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Abstract— We consider the problem of vehicle following,
where a safety distance to the leader vehicle is guaranteed at
all times and a favourite velocity is reached as far as possible.
We introduce the funnel cruise controller as a novel universal
adaptive cruise control mechanism which is model-free and
achieves the aforementioned control objectives. The controller
consists of a velocity funnel controller, which directly regulates
the velocity when the leader vehicle is far away, and a distance
funnel controller, which regulates the distance to the leader
vehicle when it is close so that the safety distance is never
violated. A sketch of the feasibility proof is given. The funnel
cruise controller is illustrated by a simulation of three different
scenarios which may occur in daily traffic.

Index Terms— Autonomous vehicles, adaptive cruise control,
nonlinear systems, funnel control, safety guarantees
AMS subject classifications— 93C10, 93C40, 70Q05

I. INTRODUCTION

With traffic steadily increasing, simple cruise control (see
e.g. [1]), which holds the velocity on a constant level,
is becoming less useful. A controller which additionally
allows a vehicle to follow the vehicle in front of it while
continually adjusting speed to maintain a safe distance is
a suitable alternative. Various methods which achieve this
are available in the literature, see e.g. the survey [2] on
adaptive cruise control systems. A common method is the
use of proportional-integral-derivative (PID) controllers, see
e.g. [1], [3], [4], [5], which however are not able to guarantee
any safety.

Another popular method is model predictive control
(MPC), where the control action is defined by repeated
solution of a finite-horizon optimal control problem. A
two-mode MPC controller is developed in [6], where the
controller switches between velocity and distance control.
The MPC method introduced in [7] incorporates the fuel
consumption and driver desired response in the cost function
of the optimal control problem. In [8] a method which
guarantees both safety and comfort is developed. It consists
of a nominal controller, which is based on MPC, and an
emergency controller which takes over when MPC does not
provide a safe solution.

Control methods based on control barrier functions which
penalize the violation of given constraints have been devel-
oped in [9], [10]. While safety constraints are automatically
guaranteed by this approach, it may be hard to find a suitable
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control barrier function. Another recent method is correct-by-
construction adaptive cruise control [11], which is also able
to guarantee safety. However, the computations are based on
a so called finite abstraction of the system (which is already
expensive) and changes of the system parameters require a
complete re-computation of the finite abstraction.

Drawbacks of the aforementioned approaches are that
either safety cannot be guaranteed (as in [3], [4], [5]) or
the model must be known exactly (as in [9], [6], [8], [10],
[11], [7]). However, the requirements on driver assistance
systems are increasing steadily. It is expected that in the
near future autonomous vehicles will completely take over
all driving duties. Therefore, a cruise control mechanism
is desired which achieves both: under any circumstances
(in particular, in emergency situations) the prescribed safety
distance to the preceding vehicle is guaranteed and at the
same time the parameters of the model, such as aerodynamic
drag or rolling friction, must not be known exactly, i.e.,
the control mechanism is model-free. The latter property
also guarantees that the controller is inherently robust, in
particular with respect to uncertainties, modelling errors or
external disturbances. Another requirement on the controller
is that it should be simple in its design and of low complexity,
and that it only requires the measurement of the velocity and
the distance to the leading vehicle. We stress that in a lot of
other approaches as e.g. [6], [3], [8], [7] the position, velocity
and/or acceleration of the leading vehicle must be known at
each time.

In the present paper we propose a novel control design
which satisfies the above requirements. Our control design is
based on the funnel controller which was developed in [12],
see also the survey [13] and the recent paper [14]. The funnel
controller is an adaptive controller of high-gain type and
has been successfully applied e.g. in temperature control of
chemical reactor models [15], control of industrial servo-
systems [16], [17], [18], DC-link power flow control [19],
voltage and current control of electrical circuits [20], and
control of peak inspiratory pressure [21].

In our design we will distinguish two different cases. If the
preceding vehicle is far away, i.e., the distance to it is larger
than the safety distance plus some constant, then a velocity
funnel controller will be active which simply regulates the
velocity of the vehicle to the desired pre-defined velocity.
If the preceding vehicle is close, then a distance funnel
controller will be active which regulates the distance to the
preceding vehicle to stay within a predefined performance
funnel in front of the safety distance. The combination of
these two controllers results in a funnel cruise controller
which guarantees safety at all times. We like to stress that
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the distance funnel controller does not directly regulate the
position of the vehicle, but a certain weighting between
position and velocity; hence, a relative degree one controller
suffices.

A. Nomenclature
R≥0 = [0,∞)
L ∞

loc(I→Rn) the set of locally essentially bounded
functions f : I→Rn, I ⊆ R an interval

L ∞(I→Rn) the set of essentially bounded functions
f : I→Rn

∥ f∥∞ = ess supt∈I∥ f (t)∥
W k,∞(I→Rn) the set of k-times weakly differentiable

functions f : I→Rn such that f , . . . , f (k) ∈
L ∞(I→Rn)

C (V →Rn) the set of continuous functions f : V →Rn,
V ⊆ Rm

f |W restriction of the function f : V →Rn to
W ⊆V

dist(y,X) = infx∈X ∥y−x∥, the distance of y ∈Rn to
a set X ⊆ Rn

B. Framework and system class

In the present paper we consider the framework of one
vehicle following another, see Fig. 1.

..

xsafe(t)

.

v(t)

.

x(t)

.

xl(t)

.

Leader

.

Follower

Fig. 1: Vehicle following framework.

By xl we denote the position of the leader vehicle, while x
and v denote the position and velocity of the follower
vehicle. The change in momentum of the latter is given by
the difference of the force F generated by the contact of
the wheels with the road and the forces due to gravity Fg
(including the changing slope of the road), the aerodynamic
drag Fa and the rolling friction Fr. Detailed modelling of
these forces can be very complicated since all the individual
components of the vehicle have to be taken into account.
Therefore, we use the following simple models which are
taken from [1, Sec. 3.1]:

Fg : R≥0 → R, t 7→ mgsinθ(t),
Fa : R≥0 ×R→ R, (t,v) 7→ 1

2 ρ(t)CdAv2,

Fr : R→ R, v 7→ mgCr sgn(v),

where m (in kg) denotes the mass of the (following) ve-
hicle, g = 9.81m/s2 is the acceleration of gravity, θ(t) ∈
[−π

2 rad, π
2 rad] and ρ(t) (in kg/m3) denote the slope of the

road and the (bounded) density of air at time t, resp., Cd
denotes the (dimensionless) shape-dependent aerodynamic

drag coefficient and Cr the (dimensionless) coefficient of
rolling friction, and A (in m2) is the frontal area of the
vehicle.

Since the discontinuous nature of the rolling friction
causes some problems in the theoretical treatment we ap-
proximate the sgn function by the smooth error function

erf(z) =
2√
π

∫ z

0
e−t2

dt , z ∈ R,

using the property that

∀z ∈ R : lim
α→∞

erf(αz) = sgn(z).

Therefore, we will use the following model for the rolling
friction:

Fr : R→ R, v 7→ mgCr erf(αv) (1.1)

for sufficiently large parameter α > 0.
The force F which is generated by the engine of the

vehicle is usually given as torque curve (depending on the
engine speed) times a signal which controls the throttle
position, see [1, Sec. 3.1]. Since the latter can be calculated
from any given force F and velocity v (taking the current gear
into account), here we assume that we can directly control the
force F , i.e., the control signal is u(t) = F(t). The equations
of motion for the vehicle are then given by

ẋ(t) = v(t),

mv̇(t) = u(t)−Fg(t)−Fa
(
t,v(t)

)
−Fr

(
v(t)

)
,

(1.2)

with the initial conditions

x(0) = x0 ∈ R, v(0) = v0 ∈ R. (1.3)

C. Control objective

Roughly speaking, the control objective is to design a
control input u(t) such that v(t) is as close to a given
favourite speed vref(t) as possible, while at the same time
a safety distance to the leading vehicle is guaranteed, i.e.,
xl(t)− x(t) ≥ xsafe(t). The safety distance xsafe(t) should
prevent collision with the leading vehicle and is typically a
function of the vehicle velocity, but could also be a constant
or a function of other variables. In the literature different
concepts are used, see e.g. [22], [23] and the references
therein. A common model for the safety distance that we
use in the present paper is

xsafe(t) = λ1v(t)+λ2 (1.4)

with positive constants λ1 (in s) and λ2 (in m). The pa-
rameter λ1 models the time gap between the leader and
follower vehicle and λ2 is the minimal distance when the
velocity is zero. If for instance λ1 = 0.5s, then it would take
the following vehicle 0.5s to arrive at the leading vehicle’s
present position.

We assume that the distance xl(t)− x(t) to the leader
vehicle as well as the velocity v(t) can be measured, i.e., they
are available for the controller design. Apart from that, the
controller design should be model-free, i.e., knowledge of the
parameters m,θ(t),ρ(t),Cd ,Cr and A as well as of the initial
values x0,v0 is not required. This makes the controller robust
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to modelling errors, uncertainties, noise and disturbances.
Summarizing, the objective is to design a (nonlinear and
time-varying) control law of the form

u(t) = F
(
t,v(t),xl(t)− x(t)

)
(1.5)

such that, when applied to a system (1.2), in the closed-loop
system we have that for all t ≥ 0

(O1) xl(t)− x(t)≥ xsafe(t),
(O2) |v(t)−vref(t)| is as small as possible such that (O1) is

not violated.

D. Funnel control for relative degree one systems

The final control design will consist of two different funnel
controllers for appropriate relative degree one systems. The
first version of the funnel controller was developed in [12]
and this version will be sufficient for our purposes. We
consider nonlinear relative degree one systems governed by
functional differential equations of the form

ẏ(t) = f
(
d(t),(Ty)(t)

)
+ γ u(t),

y|[−h,0] = y0 ∈ C ([−h,0]→ R),
(1.6)

where h ≥ 0 is the “memory” of the system, γ > 0 is the
high-frequency gain and

• d ∈ L ∞(R≥0 → Rp), p ∈ N, is a disturbance;
• f ∈ C (Rp ×Rq → R), q ∈ N;
• T : C ([−h,∞)→ R)→ L ∞

loc(R≥0 → Rq) is an operator
with the following properties:

a) T maps bounded trajectories to bounded trajecto-
ries, i.e, for all c1 > 0, there exists c2 > 0 such that
for all ζ ∈ C ([−h,∞)→ R),

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥T (ζ )(t)∥ ≤ c2.

b) T is causal, i.e., for all t ≥ 0 and all ζ ,ξ ∈
C ([−h,∞)→ R):

ζ |[−h,t] = ξ |[−h,t] =⇒ T (ζ )|[0,t]
a.e.
= T (ξ )|[0,t] ,

where “a.e.” stands for “almost everywhere”.
c) T is locally Lipschitz continuous in the following

sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that
for all ζ ,∆ζ ∈ C ([−h,∞)→R) with ∆ζ |[−h,t] = 0
and ∥ ∆ζ |[t,t+τ] ∥∞ < δ we have∥∥∥(T (ζ +∆ζ )−T (ζ )

)∣∣
[t,t+τ]

∥∥∥
∞
≤ c∥ ∆ζ |[t,t+τ] ∥∞.

The funnel controller for systems (1.6) is of the form

u(t) =−k(t)e(t), e(t) = y(t)− yref(t),

k(t) =
1

1−φ(t)2e(t)2 ,
(1.7)

where yref ∈ W 1,∞(R≥0 → R) is the reference signal, and
guarantees that the tracking error e(t) evolves within a
prescribed performance funnel

Fφ := { (t,e) ∈ R≥0 ×R | φ(t)|e|< 1 } , (1.8)

which is determined by a function φ belonging to

Φ:=

φ ∈W 1,∞(R≥0→R)

∣∣∣∣∣∣
φ(s)> 0 for all s > 0 and
for all ε > 0:
(1/φ)|[ε,∞)∈W 1,∞([ε,∞)→R)

.

The funnel boundary is given by the reciprocal of φ , see
Fig. 2. The case φ(0) = 0 is explicitly allowed, meaning that
no restriction is put on the initial value since φ(0)|e(0)|< 1;
the funnel boundary 1/φ has a pole at t = 0 in this case.

λ

(0,e1(0))
φ(t)−1

t

Fig. 2: Error evolution in a funnel Fφ with boundary φ(t)−1.

An important property is that each performance funnel Fφ
is bounded away from zero, i.e., because of boundedness of
φ there exists λ > 0 such that 1/φ(t)≥ λ for all t > 0. We
stress that the funnel boundary is not necessarily monotoni-
cally decreasing. Widening the funnel over some later time
interval might be beneficial, e.g., when periodic disturbances
are present or the reference signal changes strongly. For
typical choices of funnel boundaries see e.g. [24, Sec. 3.2].

In [12], the existence of global solutions of the closed-
loop system (1.6), (1.7) is investigated. To this end, y :
[−h,ω)→ R is called a solution of (1.6), (1.7) on [−h,ω),
ω ∈ (0,∞], if y|[−h,0] = y0 and y|[0,ω) is weakly differentiable
and satisfies (1.6), (1.7) for almost all t ∈ [0,ω); y is called
maximal, if it has no right extension that is also a solution.
Note that uniqueness of solutions of (1.6), (1.7) is not
guaranteed in general.

The following result is proved in [12].
Theorem 1.1: Consider a system (1.6) with initial tra-

jectory y0 ∈ C ([−h,0] → R), a reference signal yref ∈
W 1,∞(R≥0 → R) and a funnel function φ ∈ Φ such that

φ(0)|y0(0)− yref(0)|< 1.

Then the controller (1.7) applied to (1.6) yields a closed-loop
system which has a solution, and every maximal solution
y : [0,ω)→ R has the properties:

(i) ω = ∞;
(ii) all involved signals y(·),k(·) and u(·) are bounded;

(iii) the tracking error evolves uniformly within the perfor-
mance funnel in the sense

∃ε > 0 ∀ t > 0 : |e(t)| ≤ φ(t)−1 − ε.
E. Organization of the present paper

In Section II we present a novel funnel cruise controller
which satisfies the control objectives as stated in Section I-
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C. The controller is basically the conjunction of a velocity
funnel controller and a distance funnel controller, both for-
mulated for appropriate relative degree one systems. Those
controllers are presented separately before the final controller
design is stated and feasibility is proved. In Section III the
performance of the controller is illustrated for some typical
model parameters and scenarios from daily traffic. Some
conclusions are given in Section IV.

II. FUNNEL CRUISE CONTROL

In this section we present our novel funnel cruise control
design to achieve (O1) and (O2), which consists of a velocity
funnel controller and a distance funnel controller. We first
present those controllers separately before we state the
unified controller design.

A. Velocity funnel controller

When the leader vehicle is far away we do not need to care
about the control objective (O1) and simply need to regulate
the velocity v to the favourite velocity vref ∈ W 1,∞(R≥0 →
R). For this purpose we can treat the velocity v as the output
of system (1.2) and hence the velocity tracking error is given
by ev(t) = v(t)−vref(t). Since the first equation in (1.2) can
be ignored in this case (it does not play a role for the input-
output behavior), we may define d(t) :=

(
Fg(t),ρ(t)

)
for t ≥

0 and

fv : R3 → R, (d1,d2,v) 7→ 1
m

(
d1 +

1
2 d2CdAv2 +Fr(v)

)
.

Since ρ is assumed to be bounded we obtain that d is
bounded and the second equation in (1.2) can be written
as

v̇(t) = 1
m u(t)− fv

(
d(t),v(t)

)
, (2.1)

and hence belongs to the class of systems (1.6) with the
identity operator T v= v. Then Theorem 1.1 yields feasibility
of the velocity funnel controller

uv(t) =−kv(t)ev(t), ev(t) = v(t)− vref(t),

kv(t) =
1

1−φv(t)2ev(t)2 ,
(2.2)

where φv ∈ Φ, when applied to system (1.2) with initial
conditions (1.3) such that φv(0)|v0 − vref(0)|< 1.

We stress that since x has been ignored for the controller
design above, the first equation in (1.2) may cause it to grow
unboundedly. However, since xl is assumed to be bounded,
xl − x will eventually get small enough so that the distance
funnel controller discussed in the following section becomes
active. In the end, this will guarantee boundedness of x.

B. Distance funnel controller

If the leader vehicle is close, then the main objective of
the controller is to ensure that (O1) is guaranteed, so that v(t)
may be much smaller than vref(t) if necessary. To this end,
we introduce a performance funnel, defined by φd ∈ Φ with
φd(0) ̸= 0, which lies directly in front of the safety distance
to the leader vehicle, see Fig. 3.

The aim is then to regulate the position x(t) to the middle
of this performance funnel given by xl(t)−xsafe(t)−φd(t)−1,

...

Velocity Control

.

Distance Control

.
xsafe(t).

φd(t)−1
. (. ).

Leader

.

Leader

.

Follower

.

Follower

Fig. 3: Illustration of the distance funnel controller.

where xl ∈ W 1,∞(R≥0 → R). The corresponding distance
tracking error is hence given by

ed(t) = x(t)− xl(t)+ xsafe(t)+φd(t)−1.

In order to reformulate system (1.2) in the form (1.6) with
appropriate output y and reference signal yref we recall that
xsafe(t) = λ1v(t)+λ2 and define

y(t) := λ1v(t)+ x(t),

yref(t) := xl(t)−λ2 −φd(t)−1.

Then ed(t) = y(t)−yref(t) and we further find that, invoking
the first equation in (1.2),

ẋ(t) =− 1
λ1

x(t)+ 1
λ1

y(t), x(0) = x0,

hence

x(t) = e
− 1

λ1
t
x0 +

∫ t

0

1
λ1

e
− 1

λ1
(t−s)

y(s)ds =: (T1y)(t), t ≥ 0.

Now define
Ty :=

(
T1y,y

)⊤
for all y ∈ C (R≥0 → R). It is straightforward to check that
the operator T : C ([0,∞)→R)→L ∞

loc(R≥0 →R2), which is
parameterized by x0 ∈R, has the properties a)–c) as stated in
Section I-D. Using equation (2.1) as well as d and fv defined
in Section II-A we obtain

ẏ(t) = λ1v̇(t)+ ẋ(t)

= λ1
m u(t)−λ1 fv

(
d(t),v(t)

)
− 1

λ1
x(t)+ 1

λ1
y(t),

= λ1
m u(t)−λ1 fv

(
d(t),− 1

λ1
(T1y)(t)+ 1

λ1
y(t)

)
− 1

λ1
(T1y)(t)+ 1

λ1
y(t),

= λ1
m u(t)− fd

(
d(t),(Ty)(t)

)
, (2.3)

where

fd : R4 → R,

(d1,d2,ζ1,ζ2) 7→ λ1 fv

(
d1,d2,− 1

λ1
ζ1 +

1
λ1

ζ2

)
+ 1

λ1
ζ1 − 1

λ1
ζ2.

Clearly, (2.3) belongs to the class of systems (1.6). Then
Theorem 1.1 yields feasibility of the distance funnel con-
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troller
ud(t) =−kd(t)ed(t), ed(t) = x(t)− xl(t)

kd(t) =
1

1−φd(t)2ed(t)2 , + xsafe(t)+φd(t)−1,

(2.4)
when applied to system (1.2) with initial conditions (1.3)
such that φd(0)|λ1v0 + x0 − xl(0)+λ2 +φd(0)−1|< 1.

C. Final control design and its feasibility

In Sections II-A and II-B we have seen that the separate
velocity and distance funnel controllers are feasible when
the initial conditions lie within the funnel boundaries at
t = 0; the control objective (O1) is ignored in the case of
velocity control and the control objective (O2) is ignored
in the case of distance control. However, it is our aim to
simultaneously satisfy (O1) and (O2), i.e., always guarantee
the safety distance and regulate the velocity to the favourite
velocity as far as possible. This means that two additional
scenarios must be possible:

• if the follower vehicle, while using the velocity funnel
controller (2.2), enters the performance funnel in front
of the safety distance, i.e., x(t) = xl(t) − xsafe(t) −
φd(t)−1, then the controller should switch to the dis-
tance funnel controller (2.4);

• when the distance funnel controller is active it should
still be guaranteed that v(t) < vref(t)+φv(t)−1, but it
is possible that v(t)≤ vref(t)−φv(t)−1 when the leader
decelerates; in the latter case it is not possible to switch
back to (2.2).

A controller which combines (2.2) and (2.4) and takes the
above conditions into account faces an immediate problem:
The controller (2.4) has a singularity when x(t) = xl(t)−
xsafe(t)−φd(t)−1 since kd(t)↗ ∞ at such points. Likewise,
kv(t)↗∞ for points where v(t) = vref(t)−φv(t)−1, i.e., when
a strong deceleration is necessary. To resolve these problems,
the minimum of the control signals uv(t) and ud(t) is chosen
in the region where the velocity performance funnel and the
distance performance funnel intersect, i.e., when (t,ev(t)) ∈
Fφv and (t,ed(t)) ∈ Fφd ; see also Fig. 4 for an illustration.

..

u = uv

.

ev = 0

.

v

.

u
=

min{u
d ,u

v }

.

φ−1
v

.

ed = 0

.

u = ud

.

φ−1
d

.

x

Fig. 4: Illustration of the final control design.

The overall funnel cruise controller is of the form (1.5)
and given in (2.5). For later purposes we also define the
relatively open set D given in (2.6).

In the remainder of this section we give the feasibility
result for the controller (2.5) and sketch its proof.

Theorem 2.1: Consider a system (1.2) with initial con-
ditions (1.3), a favourite velocity vref ∈ W 1,∞(R≥0 → R),
position of the leader vehicle xl ∈ W 1,∞(R≥0 → R), safety
distance xsafe as in (1.4) with λ1,λ2 > 0 and funnel functions
φv,φd ∈ Φ such that φd(0) ̸= 0 and(

0,x0,v0) ∈ D .

Then the funnel cruise controller (2.5) applied to (1.2)
yields a closed-loop system which has a solution, and every
maximal solution (x,v) : [0,ω)→ R2 has the properties:

(i) ω = ∞;
(ii) all involved signals x(·),v(·) and u(·) are bounded;

(iii) the solution evolves uniformly within the set D , i.e.,

∃ε > 0 ∀ t ≥ 0 : dist
(
(t,x(t),v(t)),∂D

)
> ε,

where ∂D denotes the boundary of D in R≥0 ×R2.
Sketch of the Proof: Since the input u as in (2.5) is con-
tinuous in (x,v) on the set D from (2.6), the existence of a
maximal solution of the closed-loop system is a consequence
of Carathéodory’s existence theorem, see e.g. [25, § 10,
Thm. XX]. Let (x,v) : [0,ω)→R2, ω ∈ (0,∞], be a maximal
solution, then we may also infer that the closure of the
graph of (x,v) is not a compact subset of D . Clearly, x
and v are bounded since φ−1

d , xl and vref are bounded and
(t,x(t),v(t)) ∈ D for all t ∈ [0,ω). Therefore, if (iii) holds
on [0,ω), then it implies (i) and (ii).
In order to show (iii) we consider three different cases
according to the three parts in the definition of D in (2.6),
see also Fig. 4. By standard arguments as used in the proof
of Theorem 1.1 (see [12]) we may exclude that the graph
of (x,v) can reach the boundary of D in the first two cases;
in other words, kv is bounded on the first part where u = uv
and kd is bounded on the second part where u = ud . At
the boundary between the first part and the third part ud
has a pole, and at the boundary between the second part
and the third part uv has a pole; but u is continuous since
u = min{uv,ud}. To show that in this last part the graph
of (x,v) cannot reach the boundary of D we divide it again
into four distinct parts and consider the minimum separately
on each of them. Using similar arguments as before, the
result can then be obtained.

III. SIMULATIONS

We illustrate the funnel cruise controller (2.5) for three
different scenarios which may occur in daily traffic. The
first standard scenario is that the follower vehicle, with a
constant favourite velocity vref, is far away from the leader,
catches up and follows it for some time until the leader
accelerates past vref. The second scenario illustrates that
safety is guaranteed even in the case of a full brake of the
leader vehicle. In the last scenario the leader vehicle has a
strongly varying acceleration.
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u(t) =


−kv(t)ev(t), ed(t)≤−φd(t)−1 ∧ (t,ev(t)) ∈ Fφv ,

−kd(t)ed(t), ev(t)≤−φv(t)−1 ∧ (t,ed(t)) ∈ Fφd ,

min{−kv(t)ev(t),−kd(t)ed(t)}, (t,ev(t)) ∈ Fφv ∧ (t,ed(t)) ∈ Fφd ,

kv(t) =
1

1−φv(t)2ev(t)2 , ev(t) = v(t)− vref(t),

kd(t) =
1

1−φd(t)2ed(t)2 , ed(t) = x(t)− xl(t)+ xsafe(t)+φd(t)−1.

(2.5)

D :=

 (t,x,v) ∈ R≥0 ×R2

∣∣∣∣∣∣∣∣∣∣

(
λ1v+ x ≤ xl(t)−λ2 −2φd(t)−1 ∧

(
t,v− vref(t)

)
∈ Fφv

)
∨

(
v ≤ vref(t)−φv(t)−1 ∧

(
t,λ1v+ x− xl(t)+λ2 +φd(t)−1

)
∈ Fφd

)
∨

((
t,v− vref(t)

)
∈ Fφv ∧

(
t,λ1v+ x− xl(t)+λ2 +φd(t)−1

)
∈ Fφd

)
 . (2.6)

m θ(t) ρ(t) Cd Cr A
1300kg 0rad 1.3kg/m3 0.32 0.01 2.4m2

TABLE I: Parameter values for the vehicle model.

For the simulations we will use some typical parameter
values for the model (1.2) which are taken from [1] and sum-
marized in Table I. For the approximated friction model (1.1)
we choose the parameter α = 100. The initial conditions (1.3)
are chosen as x0 = 0m and v0 = 15ms−1 and the constants
in (1.4) as λ1 = 0.5s and λ2 = 2m. For all three scenarios
we choose the favourite velocity vref(t) = 36ms−1 and the
funnel functions

φv(t) =
(
22.5e−0.2t +0.2

)−1
, φd(t) = 0.25.

Scenario 1: We have chosen xl and vl = ẋl so that initially
the leader vehicle has a larger velocity than the follower,
which is hence free to accelerate and catch up using the
velocity funnel controller. When the distance is between
xsafe(t)+2φd(t)−1 and xsafe(t), the distance funnel controller
will ensure that the safety distance is not violated. After a
period of safe following, where v(t)< vref(t)−φv(t)−1, the
leader accelerates to a velocity larger than vref(t) and the
velocity funnel controller will again take over.

The simulation of the controller (2.5) for the system (1.2)
with parameters as in Table I and the above described
scenario over the time interval 0−50s has been performed in
MATLAB (solver: ode15s, rel. tol.: 10−10, abs. tol.: 10−10)
and is depicted in Fig. 5. Fig. 5a shows the distance xl − x
to the leader and the distance funnel in front of the safety
distance. The velocities v and vl are depicted in Fig. 5b
together with the velocity funnel. Fig. 5c shows the input
signal u generated by the controller and the engine force ul
of the leader vehicle. We stress that, due to the mass of the
vehicles of 1300kg, the forces u and ul which are between
±104N correspond to an acceleration between ±8m/s2. It
can be seen that the controller achieves the favourite velocity
as far as possible while guaranteeing safety at all times, thus
the control objectives (O1) and (O2) are satisfied.

Scenario 2: We have chosen xl and vl so that after a period
of safe following the leader vehicle suddenly fully brakes.
This illustrates that even in such extreme cases the funnel
cruise controller is able to guarantee that the safety distance
is not violated.

The simulation of the controller (2.5) for the system (1.2)
with parameters as in Table I and the above described
scenario over the time interval 0−50s has been performed in
MATLAB (solver: ode15s, rel. tol.: 10−10, abs. tol.: 10−10)
and is depicted in Fig. 6. It can be seen in Fig. 6a that the
safety distance is always guaranteed. From Fig. 6b we can
observe that the velocity v of the follower does not drop as
sharp as the velocity vl of the leader. Fig. 6c shows that the
engine forces u and ul are quite comparable.

Scenario 3: We have chosen xl and vl so that the leader
vehicle has a strongly varying acceleration. After a period
of velocity control where the follower vehicle is free to
accelerate close to the favourite velocity vref, it will catch
up with the leader vehicle and a period of safe following
using distance funnel control follows. During this period
several (sharp) acceleration and deceleration maneuvers are
necessary to guarantee safety in the face of the mercurial
behavior of the leader vehicle.

The simulation of the controller (2.5) for the system (1.2)
with parameters as in Table I and the above described
scenario over the time interval 0−50s has been performed in
MATLAB (solver: ode15s, rel. tol.: 10−10, abs. tol.: 10−10)
and is depicted in Fig. 7. It can be seen in Fig. 7a that
safety is guaranteed even in the case of the strongly varying
behavior of the leader. The velocity v of the follower, as
shown in Fig. 7b, does not vary as strongly as vl , but shows
a much smoother behavior. The engine force u depicted in
Fig. 7c shows sharp drops and rises, but this cannot be
avoided since the funnel cruise controller (2.5) is causal and
hence cannot look into the future. This is different from other
approaches such as MPC (see e.g. [6], [7], [8]) which is able
to incorporate future information since an optimal control
problem is solved over some future time interval. However,
the drawback of this is that the model (1.2) must be known

MTNS 2018, July 16-20, 2018
HKUST, Hong Kong

930



0 10 20 30 40 50
0

20

40

60

80

100

time t / s

x
/

m

 

 
xl ! x
xsafe + 2ϕ!1

d
xsafe

Fig. 5a: Distance to leader and distance funnel

0 10 20 30 40 50
10

20

30

40

50

60

time t / s

v
/
m
/
s

 

 
vl
v
vref ' ϕ!1

v

Fig. 5b: Velocities and velocity funnel

0 10 20 30 40 50
-1

-0.5

0

0.5

1
x 10

4

time t / s

u
/

N

 

 
u
ul

Fig. 5c: Input and leader engine force

Fig. 5: Simulation of the funnel cruise controller (2.5) for
the system (1.2) with parameters as in Table I in Scenario 1.

as good as possible.

IV. CONCLUSIONS

In the present paper we proposed a novel and universal
adaptive cruise control mechanism which is model-free and
guarantees safety at all times. The funnel cruise controller
consists of a velocity funnel controller, which is active when
the leader vehicle is far away, and a distance funnel con-
troller, which ensures that the safety distance is not violated
when the leader vehicle is close. We have sketched the proof
of feasibility of this controller; a comprehensive proof will be
given in future works. Three simulation scenarios illustrate
the application of the funnel cruise controller.
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Fig. 6: Simulation of the funnel cruise controller (2.5) for
the system (1.2) with parameters as in Table I in Scenario 2.

The simulations show that, although the funnel cruise
controller satisfies the control objectives, the generated con-
trol input (engine force of the follower vehicle) usually
contains sharp peaks which are not desired in terms of
driver comfort. This issue should be resolved by smoothing
the peaks e.g. by combining the funnel cruise controller
with the PI-funnel controller with anti-windup as discussed
in [26]. Furthermore, constraints on the acceleration should
be incorporated in future research to avoid unrealistic high
peaks in the control input generated by the controller.

Another topic of future research is the investigation of
platoons of several vehicles, each equipped with a funnel
cruise controller. An important question is under which
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Fig. 7: Simulation of the funnel cruise controller (2.5) for
the system (1.2) with parameters as in Table I in Scenario 3.

conditions string stability of the platoon is achieved and
whether some communication between the vehicles must be
allowed for this.
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