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Abstract

In a bounded domain Ω ⊂ R
3, we are concerned with the evolution system











nt + u · ∇n = ∆n−∇ ·
(

nf(|∇c|2)∇c
)

,

ct + u · ∇c = ∆c− c+ n,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0,

(⋆)

coupling the incompressible Navier-Stokes equations to a class of flux-limited Keller-Segel systems
which has received noticeable attention in the recent biomathematical literature. When considered
without such fluid interaction, no-flux boundary value problems for chemotaxis systems of the latter
type are known to admit global bounded solutions for widely arbitrary initial data whenever f is
a suitably smooth function fulfilling

|f(ξ)| ≤ Kf · (ξ + 1)−
α

2 for all ξ ≥ 0 (⋆⋆)

with some Kf > 0 and α > 1

2
, while if here the converse inequality holds with some Kf > 0 and

α < 1

2
, then blow-up occurs at least in some simplified parabolic-elliptic counterpart.

The present work now asserts that the former condition remains sufficient to ensure global solvability
in a corresponding initial-boundary value problem for the fully coupled system (⋆), within a natural
weak solution concept consistent with those underlying well-established theories for the Navier-
Stokes equations. This indicates that the saturation exponent α = 1

2
in (⋆⋆) continues to play the

role of a critical flux limitation parameter also in the presence of fluid interaction.
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1 Introduction

The coaction of chemotaxis systems with liquid environments has attracted considerable attention
in the recent literature. Motivated by experimental findings which attest a significant relevance of
chemotaxis-fluid couplings in various application contexts ([12], [13], [32], [37], [39]), several branches
of mathematical research have been devoted to the understanding of possible influences generated by
such interaction mechanisms, and beyond numerical evidence ([39], [31]), even some rigurous analytical
studies have revealed noticeable effects which at least some suitably designed given fluid fields may
exert on the qualitative behavior in Keller-Segel type cross-diffusion systems ([26], [27], [28], [22], [17]).

In comparison to the latter class of situations involving prescribed and hence essentially passive liquid
surroundings, the knowledge seems much less comprehensive in frameworks when the fluid itself forms a
system variable, e.g. due to buoyancy-induced influences of microbial movement on fluid motion ([39]).
Indeed, already in cases of fairly dissipation-dominated chemotaxis systems in which the respective
attractant is consumed by bacteria, the additional coupling to equations from fluid mechanics, as thus
necessary for an adequate description in such situations ([39], [30]), seems to go along with substantial
challenges due to which even at basic levels of existence and qualitative analysis, the development of
satisfactory theories apparently required a considerable history in the literature ([15], [14], [29], [16],
[10], [30], [46], [49], [48], [50]).

This issue seems to gain yet further cruciality in models linking fluid dynamics to chemotaxis systems
in which, similar to situations addressed by classical Keller-Segel systems, already the cross-diffusive
interaction itself bears significant destabilizing potential by accounting for signal evolution that is
determined by production, rather than consumption, of the considered directing chemical through cells
([24], [47]). Especially in parameter settings near criticality of such systems, the nearby question how
far their explosion-enforcing properties may be affected by fluid interaction quite naturally becomes
increasingly demanding. Accordingly, when interacting with the (Navier-)Stokes system, the classical
quasilinear Keller-Segel model involving density-dependent diffusion and cross-diffusion rates, as in
this fully coupled form given by











nt + u · ∇n = ∇ ·
(

D(n)∇n
)

−∇ ·
(

S(n)∇c
)

,

ct + u · ∇c = ∆c− c+ n,

ut + κ(u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0,

(1.1)

has yet not completely been understood with regard to the occurrence of blow-up phenomena: While
in two-dimensional settings, parameter conditions essentially optimal in this respect could be iden-
tified even for the case κ = 1 involving the full Navier-Stokes equations ([55], [41], [42], [25], [45]),
comparably exhaustive results in three-dimensional frameworks seem available only for the simplified
chemotaxis-Stokes versions of (1.1) in which κ = 0 ([9], [43], [40], [52], [51], [45]). In the corresponding
fully coupled three-dimensional Keller-Segel-Navier-Stokes obtained on letting κ = 1, at least within
standard weak solution concepts, naturally extending those that underlie classical solution theories
for the corresponding taxis-free counterpart, global existence results so far seem available only in pa-
rameter regimes significantly smaller than the complement of ranges inside which blow-up is known
to occur already in the fluid-free case when u ≡ 0 ([7]); statements on global solvability for parameter
constellations close to optimality, the construction of global solutions has so far been possible only
upon resorting to quite drastically relaxed notions of solvability ([7]).
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Approaching optimality in flux-limited Keller-Segel-fluid systems. Main results. The
present manuscript now addresses the issue of coupling the three-dimensional Navier-Stokes system
to a Keller-Segel type chemotaxis model which itself apparently has been much less thoroughly stud-
ied than the corresponding fluid-free counterpart of (1.1) that with regard to several aspects can be
regarded as essentially well-understood. Specifically, we shall below consider the problem































nt + u · ∇n = ∆n−∇ ·
(

nf(|∇c|2)∇c
)

, x ∈ Ω, t > 0,

ct + u · ∇c = ∆c− c+ n, x ∈ Ω, t > 0,

ut + (u · ∇)u = ∆u+∇P + n∇Φ, ∇ · u = 0, x ∈ Ω, t > 0,
∂n
∂ν

= ∂c
∂ν

= 0, u = 0, x ∈ ∂Ω, t > 0,

n(x, 0) = n0(x), c(x, 0) = c0(x), u(x, 0) = u0(x), x ∈ Ω,

(1.2)

in a bounded domain Ω ⊂ R
3 with smooth boundary, where we assume that Φ represents a given

gravitational potenatial, and that f is a suitably regular function quantifying saturation effects through
which cross-diffusion is inhibited near points at which the gradient of the signal concentration c is large.
Such flux-limited migration mechanisms have been at the core of various developments in the recent
literature concerned with refinements of classical Keller-Segel models ([2], [35], [5], [6]), but rigorous
analytical findings addressing existence theories or even qualitative properties yet seem to reduce
to some scattered studies concerned with quite particular among accordingly resulting chemotaxis
systems ([1], [8], [35], [11], [33], [3], [4]). After all, it is known that if f generalizes an algebraically
decaying prototype by satisfying

|f(ξ)| ≤ Kf · (ξ + 1)−
α
2 for all ξ ≥ 0 (1.3)

with some Kf > 0 and α > 0, then the corresponding fluid-free version of (1.2), when posed in N -
dimensional domains Ω with N ≥ 2, admits global bounded classical solutions for all suitably regular
but arbitrarily large initial data whenever α > αc(N) := N−2

N−1 ([54]; cf. also [34]), while if in (1.3) the
converse inequality holds with some Kf > 0 and α < αc(N) when N ≥ 3, then a related parabolic-
elliptic simplification of (1.2) possesses classical solutions which blow up in finite time with respect to
the spatial L∞ norm of the population density n ([53]).

Our goal now consists in establishing a theory of global weak solvability for the full flux-limited
Keller-Segel-Navier-Stokes system (1.2)-(1.3) throughout the parameter range which the above find-
ings suggest to be essentially maximal in this regard. Thus pursuing the ambition of constructing
global solutions within the entire range determined by the inequality α > αc(3) =

1
2 in (1.3), in the

centerpiece of our analysis we shall need to adequately cope with the circumstance that the only mean-
ingful source of information on fluid regularity appears to be the natural energy identity associated
with the Navier-Stokes subsystem of (1.2) (cf. (4.3). At its first stage, our approach will accordingly
focus on the derivation of some basic integrability features of the forcing term n∇Φ therein, which
will be achieved through the detection of certain entropy-like properties that functionals of the form
−
∫

Ω n
p +

∫

Ω c
2 enjoy along trajectories of suitably regularized problems (see (2.6), provided that the

mapping 0 ≤ ξ 7→ ξp exhibits sufficiently slow sublinear growth near ξ = ∞. As the essential part of
our analysis in this respect will reveal in Lemma 3.6, a corresponding sufficient condition on smallness
of p can be satisfied by exponents p which are yet suitably large so as to allow for expedient conclu-
sions, asserting sufficient regularity of the fluid force n∇Φ through bounds for associated dissipation
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rates, exactly under the assumption that (1.3) be valid with some α > 1
2 .

In order to precisely formulate the main results which we thereby plan to accomplish, given a smoothly
bounded domain Ω ⊂ R

3 and p > 1, as usual we let W 1,p
0,σ (Ω) := W

1,p
0 (Ω;R3) ∩ Lp

σ(Ω) ≡ W
1,p
0,σ (Ω) :=

C∞
0,σ(Ω)

‖·‖
W1,p(Ω) with Lp

σ(Ω) := {ϕ ∈ Lp(Ω;R3) | ∇ · ϕ = 0} and C∞
0,σ(Ω) := C∞

0 (Ω;R3) ∩ L2
σ(Ω), and

we let P : Lp(Ω;R3) → L
p
σ(Ω) represent the realization of the Helmholtz projection in Lp(Ω;R3).

The following main outcome of this study now indeed asserts global solvability in (1.2), in the frame-
work of a fairly natural solution concept, under a condition on the strength of flux limitation which
the literature on corresponding fluid-free counterparts suggests to be essentially optimal:

Theorem 1.1 Suppose that Ω ⊂ R
3 is a bounded domain with smooth boundary, that Φ ∈ W 2,∞(Ω),

and that f ∈ C2([0,∞)) satisfies (1.3) with some

α >
1

2
.

Then writing

qα := min
{5

3
,

2

3(1− α)+

}

> 1 and rα := min
{5

4
,

1

2(1− α)+

}

> 1, (1.4)

given any initial data n0, c0 and u0 which are such that










n0 ∈ C0(Ω) is nonnegative with n0 6≡ 0,

c0 ∈W 1,∞(Ω) is nonnegative, and

u0 ∈W
1,2
0,σ (Ω) ∩W

2,2(Ω;R3),

(1.5)

one can find functions














n ∈ L∞((0,∞);L1(Ω)) ∩
⋂

q∈(1,qα)
L
q
loc(Ω× [0,∞)) ∩

⋂

r∈(1,rα)
Lr
loc([0,∞);W 1,r(Ω)),

c ∈ L∞
loc([0,∞);L2(Ω)) ∩ L

10
3
loc(Ω× [0,∞)) ∩ L2

loc([0,∞);W 1,2(Ω)) and

u ∈ L∞
loc([0,∞);L2

σ(Ω)) ∩ L
10
3
loc(Ω× [0,∞);R3) ∩ L2

loc([0,∞);W 1,2
0,σ (Ω))

(1.6)

with the properties that n ≥ 0 and c ≥ 0 a.e. in Ω × (0,∞), and that (n, c, u) forms a global weak
solution of (1.2) in the sense of Definition 2.1 below.

2 Approximation by smooth solutions to regularized problems

To make our objective more precise, let us first substantiate what is to be understood as a global weak
solution of (1.2) in the sequel. Here, for vectors v = (v1, v2, v3) ∈ R

3 and w = (w1, w2, w3) ∈ R
3 we

let v ⊗ w denote the matrix given by (viwj)i,j∈{1,2,3} ∈ R
3×3.

Definition 2.1 Let f ∈ C0([0,∞) and Φ ∈ W 1,∞(Ω), and suppose that n0 ∈ L1(Ω), c0 ∈ L1(Ω) and
u0 ∈ L1(Ω;R3). Then a triple (n, c, u) of functions











n ∈ L1
loc([0,∞);W 1,1(Ω)),

c ∈ L1
loc([0,∞);W 1,1(Ω)) and

u ∈ L1
loc([0,∞);W 1,1

0 (Ω;R3))

(2.1)
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will be called a global weak solution of (1.2) if n ≥ 0, c ≥ 0 and ∇ · u = 0 a.e. in Ω× (0,∞), if

nf(|∇c|2)∇c, nu, cu and u⊗ u belong to L1
loc(Ω× [0,∞);R3), (2.2)

if for all ϕ ∈ C∞
0 (Ω× [0,∞)) we have

−

∫ ∞

0

∫

Ω
nϕt −

∫

Ω
n0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇n · ∇ϕ+

∫ ∞

0

∫

Ω
nf(|∇c|2)∇c · ∇ϕ+

∫ ∞

0

∫

Ω
nu · ∇ϕ (2.3)

and

−

∫ ∞

0

∫

Ω
cϕt −

∫

Ω
c0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇c · ∇ϕ−

∫ ∞

0

∫

Ω
cϕ+

∫ ∞

0

∫

Ω
cu · ∇ϕ, (2.4)

and if

−

∫ ∞

0

∫

Ω
u · ϕt −

∫

Ω
u0 · ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇u · ∇ϕ+

∫ ∞

0

∫

Ω
(u⊗ u) · ∇ϕ+

∫ ∞

0

∫

Ω
n∇Φ · ϕ (2.5)

for all ϕ ∈ C∞
0,σ(Ω× [0,∞)).

Following precedents concerned with various related three-dimensional chemotaxis-fluid systems (see,
e.g., [7], [49]), our construction of a function (n, c, u) solving (1.2) in the above sense will be based on
approximation by global smooth solutions to suitably regularized counterparts of (1.2). Specifically,
for ε ∈ (0, 1) we shall henceforth consider































nεt + uε · ∇nε = ∆nε −∇ ·
(

nε

1+εnε
f(|∇cε|

2)∇cε

)

, x ∈ Ω, t > 0,

cεt + uε · ∇cε = ∆cε − cε +
nε

1+εnε
, x ∈ Ω, t > 0,

uεt + (Yεuε · ∇)uε = ∆uε +∇Pε +
nε

1+εnε
∇Φ, ∇ · uε = 0, x ∈ Ω, t > 0,

∂nε

∂ν
= ∂cε

∂ν
= 0, uε = 0, x ∈ ∂Ω, t > 0,

nε(x, 0) = n0(x), cε(x, 0) = c0(x), uε(x, 0) = u0(x), x ∈ Ω,

(2.6)

with the Yosida-type approximation defined by setting

Yεv := (1 + εA)−1v, v ∈ L2
σ(Ω), ε ∈ (0, 1),

where here and below, we let A = −P∆ and (Aϑ)ϑ>0 denote the Stokes operator in L2(Ω;R3), with
domain given byD(A) :=W 2,2(Ω;R3)∩W 1,3

0,σ (Ω), and the family of its corresponding fractional powers,
respectively.

In fact, all these problems admit global mass-preserving classical solutions:

Lemma 2.2 Let Ω ⊂ R
3 be a bounded domain with smooth boundary, and suppose that f ∈ C2([0,∞))∩

L∞((0,∞)) and that (n0, c0, u0) satisfy (1.5). Then for each ε ∈ (0, 1), there exist uniquely determined
functions











nε ∈ C0(Ω× [0,∞)) ∩ C2,1(Ω× (0,∞)),

cε ∈
⋂

p>3C
0([0,∞);W 1,p(Ω)) ∩ C2,1(Ω× (0,∞)) and

uε ∈
⋂

ϑ∈( 3
4
,1)C

0([0,∞);D(Aϑ)) ∩ C2,1(Ω× (0,∞);R3)
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such that nε > 0 and cε ≥ 0 in Ω×(0,∞), and that (nε, cε, uε, Pε) solves (2.6) classically in Ω×(0,∞)
with some Pε ∈ C1,0(Ω× (0,∞)). Moreover,

∫

Ω
nε(·, t) =

∫

Ω
n0 for all t > 0. (2.7)

Proof. Arguments well-known from the literature on local existence and extensibility in related
chemotaxis-fluid systems, as detailed, e.g., in [46], yield Tmax,ε ∈ (0,∞] and a unique triple (nε, cε, uε)
of functions











nε ∈ C0(Ω× [0, Tmax,ε)) ∩ C
2,1(Ω× (0, Tmax,ε)),

cε ∈
⋂

p>3C
0([0, Tmax,ε);W

1,p(Ω)) ∩ C2,1(Ω× (0, Tmax,ε)) and

uε ∈
⋂

ϑ∈( 3
4
,1)C

0([0, Tmax,ε);D(Aϑ)) ∩ C2,1(Ω× (0, Tmax,ε);R
3)

for which nε > 0 and cε ≥ 0 in Ω× (0, Tmax,ε) as well as

∫

Ω
nε(·, t) =

∫

Ω
n0 for all t ∈ (0, Tmax,ε), (2.8)

for which one can find Pε ∈ C1,0(Ω× (0, Tmax,ε)) such that (nε, cε, uε, Pε) forms a classical solution of
(2.6) in Ω× (0, Tmax,ε), and for which

either Tmax,ε = ∞, or for all p > 3 and ϑ ∈ (34 , 1) we have

lim sup
tրTmax,ε

{

‖nε(·, t)‖L∞(Ω) + ‖cε(·, t)‖W 1,p(Ω) + ‖Aϑuε(·, t)‖L2(Ω)

}

= ∞. (2.9)

Now if Tmax,ε was finite for any such ε, we could use the rough estimate nε

1+εnε
≤ 1

ε
to see upon testing

the third equation in (2.6) by uε that due to Young’s inequality,

1

2

d

dt

∫

Ω
|uε|

2 +

∫

Ω
|∇uε|

2 =

∫

Ω

nε

1 + εnε
uε · ∇Φ ≤

∫

Ω
|uε|

2 +
1

4ε2

∫

Ω
|∇Φ|2 for all t ∈ (0, Tmax,ε),

and that therefore

sup
t∈(0,Tmax,ε)

∫

Ω
|uε(·, t)|

2 <∞ and

∫ Tmax,ε

0

∫

Ω
|∇uε|

2 <∞.

Since Yε acts as a bounded operator from L2
σ(Ω) to W

2,2(Ω;R3) ∩W 1,2
0,σ (Ω) →֒ L∞(Ω;R3), this would

imply that hε := P[−(Yεuε · ∇)uε +
nε

1+εnε
∇Φ] would belong to L2(Ω× (0, Tmax,ε);R

3), and that thus

sup
t∈(0,Tmax,ε)

∫

Ω
|∇uε(·, t)|

2 <∞, (2.10)

because again by (2.6) and Young’s inequality,

1

2

d

dt

∫

Ω
|∇uε|

2 = −

∫

Ω
|Auε|

2 +

∫

Ω
Auε · hε ≤

1

4

∫

Ω
|hε|

2 for all t ∈ (0, Tmax,ε).
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From (2.10), however, we now obtain that actually supt∈(0,Tmax,ε)

∫

Ω |hε(·, t)|
2 < ∞, so that if we

fix any ϑ ∈ (34 , 1) and rely on well-known regularization features of the Dirichlet Stokes semigroup
(e−tA)t≥0 ([18]) in choosing C1 > 0 such that

‖Aϑuε(·, t)‖L2(Ω) =

∥

∥

∥

∥

Aϑe−tAu0 +

∫ t

0
Aϑe−(t−s)Ahε(·, s)ds

∥

∥

∥

∥

L2(Ω)

≤ C1 + C1

∫ t

0
(t− s)−ϑ‖hε(·, s)‖L2(Ω)ds for all t ∈ (0, Tmax,ε),

we infer that
sup

t∈(0,Tmax,ε)
‖Aϑuε(·, t)‖L2(Ω) <∞. (2.11)

As ϑ > 3
4 , according to a known embedding property ([23], [20]) this would especially warrant that

sup
t∈(0,Tmax,ε)

‖uε(·, t)‖L∞(Ω) <∞, (2.12)

so that picking any p > 3 and θ ∈ (12 , 1), abbreviating τ := 1
2Tmax,ε and letting B denote the realization

of −∆ + 1 under homogeneous Neumann boundary conditions in Lp(Ω), by means of corresponding
smoothing estimates for the associated semigroup (e−tB)t≥0 ([18]) we could infer that with some
C2 = C2(ε) > 0 and C3 = C3(ε) > 0, whenever T ∈ (τ, Tmax,ε) we would have

‖Bθcε(·, t)‖Lp(Ω) =

∥

∥

∥

∥

∥

Bθe−(t−τ)Bcε(·, τ) +

∫ t

τ

Bθe−(t−s)B
{ nε(·, s)

1 + εnε(·, s)
− uε(·, s) · ∇cε(·, s)

}

ds

∥

∥

∥

∥

∥

Lp(Ω)

≤ C2 + C2

∫ t

τ

(t− s)−θ ·

{

∥

∥

∥

nε(·, s)

1 + εnε(·, s)

∥

∥

∥

Lp(Ω)
+ ‖uε(·, s) · ∇cε(·, s)‖Lp(Ω)

}

ds

≤ C3 + C3 sup
s∈(τ,T )

‖∇cε(·, s)‖Lp(Ω) for all t ∈ (τ, T ).

Since a direct integration in (2.6) shows that supt∈(0,Tmax,ε)

∫

Ω cε(·, t) is finite, and since D(Bθ) is

compactly embedded into W 1,p(Ω) ([23]), through an associated Ehrling-type inequality this readily
implies that supT∈(τ,Tmax,ε) supt∈(τ,T ) ‖B

θcε(·, t)‖Lp(Ω) is finite, and that thus, in particular,

sup
t∈(τ,Tmax,ε)

‖∇cε(·, t)‖Lp(Ω) <∞. (2.13)

As combining standard regularization properties of the Neumann heat semigroup (et∆)t≥0 on Ω ([19])
provides C4 = C4(ε) > 0 and C5 = C5(ε) > 0 such that

‖nε(·, t)‖L∞(Ω)

=

∥

∥

∥

∥

∥

e(t−τ)∆nε(·, τ)−

∫ t

τ

e(t−s)∆∇·
{ nε(·, s)

1 + εnε(·, s)
f(|∇cε(·, s)|

2)∇cε(·, s) + nε(·, s)uε(·, s)
}

ds

∥

∥

∥

∥

∥

L∞(Ω)

≤ C4 + C4

∫ t

τ

(t− s)
− 1

2
− 3

2p ·

{

∥

∥

∥

nε(·, s)

1 + εnε(·, s)
f(|∇cε(·, s)|

2)∇cε(·, s)
∥

∥

∥

Lp(Ω)
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+‖nε(·, s)uε(·, s)‖Lp(Ω)

}

ds

≤ C4 + C5 sup
s∈(τ,Tmax,ε)

‖∇cε(·, s)‖Lp(Ω) + C5 ·

{

sup
s∈(τ,Tmax,ε)

‖uε(·, s)‖L∞(Ω)

}

· sup
s∈(τ,t)

‖nε(·, s)‖Lp(Ω)

for all t ∈ (τ, Tmax,ε), using (2.13) along with (2.12) and (2.8) shows that with some C6 = C6(ε) > 0
and C7 = C7(ε) > 0 we have

sup
t∈(τ,T )

‖nε(·, t)‖L∞(Ω) ≤ C6 + C6 sup
t∈(τ,T )

‖nε(·, t)‖Lp(Ω)

≤
1

2
sup

t∈(τ,T )
‖nε(·, t)‖L∞(Ω) + C7 for all T ∈ (τ, Tmax,ε)

thanks to Young’s inequality. This, however, guarantees boundedness of nε in Ω × (τ, Tmax,ε) and
hence, together with (2.11) and (2.13), contradicts our hypothesis that Tmax,ε be finite. The proof is
thus complete. �

3 Estimates implied by a quasi-entropy property of −
∫

Ω n
p
ε +

∫

Ω c
2
ε

The goal of this section is to derive some basic regularity features of nε and cε which do not require
any knowledge on integrability properties of uε that go beyond the mere fact that ∇ · uε = 0. This
will be set about by analyzing the time evolution of the coupled quantity F := −

∫

Ω n
p
ε +

∫

Ω c
2
ε, where

Lemma 3.6 will reveal that under the subcriticality assumption on f and α in Theorem 1.1, the free
parameter p ∈ (0, 1) herein can be chosen in such a manner that said expression plays the role of a
quasi-entropy functional.

Our considerations in this direction will be prepared by three interpolation-based observations about
zero-oder quantities which can suitably be controlled in terms of a dissipation rate functional appearing
in the course of a corresponding testing procedure in Lemma 3.4, provided that p does not fall below a
certain threshold value. Our first statement in this regard is a consequence of the Gagliardo-Nirenberg
inequality and the mass conservation feature in (2.7):

Lemma 3.1 Let p > 1
3 and q ∈ (1, 3p]. Then there exists C(p, q) > 0 such that

‖nε‖
(3p−1)q
3(q−1)

Lq(Ω) ≤ C(p, q)

∫

Ω
np−2
ε |∇nε|

2 + C(p, q) for all t > 0 and ε ∈ (0, 1). (3.1)

Proof. Since q ≤ 3p and thus 2q
p

≤ 6, we may invoke the Gagliardo-Nirenberg inequality to fix
C1 = C1(p, q) > 0 such that

‖ϕ‖
2(3p−1)q
3p(q−1)

L
2q
p (Ω)

≤ C1‖∇ϕ‖
2
L2(Ω)‖ϕ‖

2(3p−q)
3p(q−1)

L
2
p (Ω)

+ C1‖ϕ‖
2(3p−1)q
3p(q−1)

L
2
p (Ω)

for all ϕ ∈W 1,2(Ω).
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As ‖n
p
2
ε ‖

2
p

L
2
p (Ω)

= C2 :=
∫

Ω n0 for all t > 0 and ε ∈ (0, 1) by (2.7), an application thereof to ϕ := n
2
p
ε

shows that

‖nε‖
(3p−1)q
3(q−1)

Lq(Ω) = ‖n
p
2
ε ‖

2(3p−1)q
3p(q−1)

L
2q
p (Ω)

≤ C1C
3p−q
3(q−1)

2 ‖∇n
p
2
ε ‖

2
L2(Ω) + C1C

(3p−1)q
3(q−1)

2

=
p2

4
C1C

3p−q
3(q−1)

2

∫

Ω
np−2
ε |∇nε|

2 + C1C
(3p−1)q
3(q−1)

2

for all t > 0 and ε ∈ (0, 1). �

Combined with a straightforward second interpolation, now at the level of zero-order expressions, the
latter implies the following.

Corollary 3.2 Let p > 1
3 and q ∈ (1, p+ 2

3). Then for all η > 0 one can find C(η, p, q) > 0 with the
property that

∫

Ω
nqε ≤ η

∫

Ω
np−2
ε |∇nε|

2 + C(η, p, q) for all t > 0 and ε ∈ (0, 1). (3.2)

Proof. Since p + 2
3 ≤ 3p due to the inequality p ≥ 1

3 , our assumption on q particularly ensures

that q ≤ 3p, so that we may apply Lemma 3.1 to find C1 = C1(p, q) > 0 such that writing θ := (3p−1)q
3(q−1)

we have

‖nε‖
θ
Lq(Ω) ≤ C1

∫

Ω
np−2
ε |∇nε|

2 + C1 for all t > 0 and ε ∈ (0, 1). (3.3)

As the hypothesis q < p+ 2
3 furthermore warrants that

θ

q
=

3p− 1

3q − 3
>

3p− 1

3 · (p+ 2
3)− 3

= 1,

and that hence ab ≤ a
θ
q + b

θ
θ−q for all a ≥ 0 and b ≥ 0 by Young’s inequality, given η > 0 we can use

(3.3) to see that
∫

Ω
nqε =

{ η

C1
‖nε‖

θ
Lq(Ω)

}
q
θ
·
(C1

η

)
q
θ

≤
η

C1
‖nε‖

θ
Lq(Ω) +

(C1

η

)
q

θ−q

≤ η

∫

Ω
np−2
ε |∇nε|

2 + η +
(C1

η

)
q

θ−q
for all t > 0 and ε ∈ (0, 1)

and conclude as intended. �

Quite a similar argument shows that whenever p ∈ (0, 1) is not too small, the weighted Dirichlet
integral under consideration moreover conveniently dominates an expression which will turn out to be
of immediate relevance for our analysis of the Navier-Stokes energy (cf. Lemma 4.1), but which prior
to that will also be made use of in Lemma 3.5.
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Corollary 3.3 Let p ≥ 2
5 and s ∈ (1, 6p − 2). Then given any η > 0, one can fix C(η, p, s) > 0 in

such a way that

‖nε‖
s

L
6
5 (Ω)

≤ η

∫

Ω
np−2
ε |∇nε|

2 + C(η, p, s) for all t > 0 and ε ∈ (0, 1). (3.4)

Proof. Using that our assumption p ≥ 2
5 entails that both p > 1

3 and 6
5 ≤ 3p, from Lemma 3.1 we

obtain C1 = C1(p) > 0 such that

‖nε‖
θ

L
6
5 (Ω)

≤ C1

∫

Ω
np−2
ε |∇nε|

2 + C1 for all t > 0 and ε ∈ (0, 1), (3.5)

where θ :=
(3p−1)· 6

5

3·( 6
5
−1)

≡ 2 · (3p− 1) satisfies θ > s by hypothesis. Therefore, Young’s inequality applies

so as to guaranteee that for any choice of η > 0,

‖nε‖
s

L
6
5 (Ω)

=
{ η

C1
‖nε‖

θ

L
6
5 (Ω)

}
s
θ
·
(C1

η

)
s
θ

≤
η

C1
‖nε‖

θ

L
6
5 (Ω)

+
(C1

η

)
s

θ−s
for all t > 0 and ε ∈ (0, 1),

whence (3.4) results from (3.5) if we let C(η, p, s) := η + (C1(p)
η

)
s

θ−s . �

Having at hand these preparations, and especially Corollary 3.2, we can now perform a standard
testing procedure to describe the evolution of the first summand in F , provided that p, in addition to
the above, satisfies the crucial condition (3.6) which will actually form the core of our overall restriction
on α from Theorem 1.1 (see Lemma 3.6).

Lemma 3.4 Assume (1.3) with some α > 0, and let p ∈ (13 , 1) satisfy

p <
2α

3(1− α)+
. (3.6)

Then there exists C(p) > 0 such that

−
d

dt

∫

Ω
npε +

p(1− p)

4

∫

Ω
np−2
ε |∇nε|

2 ≤
1

2

∫

Ω
|∇cε|

2 + C(p) for all t > 0 and ε ∈ (0, 1). (3.7)

Proof. Relying on the positivity of nε in Ω× (0,∞), we may test the first equation in (2.6) against
n
p−1
ε to see that since ∇ · uε = 0, Young’s inequality and (1.3) imply that

−
1

p

d

dt

∫

Ω
npε + (1− p)

∫

Ω
np−2
ε |∇nε|

2

= (1− p)

∫

Ω

n
p−1
ε

1 + εnε
f(|∇cε|

2)∇nε · ∇cε

≤
1− p

2

∫

Ω
np−2
ε |∇nε|

2 +
1− p

2

∫

Ω

n
p
ε

(1 + εnε)2
f2(|∇cε|

2)|∇cε|
2

10



≤
1− p

2

∫

Ω
np−2
ε |∇nε|

2 +
1− p

2
K2

f

∫

Ω
npε(|∇cε|

2 + 1)−α|∇cε|
2 (3.8)

for all t > 0 and ε ∈ (0, 1). Here when α ≥ 1, by means of the Hölder inequality and (2.7) we can
simply estimate

1− p

2
K2

f

∫

Ω
npε(|∇cε|

2 + 1)−α|∇cε|
2

≤
1− p

2
K2

f

∫

Ω
npε

≤
1− p

2
K2

f |Ω|
1−p ·

{
∫

Ω
nε

}p

= C1 = C1(p) :=
1− p

2
K2

f |Ω|
1−p ·

{
∫

Ω
n0

}p

for all t > 0 and ε ∈ (0, 1),

so that in this case we obtain from (3.8) that

−
1

p

d

dt

∫

Ω
npε +

1− p

2

∫

Ω
np−2
ε |∇nε|

2 ≤ C1 for all t > 0 and ε ∈ (0, 1),

which trivially entails (3.7).
If α < 1, however, then thanks to Young’s inequality,

1− p

2
K2

f

∫

Ω
npε(|∇cε|

2 + 1)−α|∇cε|
2

≤
1− p

2
K2

f

∫

Ω
npε|∇cε|

2−2α

=

∫

Ω

{1− p

2
K2

f · (2p)1−αnpε

}

·
{ 1

2p
|∇cε|

2
}1−α

≤
1

2p

∫

Ω
|∇cε|

2 + C2

∫

Ω
n

p
α
ε for all t > 0 and ε ∈ (0, 1) (3.9)

with C2 = C2(p) :=
{

1−p
2 K2

f · (2p)1−α
}

1
α
, where we note that as a consequence of our assumption

(3.6), the exponent in the rightmost integral satisfies

p

α
−
(

p+
2

3

)

=
1− α

α
· p−

2

3
<

1− α

α
·

2α

3(1− α)
−

2

3
= 0.

Therefore, Corollary 3.2 becomes applicable so as to provide C3 = C3(p) > 0 fulfilling

C2

∫

Ω
n

p
α
ε ≤

1− p

4

∫

Ω
np−2
ε |∇nε|

2 + C3 for all t > 0 and ε ∈ (0, 1).

Together with (3.9) and (3.8), this implies that

−
1

p

d

dt

∫

Ω
npε +

1− p

4

∫

Ω
np−2
ε |∇nε|

2 ≤
1

2p

∫

Ω
|∇cε|

2 + C3 for all t > 0 and ε ∈ (0, 1)
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and hence shows that (3.7) can be achieved also in this case. �

Upon an application to suitably large p ∈ (0, 1), Corollary 3.3 now enables us to appropriately estimate
the first summand on the right of (3.7) in terms of the dissipation rate that appears in the course of
a standard testing procedure performed to the second sub-problem contained in (2.6):

Lemma 3.5 Let p ∈ (23 , 1). Then there exists C(p) > 0 satisfying

d

dt

∫

Ω
c2ε +

∫

Ω
|∇cε|

2 ≤
p(1− p)

8

∫

Ω
np−2
ε |∇nε|

2 + C(p) for all t > 0 and ε ∈ (0, 1). (3.10)

Proof. According to the second equation in (2.6), again by solenoidality of uε we obtain that due
to the Hölder inequality,

1

2

d

dt

∫

Ω
c2ε +

∫

Ω
|∇cε|

2 +

∫

Ω
c2ε =

∫

Ω

nε

1 + εnε
cε

≤ ‖nε‖
L

6
5 (Ω)

‖cε‖L6(Ω) for all t > 0 and ε ∈ (0, 1), (3.11)

where by continuity of the embedding W 1,2(Ω) →֒ L6(Ω), with some C1 > 0 we have

‖nε‖
L

6
5 (Ω)

‖cε‖L6(Ω) ≤ C1‖nε‖
L

6
5 (Ω)

·
{

‖∇cε‖
2
L2(Ω) + ‖cε‖

2
L2(Ω)

}
1
2

≤
1

2

∫

Ω
|∇cε|

2 +
1

2

∫

Ω
c2ε +

C2
1

2
‖nε‖

2

L
6
5 (Ω)

for all t > 0 and ε ∈ (0, 1) (3.12)

due to Young’s inequality.
We now make use of our hypothesis p > 2

3 , which namely means that 6p − 2 > 2 and that hence
Corollary 3.3 applies to yield C2 = C2(p) > 0 fulfilling

C2
1

2
‖nε‖

2

L
6
5 (Ω)

≤
p(1− p)

16

∫

Ω
np−2
ε |∇nε|

2 + C2 for all t > 0 and ε ∈ (0, 1).

Consequently, (3.11) along with (3.12) shows that

1

2

d

dt

∫

Ω
c2ε +

1

2

∫

Ω
|∇cε|

2 +
1

2

∫

Ω
c2ε ≤

p(1− p)

16

∫

Ω
np−2
ε |∇nε|

2 + C2 for all t > 0 and ε ∈ (0, 1),

which clearly entails (3.10) if we let C(p) := 2C2(p), for instance. �

By suitably selecting p in such a way that the above hypotheses are simultaneously fulfilled, under the
assumptions from Theorem 1.1 we can now derive the fundamental regularity properties of nε and cε
that form the main result of this section:

Lemma 3.6 Assume (1.3) with some α > 1
2 , and let q > 1, r > 1 and s > 1 be such that with qα and

rα taken from (1.4), and with

sα := min
{

4,
6α− 2

(1− α)+

}

> 1 (3.13)

we have
q < qα, r < rα and s < sα. (3.14)
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Then for all T > 0 there exists C(T ) = C(T ; q, r, s) > 0 such that
∫

Ω
c2ε(·, t) ≤ C(T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (3.15)

and
∫ T

0

∫

Ω
|∇cε|

2 ≤ C(T ) for all ε ∈ (0, 1) (3.16)

as well as
∫ T

0

∫

Ω
nqε ≤ C(T ) for all ε ∈ (0, 1) (3.17)

and
∫ T

0

∫

Ω
|∇nε|

r ≤ C(T ) for all ε ∈ (0, 1) (3.18)

and
∫ T

0
‖nε(·, t)‖

s

L
6
5 (Ω)

dt ≤ C(T ) for all ε ∈ (0, 1). (3.19)

Proof. In order to appropriately prepare our applications of Lemma 3.4 and Lemma 3.5, we let
α > 1

2 , q ∈ (1, qα), r ∈ (1, rα) and s ∈ (1, sα) be given and then claim that it is possible to choose
p ∈ (23 , 1) in such a way that

p <
2α

3(1− α)+
, (3.20)

and that

q < p+
2

3
(3.21)

and

r <
3p+ 2

4
(3.22)

as well as
s < 6p− 2. (3.23)

Indeed, if α ≥ 3
5 then it follows from (3.14) that

max
{

q −
2

3
,
4r − 2

3
,
s+ 2

6

}

< max
{

qα −
2

3
,
4rα − 2

3
,
sα + 2

6

}

= 1,

so that (3.21), (3.22) and (3.23) can simultaneously be achieved for some p ∈ (23 , 1) suitably close to
1, whereupon observing that for such α we have 2α

3(1−α)+
≥ 1, we furthermore see that then (3.20) is

trivially satisfied.
In the case when α ∈ (12 ,

3
5), however, we note that then (3.14) says that

q −
2

3
< qα −

2

3
=

2α

3(1− α)
,

4r − 2

3
<

4rα − 2

3
=

2α

3(1− α)
and

s+ 2

6
<
sα + 2

6
=

2α

3(1− α)
.

Since for such α we have

1 =
2

3 · (53 − 1)
>

2

3 · ( 1
α
− 1)

=
2α

3(1− α)
>

2

3 · (2− 1)
=

2

3
,
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we thereby see that it is possible to pick p ∈ R such that

max
{2

3
, q −

2

3
,
4r − 2

3
,
s+ 2

6

}

< p < min
{

1 ,
2α

3(1− α)

}

=
2α

3(1− α)
,

and that this selection warrants that, evidently, p in fact belongs to the interval (23 , 1) and satisfies
(3.20)-(3.23).

Keeping this value of p fixed henceforth, we may rely on (3.20) to infer from Lemma 3.4 that there
exists C1 > 0 such that

−
d

dt

∫

Ω
npε +

p(1− p)

4

∫

Ω
np−2
ε |∇nε|

2 ≤
1

2

∫

Ω
|∇cε|

2 + C1 for all t > 0 and ε ∈ (0, 1),

while Lemma 3.5 provides C2 > 0 fulfilling

d

dt

∫

Ω
c2ε +

∫

Ω
|∇cε|

2 ≤
p(1− p)

8

∫

Ω
np−2
ε |∇nε|

2 + C2 for all t > 0 and ε ∈ (0, 1).

Therefore,

d

dt

{

−

∫

Ω
npε +

∫

Ω
c2ε

}

+
p(1− p)

8

∫

Ω
np−2
ε |∇nε|

2 +
1

2

∫

Ω
|∇cε|

2 ≤ C1 + C2 for all t > 0 and ε ∈ (0, 1),

which upon an integration in time shows that due to the Hölder inequality and (2.7),

∫

Ω
c2ε(·, t) +

p(1− p)

8

∫ t

0

∫

Ω
np−2
ε |∇nε|

2 +
1

2

∫ t

0

∫

Ω
|∇cε|

2

≤

∫

Ω
npε(·, t) +

∫

Ω
c20 + (C1 + C2)t

≤ |Ω|1−p ·

{
∫

Ω
nε(·, t)

}p

+

∫

Ω
c20 + (C1 + C2)t

= C3(t) := |Ω|1−p ·

{
∫

Ω
n0

}p

+

∫

Ω
c20 + (C1 + C2)t for all t > 0 and ε ∈ (0, 1). (3.24)

This immediately implies the properties claimed both in (3.15) and in (3.16), and moreover entails
that

∫ T

0

∫

Ω
np−2
ε |∇nε|

2 ≤
8C3(T )

p(1− p)
for all T > 0 and ε ∈ (0, 1), (3.25)

so that we may draw on (3.21) and (3.23) to conclude the boundedness features in (3.17) and (3.19)
from Corollary 3.2 and Corollary 3.3, respectively. Finally, using that r < 2 we may employ Young’s
inequality to estimate

∫

Ω
|∇nε|

r =

∫

Ω

{

np−2
ε |∇nε|

2
}

r
2
· n

(2−p)r
2

ε

≤

∫

Ω
np−2
ε |∇nε|

2 +

∫

Ω
n

(2−p)r
2−r

ε for all t > 0 and ε ∈ (0, 1), (3.26)
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and noting that here

(2−p)r
2−r

p+ 2
3

=
3(2− p)

(3p+ 2) · (2
r
− 1)

<
3(2− p)

(3p+ 2) ·
(

2
3p+2

4

− 1
) = 1

and hence (2−p)r
2−r

< p+ 2
3 , we may once again invoke Corollary 3.2 to obtain C4 > 0 such that

∫

Ω
n

(2−p)r
2−r

ε ≤

∫

Ω
np−2
ε |∇nε|

2 + C4 for all t > 0 and ε ∈ (0, 1).

Consequently, (3.26) together with (3.25) guarantees that

∫ T

0

∫

Ω
|∇nε|

r ≤ 2

∫ T

0

∫

Ω
np−2
ε |∇nε|

2 + C4T

≤
16C3(T )

p(1− p)
+ C4T for all T > 0 and ε ∈ (0, 1),

and thus establishes the bound in (3.18). �

For later use, let us already here record the following by-product of (3.15) and (3.16).

Corollary 3.7 Let f be such that (1.3) holds with some α > 1
2 , and let T > 0. Then one can pick

C(T ) > 0 in such a manner that

∫ T

0

∫

Ω
c
10
3
ε ≤ C(T ) for all ε ∈ (0, 1). (3.27)

Proof. By means of a Gagliardo-Nirenberg interpolation, we obtain C1 > 0 such that

∫

Ω
|ϕ|

10
3 ≤ C1 ·

{
∫

Ω
|∇ϕ|2

}

·

{
∫

Ω
|ϕ|2

}
2
3

+ C1 ·

{
∫

Ω
|ϕ|2

}
5
3

for all ϕ ∈W 1,2(Ω).

Applying this to cε directly shows that (3.27) is a consequence of (3.15) and (3.16). �

4 Regularity features of uε. The Navier-Stokes energy

Since within the considered range of α we may apply (3.19) to s := 2, we can now suitably estimate
the forcing term in the approximate Navier-Stokes subsystem of (2.6), and thereby derive the following
regularity features of the corresponding fluid field as natural consequences.

Lemma 4.1 Suppose that (1.3) is satisfied with some α > 1
2 . Then for all T > 0 there exists

C(T ) => 0 with the property that
∫

Ω
|uε(·, t)|

2 ≤ C(T ) for all t ∈ (0, T ) and ε ∈ (0, 1) (4.1)

and
∫ T

0

∫

Ω
|∇uε|

2 ≤ C(T ) for all ε ∈ (0, 1). (4.2)
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Proof. According to a standard reasoning on the basis of the approximate Navier-Stokes subsystem
of (2.6) ([49, Lemma 3.5]), we can obtain the identity

1

2

d

dt

∫

Ω
|uε|

2 +

∫

Ω
|∇uε|

2 =

∫

Ω

nε

1 + εnε
uε · ∇Φ for all t > 0 and ε ∈ (0, 1), (4.3)

in which we again we use the Hölder inequality along with the continuity of the embeddingW 1,2(Ω) →֒
L6(Ω) to obtain from an associated Poincaré-Sobolev inequality that with some C1 > 0 we have

∫

Ω

nε

1 + εnε
uε · ∇Φ ≤ ‖∇Φ‖L∞(Ω)‖nε‖

L
6
5 (Ω)

‖uε‖L6(Ω)

≤ C1‖nε‖
L

6
5 (Ω)

‖∇uε‖L2(Ω)

≤
1

2

∫

Ω
|∇uε|

2 +
C2
1

2
‖nε‖

2

L
6
5 (Ω)

for all t > 0 and ε ∈ (0, 1)

thanks to Young’s inequality. Therefore,

d

dt

∫

Ω
|uε|

2 +

∫

Ω
|∇uε|

2 ≤ C2
1‖nε‖

2

L
6
5 (Ω)

for all t > 0 and ε ∈ (0, 1)

and hence
∫

Ω
|uε(·, t)|

2 +

∫ t

0

∫

Ω
|∇uε|

2 ≤

∫

Ω
|u0|

2 + C2
1

∫ t

0

∫

Ω
‖nε(·, τ)‖

2

L
6
5 (Ω)

dτ for all t > 0 and ε ∈ (0, 1),

so that both (4.1) and (4.2) become consequences of (3.19) when applied to s := 2, because the number
sα from (3.13) satisfies sα > 2 due to the fact that since α > 1

2 we have 6α−2
(1−α)+

> 2. �

Again by interpolation in the style of that performed in Corollary 3.7, the latter implies the following
zero-order spatio-temporal integral bound.

Corollary 4.2 If (1.3) holds with some α > 1
2 , then for all T > 0 one can find C(T ) > 0 such that

∫ T

0

∫

Ω
|uε|

10
3 ≤ C(T ) for all ε ∈ (0, 1). (4.4)

Proof. This can be derived from (4.1) and (4.2) through an essentially verbatim copy of the
argument from Corollary 3.7. �

In order to prepare a convenient limit passage in the fluid-related part of the weak formulation asso-
ciated with the first equation in (2.6), let us make sure that when combined with (3.19), Lemma 4.1
secondly ensures a uniform integrability property of (nεuε)ε∈(0,1) through the following boundedness
feature.

Lemma 4.3 Assume that (1.3) holds with some α > 1
2 . Then there exists κ > 1 with the property

that given any T > 0 one can find C(T ) > 0 fulfilling

∫ T

0

∫

Ω
|nεuε|

κ ≤ C(T ) for all ε ∈ (0, 1). (4.5)
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Proof. We first note that our assumption α > 1
2 especially ensures that 2

3(1−α)+
> 4

3 >
6
5 and

6α−2
(1−α)+

≥ 1
(1−α)+

> 2, and that according to (1.4) and (3.13) we thus have

qα >
6

5
and sα > 2. (4.6)

Here the left inequality enables us to pick q > 6
5 such that

q < qα, (4.7)

whence observing that 10q
5q+6 > 1, we see that

s(κ) :=
2(6q − 6κ− qκ)

10q − 6κ− 5qκ
, κ ∈

(

1,
10q

5q + 6

)

,

is well-defined with

s(κ) →
2 · (6q − 6− q)

10q − 6− 5q
= 2 as κց 1.

Thanks to the right inequality in (4.6), we can therefore fix κ > 1 in such a way that

κ <
10q

5q + 6
(4.8)

and
s(κ) < sα, (4.9)

where again relying on the inequality q > 6
5 we can clearly achieve that also

6κ

6− κ
< q.

As thus 6
5 < 6κ

6−κ
< q, we may thereupon employ the Hölder inequality and Young’s inequality to

estimate

∫ T

0

∫

Ω
|nεuε|

κ ≤

∫ T

0
‖nε(·, t)‖

κ

L
6κ
6−κ (Ω)

‖uε(·, t)‖
κ
L6(Ω)dt

≤

∫ T

0
‖nε(·, t)‖

6q(κ−1)
5q−6

Lq(Ω) ‖nε(·, t)‖
6q−6κ−qκ

5q−6

L
6
5 (Ω)

‖uε(·, t)‖
κ
L6(Ω)dt

≤

∫ T

0
‖uε(·, t)‖

2
L6(Ω)dt+

∫ T

0
‖nε(·, t)‖

12q(κ−1)
(5q−6)(2−κ)

Lq(Ω) ‖nε(·, t)‖
2(6q−6κ−qκ)
(5q−6)(2−κ)

L
6
5 (Ω)

dt

for all T > 0 and ε ∈ (0, 1), where we note that according to (4.8) we know that γ := (5q−6)(2−κ)
12(κ−1)

satisfies γ > 1, and that hence a second application of Young’s inequality shows that

∫ T

0
‖nε(·, t)‖

12q(κ−1)
(5q−6)(2−κ)

Lq(Ω) ‖nε(·, t)‖
2(6q−6κ−qκ)
(5q−6)(2−κ)

L
6
5 (Ω)

dt ≤

∫ T

0
‖nε(·, t)‖

q

Lq(Ω)dt+

∫ T

0
‖nε(·, t)‖

2(6q−6κ−qκ)
(5q−6)(2−κ)

· γ
γ−1

L
6
5 (Ω)

dt
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for all T > 0 and ε ∈ (0, 1). Computing

2(6q − 6κ− qκ)

(5q − 6)(2− κ)
·

γ

γ − 1
=

2(6q − 6κ− qκ)

(5q − 6)(2− κ)
·

1

1− 12(κ−1)
(5q−6)(2−κ)

=
2(6q − 6κ− qκ)

10q − 6κ− 5qκ
= s(κ)

and using the continuity of the embedding W 1,2(Ω) →֒ L6(Ω), we thus infer that with some C1 > 0
we have

∫ T

0

∫

Ω
|nεuε|

κ ≤ C1

∫ T

0

∫

Ω
|∇uε|

2 +

∫ T

0

∫

Ω
nqε +

∫ T

0
‖nε(·, t)‖

s(κ)

L
6
5 (Ω)

dt for all T > 0 and ε ∈ (0, 1),

and that the claim threfeore results from (4.2), (3.17) and (3.19) because of (4.7) and (4.9). �

5 Estimates for D
2
cε and cεt

Beyond those documented in Lemma 3.6 and Corollary 3.7, due to an argument based on maximal
Sobolev regularity the solution components cε can be seen to actually satisfy certain higher-order
estimates.

Lemma 5.1 Suppose that (1.3) is valid with some α > 1
2 , and let λ > 1 be such that

λ ≤
5

4
and λ < qα, (5.1)

with qα taken from (1.4). Then for any τ > 0 and each T > τ there exists C(τ, T ) = C(τ, T ;λ) > 0
fulfilling

∫ T

τ

‖cε(·, t)‖
λ
W 2,λ(Ω)dt ≤ C(τ, T ) for all ε ∈ (0, 1) (5.2)

and
∫ T

τ

∫

Ω
|cεt|

λ ≤ C(τ, T ) for all ε ∈ (0, 1). (5.3)

Proof. Given τ > 0, we fix a noncecreasing cut-off function ζ ∈ C∞([0,∞)) such that ζ ≡ 0 in
[0, τ2 ] and ζ ≡ 1 in [τ,∞), and let

zε(x, t) := ζ(t) · cε(x, t), x ∈ Ω, t ≥ 0, ε ∈ (0, 1).

Then by (2.6),










zεt = ∆zε − zε + hε(x, t), x ∈ Ω, t > 0,
∂zε
∂ν

= 0, x ∈ ∂Ω, t > 0,

zε(x, 0) = 0, x ∈ Ω,

(5.4)

where

hε(x, t) := ζ(t) ·
nε

1 + εnε
− ζ(t)uε · ∇cε + ζ ′(t)cε, x ∈ Ω, t > 0, ε ∈ (0, 1).
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Here since 0 ≤ ζ ≤ 1, and since λ ≤ 5
4 and λ < 10

3 , we may use Young’s inequality to estimate

∫ T

0

∫

Ω
|hε|

λ ≤ 3λ
∫ T

0

∫

Ω
nλε + 3λ

∫ T

0

∫

Ω
|uε · ∇cε|

λ + 3λC1(τ)

∫ T

0

∫

Ω
cλε

≤ 3λ
∫ T

0

∫

Ω
nλε + 3λ

∫ T

0

∫

Ω
|uε · ∇cε|

5
4 + 3λC1(τ)

∫ T

0

∫

Ω
c
10
3
ε

+3λ|Ω|T + 3λC1(τ)|Ω|T for all T > 0 and ε ∈ (0, 1), (5.5)

with C1(τ) := ‖ζ ′‖λ
L∞((0,∞)). As another application of Young’s inequality shows that

3λ
∫ T

0

∫

Ω
|uε · ∇cε|

5
4 ≤ 3λ

∫ T

0

∫

Ω
|uε|

10
3 + 3λ

∫ T

0

∫

Ω
|∇cε|

2 for all T > 0 and ε ∈ (0, 1),

relying on the fact that λ < qα by (5.1) we infer on combining (5.5) with (3.17), (4.4), (3.16) and
(3.27) that for any T > τ we can find C2(τ, T ) > 0 fulfilling

∫ T

0

∫

Ω
|hε|

λ ≤ C2(τ, T ) for all ε ∈ (0, 1).

Now in view of (5.4), a standard result on maximal Sobolev regularity in the Neumann problem for
the inhomigeneous linear heat equation ([21]) provides C3(T ) > 0 such that

∫ T

0

{

‖zε(·, t)‖
λ
W 2,λ(Ω) + ‖zεt(·, t)‖

λ
Lλ(Ω)

}

dt ≤ C3(T )

∫ T

0

∫

Ω
|hε|

λ for all ε ∈ (0, 1).

Since zε ≡ cε in Ω× (τ,∞) for all ε ∈ (0, 1), in conjunction with (5.5) this establishes both (5.2) and
(5.3). �

6 Time regularity of nε and uε

In preparation for an appropriate application of Aubin-Lions type statements on strong precompact-
ness, let us furthermore note some straightforward implications of the estimates from Lemma 3.6 and
Lemma 4.1 on regularity of the time derivatives nεt and uεt.

Lemma 6.1 Assume (1.3) with some α > 1
2 . Then for all T > 0 there exists C(T ) > 0 such that

∫ T

τ

‖nεt(·, t)‖(W 3,2(Ω))⋆dt ≤ C(T ) for all ε ∈ (0, 1) (6.1)

and
∫ T

τ

‖uεt(·, t)‖
2
(W 1,3

0,σ (Ω))⋆
dt ≤ C(T ) for all ε ∈ (0, 1). (6.2)
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Proof. Since W 3,2(Ω) →֒W 1,∞(Ω), there exists C1 > 0 such that ‖∇ψ‖L∞(Ω) ≤ C1‖ψ‖W 3,2(Ω) for

all ψ ∈ C3(Ω). Thus, for fixed t > 0 and ψ ∈ C3(Ω) with ‖ψ‖W 3,2(Ω) ≤ 1 we can integrate by parts in
(2.6) and estimate

∣

∣

∣

∣

∫

Ω
nεt(·, t)ψ

∣

∣

∣

∣

=

∣

∣

∣

∣

−

∫

Ω
∇nε · ∇ψ +

∫

Ω

nε

1 + εnε
f(|∇cε|

2)∇cε · ∇ψ +

∫

Ω
nεuε · ∇ψ

∣

∣

∣

∣

≤ C1

∫

Ω
|∇nε|+ C1

∫

Ω

∣

∣

∣

nε

1 + εnε
f(|∇cε|

2)∇cε

∣

∣

∣
+ C1

∫

Ω
|nεuε|

≤ C1

∫

Ω
|∇nε|+ C1Kf

∫

Ω
nε(1 + |∇cε|

2)−
α
2 |∇cε|+ C1

∫

Ω
nε|uε|

≤ C1

∫

Ω
|∇nε|+ C1Kf

∫

Ω
nε|∇cε|

(1−α)+ + C1

∫

Ω
nε|uε| for all ε ∈ (0, 1)

due to (1.3). Since Young’s inequality implies that in both cases α < 1 and α ≥ 1 we have

∫

Ω
nε|∇cε|

(1−α)+ ≤

∫

Ω
nqε +

∫

Ω
|∇cε|

2 for all ε ∈ (0, 1)

with q := max{ 2
1+α

, 1}, and that

∫

Ω
nε|uε| ≤ ‖nε‖

2

L
6
5 (Ω)

+ ‖uε‖
2
L6(Ω) for all ε ∈ (0, 1),

again relying on the continuity of the embedding W 1,2(Ω) →֒ L6(Ω) we thus obtain C2 > 0 such that

‖nεt(·, t)‖(W 3,2(Ω))⋆ ≤ C1

∫

Ω
|∇nε|+ C1Kf

∫

Ω
nqε + C1Kf

∫

Ω
|∇cε|

2

+C1‖nε‖
2

L
6
5 (Ω)

+ C2

∫

Ω
|∇uε|

2 for all t > 0 and ε ∈ (0, 1). (6.3)

Here we only need to observe that since α > 1
2 , with qα and sα taken from (1.4) and (3.13) we have

q < qα and 2 < sα, to see that (6.1) results from (6.3) when combined with (3.18), (3.17), (3.16),
(3.19) and (4.2).

Likewise, we may use that W 1,3(Ω) →֒ L6(Ω) in choosing C3 > 0 with the property that ‖ψ‖L6(Ω) +
‖∇ψ‖L2(Ω) + ‖∇ψ‖L3(Ω) ≤ C3 for all ψ ∈ C∞

0,σ(Ω) with ‖ψ‖W 1,3(Ω) ≤ 1, to see that given any such ψ,
due to (2.6) and the Hölder inequality we have

∣

∣

∣

∣

∫

Ω
uεt(·, t) · ψ

∣

∣

∣

∣

=

∣

∣

∣

∣

−

∫

Ω
∇uε · ∇ψ +

∫

Ω
(Yεuε ⊗ uε) · ∇ψ +

∫

Ω

nε

1 + εnε
∇Φ · ψ

∣

∣

∣

∣

≤ C3‖∇uε‖L2(Ω) + C3‖Yεuε ⊗ uε‖
L

3
2 (Ω)

+ C4‖nε‖
L

6
5 (Ω)

for all t > 0 and ε ∈ (0, 1) (6.4)
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with C4 := C3‖∇Φ‖L∞(Ω). Here once more due to the continuity of W 1,2(Ω) →֒ L6(Ω), we may rely

on the fact that Yε commutes with A
1
2 on D(A

1
2 ) to see that with some C5 > 0 we have

C3‖Yεuε ⊗ uε‖
L

3
2 (Ω)

≤ C1‖Yεuε‖L6(Ω)‖uε‖L2(Ω)

≤ C5‖∇Yεuε‖L2(Ω)‖uε‖L2(Ω)

= C5‖A
1
2Yεuε‖L2(Ω)‖uε‖L2(Ω)

= C5‖YεA
1
2uε‖L2(Ω)‖uε‖L2(Ω)

≤ C5‖A
1
2uε‖L2(Ω)‖uε‖L2(Ω)

= C5‖∇uε‖L2(Ω)‖uε‖L2(Ω) for all t > 0 and ε ∈ (0, 1),

because Yε is nonexpansive on L2(Ω;R3). From (6.4) we therefore obtain that for all t > 0 and
ε ∈ (0, 1),

‖uεt(·, t)‖
2
(W 1,3

0,σ (Ω))⋆
≤ 3C2

3‖∇uε‖
2
L2(Ω) + 3C2

5‖∇uε‖
2
L2(Ω)‖uε‖

2
L2(Ω) + 3C2

4‖nε‖
2

L
6
5 (Ω)

,

which in conjunction with (4.2), (4.1) and (3.19) yields (6.2) after a time integration. �

7 Passing to the limit. Proof of Theorem 1.1

It remains to suitably exploit the weak and strong compactness features, as implied by the estimates
gathered above, to construct a global weak solution with the claimed additional regularity properties
through a straightforward extraction process.

Lemma 7.1 Suppose that (1.3) is fulfilled with some α > 1
2 , and let qα and rα be as defined in (1.4).

Then there exist (εj)j∈N ⊂ (0, 1) and functions n, c and u, defined a.e. on Ω × (0,∞) and fulfilling
(1.6), such that εj ց 0 as j → ∞, that n ≥ 0 and c ≥ 0 a.e. in Ω × (0,∞), and that as ε = εj ց 0
we have

nε → n a.e. in Ω× (0,∞) and in Lq
loc(Ω× [0,∞)) for all q ∈ (1, qα), (7.1)

∇nε ⇀ ∇n in Lr
loc(Ω× [0,∞)) for all r ∈ (1, rα), (7.2)

cε → c a.e. in Ω× (0,∞) and in L2
loc(Ω× [0,∞)), (7.3)

∇cε → ∇c a.e. in Ω× (0,∞) and Lµ
loc(Ω× [0,∞)) for all µ ∈ (1, 2), (7.4)

uε → u a.e. in Ω× (0,∞) and in L2
loc(Ω× [0,∞)), (7.5)

uε(·, t) → u(·, t) in L2(Ω) for a.e. t > 0 and (7.6)

∇uε ⇀ ∇u in L2
loc(Ω× [0,∞)). (7.7)

Moreover, (n, c, u) is a global weak solution of (1.2) in the sense of Definition 2.1.

Proof. We fix q ∈ (1, qα) and r ∈ (1, rα) to see that for arbitrary T > 0, Lemma 3.6 ensures that

(nε)ε∈(0,1) is bounded in Lq(Ω× (0, T )) and in Lr((0, T );W 1,r(Ω)), (7.8)
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whereas due to Lemma 6.1,

(nεt)ε∈(0,1) is bounded in L1
(

(0, T ); (W 3,2(Ω))⋆
)

.

Apart from that, Lemma 3.6 together with Corollary 3.7 shows that for each T > 0,

(cε)ε∈(0,1) is bounded in L∞((0, T );L2(Ω)), in L
10
3 (Ω× (0, T )) and in L2((0, T );W 1,2(Ω)), (7.9)

and Lemma 5.1 provides λ > 1 with the property that whenever τ > 0 and T > τ ,

(cε)ε∈(0,1) is bounded in Lλ((τ, T );W 2,λ(Ω)) (7.10)

and

(cεt)ε∈(0,1) is bounded in Lλ(Ω× (τ, T )).

Finally, Lemma 4.1 and Corollary 4.2 warrant that for any T > 0,

(uε)ε∈(0,1) is bounded in L∞((0, T );L2
σ(Ω)) and in L2((0, T );W 1,2

0,σ (Ω)), (7.11)

while Lemma 6.1 asserts that

(uεt)ε∈(0,1) is bounded in L2
(

(0, T ); (W 1,3
0,σ (Ω))

⋆
)

.

Performing a straighforward extraction procedure based on appropriate Aubin-Lions lemmata ([38]),
through compactness of the embeddings W 1,r(Ω) →֒ L1(Ω), W 2,λ(Ω) →֒ W 1,1(Ω) and W 1,2(Ω) →֒
L2(Ω) we thus readily obtain (εj)j∈N ⊂ (0, 1) and functions n, c and u on Ω× (0,∞) such that εj ց 0
as j → ∞, that n, c and u enjoy the regularity properties in (1.6), and that as ε = εj ց 0, besides
(7.2), (7.3), (7.5), (7.6) and (7.7) we have

nε → n and ∇cε → ∇c a.e. in Ω× (0,∞).

We therefore may once again use (7.8) and (7.9) to see by means of the Vitali convergence theorem
that also (7.1) and (7.4) are valid as ε = εj ց 0.

Now to verify (2.3) for each ϕ ∈ C∞
0 (Ω× [0,∞)), given any such ϕ we go back to (2.6) to see that

−

∫ ∞

0

∫

Ω
nεϕt −

∫

Ω
n0ϕ(·, 0) = −

∫ ∞

0

∫

Ω
∇nε · ∇ϕ+

∫ ∞

0

∫

Ω

nε

1 + εnε
f(|∇cε|

2)∇cε · ∇ϕ

+

∫ ∞

0

∫

Ω
nεuε · ∇ϕ for all ε ∈ (0, 1), (7.12)

where clearly

−

∫ ∞

0

∫

Ω
nεϕt → −

∫ ∞

0

∫

Ω
nϕt and −

∫ ∞

0

∫

Ω
∇nε · ∇ϕ→ −

∫ ∞

0

∫

Ω
∇n · ∇ϕ as ε = εj ց 0

(7.13)
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by (7.1) and (7.2). Moreover, since Lemma 4.3 provides κ > 1 and C1 > 0 such that taking T > 0
large fulfilling ϕ ≡ 0 in Ω× (T,∞) we have

∫ T

0

∫

Ω
|nεuε|

κ ≤ C1 for all ε ∈ (0, 1),

the uniform integrability property of (nεuε)ε∈(0,1) thereby expressed can be combined with the fact
that nεuε → nu a.e. in Ω × (0, T ) as ε = εj ց 0, as asserted by (7.1) and (7.5), to confirm that due
to the Vitali convergence theorem we have nεuε → nu in L1(Ω× (0, T )) and hence

∫ ∞

0

∫

Ω
nεuε · ∇ϕ→

∫ ∞

0

∫

Ω
nu · ∇ϕ as ε = εj ց 0. (7.14)

In order to proceed similarly in the second last summand in (7.12), we first note that the number

µα :=
2qα

2 + (1− α)+qα

satisfies µα > 1, which actually is obvious if α ≥ 1, which if α ∈ [35 , 1) followd from the fact that then

2qα
2 + (1− α)+qα

=
10
3

2 + 5
3 · (1− α)

=
10

11− 5α
≥

10

11− 5 · 3
5

=
5

4
,

and which for α ∈ (12 ,
3
5) can be seen by estimating

2qα
2 + (1− α)+qα

=

4
3(1−α)

2 + (1− α) · 2
3(1−α)

=
1

2(1− α)
>

1

2 · (1− 1
2)

= 1.

Based on this observation, we may pick any µ ∈ (1, µα) and rely on (1.3) and Young’s inequality to
see that with T > 0 as fixed above,

∫ T

0

∫

Ω

∣

∣

∣

nε

1 + εnε
f(|∇cε|

2)∇cε

∣

∣

∣

µ

≤ K
µ
f

∫ T

0

∫

Ω
nµε |∇cε|

µ(1−α)+

≤ K
µ
f

∫ T

0

∫

Ω
n

2µ
2−µ(1−α)+
ε +K

µ
f

∫ T

0

∫

Ω
|∇cε|

2 for all ε ∈ (0, 1),

where due to the restriction µ < µα,

2µ

2− µ(1− α)+
=

2
2
µ
− (1− α)+

<
2

2
µα

− (1− α)+
=

2
2+(1−α)+qα

qα
− (1− α)+

= qα.

We may therefore once again resort to (7.8) and (7.9) to obtain C2 > 0 such that

∫ T

0

∫

Ω

∣

∣

∣

nε

1 + εnε
f(|∇cε|

2)∇cε

∣

∣

∣

µ

≤ C2 for all ε ∈ (0, 1),
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and to thus infer from the pointwise convergence statements in (7.1) and (7.4) that again thanks to
the Vitali convergence theorem,

nε

1 + εnε
f(|∇cε|

2)∇cε → nf(|∇c|2)∇c in L1(Ω× (0, T )) as ε = εj ց 0

and that hence, in particular,

∫ ∞

0

∫

Ω

nε

1 + εnε
f(|∇cε|

2)∇cε · ∇ϕ→

∫ ∞

0

∫

Ω
nf(|∇c|2)∇c · ∇ϕ as ε = εj ց 0,

because f is continuous on [0,∞). Together with (7.13) and (7.14), this shows that (7.12) entails the
claimed identity in (2.3) upon letting ε = εj ց 0.

The derivation of (2.4) for ϕ ∈ C∞
0 (Ω × [0,∞)) can be accomplished in quite a straightforward

manner on the basis of (7.3), (7.4), (7.1) and (7.5), while (2.5) for any fixed ϕ ∈ C∞
0,σ(Ω × [0,∞))

can be verified by combining (7.5) and (7.6) with (7.7) and (7.1) through a standard argument in
treating the corresponding nonlinear convective contributions (see, e.g., [49, Lemma 4.1] for a detailed
reasoning in this regard). As the regularity requirements in (2.1) and (2.2) are clearly implied by the
features stated in (1.6) when combined with (1.3), we thereby conclude that indeed (n, c, u) is a global
weak solution of (1.2) in the claimed sense. �

Proof of Theorem 1.1. The statement is actually part of what has been derived in Lemma 7.1. �
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