω̄×(0,∞)), and that u ∈ C0(Ω̄×[0,∞);R3)∩C2,1(Ω×(0,∞);R3),
then (n, c, u), along with some associated pressure P ∈ C1,0(Ω × (0,∞)) constructed in a standard
manner ([28]), actually forms a global classical solution of (1.5).
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In order to construct such solutions via suitable approximation, for ε ∈ (0, 1) we consider





nεt + uε · ∇nε = ∆nε −∇ · (nεF ′
ε(nε)∇cε), x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − Fε(nε)cε, x ∈ Ω, t > 0,

uεt = ∆uε +∇Pε + Fε(nε)∇φ, ∇ · uε = 0, x ∈ Ω, t > 0,
∂nε

∂ν
− nεF

′
ε(nε)

∂cε
∂ν

= 0, cε = c⋆, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.7)

where
Fε(s) :=

s

1 + εs
, s ≥ 0, (2.8)

satisfies

0 ≤ Fε(s) ≤ s and 0 ≤ F ′
ε(s) =

1

(1 + εs)2
≤ 1 for all s ≥ 0 and ε ∈ (0, 1) (2.9)

and
Fε(s) ր s and F ′

ε(s) ր 1 for all s ≥ 0 as εց 0. (2.10)

Similar regularizations have been underlying several previous works on problems of type (1.1)-(1.2) (cf.
[37] or [40], for instance); a slight difference to most precedents consists in the artificial ε-dependent
dampening expressed in the source term Fε(nε)∇φ entering the Stokes subsystem of (2.7).

Now by means of a suitably arranged additional approximation procedure, it can be seen that indeed
each of these problems admits a global classical solution enjoying some basic regularity and bounded-
ness features. In comparison to well-established reasonings in the literature e.g. on (1.1)-(1.2), some
nontrivial adaptations seem in order here in order to appropriately cope with the no-flux boundary
condition for the first solution component, which in the framework of (2.7) apparently cannot be
reduced to a requirement solely referring to nε in a trivial manner.

Lemma 2.2 Let ε ∈ (0, 1). Then there exist functions





nε ∈ C0([Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

cε ∈
⋂

q≥1C
0([0,∞);W 1,q(Ω)) ∩ C2,1(Ω× (0,∞)),

uε ∈ C0(Ω× [0,∞);R3) ∩ C2,1(Ω× (0,∞);R3) and

Pε ∈ C1,0(Ω× (0,∞))

(2.11)

such that nε > 0 in Ω × (0,∞) and cε > 0 in Ω × (0,∞), and that (nε, cε, uε, Pε) solves (2.7) in the
classical sense. Moreover, ∫

Ω
nε(·, t) =

∫

Ω
n0 for all t > 0 (2.12)

and
‖cε(·, t)‖L∞(Ω) ≤M := max

{
‖c0‖L∞(Ω) , c⋆

}
for all t > 0. (2.13)
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Proof. Following [39], we fix (χδ)δ∈(0,1) ⊂ C∞
0 (Ω) such that 0 ≤ χδ ≤ 1 in Ω and χδ ր 1 in Ω as

δ ց 0, and rewriting (2.7) in the equivalent form





nεt + uε · ∇nε = ∆nε −∇ · (nεF ′
ε(nε)∇ĉε), x ∈ Ω, t > 0,

ĉεt + uε · ∇ĉε = ∆ĉε − Fε(nε)ĉε − Fε(nε)c⋆, x ∈ Ω, t > 0,

uεt = ∆uε +∇Pε + Fε(nε)∇φ, ∇ · uε = 0, x ∈ Ω, t > 0,
∂nε

∂ν
− nεF

′
ε(nε)

∂ĉε
∂ν

= 0, ĉε = 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), ĉε(x, 0) = c0(x)− c⋆, uε(x, 0) = u0(x), x ∈ Ω

(2.14)

by substituting cε = ĉε + c⋆, we consider the approximation thereof given by





nεδt + uεδ · ∇nεδ = ∆nεδ −∇ · (χδ(x)nεδF
′
ε(nεδ)∇ĉεδ), x ∈ Ω, t > 0,

ĉεδt + uεδ · ∇ĉεδ = ∆ĉεδ − Fε(nεδ)ĉεδ − Fε(nεδ)c⋆, x ∈ Ω, t > 0,

uεδt = ∆uεδ +∇Pεδ + Fε(nεδ)∇φ, ∇ · uεδ = 0, x ∈ Ω, t > 0,
∂nεδ

∂ν
= 0, ĉεδ = 0, uεδ = 0, x ∈ ∂Ω, t > 0,

nεδ(x, 0) = n0(x), ĉεδ(x, 0) = c0(x)− c⋆, uεδ(x, 0) = u0(x), x ∈ Ω

(2.15)

for δ ∈ (0, 1). Here thanks to the homogeneity of all boundary conditions, (2.15) becomes accessible to
standard parabolic and Stokes semigroup estimates, which enable us to perform standard arguments
in suitable fixed point frameworks (e.g. in the style of the reasonings detailed in [37]) to infer the
existence of Tεδ ∈ (0,∞] and a classical solution (nεδ, cεδ, uεδ, Pεδ) of (2.15) in Ω × (0, Tεδ), with
components belonging to the corresponding analogues of the spaces in (2.11), such that

if Tεδ <∞, then lim sup
tրTεδ

{
‖nεδ(·, t)‖L∞(Ω) + ‖ĉεδ(·, t)‖W 1,q(Ω) + ‖Aβuεδ(·, t)‖L2(Ω)

}
= ∞

for all q > 3 and any β >
3

4
, (2.16)

where A denotes the L2 realization of the Stokes operator under homogeneous Dirichlet boundary
conditions. Moreover, three applications of the maximum principle show that nεδ ≥ 0 in Ω× (0, Tεδ)
and that

0 ≤ ĉεδ + c⋆ ≤M in Ω× (0, Tεδ) (2.17)

for all ε ∈ (0, 1) and δ ∈ (0, 1), and using that χδ = 0 on ∂Ω, upon integrating the first equation in
(2.15) we see that

∫

Ω
nεδ(·, t) =

∫

Ω
n0 for all t ∈ (0, Tεδ), each ε ∈ (0, 1) and any δ ∈ (0, 1). (2.18)

Now since

0 ≤ Fε(s) ≤
1

ε
for all s ≥ 0 and each fixed ε ∈ (0, 1) (2.19)

by (2.8), invoking well-known smoothing estimates for the Stokes semigroup ([14]) we see that for all
β ∈ (0, 1) and any T > 0 we can find C1(ε, β, T ) > 0 such that

‖Aβuεδ(·, t)‖L2(Ω) ≤ C1(ε, β, T ) for all t ∈ (0, T̂εδ) and any δ ∈ (0, 1), (2.20)
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where here and below we abbreviate T̂εδ := min{Tεδ, T} for T > 0. Thereupon, known Lp − Lq

estimates for the Dirichlet heat semigroup on Ω ([27]) can be applied to the second equation from
(2.15) to show that again thanks to (2.19), for all q ≥ 1 and each T > 0 there exists C2(ε, q, T ) > 0
fulfilling

‖ĉεδ(·, t)‖W 1,q(Ω) ≤ C2(ε, q, T ) for all t ∈ (0, T̂εδ) and δ ∈ (0, 1). (2.21)

In view of (2.15) and corresponding smoothing properties of the Neumann heat semigroup over Ω
([13]), together with the fact that

0 ≤ sF ′
ε(s) ≤

1

2ε
for all s ≥ 0 (2.22)

by (2.8), this in turn implies that for all T > 0 one can choose C3(ε, T ) > 0 such that

‖nεδ(·, t)‖L∞(Ω) ≤ C3(ε, T ) for all t ∈ (0, T̂εδ) and δ ∈ (0, 1). (2.23)

In light of (2.16), the estimates in (2.20), (2.21) and (2.23) particularly warrant that actually Tεδ = ∞
for all ε ∈ (0, 1) and δ ∈ (0, 1), and apart from that they can be used in suitably passing to the limit
δ ց 0 in (2.15): Namely, combining (2.21) with (2.20) and the fact that 0 ≤ χδ ≤ 1, we readily
obtain boundedness of (aεδ)δ∈(0,1) in L∞((0, T );Lq(Ω)) for all T > 0 and q > 1, where aεδ(x, t) :=
χδ(x)F

′
ε(nεδ)∇ĉεδ + uεδ, ε ∈ (0, 1), δ ∈ (0, 1). As nεδt = ∆nεδ −∇ · (aεδ(x, t)nεδ) in Ω× (0,∞) due to

(2.15), by means of a standard testing procedure this firstly implies the uniform bound

∫ T

0

∫

Ω
|∇nεδ|2 ≤

∫

Ω
n20 +

∫ T

0

∫

Ω
|aεδnεδ|2

≤
∫

Ω
n20 + C2

3 (ε, T )T sup
δ∈(0,1)

‖aεδ‖2L∞((0,T );L2(Ω)) for all δ ∈ (0, 1), (2.24)

and secondly, through known results on Hölder regularity in scalar parabolic equations ([26]), this
boundedness property of aεδ ensures that for all T > 0 there exist θ1 = θ1(ε, T ) ∈ (0, 1) and C4(ε, T ) >
0 such that

‖nεδ‖
Cθ1,

θ1
2 (Ω×[0,T ])

≤ C4(ε, T ) for all δ ∈ (0, 1). (2.25)

By the same token, (2.20), (2.21) and (2.23) imply that for all T > 0 one can find θ2 = θ2(ε, T ) ∈ (0, 1)
and C5(ε, T ) > 0 satisfying

‖ĉεδ‖
Cθ2,

θ2
2 (Ω×[0,T ])

≤ C5(ε, T ) for all δ ∈ (0, 1), (2.26)

while merely relying on (2.23), (1.7) and maximal Sobolev regularity theory for the Stokes evolution
system ([15]) we see that to each T > 0 there corresponds some C6(ε, p, T ) > 0 fulfilling

∫ T

0

{
‖uεδ(·, t)‖pW 2,p(Ω)

+ ‖uεδt(·, t)‖pLp(Ω)

}
dt ≤ C6(ε, p, T ) for all δ ∈ (0, 1). (2.27)

Apart from that, estimates local in time and excluding the temporal origin can be achieved by succes-
sively employing Schauder theories for the Stokes equations ([29]) and for scalar parabolic equations
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([18]) to see that thanks to (2.25), for all τ > 0 and T > τ there exist θ3 = θ3(ε, τ, T ) ∈ (0, 1),
θ4 = θ4(ε, τ, T ) ∈ (0, 1), C7(ε, τ, T ) > 0 and C8(ε, τ, T ) > 0 such that

‖uεδ‖
C2+θ3,1+

θ3
2 (Ω×[τ,T ])

≤ C7(ε, τ, T ) for all δ ∈ (0, 1) (2.28)

and
‖ĉεδ‖

C2+θ4,1+
θ4
2 (Ω×[τ,T ])

≤ C8(ε, τ, T ) for all δ ∈ (0, 1). (2.29)

Now using that due to a well-known embedding result ([1]) the validity of (2.27) for suitably large

p > 1 in particular warrants that for each T > 0, (uεδ)δ∈(0,1) is bounded in Cθ5,
θ5
2 (Ω× [0, T ]) for some

θ5 = θ5(ε, T ) ∈ (0, 1), in view of (2.24), (2.25), (2.26), (2.28) and (2.29) we may extract a subsequence
(δk)k∈N ⊂ (0, 1) such that δk ց 0 as k → ∞, and that

nεδ → nε in L∞
loc(Ω× [0,∞)),

∇nεδ ⇀ ∇nε in L2
loc(Ω× [0,∞)),

ĉεδ → ĉε in L∞
loc(Ω× [0,∞)) ∩ C2,1

loc (Ω× (0,∞)) and

uεδ → uε in L∞
loc(Ω× [0,∞)) ∩ C2,1

loc (Ω× (0,∞))

(2.30)

as δ = δk ց 0, with some limit triple (nε, ĉε, uε) which, along with a corresponding associated pressure
Pε ∈ C1,0(Ω× (0,∞)) constructed via a standard argument ([28]), satisfies the second and third sub-
problem of (2.14) in the classical sense in Ω× (0,∞), and which solves the first evolution problem in
(2.14) in the natural weak sense specified e.g. in [18]. According to the smoothness properties of nε, uε
and ĉε asserted by (2.30), (2.25), (2.28) and (2.29), however, upon application of well-known regularity
theory for generalized solutions of scalar parabolic equations ([21], [18]) it can, finally, a posteriori be
shown that actually nε also belongs to C2,1(Ω × (0,∞)) and satisfies its respective initial-boundary
value problem in (2.14) in the classical sense (cf. also [7] for a detailed reasoning in a closely related
situation).
Transforming back via defining cε := ĉε + c⋆, we readily infer that indeed (nε, cε, uε, Pε) enjoys the
regularity features in (2.11) and solves (2.7) classically. According to (2.17) and (2.30), this solution
moreover satisfies (2.13), while (2.12) is a consequence of (2.18) and (2.30), and the claimed strict
positivity features result from (1.7) and the strong maximum principle. �

3 Basic regularity features of ∇cε and ∇nε

A basic but crucial regularity information on the taxis gradient can be obtained through quite a
standard testing procedure:

Lemma 3.1 Let T > 0. Then there exists C(T ) > 0 such that

∫ T

0

∫

Ω
|∇cε|2 ≤ C(T ) for all ε ∈ (0, 1). (3.1)

Proof. Using that cε − c⋆ = 0 on ∂Ω × (0,∞) and that ∇ · uε = 0, from the second equation in
(2.7), (2.9), (2.12) and (2.13) we obtain that

d

dt

{
1

2

∫

Ω
c2ε − c⋆

∫

Ω
cε

}
+

∫

Ω
|∇cε|2 = −

∫

Ω
Fε(nε)c

2
ε + c⋆

∫

Ω
Fε(nε)cε

9



≤ c⋆M

∫

Ω
n0 for all t > 0,

from which (3.1) directly results upon a time integration. �

As a consequence, we obtain an estimate for ∇nε if a suitably strong nε-dependent weight is included:

Lemma 3.2 For all T > 0 there exists C(T ) > 0 such that

∫ T

0

∫

Ω

|∇nε|2
(nε + 1)2

≤ C(T ) for all ε ∈ (0, 1). (3.2)

Proof. According to the first equation in (2.7) and Young’s inequality,

d

dt

∫

Ω
ln(nε + 1) =

∫

Ω

|∇nε|2
(nε + 1)2

−
∫

Ω

nεF
′
ε(nε)

(nε + 1)2
∇nε · ∇cε

≥ 1

2

∫

Ω

|∇nε|2
(nε + 1)2

− 1

2

∫

Ω

n2εF
′2
ε (nε)

(nε + 1)2
|∇cε|2

≥ 1

2

∫

Ω

|∇nε|2
(nε + 1)2

− 1

2

∫

Ω
|∇cε|2 for all t > 0,

again because ∇ · uε = 0 and 0 ≤ F ′
ε ≤ 1. Since 0 ≤

∫
Ω ln(nε + 1) ≤

∫
Ω nε =

∫
Ω n0 for all t > 0 by

(2.12), an integration thereof shows that (3.2) is a consequence of Lemma 3.1. �

4 Regularity of velocity and pressure in the Stokes system with
sources in L1

This purpose of this preparatory section is to provide some regularity information on solutions to the
incompressible Stokes evolution equations driven by forcing terms for which bounds are known only
with respect to spatial L1 norms. Whereas regularity features of the corresponding velocity field can
be obtained in quite a straightforward manner, deriving appropriate estimates for the pressure, as
playing a crucial role in the course of our subsequent localization procedure (see Lemma 6.9), seems
to require some additional efforts.

Our first step toward this consists in an essentially well-known observation on regularity of velocities.

Lemma 4.1 Let p ∈ (1, 32). Then there exists C(p) > 0 with the property that whenever T > 0,

v0 ∈ C0(Ω;R3) ∩ L2
σ(Ω), v ∈ C0(Ω × [0, T ];R3) ∩ L2((0, T );W 1,2

0 (Ω;R3)) ∩ C2,1(Ω × (0, T );R3) and
f ∈ C0(Ω× [0, T ];R3) are such that ∇ · v = 0 in Ω× (0, T ) and

{
vt +Av = Pf in Ω× (0, T ),

v(·, 0) = v0 in Ω,
(4.1)

we have

‖v(·, t)‖L2p(Ω) ≤ C(p) ·
{
‖v0‖L2p(Ω) + sup

s∈(0,T )
‖f(·, s)‖L1(Ω)

}
for all t ∈ (0, T ) (4.2)
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and
‖v(·, t)‖W 1,p(Ω) ≤ C(p) ·

{
‖v0‖W 1,2(Ω) + sup

s∈(0,T )
‖f(·, s)‖L1(Ω)

}
for all t ∈ (0, T ). (4.3)

Proof. As solutions in the indicated class admit a representation in terms of an associated Duhamel
formula ([28, Theorem IV 2.4.1]), this can be seen in a standard manner using well-known smoothing
properties of the Stokes semigroup (cf. e.g. [39, Corollary 3.4]). �

By suitably combining this with the comprehensive theory on pressure regularity contained in [28], we
obtain the following consequence which in Section 6 will turn out to be an indispensible cornerstone
for our approach.

Lemma 4.2 Let T > 0, and let r > 1 and p ∈ (1, 32). Then there exists C(p, r, T ) > 0 such that if

v0 ∈ C0(Ω;R3) ∩ L2
σ(Ω), v ∈ C0(Ω × [0, T ];R3) ∩ L2((0, T );W 1,2

0 (Ω;R3)) ∩ C2,1(Ω × (0, T );R3) and
f ∈ C0(Ω× [0, T ];R3) satisfy ∇ · v = 0 in Ω× (0, T ) and are such that (4.1) holds, then there exists a
unique

P ∈ L2((0, T );Lp(Ω)) such that

∫

Ω
P (·, t) = 0 for a.e. t ∈ (0, T ), (4.4)

that
vt = ∆v +∇P + f in D′(Ω× (0, T )), (4.5)

and that ∫ T

0
‖P (·, t)‖rLp(Ω)dt ≤ C(p, r, T ) ·

{
‖v0‖

W 2, 3
2 (Ω)

+ sup
t∈(0,T )

‖f(·, t)‖L1(Ω)

}
. (4.6)

Proof. In view of the assumed regularity properties of v0, v and f , the statement on existence and
uniqeness of a function P fulfilling (4.4) and (4.5) follows from standard theory on the Stokes system
([28, Lemma II 2.1.1, Lemma II 2.2.2, Theorem IV 2.6.3]), so that it remains to verify (4.6). To this

end, given p ∈ (1, 32) we fix q ∈ (p, 32) and use that then 3(q−1)
2q < 1

2 , to choose some number α such

that both α > 3(q−1)
2q and α < 1

2 , and then observe that the former inequality warrants the existence
of C1 > 0 fulfilling

‖A−αPϕ‖Lq(Ω) ≤ C1‖ϕ‖L1(Ω) for all ϕ ∈ L1(Ω;R3) (4.7)

(see e.g. [39, Lemma 3.3]), and that the second restriction on α ensures that W
1, p

p−1 (Ω;R3) →֒
D(Aα

q
q−1

), and that thus

‖Aαϕ‖
L

q
q−1 (Ω)

≤ C2‖ϕ‖
W

1,
p

p−1 (Ω)
for all ϕ ∈ D(Aα

q
q−1

) (4.8)

with some C2 > 0 ([16]). We furthermore note that our hypothesis p < 3
2 guarantees that p

p−1 > 3

and hence W
1, p

p−1 (Ω) →֒ L∞(Ω), so that we can pick C3 > 0 such that

‖ϕ‖L∞(Ω) ≤ C3‖ϕ‖
W

1,
p

p−1 (Ω)
for all ϕ ∈W

1, p
p−1 (Ω;R3). (4.9)
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Now on the basis of (4.5), for arbitrary ϕ ∈ C∞
0 (Ω × (0, T );R3) fulfilling ∇ · ϕ = 0 we can integrate

by parts and use (4.8) and (4.9) to estimate
∣∣∣∣
∫ T

0

∫

Ω
∇P · ϕ

∣∣∣∣ =

∣∣∣∣
∫ T

0

∫

Ω
vt · ϕ+

∫ T

0

∫

Ω
∇v · ∇ϕ−

∫ T

0

∫

Ω
f · ϕ

∣∣∣∣

=

∣∣∣∣
∫ T

0

∫

Ω
A−αvt ·Aαϕ+

∫ T

0

∫

Ω
∇v · ∇ϕ−

∫ T

0

∫

Ω
f · ϕ

∣∣∣∣

≤
∫ T

0
‖A−αvt(·, t)‖Lq(Ω)‖Aαϕ(·, t)‖

L
q

q−1 (Ω)
dt

+

∫ T

0
‖∇v(·, t)‖Lp(Ω)‖∇ϕ(·, t)‖

L
p

p−1 (Ω)
dt

+

∫ T

0
‖f(·, t)‖L1(Ω)‖ϕ(·, t)‖L∞(Ω)dt

≤ C2

∫ T

0
‖A−αvt(·, t)‖Lq(Ω)‖ϕ(·, t)‖

W
1,

p
p−1 (Ω)

dt

+

∫ T

0
‖v(·, t)‖W 1,p(Ω)‖ϕ‖

W
1,

p
p−1 (Ω)

dt

+C3

∫ T

0
‖f(·, t)‖L1(Ω)‖ϕ(·, t)‖

W
1,

p
p−1 (Ω)

dt

≤
{
C2‖A−αvt‖Lr((0,T );Lq(Ω)) + T

1
r ‖v‖L∞((0,T );W 1,p(Ω))

+C3T
1
r ‖f‖L∞((0,T );L1(Ω))

}
· ‖ϕ‖

L
r

r−1 ((0,T );W
1,

p
p−1 (Ω))

.

Therefore, a well-known result on pressure regularity in the Stokes system ([28, Lemma IV 1.4.1],
cf. also [28, Lemma II 2.1.1 and Lemma II 2.2.2]) says that with some C4 = C4(p, r, T ) > 0 we have

‖P‖Lr((0,T );Lp(Ω)) ≤ C4 ·
{
‖A−αvt‖Lr((0,T );Lq(Ω)) + ‖v‖L∞((0,T );W 1,p(Ω)) + ‖f‖L∞((0,T );L1(Ω))

}
. (4.10)

Here recalling Lemma 4.1, we obtain C5 = C5(p) > 0 such that

‖v‖L∞((0,T );W 1,p(Ω)) ≤ C5 ·
{
‖v0‖W 1,2(Ω) + ‖f‖L∞((0,T );L1(Ω))

}
, (4.11)

whereas observing that (4.1) implies that ∂tA
−αv + A(A−αv) = A−αPf in Ω × (0, T ) allows us to

invoke a standard result on maximal Sobolev regularity in the Stokes evolution equation ([15]) to fix
C6 = C6(p, r, T ) > 0 satisfying

‖A−αvt‖Lr((0,T );Lq(Ω)) ≤ C6 ·
{
‖A−αv0‖W 2,q(Ω) + ‖A−αPf‖Lr((0,T );Lq(Ω))

}
. (4.12)

Since clearly ‖A−αv0‖W 2,q(Ω) ≤ C7‖v0‖
W 2, 3

2 (Ω)
with some C7 = C7(p) > 0, and since

‖A−αPf‖Lr((0,T );Lq(Ω)) ≤ T
1
r ‖A−αPf‖L∞((0,T );Lq(Ω))

≤ C1T
1
r ‖f‖L∞((0,T );L1(Ω))
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according to (4.7), inserting (4.11) and (4.12) into (4.10) yields (4.6). �

Let us explicitly extract two immediate conclusions from Lemma 4.1 and Lemma 4.2 in a form in
which they will be referred to below.

Lemma 4.3 Let p ∈ (1, 32). Then there exists C(p) > 0 such that for each ε ∈ (0, 1),

‖uε(·, t)‖L2p(Ω) + ‖∇uε(·, t)‖Lp(Ω) ≤ C(p) for all t > 0. (4.13)

Proof. In view of (2.12), (1.7), this is actually a by-product of Lemma 4.1. �

Lemma 4.4 Let r > 1 and p ∈ (1, 32). Then for all T > 0 there exists C(p, r, T ) > 0 such that
∫ T

0
‖Pε(·, t)‖rLp(Ω)dt ≤ C(p, r, T ) for all ε ∈ (0, 1). (4.14)

Proof. This follows directly from Lemma 4.2, (1.7) and (2.12). �

5 Estimates for time derivatives. Construction of a limit (n, c, u)

Before proceeding to the main part of our analysis, let us utilize the estimates for nε, cε and uε from
Lemma 2.2, Lemma 3.1, Lemma 3.2 and Lemma 4.3 to construct a candidate (n, c, u) for a solution
to (1.5) via an appropriate subsequence extraction. A last preparation therefor is provided by the
following statement on regularity with respect to the time variable.

Lemma 5.1 For all T > 0 there exists C(T ) > 0 such that
∫ T

0

∥∥∥∂t ln
(
nε(·, t) + 1

)∥∥∥
(W 2,2

0 (Ω))⋆
dt ≤ C(T ) for all ε ∈ (0, 1) (5.1)

and ∫ T

0
‖cεt(·, t)‖2(W 1,4

0 (Ω))⋆
dt ≤ C(T ) for all ε ∈ (0, 1). (5.2)

Proof. Proceeding in a standard manner, for fixed ϕ ∈ C∞
0 (Ω) and t > 0 we integrate by parts in

(2.7) and use the Cauchy-Schwarz inequality and again the identity ∇ · uε = 0 to obtain that
∣∣∣∣
∫

Ω
∂t ln(nε + 1) · ϕ

∣∣∣∣ =

∣∣∣∣
∫

Ω

|∇nε|2
(nε + 1)2

ϕ−
∫

Ω

∇nε
nε + 1

· ∇ϕ

−
∫

Ω

nεF
′
ε(nε)

(nε + 1)2
(∇nε · ∇cε)ϕ+

∫

Ω

nεF
′
ε(nε)

nε + 1
∇cε · ∇ϕ

+

∫

Ω
ln(nε + 1)(uε · ∇ϕ)

∣∣∣∣

≤
{∫

Ω

|∇nε|2
(nε + 1)2

}
· ‖ϕ‖L∞(Ω) +

{∫

Ω

|∇nε|2
(nε + 1)2

} 1
2

· ‖∇ϕ‖L2(Ω)

+

{∫

Ω

|∇nε|2
(nε + 1)2

} 1
2

·
{∫

Ω
|∇cε|2

} 1
2

· ‖ϕ‖L∞(Ω) +

{∫

Ω
|∇cε|2

} 1
2

· ‖∇ϕ‖L2(Ω)

+

{∫

Ω
ln3(nε + 1)

} 1
3

· ‖uε‖L2(Ω)‖∇ϕ‖L6(Ω) for all ε ∈ (0, 1).
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As W 2,2(Ω) →֒ W 1,6(Ω) →֒ L∞(Ω), this entails the existence of C1 > 0 such that due to Young’s
inequality, for all ε ∈ (0, 1) and t > 0 we have

∥∥∥∂t ln(nε + 1)
∥∥∥
(W 2,2

0 (Ω))⋆
≤ C1 ·

{∫

Ω

|∇nε|2
(nε + 1)2

+

{∫

Ω

|∇nε|2
(nε + 1)2

} 1
2

+

{∫

Ω

|∇nε|2
(nε + 1)2

} 1
2

·
{∫

Ω
|∇cε|2

} 1
2

+

{∫

Ω
|∇cε|2

} 1
2

+

{∫

Ω
ln3(nε + 1)

} 1
3

‖uε‖L2(Ω)

}

≤ C1 ·
{
2

∫

Ω

|∇nε|2
(nε + 1)2

+

∫

Ω
|∇cε|2 +

{∫

Ω
ln3(nε + 1)

} 1
3

‖uε‖L2(Ω) + 1

}
,

which in view of Lemma 3.2, Lemma 3.1, Lemma 4.3 and (2.12) entails (5.1) upon a time integration,
because ln3(s+ 1) ≤ 54

e2
(s+ 1) for all s ≥ 0.

Likewise, for ϕ ∈ C∞
0 (Ω), t > 0 and ε ∈ (0, 1) we can estimate

∣∣∣∣
∫

Ω
cεtϕ

∣∣∣∣ =

∣∣∣∣−
∫

Ω
∇cε · ∇ϕ−

∫

Ω
Fε(nε)cεϕ−

∫

Ω
(uε · ∇cε)ϕ

∣∣∣∣

≤
{∫

Ω
|∇cε|2

} 1
2

‖∇ϕ‖L2(Ω) + ‖nε‖L1(Ω)‖cε‖L∞(Ω)‖ϕ‖L∞(Ω)

+ ‖uε‖L2(Ω) ·
{∫

Ω
|∇cε|2

} 1
2

· ‖ϕ‖L∞(Ω)

and use that W 1,4(Ω) →֒ L∞(Ω) and W 1,4(Ω) →֒W 1,2(Ω) to find C2 > 0 such that consequently

‖cεt‖2(W 1,4
0 (Ω))⋆

≤ C2 ·
{∫

Ω
|∇cε|2 + ‖nε‖2L1(Ω)‖cε‖2L∞(Ω) + ‖uε‖2L2(Ω)

∫

Ω
|∇cε|2

}

for all ε ∈ (0, 1) and t > 0, hence implying (5.2) through Lemma 3.1, (2.12), (2.13) and Lemma 4.3.
�

The following conclusion thereby becomes rather straightforward:

Lemma 5.2 There exist functions n, c and u such that (1.9) holds, that n ≥ 0, c ≥ 0 and ∇ · u = 0
a.e. in Ω×(0,∞), that (1.10) and (2.6) are satisfied, and such that with some (εj)j∈N ⊂ (0, 1) fulfilling
εj ց 0 as j → ∞ we have

nε → n a.e. in Ω× (0,∞), (5.3)

ln(nε + 1) → ln(n+ 1) in L2
loc(Ω× [0,∞)), (5.4)

∇ ln(nε + 1)⇀ ∇ ln(n+ 1) in L2
loc(Ω× [0,∞)), (5.5)

cε → c in L2
loc(Ω× [0,∞)) and a.e. in Ω× (0,∞), (5.6)

cε
⋆
⇀ c in L∞

loc(Ω× [0,∞)), (5.7)
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∇cε ⇀ ∇c in L2
loc(Ω× [0,∞)), (5.8)

uε
⋆
⇀ u in L∞((0,∞);Lp(Ω)) for all p ∈ (1, 3) as well as (5.9)

∇uε ⋆
⇀ ∇u in L∞((0,∞);Lp(Ω)) for all p ∈ (1,

3

2
). (5.10)

Proof. All statements can readily be seen by means of a straightforward extraction procedure
based on the estimates provided by (2.12), (2.13), Lemma 3.1, Lemma 3.2, Lemma 4.3 and the relative
compactness of ((ln(nε + 1))ε∈(0,1) and (cε)ε∈(0,1) in L

2
loc(Ω × [0,∞)), as thereby implied through an

Aubin-Lions type lemma ([31]). �

6 Local energy. Precompactness of (nε)ε∈(0,1) in L1
loc(Ω× [0,∞))

6.1 Collecting prospective constituents for a local energy inequality

Next approaching the core of our analysis, we prepare our study of a suitably localized variant of (1.3)
by collecting some basic evolution properties of respectively localized versions of the integrals making
up the quasi-energy functional therein. Our first observation in this regard concerns the corresponding
logarithmic entropy.

Lemma 6.1 Let χ ∈ C∞
0 (Ω) and ε ∈ (0, 1). Then

d

dt

∫

Ω
χnε lnnε +

∫

Ω
χ
|∇nε|2
nε

=

∫

Ω
χF ′

ε(nε)∇nε · ∇cε −
∫

Ω
( lnnε + 1)∇nε · ∇χ

−
∫

Ω
cε ·

{
( lnnε + 2)F ′

ε(nε) + nε( lnnε + 1)F ′′
ε (nε)

}
∇nε · ∇χ−

∫

Ω
nε( lnnε + 1)F ′

ε(nε)cε∆χ

+

∫

Ω
nε lnnε(uε · ∇χ) for all t > 0. (6.1)

Proof. We integrate by parts in (2.7) to see that

d

dt

∫

Ω
χnε lnnε =

∫

Ω
χ( lnnε + 1)∇ ·

{
∇nε − nεF

′
ε(nε)∇cε

}
−
∫

Ω
χ( lnnε + 1)(uε · ∇nε)

= −
∫

Ω

{
χ
∇nε
nε

+ ( lnnε + 1)∇χ
}
·
{
∇nε − nεF

′
ε(nε)∇cε

}

−
∫

Ω
χ
{
uε · ∇(nε lnnε)

}

= −
∫

Ω
χ
|∇nε|2
nε

+

∫

Ω
χF ′

ε(nε)∇nε · ∇cε

−
∫

Ω
( lnnε + 1)∇nε · ∇χ+

∫

Ω
nε( lnnε + 1)F ′

ε(nε)∇cε · ∇χ

+

∫

Ω
nε lnnε(uε · ∇χ) for all t > 0,
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because ∇ · uε = 0. As herein another integration by parts shows that

∫

Ω
nε(lnnε + 1)F ′

ε(nε)∇cε · ∇χ = −
∫

Ω
cε∇

{
nε(lnnε + 1)F ′

ε(nε)
}
· ∇χ−

∫

Ω
nε(lnnε + 1)F ′

ε(nε)cε∆χ

for all t > 0, computing

d

ds

{
s(ln s+ 1)F ′

ε(s)
}
= (ln s+ 2)F ′

ε(s) + s(ln s+ 1)F ′′
ε (s), s > 0,

we immediately obtain (6.1) from this. �

Next, the evolution of a localized version of the Fisher information functional in (1.3) can be described
as follows.

Lemma 6.2 If χ ∈ C∞
0 (Ω), then for any ε ∈ (0, 1),

1

2

d

dt

∫

Ω
χ
|∇cε|2
cε

+

∫

Ω
χcε|D2 ln cε|2

= −
∫

Ω
χF ′

ε(nε)∇nε · ∇cε −
1

2

∫

Ω
χFε(nε)

|∇cε|2
cε

−
∫

Ω
χ
1

cε
∇cε · (∇uε · ∇cε)

−
∫

Ω

1

cε
(D2cε · ∇cε) · ∇χ+

1

2

∫

Ω

|∇cε|2
c2ε

(∇cε · ∇χ)

+
1

2

∫

Ω

|∇cε|2
cε

(uε · ∇χ) for all t > 0. (6.2)

Proof. Using the pointwise identities ∇cε ·∇∆cε =
1
2∆|∇cε|2−|D2cε|2 and ∇|∇cε|2 = 2D2cε ·∇cε,

on the basis of (2.7) and several integrations by parts we compute

1

2

d

dt

∫

Ω
χ
|∇cε|2
cε

=

∫

Ω
χ
∇cε
cε

· ∇
{
∆cε − Fε(nε)cε − uε · ∇cε

}
− 1

2

∫

Ω
χ
|∇cε|2
c2ε

{
∆cε − Fε(nε)cε − uε · ∇cε

}

=
1

2

∫

Ω
χ
1

cε
∆|∇cε|2 −

∫

Ω
χ
|D2cε|2
cε

−
∫

Ω
χF ′

ε(nε)∇nε · ∇cε −
∫

Ω
χFε(nε)

|∇cε|2
cε

−
∫

Ω
χ
1

cε
∇cε · (∇uε · ∇cε)−

1

2

∫

Ω
χ
1

cε
(uε · ∇|∇cε|2)

+

∫

Ω
χ
1

c2ε
∇cε · (D2cε · ∇cε)−

∫

Ω
χ
|∇cε|4
c3ε

+
1

2

∫

Ω

|∇cε|2
c2ε

∇cε · ∇χ

+
1

2

∫

Ω
χFε(nε)

|∇cε|2
cε

+
1

2

∫

Ω
χ
|∇cε|2
c2ε

(uε · ∇cε)

=

∫

Ω
χ
1

c2ε
∇cε · (D2cε · ∇cε)−

∫

Ω

1

cε
(D2cε · ∇cε) · ∇χ−

∫

Ω
χ
|D2cε|2
cε

−
∫

Ω
χF ′

ε(nε)∇nε · ∇cε −
1

2

∫

Ω
χFε(nε)

|∇cε|2
cε

−
∫

Ω
χ
1

cε
∇cε · (∇uε · ∇cε)

−1

2

∫

Ω
χ
|∇cε|2
c2ε

(uε · ∇cε) +
1

2

∫

Ω

|∇cε|2
cε

(uε · ∇χ)
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+

∫

Ω
χ
1

c2ε
∇cε · (D2cε · ∇cε)−

∫

Ω
χ
|∇cε|4
c3ε

+
1

2

∫

Ω

|∇cε|2
c2ε

∇cε · ∇χ

+
1

2

∫

Ω
χ
|∇cε|2
c2ε

(uε · ∇cε)

= −
∫

Ω
χ
|D2cε|2
cε

+ 2

∫

Ω
χ
1

c2ε
∇cε · (D2cε · ∇cε)−

∫

Ω
χ
|∇cε|4
c3ε

−
∫

Ω
χF ′

ε(nε)∇nε · ∇cε −
1

2

∫

Ω
χFε(nε)

|∇cε|2
cε

−
∫

Ω
χ
1

cε
∇cε · (∇uε · ∇cε)

−
∫

Ω

1

cε
(D2cε · ∇cε) · ∇χ+

1

2

∫

Ω

|∇cε|2
c2ε

∇cε · ∇χ+
1

2

∫

Ω

|∇cε|2
cε

(uε · ∇χ)

for all t > 0. As

cε|D2 ln cε|2 =
|D2cε|2
cε

− 2
∇cε · (D2cε · ∇cε)

cε2
+

|∇cε|4
c3ε

in Ω× (0,∞),

this is equivalent to (6.2). �

Finally, localizing in the corresponding fluid part does involve the pressure in a natural manner:

Lemma 6.3 Let χ ∈ C∞
0 (Ω). Then

1

2

d

dt

∫

Ω
χ|uε|2 +

∫

Ω
χ|∇uε|2 =

∫

Ω
χFε(nε)(uε · ∇φ)−

∫

Ω
uε · (∇uε · ∇χ)−

∫

Ω
Pε(uε · ∇χ) (6.3)

for all t > 0 and ε ∈ (0, 1).

Proof. On integrating by parts, from the third equation in (2.7) we directly obtain that again
since ∇ · uε = 0,

1

2

d

dt

∫

Ω
χ|uε|2 =

∫

Ω
χuε ·

{
∆uε +∇Pε + Fε(nε)∇φ

}

= −
∫

Ω
χ|∇uε|2 −

∫

Ω
uε · (∇uε · ∇χ)−

∫

Ω
Pε(uε · ∇χ) +

∫

Ω
χFε(nε)(uε · ∇φ)

for all t > 0, as claimed. �

6.2 Estimating the right-hand sides of (6.1), (6.2) and (6.3)

In order to prepare an appropriate estimation of the ill-signed contributions to (6.1), (6.2) and (6.3),
let us state the result of a straightforward application of the Hölder and the Sobolev inequality that
will explicitly be referred to in Lemma 6.5 and Lemma 6.7.

Lemma 6.4 Let ζ ∈ C∞(Ω) be nonnegative, and suppose that m ∈ (0, 12) and q ≥ m
4 are such that

q ≤ 1 + m
6 . Then there exists C(m, q) > 0 such that

∫

Ω
ζmnqε ≤ C(m, q) ·

{∫

Ω
ζ4

|∇nε|2
nε

}m
4

+ C(m, q) (6.4)
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for all t > 0 and ε ∈ (0, 1).

Proof. We first use the Hölder inequality to see that thanks to (2.12),

∫

Ω
ζmnqε =

∫

Ω
(ζ2

√
nε)

m
2 · n

4q−m
4

ε

≤ |Ω|
m−6q+6

6 ‖nε‖
4q−m

4

L1(Ω)
‖ζ2√nε‖

m
2

L6(Ω)
for all t > 0, (6.5)

because 4q−m ≥ 0 and
m
2

6 + 4q−m
4 ≤ 1 according to our restrictions that q ≥ m

4 and q ≤ 1+ m
6 . Here

a Sobolev inequality provides C1 > 0 such that for all ε ∈ (0, 1),

‖ζ2√nε‖2L6(Ω) ≤ C1

∫

Ω

∣∣∣∇(ζ2
√
nε)

∣∣∣
2
+ C1

∫

Ω
(ζ2

√
nε)

2

= C1

∫

Ω

∣∣∣1
2
ζ2

∇nε√
nε

+ 2ζ
√
nε∇ζ

∣∣∣
2
+ C1

∫

Ω
ζ4nε

≤ 1

2
C1

∫

Ω
ζ4

|∇nε|2
nε

+ 8C1‖ζ∇ζ‖2L∞(Ω)

∫

Ω
nε + C1‖ζ‖4L∞(Ω)

∫

Ω
nε for all t > 0.

Once more by means of (2.12), combining this with (6.5) yields (6.4) �

A first application thereof indeed enables us to appropriately relate the right-hand side in (6.1) to the
dissipated quantity on the left, provided that the weight function therein can be written as the fourth
power of a suitably smooth function.

Lemma 6.5 Let ζ ∈ C∞(Ω) be nonnegative. Then for each η > 0 one can find C(η) > 0 such that

−
∫

Ω
(lnnε + 1)∇nε · ∇ζ4 −

∫

Ω
cε ·

{
(lnnε + 2)F ′

ε(nε) + nε(lnnε + 1)F ′′
ε (nε)

}
∇nε · ∇ζ4

−
∫

Ω
nε( lnnε + 1)F ′

ε(nε)cε∆ζ
4 +

∫

Ω
nε lnnε(uε · ∇ζ4)

≤ η

∫

Ω
ζ4

|∇nε|2
nε

+ C(η) for all t > 0 and ε ∈ (0, 1). (6.6)

Proof. By means of Young’s inequality and (2.12), for all t > 0 we can estimate

−
∫

Ω
(lnnε + 1)∇nε · ∇ζ4 = −4

∫

Ω
ζ3(lnnε + 1)∇nε · ∇ζ

≤ η

4

∫

Ω
ζ4

|∇nε|2
nε

+
16

η

∫

Ω
ζ2|∇ζ|2nε

(
| lnnε|+ 1

)2

≤ η

4

∫

Ω
ζ4

|∇nε|2
nε

+
32

η
‖∇ζ‖2L∞(Ω)

∫

Ω
ζ2nε ln

2 nε +
32

η
‖ζ∇ζ‖2L∞(Ω)

∫

Ω
nε, (6.7)
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and using (2.13) and the inequalities |F ′
ε(s)| ≤ 1 and |sF ′′

ε (s)| = εs
(1+εs)2

≤ 1
4 , s ≥ 0, we similarly obtain

that

−
∫

Ω
cε ·

{
(lnnε + 2)F ′

ε(nε) + nε(lnnε + 1)F ′′
ε (nε)

}
∇nε · ∇ζ4

≤ M

∫

Ω

{
| lnnε|+ 2 +

1

4
(| lnnε|+ 1)

}
|∇nε| · |∇ζ4|

= M

∫

Ω
ζ3
(
5| lnnε|+ 9

)
|∇nε| · |∇ζ|

≤ η

4

∫

Ω
ζ4

|∇nε|2
nε

+
M2

η

∫

Ω
ζ2|∇ζ|2nε

(
5| lnnε|+ 9

)2

≤ η

4

∫

Ω
ζ4

|∇nε|2
nε

+
50M2

η
‖∇ζ‖2L∞(Ω)

∫

Ω
ζ2nε ln

2 nε +
162M2

η
‖ζ∇ζ‖2L∞(Ω)

∫

Ω
nε (6.8)

for all t > 0. Since ∆ζ4 = 4ζ3∆ζ + 12ζ2|∇ζ|2 in Ω, we furthermore see that

−
∫

Ω
nε( lnnε + 1)F ′

ε(nε)cε∆ζ
4

≤ M ·
{
4‖ζ∆ζ‖L∞(Ω) + 12‖∇ζ‖2L∞(Ω)

}∫

Ω
ζ2nε(| lnnε|+ 1) for all t > 0, (6.9)

and in order to finally estimate the rightmost summand on the left of (6.6), we fix any p ∈ (32 , 2) and
use the Hölder inequality to obtain that

−
∫

Ω
nε lnnε(uε · ∇ζ4) = −4

∫

Ω
ζ3nε lnnε(uε · ∇ζ)

≤ 4‖∇ζ‖L∞(Ω)‖uε‖
L

p
p−1 (Ω)

·
{∫

Ω
ζ3pnpε| lnnε|p

} 1
p

for all t > 0. (6.10)

Collecting (6.7)-(6.10), we thus infer the existence of C1(η) > 0 such that for any choice of ε ∈ (0, 1),

−
∫

Ω
(lnnε + 1)∇nε · ∇ζ4 −

∫

Ω
·
{
(lnnε + 2)F ′

ε(nε) + nε(lnnε + 1)F ′′
ε (nε)

}
∇nε · ∇ζ4

−
∫

Ω
nε( lnnε + 1)F ′

ε(nε)cε∆ζ
4 +

∫

Ω
nε lnnε(uε · ∇ζ4)

≤ 3η

4

∫

Ω
ζ4

|∇nε|2
nε

+ C1(η)

∫

Ω
ζ2
(
nε ln

2 nε + nε| lnnε|+nε
)

+C1(η)‖uε‖
L

p
p−1 (Ω)

·
{∫

Ω
ζ3pnpε| lnnε|p

} 1
p

for all t > 0. (6.11)

Here to control the second summand on the right, we take C2 > 0 large enough such that s ln2 s +
s| ln s|+s ≤ C2s

4
3 +1 for all s > 0, and then invoke Lemma 6.4 and Young’s inequality to find C3(η) > 0

fulfilling

C1(η)

∫

Ω
ζ2
(
nε ln

2 nε + nε| lnnε|+ nε

)
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≤ C1(η)C2

∫

Ω
ζ2n

4
3
ε + C1(η)‖ζ‖2L2(Ω)

≤ C3(η) ·
{∫

Ω
ζ4

|∇nε|2
nε

} 1
2

+ C3(η)

≤ η

8

∫

Ω
ζ4

|∇nε|2
nε

+
2C2

3 (η)

η
+ C3(η) for all t > 0 and ε ∈ (0, 1). (6.12)

In the last summand of (6.11), we use that the restriction p > 3
2 warrants that p

p−1 < 3, which through
Lemma 4.3 entails the existence of C4 > 0 satisfying

‖uε‖
L

p
p−1 (Ω)

≤ C4 for all t > 0 and ε ∈ (0, 1). (6.13)

Furthermore, due to the inequality p < 2 we have p < 1 + p
2 , whence it is possible to fix q > p such

that q ≤ 1 + p
2 . Then since q > p, there exists C5 > 0 such that sp| ln s|p ≤ C5s

q + 1 for all s > 0, so

that using that m := 3p satisfies m < 6 < 12 as well as m
4 = 3p

4 < p < q ≤ 1 + p
2 = 1 + m

6 , once more
relying on Lemma 6.4 we see that with some C6 > 0,

{∫

Ω
ζ3pnpε| lnnε|p

} 1
p

≤
{
C5

∫

Ω
ζ3pnqε +

∫

Ω
ζ3p

} 1
p

≤
{
C6 ·

{∫

Ω
ζ4

|∇nε|2
nε

} 3p
4

+ C6

} 1
p

≤ (2C6)
1
p ·

{
ζ4

|∇nε|2
nε

} 3
4

+ (2C6)
1
p for all t > 0 and ε ∈ (0, 1).

In conjunction with (6.13) and again Young’s inequality, this shows that there exists C7(η) > 0 with
the property that whenever ε ∈ (0, 1),

C1(η)‖uε‖
L

p
p−1 (Ω)

·
{∫

Ω
ζ3pnpε| lnnε|p

} 1
p

≤ η

8

∫

Ω
ζ4

|∇nε|2
nε

+ C7(η) for all t > 0,

and thereby establishes (6.6) when combined with (6.12) and (6.11). �

In estimating the right-hand side of (6.2), we basically only need to suitably combine Young’s inequality
with (2.13) and Lemma 4.3.

Lemma 6.6 Let ζ ∈ C∞(Ω) be such that ζ ≥ 0 in Ω. Then for all η > 0 one can find C(η) > 0 such
that for all t > 0 and ε ∈ (0, 1),

−
∫

Ω
ζ4

1

cε
∇cε · (∇uε · ∇cε)−

∫

Ω

1

cε
(D2cε · ∇cε) · ∇ζ4 +

1

2

∫

Ω

|∇cε|2
c2ε

∇cε · ∇ζ4

+
1

2

∫

Ω

|∇cε|2
cε

(uε · ∇ζ4)

≤ η

∫

Ω
ζ4

|D2cε|2
cε

+ η

∫

Ω
ζ4

|∇cε|4
c3ε

+ C(η)

∫

Ω
ζ4|∇uε|2 + C(η). (6.14)
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Proof. By Young’s inequality and (2.13),

−
∫

Ω
ζ4

1

cε
∇cε · (∇uε · ∇cε) ≤ η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
1

η

∫

Ω
ζ4cε|∇uε|2

≤ η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
M

η

∫

Ω
ζ4|∇uε|2 for all t > 0 (6.15)

and

1

2

∫

Ω

|∇cε|2
cε

(uε · ∇ζ4) = 2

∫

Ω
ζ3

|∇cε|2
cε

(uε · ∇ζ)

≤ η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
4

η

∫

Ω
ζ2|∇ζ|2cε|uε|2

≤ η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
4M

η
‖ζ∇ζ‖2L∞(Ω)‖uε‖2L2(Ω) for all t > 0. (6.16)

Moreover, by the same tokens,

−
∫

Ω

1

cε
(D2cε · ∇cε) · ∇ζ4 = −4

∫

Ω
ζ3

1

cε
(D2cε · ∇cε) · ∇ζ

≤ η

∫

Ω
ζ4

|D2cε|2
cε

+
4

η

∫

Ω
ζ2|∇ζ|2 |∇cε|

2

cε

≤ η

∫

Ω
ζ4

|D2cε|2
cε

+
η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
16

η3

∫

Ω
|∇ζ|4cε

≤ η

∫

Ω
ζ4

|D2cε|2
cε

+
η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
16M

η3
‖∇ζ‖4L4(Ω) for all t > 0(6.17)

as well as

1

2

∫

Ω

|∇cε|2
c2ε

∇cε · ∇ζ4 = 2

∫

Ω
ζ3

|∇cε|2
c2ε

∇cε · ∇ζ

≤ η

8

∫

Ω
ζ4

|∇cε|4
c3ε

+
8

η

∫

Ω
ζ2|∇ζ|2 |∇cε|

2

cε

≤ η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
128

η3

∫

Ω
|∇ζ|4cε

≤ η

4

∫

Ω
ζ4

|∇cε|4
c3ε

+
128M

η3
‖∇ζ‖4L4(Ω) for all t > 0. (6.18)

Since supε∈(0,1) supt>0 ‖uε(·, t)‖L2(Ω) is finite according to Lemma 4.3, (6.15)-(6.18) directly lead to
(6.14). �

The following estimate concerned with (6.3) now again relies on Lemma 6.4.
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Lemma 6.7 For any nonnegative ζ ∈ C∞(Ω) and each η > 0, there exists C(η) > 0 such that for all
ε ∈ (0, 1),

∫

Ω
ζ4Fε(nε)(uε · ∇φ)−

∫

Ω
uε · (∇uε · ∇ζ4)−

∫

Ω
Pε(uε · ∇ζ4)

≤ η

∫

Ω
ζ4|∇uε|2 + η

∫

Ω
ζ4

|∇nε|2
nε

+ C(η)‖Pε‖2
L

6
5 (Ω)

+ C(η) for all t > 0. (6.19)

Proof. Once more thanks to Young’s inequality,

−
∫

Ω
uε · (∇uε · ∇ζ4) = −4

∫

Ω
ζ3uε · (∇uε · ∇ζ)

≤ η

2

∫

Ω
ζ4|∇uε|2 +

8

η

∫

Ω
ζ2|∇ζ|2|uε|2

≤ η

2

∫

Ω
ζ4|∇uε|2 + C1(η) for all t > 0, (6.20)

with C1(η) :=
8
η
‖ζ∇ζ‖2

L∞(Ω) supε∈(0,1) supt>0 ‖uε(·, t)‖2L2(Ω) being finite by Lemma 4.3. Furthermore,

choosing any p ∈ (32 , 3) and letting m := 6(p− 1), we use that then 4p−m = 6− 2p > 0 in employing
the Hölder inequality to estimate

∫

Ω
ζ4Fε(nε)(uε · ∇φ) ≤ ‖∇φ‖L∞(Ω)‖uε‖

L
p

p−1 (Ω)
‖ζ‖

4p−m
p

L∞(Ω) ·
{∫

Ω
ζmnpε

} 1
p

for all t > 0,

where supε∈(0,1) supt>0 ‖uε(·, t)‖
L

p
p−1 (Ω)

< ∞ due to Lemma 4.3 and the fact that p
p−1 < 3. As the

restriction p < 3 ensures that m
4p < 1, noting that p = 1 + m

6 we may combine this with Lemma 6.4
and Young’s inequality to find C2 > 0 and C3(η) > 0 satisfying

∫

Ω
ζ4Fε(nε)(uε · ∇φ) ≤ C2 ·

{{∫

Ω
ζ4

|∇nε|2
nε

}m
4

+ 1

} 1
p

≤ η

∫

Ω
ζ4

|∇nε|2
nε

+ C3(η) for all t > 0. (6.21)

In the last term on the left-hand side of (6.19), we first use the Hölder inequality to see that writing
C4 := 4‖ζ∇ζ‖L∞(Ω) we have

−
∫

Ω
Pε(uε · ∇ζ4) = −4

∫

Ω
ζ3Pε(uε · ∇ζ)

≤ C4‖Pε‖
L

6
5 (Ω)

‖ζ2uε‖L6(Ω) for all t > 0,

where a Poincaré-Sobolev inequality yields C5 > 0 such that for all ε ∈ (0, 1),

‖ζ2uε‖2L6(Ω) ≤ C5

∫

Ω

∣∣∣∇(ζ2uε)
∣∣∣
2

= C5

∫

Ω

∣∣∣ζ2∇uε + 2ζ(uε · ∇ζ)
∣∣∣
2

≤ 2C5

∫

Ω
ζ4|∇uε|2 + C6 for all t > 0
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due to Young’s inequality, with C6 := 8C5‖ζ∇ζ‖2L∞(Ω) supε∈(0,1) supt>0 ‖uε(·, t)‖2L2(Ω) < ∞ again by
Lemma 4.3. Therefore, a final application of Young’s inequality shows that

−
∫

Ω
Pε(uε · ∇ζ4) ≤ η

4C5
‖ζ2uε‖2L6(Ω) +

C2
4C5

η
‖Pε‖2

L
6
5 (Ω)

≤ η

2

∫

Ω
ζ4|∇uε|2 +

C6η

4C5
+
C2
4C5

η
‖Pε‖2

L
6
5 (Ω)

for all t > 0,

which together with (6.20) and (6.21) establishes (6.19). �

In order to adequately make use of the dissipation mechanism expressed in (6.2), let us note two
functional inequalities which in quite a natural manner extend their corresponding spatially global
counterparts that have already been relied on in previous literature on (1.1) (see, e.g., [37] and [40]).

Lemma 6.8 Let ζ ∈ C∞
0 (Ω). Then for all ξ ∈ C2(Ω) such that ξ > 0 in Ω, we have

∫

Ω
ζ4

|∇ξ|4
ξ3

≤ 28

∫

Ω
ζ4ξ|D2 ln ξ|2 + 4096

∫

Ω
|∇ζ|4ξ (6.22)

and ∫

Ω
ζ4

|D2ξ|2
ξ

≤ 58

∫

Ω
ζ4ξ|D2 ln ξ|2 + 8192

∫

Ω
|∇ζ|4ξ. (6.23)

Proof. We first adapt an argument from [37, Lemma 3.3] to see integrating by parts and using
Young’s inequality that since |∆ ln ξ|2 ≤ 3|D2 ln ξ|2 in Ω,
∫

Ω
ζ4

|∇ξ|4
ξ3

=

∫

Ω
ζ4|∇ ln ξ|2∇ ln ξ · ∇ξ

= −
∫

Ω
ζ4ξ|∇ ln ξ|2∆ ln ξ − 2

∫

Ω
ζ4ξ∇ ln ξ · (D2 ln ξ · ∇ ln ξ)− 4

∫

Ω
ζ3ξ|∇ ln ξ|2∇ ln ξ · ∇ζ

= −
∫

Ω
ζ4

|∇ξ|2
ξ

∆ ln ξ − 2

∫

Ω
ζ4

∇ξ
ξ

· (D2 ln ξ · ∇ξ)− 4

∫

Ω
ζ3

|∇ξ|2
ξ2

∇ξ · ∇ζ

≤ 1

8

∫

Ω
ζ4

|∇ξ|4
ξ3

+ 2

∫

Ω
ζ4ξ|∆ ln ξ|2

+
1

8

∫

Ω
ζ4

|∇ξ|4
ξ3

+ 8

∫

Ω
ζ4ξ|D2 ln ξ|2

+
1

8

∫

Ω
ζ4

|∇ξ|4
ξ3

+ 32

∫

Ω
ζ2|∇ζ|2 |∇ξ|

2

ξ

≤ 3

8

∫

Ω
ζ4

|∇ξ|4
ξ3

+ 14

∫

Ω
ζ4ξ|D2 ln ξ|2 + 32

{ 1

256

∫

Ω
ζ4

|∇ξ|4
ξ3

+
256

4

∫

Ω
|∇ζ|4ξ

}

≤ 1

2

∫

Ω
ζ4

|∇ξ|4
ξ3

+ 14

∫

Ω
ζ4ξ|D2 ln ξ|2 + 2048

∫

Ω
|∇ζ|4ξ,

from which (6.22) follows.
As, again by Young’s inequality,

ξ|D2 ln ξ|2 =
|D2ξ|2
ξ

− 2
∇ξ · (D2ξ · ∇ξ)

ξ2
+

|∇ξ|4
ξ3
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≥ 1

2

|D2ξ|2
ξ

− |∇ξ|4
ξ3

in Ω

and thus
∫

Ω
ζ4

|D2ξ|2
ξ

≤ 2

∫

Ω
ζ4ξ|D2 ln ξ|2 + 2

∫

Ω
ζ4

|∇ξ|4
ξ3

,

from (6.22) we moreover readily obtain (6.23). �

By suitably combining the above pieces of information, we can now proceed to derive the following on
the basis of an argument based on correspondingly localized versions of (1.3).

Lemma 6.9 Let K ⊂ Ω be compact and T > 0. Then there exists C(K,T ) > 0 such that whenever
ε ∈ (0, 1), ∫

K

nε(·, t)
∣∣∣ lnnε(·, t)

∣∣∣ ≤ C(K,T ) for all t ∈ (0, T ). (6.24)

Proof. We fix a nonnegative ζ ∈ C∞
0 (Ω) such that ζ ≡ 1 in K, and then obtain by combining

Lemma 6.1 and Lemma 6.2 with Lemma 6.5, Lemma 6.6, Lemma 6.8 and (2.13) that there exist
C1(K) > 0 and C2(K) > 0 such that for all ε ∈ (0, 1),

d

dt

{∫

Ω
ζ4nε lnnε +

1

2

∫

Ω
ζ4

|∇cε|2
cε

}
+

1

2

∫

Ω
ζ4

|∇nε|2
nε

≤ C1(K)

∫

Ω
ζ4|∇uε|2 + C2(K) for all t > 0.

Since Lemma 6.3 in conjunction with Lemma 6.7 yields C3(K) > 0 such that

C1(K)
d

dt

∫

Ω
ζ4|uε|2 + C1(K)

∫

Ω
ζ4|∇uε|2 ≤

1

2

∫

Ω
ζ4

|∇nε|2
nε

+ C3(K)‖Pε‖2
L

6
5 (Ω)

+ C3(K)

for all t > 0 and ε ∈ (0, 1), we thus infer that

Fε(t) :=

∫

Ω
ζ4nε(·, t) lnnε(·, t) +

1

2

∫

Ω
ζ4

|∇cε(·, t)|2
cε(·, t)

+ C1(K)

∫

Ω
ζ4|uε(·, t)|2, t ≥ 0, ε ∈ (0, 1)

(6.25)
satisfies

F ′
ε(t) ≤ C2(K) + C3(K) + C3(K)‖Pε(·, t)‖2

L
6
5 (Ω)

for all t > 0 and ε ∈ (0, 1). (6.26)

As Lemma 4.4 provides C4(T ) > 0 such that

∫ T

0
‖Pε(·, t)‖2

L
6
5 (Ω)

dt ≤ C4(T ) for all ε ∈ (0, 1)

due to the fortunate circumstance that 6
5 <

3
2 , an integration of (6.26) shows that

Fε(t) ≤
∫

Ω
ζ4n0 lnn0 +

1

2

∫

Ω
ζ4

|∇c0|2
c0

+ C1(K)

∫

Ω
ζ4|u0|2

+(C2(K) + C3(K)) · T + C3(K)C4(T )
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for all t ∈ (0, T ) and each ε ∈ (0, 1). Since s ln s ≥ −1
e
for all s > 0 and hence

Fε(t) ≥
∫

K

lnnε =

∫

K

nε| lnnε|+ 2

∫

{nε<1}
nε lnnε ≥

∫

K

nε| lnnε| −
2|Ω|
e

for all t > 0 and ε ∈ (0, 1), this entails (6.24). �

As a by-product, the latter strengthens the convergence statements concerning the first solution com-
ponent in (5.3) as follows:

Corollary 6.10 Let (εj)j∈N be as in Lemma 5.2. Then

nε → n and Fε(nε) → n in L1
loc(Ω× [0,∞)) as ε = εj ց 0. (6.27)

Proof. As Lemma 6.9 guarantees uniform integrability of (nε)ε∈(0,1) and thus, through (2.9) and
(2.10), also of (Fε(nε))ε∈(0,1) over K × (0, T ) for all compact K ⊂ Ω and any T > 0, in view of the
Vitali convergence theorem this is a direct consequence of the pointwise convergence property in (5.3).
�

7 Solution properties of c, u and n. Proof of Theorem 1.1

Having at hand the key information gained in Corollary 6.10 now, in this section we can proceed
to make sure that the limit triple gained in Lemma 5.2 indeed solves (1.5) in the sense specified in
Definition 2.1. Already our first statement in this direction essentially relies on one of the strong
convergence features in (6.27).

Lemma 7.1 The identity (2.3) is valid for each ϕ ∈ C∞
0 (Ω× [0,∞);R3) fulfilling ∇ · ϕ = 0.

Proof. Given any such ϕ, from (2.7) we know that

−
∫ ∞

0

∫

Ω
uε · ϕt −

∫

Ω
u0 · ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇uε · ∇ϕ+

∫ ∞

0

∫

Ω
Fε(nε)(ϕ · ∇φ) (7.1)

for all ε ∈ (0, 1). Here the convergence properties (5.9) and (5.10) ensure that with (εj)j∈N as provided
by Lemma 5.2 we have

−
∫ ∞

0

∫

Ω
uε · ϕt → −

∫ ∞

0

∫

Ω
u · ϕt and −

∫ ∞

0

∫

Ω
∇uε · ∇ϕ→ −

∫ ∞

0

∫

Ω
∇u · ∇ϕ

as ε = εj ց 0, and since suppϕ is a compact subset of Ω × [0,∞), the local convergence feature
asserted by Corollary 6.10 is sufficient to guarantee that furthermore

∫ ∞

0

∫

Ω
Fε(nε)(ϕ · ∇φ) →

∫ ∞

0

∫

Ω
n(ϕ · ∇φ)

as ε = εj ց 0. The claim therefore results from (7.1). �

Also our verification of (2.2) makes substantial use of Corollary 6.10.
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Lemma 7.2 Let ϕ ∈ C∞
0 (Ω× [0,∞)). Then (2.2) holds.

Proof. According to (2.7), for all ε ∈ (0, 1) we have

−
∫ ∞

0

∫

Ω
cεϕt −

∫

Ω
c0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇cε · ∇ϕ−

∫ ∞

0

∫

Ω
Fε(nε)cεϕ+

∫ ∞

0

∫

Ω
cε(uε · ∇ϕ) (7.2)

where due to (5.6), (5.8) and (5.9),

−
∫ ∞

0

∫

Ω
cεϕt → −

∫ ∞

0

∫

Ω
cϕt,

−
∫ ∞

0

∫

Ω
∇cε · ∇ϕ→ −

∫ ∞

0

∫

Ω
∇c · ∇ϕ and

∫ ∞

0

∫

Ω
cε(uε · ∇ϕ) →

∫ ∞

0

∫

Ω
c(u · ∇ϕ)

as ε = εj ց 0, with (εj)j∈N as in Lemma 5.2. Since moreover, by compactness of suppϕ ⊂ Ω× [0,∞),
Corollary 6.10 in conjunction with (5.7) warrants that also

−
∫ ∞

0

∫

Ω
Fε(nε)cεϕ→ −

∫ ∞

0

∫

Ω
ncϕ

as ε = εj ց 0, from (7.2) we directly obtain (2.2). �

Our derivation of the corresponding solution properties of n in Definition 2.1, though now independent
of Corollary 6.10, is significantly more involved and requires a careful choice of the renormalization
functions ψ and ρ appearing therein:

Lemma 7.3 Let

ψ(s) :=
1

s+ 1
and ρ(s) := es

2−2c⋆s for s ≥ 0. (7.3)

Then (2.4) is satisfied, and (2.5) holds for each nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)).

Proof. Using that

ψ′(s) = − 1

(s+ 1)2
and ψ′′(s) =

2

(s+ 1)3
for all s ≥ 0, (7.4)

for each T > 0 we can estimate

∫ T

0

∫

Ω

{
|ψ′′(n)|+ ψ′2(n) + n2ψ′′2(n)

}
|∇n|2 =

∫ T

0

∫

Ω

{ 2

(n+ 1)3
+

1

(n+ 1)4
+

4n2

(n+ 1)6

}
|∇n|2

≤ 7

∫ T

0

∫

Ω

|∇n|2
(n+ 1)2

and

∫ T

0

∫

Ω
n2ψ′2(n)|∇c|2 ≤

∫ T

0

∫

Ω
|∇c|2,
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so that (2.4) is a consequence of Lemma 3.2, Lemma 3.1 and Lemma 5.2.

To verify (2.5) for fixed nonnegative ϕ ∈ C∞
0 (Ω× [0,∞)), we go back to (2.7) and integrate by parts

several times to see that due to (7.4),

−
∫ ∞

0

∫

Ω
ψ(nε)ρ(cε)ϕt −

∫

Ω
ψ(n0)ρ(c0)ϕ(·, 0)

=

∫ ∞

0

∫

Ω
∂t

(
ψ(nε)ρ(cε)

)
ϕ

=

∫ ∞

0

∫

Ω
ψ′(nε)ρ(cε)ϕ ·

{
∆nε −∇ · (nεF ′

ε(nε)∇cε)− uε · ∇nε
}

+

∫ ∞

0

∫

Ω
ψ(nε)ρ

′(cε)ϕ ·
{
∆cε − Fε(nε)cε − uε · ∇cε

}

= −
∫ ∞

0

∫

Ω
ψ′′(nε)ρ(cε)|∇nε|2ϕ−

∫ ∞

0

∫

Ω
ψ′(nε)ρ

′(cε)(∇nε · ∇cε)ϕ

+

∫ ∞

0

∫

Ω
nεF

′
ε(nε)ψ

′′(nε)ρ(cε)(∇nε · ∇cε)ϕ+

∫ ∞

0

∫

Ω
nεF

′
ε(nε)ψ

′(nε)ρ
′(cε)|∇cε|2ϕ

−
∫ ∞

0

∫

Ω
ψ′(nε)ρ

′(cε)(∇nε · ∇cε)ϕ−
∫ ∞

0

∫

Ω
ψ(nε)ρ

′′(cε)|∇cε|2ϕ

−
∫ ∞

0

∫

Ω
Fε(nε)ψ(nε)cερ

′(cε)ϕ

−
∫ ∞

0

∫

Ω
ψ′(nε)ρ(cε)∇nε · ∇ϕ+

∫ ∞

0

∫

Ω
nεF

′
ε(nε)ψ

′(nε)ρ(cε)∇cε · ∇ϕ

−
∫ ∞

0

∫

Ω
ψ(nε)ρ

′(cε)∇cε · ∇ϕ+

∫ ∞

0

∫

Ω
ψ(nε)ρ(cε)(uε · ∇ϕ)

= −2

∫ ∞

0

∫

Ω
ρ(cε)

|∇nε|2
(nε + 1)3

ϕ

+2

∫ ∞

0

∫

Ω

{
ρ′(cε) +

nεF
′
ε(nε)

nε + 1
ρ(cε)

}∇nε · ∇cε
(nε + 1)2

ϕ

−
∫ ∞

0

∫

Ω

{
ρ′′(cε) +

nεF
′
ε(nε)

nε + 1
ρ′(cε)

} |∇cε|2
nε + 1

ϕ

−
∫ ∞

0

∫

Ω

Fε(nε)

nε + 1
cερ

′(cε)ϕ

+

∫ ∞

0

∫

Ω

ρ(cε)

(nε + 1)2
∇nε · ∇ϕ

−
∫ ∞

0

∫

Ω

{nεF ′
ε(nε)

(nε + 1)2
ρ(cε) +

ρ′(cε)

nε + 1

}
∇cε · ∇ϕ

+

∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
(uε · ∇ϕ) for all ε ∈ (0, 1), (7.5)

because∇·uε = 0, and because ρ′(cε) = 0 on ∂Ω×(0,∞) due to (2.7) and the fact that by (7.3), ρ′(s) =
2(s−c⋆)es

2−2c⋆s for s ≥ 0 and hence ρ′(c⋆) = 0. Furthermore computing ρ′′(s) = {2+4(s−c⋆)2}es
2−2c⋆s
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for s ≥ 0 and observing that thus

h1,ε(x, t) := ρ′′(cε)−
1

2

ρ′2(cε)

ρ(cε)
− 1

2

n2εF
′2
ε (nε)

(nε + 1)2
ρ(cε)

=
{
2 + 4(cε − c⋆)

2 − 1

2
·4(cε − c⋆)

2 − 1

2

n2εF
′2
ε (nε)

(nε + 1)2

}
ec

2
ε−2c⋆cε

=
{
2 + 2(cε − c⋆)

2 − 1

2

n2εF
′2
ε (nε)

(nε + 1)2

}
ec

2
ε−2c⋆cε , (x, t) ∈ Ω× (0,∞), (7.6)

we rewrite

−2ρ(cε)
|∇nε|2

(nε + 1)3
+ 2

{
ρ′(cε) +

nεF
′
ε(nε)

nε + 1
ρ(cε)

}∇nε · ∇cε
(nε + 1)2

−
{
ρ′′(cε) +

nεF
′
ε(nε)

nε + 1
ρ′(cε)

} |∇cε|2
nε + 1

= −2

∣∣∣∣
√
ρ(cε)

∇nε
(nε + 1)

3
2

−
{ ρ′(cε)

2
√
ρ(cε)

+
1

2

nεF
′
ε(nε)

nε + 1

√
ρ(cε)

} ∇cε
(nε + 1)

1
2

∣∣∣∣
2

− h1,ε

nε + 1
|∇cε|2

in Ω× (0,∞) and obtain from (7.5) and again (7.3) that if we moreover define

h2,ε(x, t) :=
ρ′(cε)

2
√
ρ(cε)

+
1

2

nεF
′
ε(nε)

nε + 1

√
ρ(cε), (x, t) ∈ Ω× (0,∞), (7.7)

and

h3,ε(x, t) :=
nεF

′
ε(nε)

(nε + 1)2
ρ(cε) +

ρ′(cε)

nε + 1
, (x, t) ∈ Ω× (0,∞), (7.8)

then

2

∫ ∞

0

∫

Ω

∣∣∣∣
√
ρ(cε)

∇nε
(nε + 1)

3
2

− h2,ε

(nε + 1)
1
2

∇cε
∣∣∣∣
2

ϕ+

∫ ∞

0

∫

Ω

h1,ε

nε + 1
|∇cε|2ϕ

=

∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
ϕt +

∫

Ω

ρ(c0)

n0 + 1
ϕ(·, 0)

−
∫ ∞

0

∫

Ω

Fε(nε)

nε + 1
cερ

′(cε)ϕ

+

∫ ∞

0

∫

Ω

ρ(cε)

(nε + 1)2
∇nε · ∇ϕ

−
∫ ∞

0

∫

Ω
h3,ε∇cε · ∇ϕ

+

∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
(uε · ∇ϕ) for all ε ∈ (0, 1). (7.9)

Now taking (εj)j∈N as provided by Lemma 5.2, from (5.3), (5.6) and (2.13) we readily infer that
∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
ϕt →

∫ ∞

0

∫

Ω

ρ(c)

n+ 1
ϕt =

∫ ∞

0

∫

Ω
ψ(n)ρ(c)ϕt (7.10)

and

−
∫ ∞

0

∫

Ω

Fε(nε)

nε + 1
cερ

′(cε)ϕ→ −
∫ ∞

0

∫

Ω

n

n+ 1
cρ′(c)ϕ = −

∫ ∞

0

∫

Ω
nψ(n)cρ′(c)ϕ (7.11)

28



as ε = εj ց 0, while additionally invoking (5.5) and (5.9) we see that

∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
(uε · ∇ϕ) →

∫ ∞

0

∫

Ω

ρ(c)

n+ 1
(u · ∇ϕ) =

∫ ∞

0

∫

Ω
ψ(n)ρ(c)(u · ∇ϕ) (7.12)

and
∫ ∞

0

∫

Ω

ρ(cε)

(nε + 1)2
∇nε · ∇ϕ =

∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
∇ ln(nε + 1) · ∇ϕ

→
∫ ∞

0

∫

Ω

ρ(c)

n+ 1
∇ ln(n+ 1) · ∇ϕ

= −
∫ ∞

0

∫

Ω
ψ′(n)ρ(c)∇n · ∇ϕ (7.13)

as ε = εj ց 0. Since (5.3), (5.6) and (2.13) apart from that assert that
( √

ρ(cε)

(nε+1)
1
2

)
ε∈(0,1)

,
(

h1,ε

nε+1

)
ε∈(0,1)

,
(

h2,ε

(nε+1)
1
2

)
ε∈(0,1)

and (h3,ε)ε∈(0,1) are bounded in L∞(Ω× (0,∞)) and that a.e. in Ω× (0,∞) we have

√
ρ(cε)

(nε + 1)
1
2

→
√
ρ(c)

(n+ 1)
1
2

and

h1,ε

nε + 1
→ h1

n+ 1
with h1(x, t) := ρ′′(c)− ρ′2(c)

2ρ(c)
− 1

2

n2

(n+ 1)2
ρ(c), (x, t) ∈ Ω× (0,∞),

as well as

h2,ε

(nε + 1)
1
2

→ h2

(n+ 1)
1
2

with h2(x, t) :=
ρ′(c)

2
√
ρ(c)

+
1

2

n

n+ 1

√
ρ(c), (x, t) ∈ Ω× (0,∞),

and

h3,ε →
n

(n+ 1)2
ρ(c) +

ρ′(c)

n+ 1

as ε = εj ց 0, using (5.5), (5.8) and the fact that h1,ε is nonnegative due to (7.6) and (2.9), we see
that furthermore

√
ρ(cε)

∇nε
(nε + 1)

3
2

=

√
ρ(cε)

(nε + 1)
1
2

∇ ln(nε + 1)

⇀

√
ρ(c)

(n+ 1)
1
2

∇ ln(n+ 1)

=
√
ρ(c)

∇n
(n+ 1)

3
2

in L2
loc(Ω× [0,∞)) (7.14)
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and
h2,ε

(nε + 1)
1
2

∇cε ⇀
h2

(n+ 1)
1
2

∇c in L2
loc(Ω× [0,∞)) (7.15)

as well as √
h1,ε

nε + 1
∇cε ⇀

√
h1

n+ 1
∇c in L2

loc(Ω× [0,∞)) (7.16)

and

h3,ε∇cε ⇀
{ n

(n+ 1)2
ρ(c) +

ρ′(c)

n+ 1

}
∇c in L2

loc(Ω× [0,∞)) (7.17)

as ε = εj ց 0. While (7.17) enables us to pass to the limit in the second last summand in (7.9),
thereby deducing that

−
∫ ∞

0

∫

Ω
h3,ε∇cε · ∇ϕ → −

∫ ∞

0

∫

Ω

{ n

(n+ 1)2
ρ(c) +

ρ′(c)

n+ 1

}
∇c · ∇ϕ

=

∫ ∞

0

∫

Ω

{
nψ′(n)ρ(c)− ψ(n)ρ′(c)

}
∇c · ∇ϕ (7.18)

as ε = εj ց 0, on combining (7.14) with (7.15) and an argument based on lower semicontinuity of the
norm in L2(suppϕ) with respect to weak convergence we infer that thanks to the nonnegativity of ϕ,

2

∫ ∞

0

∫

Ω

∣∣∣∣
√
ρ(c)

∇n
(n+ 1)

3
2

− h2

(n+ 1)
1
2

∇c
∣∣∣∣
2

ϕ ≤ lim inf
ε=εjց0

{
2

∫ ∞

0

∫

Ω

∣∣∣∣
√
ρ(cε)

∇nε
(nε + 1)

3
2

− h2,ε

(nε + 1)
1
2

∇cε
∣∣∣∣
2

ϕ

}
,

(7.19)
and similarly we obtain that moreover

∫ ∞

0

∫

Ω

h1

n+ 1
|∇c|2ϕ ≤ lim inf

ε=εjց0

∫ ∞

0

∫

Ω

h1,ε

nε + 1
|∇cε|2ϕ. (7.20)

It remains to collect (7.10), (7.11), (7.12), (7.13), (7.18), (7.19) and (7.20) to conclude from (7.9) upon
a straightforward rearrangement that indeed
∫ ∞

0

∫

Ω
ψ′′(n)ρ(c)|∇n|2ϕ−

∫ ∞

0

∫

Ω

{
− 2ψ′(n)ρ′(c) + nψ′′(n)ρ(c)

}
(∇n · ∇c)ϕ

−
∫ ∞

0

∫

Ω

{
− ψ(n)ρ′′(c) + nψ′(n)ρ′(c)

}
|∇c|2ϕ

= 2

∫ ∞

0

∫

Ω

∣∣∣∣
√
ρ(c)

∇n
(n+ 1)

3
2

− h2

(n+ 1)
1
2

∇c
∣∣∣∣
2

ϕ+

∫ ∞

0

∫

Ω

h1

n+ 1
|∇c|2ϕ

≤ lim inf
ε=εjց0

{
2

∫ ∞

0

∫

Ω

∣∣∣∣
√
ρ(cε)

∇nε
(nε + 1)

3
2

− h2,ε

(nε + 1)
1
2

∇cε
∣∣∣∣
2

ϕ+

∫ ∞

0

∫

Ω

h1,ε

nε + 1
|∇cε|2ϕ

}

= lim inf
ε=εjց0

{∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
ϕt +

∫

Ω

ρ(c0)

n0 + 1
ϕ(·, 0)

−
∫ ∞

0

∫

Ω

Fε(nε)

nε + 1
cερ

′(cε)ϕ
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+

∫ ∞

0

∫

Ω

ρ(cε)

(nε + 1)2
∇nε · ∇ϕ−

∫ ∞

0

∫

Ω
h3,ε∇cε · ∇ϕ

+

∫ ∞

0

∫

Ω

ρ(cε)

nε + 1
(uε · ∇ϕ)

}

=

∫ ∞

0

∫

Ω
ψ(n)ρ(c)ϕt +

∫

Ω
ψ(n0)ρ(c0)ϕ(·, 0)

−
∫ ∞

0

∫

Ω
nψ(n)cρ′(c)ϕ

−
∫ ∞

0

∫

Ω
ψ′(n)ρ(c)∇n · ∇ϕ+

∫ ∞

0

∫

Ω

{
nψ′(n)ρ(c)− ψ(n)ρ′(c)

}
∇c · ∇ϕ

+

∫ ∞

0

∫

Ω
ψ(n)ρ(c)(u · ∇ϕ),

as intended. �

Our main result on global solvability in (1.5) has thereby actually been completed already:

Proof of Theorem 1.1. We take (n, c, u) as constructed in Lemma 5.2, and then only need to
combine the statements from Lemma 5.2, Lemma 7.1, Lemma 7.2 and Lemma 7.3. �
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