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Abstract— We consider positive real matrix-valued rational
functions. We show that the pointwise kernel as well as the
pointwise kernel of the Hermitian part is constant in the
right complex half plane. These results are the basis for
a decomposition for positive real matrices under orthogonal
similarity transformation.

We further consider positive real matrices which have
a certain symmetry property that is known as “reciprocity”.
A decomposition for reciprocal and positive real matrices under
block orthogonal transformation is derived.

We illustrate our results by applying them to transfer
functions arising in electrical circuit theory.

Index Terms— Passivity, positive realness, reciprocity, trans-
fer function, electrical circuit, modified nodal analysis.

Nomenclature:
N, N0 set of natural numbers, N0 = N∪{0}

C+ open set of complex numbers with
positive real part

R[s] the ring of real polynomials

R(s) the quotient field of R[s]

Rn,m the set of n×m matrices with
entries in a ring R

rkA, kerA, imA rank, kernel and image of A ∈ Rn,m

Gln(R) the group of invertible matrices in Rn,n

M∗ = M>, the conjugate transpose
of M ∈ Cn,m

In identity matrix of size n×n

Note that we neglect the subscripts in the case where the
sizes of the identity and zero matrices are clear from
context.

I. INTRODUCTION

We study positive real rational matrix functions G(s) ∈
R(s)m,m, that is
a) G(s) does not have poles in C+, and
b) G(λ )+G(λ )∗ ≥ 0 ∀ λ ∈ C+.
This class of rational matrices plays an important role in
linear systems theory, since they are transfer functions of
passive linear time-invariant systems [1]. In particular, they
are important for the analysis and synthesis of electrical cir-
cuits and mechanical systems, see [2]–[4] and the references
therein.
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Another crucial concept studied in the present article
is reciprocity. Loosely speaking, this is the property of a
transfer function to satisfy a certain symmetry property.

Definition 1.1 (Signature matrix, reciprocal matrix): Let
m1,m2,m ∈ N0 be such that m1 +m2 = m. Then

S = diag(Im1 ,−Im2) ∈Glm(R) (1)

is called a signature matrix.
A rational function G(s)∈R(s)m,m is called reciprocal (with
signature (m1,m2)), if for S as in (1) it holds

G(s)S = SG(s)>.
Reciprocity means that the transfer function can be parti-

tioned as
G(s) =

[
G11(s) G12(s)
−G12(s)> G22(s)

]
, (2)

where G11(s)∈R(s)m1,m1 , G22(s)∈R(s)m2,m2 are symmetric.
This class of rational matrices occurs in electrical circuit
theory, where the signature is determined by the numbers of
voltage and current sources [1], [2], [5].

In Section II we focus on positive real matrices. We show
that kerG(λ )+G(λ )∗ is independent of λ ∈C+. We further
prove that G(s)v is constant for all v ∈ kerG(λ )+G(λ )∗.
Upon these facts we derive a decomposition for positive real
matrices under orthogonal similarity transformation. This
form decomposes G(s) into a part which has a positive
definite Hermitian part in C+, and some constant skew-
Hermitian part.

Reciprocal matrices are then investigated in Section III
and another decomposition is derived for positive real and
reciprocal rational matrices under similarity transformation
with block-diagonal orthogonal matrices.

Finally, in Section IV we consider differential-algebraic
models of passive electrical circuits. The transfer functions
of these systems are positive real and reciprocal. We derive
some consequences of the results from the previous sections.

II. POSITIVE REAL TRANSFER FUNCTIONS

In this section we investigate positive real matrices and
derive a decomposition under constant orthogonal trans-
formations. First, we need the standard representation of
positive real matrices. To this end, recall that G(s)∈R(s)m,m

is called proper, if limλ→∞ G(λ )∈Rm,m exists; G(s) is called
strictly proper, if limλ→∞ G(λ ) = 0.

Lemma 2.1 (Positive real functions [6, Sec. 2.7]): Let
G(s) ∈ R(s)m,m be positive real. Then G(s) has no poles in
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C+. Furthermore, G(s) has a representation

G(s) = Gs(s)+M0 + sM1 +
R0

s
+

k

∑
j=1

Rk

s− iω j
+

Rk

s+ iω j
, (3)

where
– k ∈ N,
– ω1, . . . ,ωk ∈ R,
– R1, . . . ,Rk ∈ Cm,m are Hermitian and positive semi-

definite,
– R0,M1 ∈Rm,m are symmetric and positive semi-definite,
– M0 ∈Rm,m such that M0 +M>0 is positive semi-definite,
– Gs(s) ∈ R(s)m,m is strictly proper.

Furthermore, the proper transfer function M0 + Gs(s) ∈
R(s)m,m is positive real.

We show that, for a positive real matrix G(s) ∈ R(s)m,m

and µ,λ ∈ C+, the kernels of G(λ ) +G(λ )∗ and G(µ) +
G(µ)∗ coincide. We will conclude that the kernel of G(s) is
constant.

Proposition 2.2: Let G(s) ∈ R(s)m,m be positive real and
λ ∈C+, u ∈Cm be such that u∗G(λ )u = 0. Then u∗G(s)u =
0 ∈ R(s). Furthermore, G(s)u is constant.

Proof: Consider the scalar rational function g(s) =
u∗G(s)u ∈ R(s). Then g(λ ) = 0 and, moreover, g(s) is
positive real. Assuming that g(s) 6= 0 gives that 1/g(s) is
again positive real, cf. [7]. However, this contradicts the fact
that 1/g(s) has a pole at λ ∈C+. As a consequence, g(s)= 0,
i.e., u∗G(µ)u = 0 for all µ ∈ C+. Thus, for all µ ∈ C+, we
have

u∗(G(µ)∗+G(µ))u = (G(µ)u)∗u+u∗(G(µ)u) = 0.

Since G(µ)∗ + G(µ) is positive semi-definite, we find
(G(µ)∗+G(µ))u = 0, which is equivalent to

G(µ)∗u =−G(µ)u for all µ ∈ C+.

As a consequence, the entries of G(·)u : C+→ C are holo-
morphic and their complex conjugates are holomorphic as
well. The Cauchy-Riemann equations [8, pp. 231] now imply
that G(s)u is constant.

We may immediately conclude that the kernel of a positive
real function is constant.

Corollary 2.3: Let G(s) ∈ R(s)m,m be positive real and
λ ∈ C+, u ∈ Cm be such that G(λ )u = 0. Then G(s)u =
0 ∈ R(s)m.

We now show that, via a similarity transformation with
an orthogonal matrix, any positive real rational transfer
function may be decomposed into a part which has positive
definite Hermitian part in C+, and some constant skew-
symmetric part.

Theorem 2.4: Let G(s) ∈ R(s)m,m be positive real. Then
there exist numbers and matrices

– p ∈ {0, . . . ,m},
– orthogonal U ∈ Rm,m,
– positive real G1(s)∈R(s)p,p with kerG1(λ )+G1(λ )

∗=
{0} for all λ ∈ C+,

– L12 ∈ Rp,m−p,
– skew-symmetric matrix L22 ∈ Rm−p,m−p,

such that
U>G(s)U =

[
G1(s) L12
−L>12 L22

]
. (4)

Furthermore, we have

∀λ ∈ C+ : kerG(λ ) =U ·
(
{0}p×ker

[
L12
L22

])
. (5)

Proof: Step 1: We show (4). Let {u1, . . . ,uk} ⊆ Rm be
an orthonormal basis of kerG(1)+G(1)∗. By Corollary 2.3,
we have

span{u1, . . . ,uk}= kerG(λ )+G(λ )∗ for all λ ∈ C+.

Let p = m− k and extend {u1, . . . ,uk} by {v1, . . . ,vp} to an
orthonormal basis of Rm, and set

U =
[
v1 . . . vp u1 . . . uk

]
.

By Proposition 2.2, we have that G(s)ui is constant for
all i ∈ {1, . . . ,m}. Since G(s)> is positive real as well, we
further obtain that G(s)>ui is constant for all i ∈ {1, . . . ,m}.
Consequently, U>G(s)U is of the form

U>G(s)U =

[
G1(s) L12
L21 L22

]
.

Step 2: We show the properties of the blocks in (4). By
construction of U , we have, for all λ ∈ C+,[

? 0
0 0

]
=U>(G(λ )+G(λ )∗)U

=U>G(λ )U +(U>G(λ )U)∗

=

[
G1(λ )+G1(λ )

∗ L12 +L>21
L21 +L>12 L22 +L>22

]
,

Hence, we obtain that L22 is skew-symmetric and L12 =
−L>21. Assuming that w ∈ Cp \ {0} is such that (G1(λ ) +
G1(λ )

∗)w = 0 implies that (G(λ )+G(λ )∗)u = 0 for u :=
U(w>,0)>. Therefore,

u ∈ kerG(λ )+G(λ )∗ = span{u1, . . . ,uk}= imU
[

0
Ik

]
,

which yields u = 0 and hence w = 0, a contradiction.
Step 3: It remains to prove (5). The inclusion “⊇” is

obvious. To show “⊆”, assume that u ∈ kerG(1). Then
u∗(G(1) +G(1)∗)u = 0 and, by semi-definiteness of G(1),
we have (G(1)+G(1)∗)u = 0. Partitioning[

u1

u2

]
=U>u,

we obtain that u1 ∈ kerG1(1) +G1(1)∗ and hence u1 = 0.
Consequently

u2 ∈ ker
[

L12
L22

]
.

III. RECIPROCAL TRANSFER FUNCTIONS

Passive electrical circuits modelled by the MNA method
feature a special symmetry property, that is their transfer
matrix is reciprocal. In this section we aim for decomposition
of positive real and reciprocal rational matrices. First, we
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have a closer look at the representation (3) of a reciprocal
matrix.

Theorem 3.1: Let G(s) ∈ R(s)m,m be positive real and
reciprocal with signature (m1,m2). Then the matrices in (3)
are of the form

M0 =

[
M0,11 M0,12
−M>0,12 M0,22

]
, M1 =

[
M1,11 0

0 M1,22

]
,

R0 =

[
R0,11 0

0 R0,22

]
,

R j =

[
R j,11 iR j,12
−iR>j,12 R j,22

]
for j ∈ {1, . . . ,k},

(6)

where

– M0,11,M1,11,R0,11,R1,11, . . . ,Rk,11 ∈ Rm1,m1 and
M0,22,M1,22,R0,22,R1,22, . . . ,Rk,22 ∈ Rm2,m2 are
symmetric and positive semi-definite,

– M0,12,R1,12, . . . ,Rk,12 ∈ Rm1,m2 .

Furthermore, the matrices[
R j,11 R j,12
R>j,12 R j,22

]
(7)

are positive semi-definite for all j ∈ {1, . . . ,k}.
Proof: By reciprocity of G(s), we find

M1S = lim
λ→∞

1
λ

G(λ )S = lim
λ→∞

1
λ

SG(λ )> = SM>1 .

Together with the symmetry property M1 = M>1 , we now
obtain that this matrix is of the form

M1 = diag(M1,11,M1,22).

By furthermore using the limit representations

R0 = lim
λ→0

λG(λ ), R j = lim
λ→iω j

(λ − iω j)G(λ ),

we can infer from the reciprocity of G(s) that

R0S = SR>0 ,

and R jS = SR>j for all j ∈ {1, . . . ,k}.

Hence, R0 has a block diagonal structure by the same
reason as for M1. We can furthermore apply this argu-
mentation to the symmetric and positive semi-definite ma-
trices Re(R1), . . . ,Re(Rk) to see that they are of a block
diagonal structure. On the other hand the imaginary parts
Im(R1), . . . , Im(Rk) are skew-symmetric and reciprocal with
signature (m1,m2). This implies that Im(R j) has a block
structure

Im(R j) =

[
0 R j,12

−R>j,12 0

]
for j ∈ {1, . . . ,k},

where R1,12, . . . ,Rk,12 ∈ Rm1,m2 .
To verify the block structure of M0, observe that by
Lemma 2.1 the matrix M0 +M>0 is positive semi-definite.
Furthermore,

M0 = lim
λ→∞

(G(λ )−λM1),

hence, using M1S = SM>1 , we find M0S = SM>0 .
It remains to show that (7) is positive semi-definite. This
follows from[

R j,11 R j,12
R>j,12 R j,22

]
=

[
Im1 0
0 iIm2

][
R j,11 iR j,12
−iR>j,12 R j,22

]
︸ ︷︷ ︸

=R j

[
Im1 0
0 iIm2

]∗
.

Since the matrices M1 and R0 vanish outside the diagonal
blocks, we can conclude the following.

Corollary 3.2: Let G(s) ∈ R(s)m,m be positive real and
reciprocal with signature (m1,m2) and let G(s) be partitioned
as in (2). Then the rational function G12(s) is proper and has
no pole at zero.

If G(s) ∈ R(s)m,m is positive real and reciprocal with
signature (m1,m2), then the functions G11(s) ∈ R(s)m1,m1 ,
G22(s) ∈R(s)m2,m2 are both symmetric and positive real. By
Proposition 2.2, the latter property implies that the kernels
of G11(λ ) and G22(λ ) are independent of λ ∈ C+. In the
following result, we show that G>12(s) and G12(s) are constant
on these kernels.

Proposition 3.3: Let G(s) ∈ R(s)m,m be positive real and
reciprocal with signature (m1,m2) and let G(s) be partitioned
as in (2). If u1 ∈ Rm is such that u>1 G11(s)u1 = 0, then
G11(s)u1 = 0 and G12(s)>u1 is constant. If u2 ∈ Rm is such
that u>2 G22(s)u2 = 0, then G22(s)u2 = 0 and G12(s)u2 is
constant.

Proof: By Theorem 2.4, there exists some orthogonal
matrix U1 ∈ Rm1,m1 , such that

U>1 G11(s)U1 =

[
H11(s) L12
−L>12 L22

]
,

where H11(s) ∈ R(s)p1,p1 has the property that H11(λ ) +
H11(λ )

∗ is positive definite for all λ ∈ C+, and L12 ∈
Rp1,m1−p1 , L22 ∈Rm1−p1,m1−p1 is such that L>22 =−L22. The
symmetry of G11(s) now implies that L12 = 0 and L22 = 0.
Assuming that u>1 G11(s)u1 = 0, we obtain from the above
matrix decomposition that

u1 =U1

[
0

u12

]
for some u12 ∈ Rp1−m1 . Consequently, we obtain

G11(s)u =U1

[
H11(s) 0

0 0

][
0

u12

]
= 0.

It remains to show that G12(s)>u1 is constant: By defining
u = (u>1 ,0)

>, we have

u>G(s)u = u>1 G11(s)u1 = 0.

By Proposition 2.2, we obtain the desired result from

G(s)u =

[
0

−G12(s)>u1

]
.

The proof of the last statement is analogous.
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As a consequence of Proposition 3.3, we can infer that
a positive real and reciprocal rational matrix admits a certain
form under similarity transformation with orthogonal matri-
ces.

Theorem 3.4: Let G(s) ∈ R(s)m,m be positive real and
reciprocal with signature (m1,m2). Then there exist numbers
and matrices

– p1 ∈ {0, . . . ,m1}, p2 ∈ {0, . . . ,m2},
– orthogonal U1 ∈ Rm1,m1 , U2 ∈ Rm2,m2 ,
– positive real and symmetric H11(s)∈R(s)p1,p1 , H33(s)∈

R(s)p2,p2 such that H11(λ )+H11(λ )
∗ > 0 and H33(λ )+

H33(λ )
∗ > 0 for all λ ∈ C+,

– H13(s) ∈R(s)p1,p2 , H31(s) ∈R(s)p2,p1 , L14 ∈Rp1,m2−p2 ,
L23 ∈ Rm1−p1,p2 , L24 ∈ Rm1−p1,m2−p2 ,

such that, for U = diag(U1,U2), it holds

U>G(s)U =


H11(s) 0 H13(s) L14

0 0 L23 L24
−H13(s)> −L>23 H33(s) 0
−L>14 −L>24 0 0

 . (8)

Furthermore, for all λ ∈ C+, we have

kerG(λ ) =U> ·
(
{0}p1 ×ker

[
L>23
L>24

]
×{0}p2 ×ker

[
L14
L24

])
.

(9)

Proof: Step 1: We show the form (8). Let
{u11, . . . ,uk1} ⊆ Rm1 , {u12, . . . ,ul2} ⊆ Rm2 be orthonormal
bases of kerG11(1)+G11(1)∗ and kerG22(1)+G22(1)∗, resp.
We can infer from Proposition 3.3, that for all λ ∈ C+

span{u11, . . . ,uk1}= kerG11(λ ) = kerG11(λ )+G11(λ )
∗,

span{u12, . . . ,ul2}= kerG22(λ ) = kerG22(λ )+G22(λ )
∗.

Let p1 = m1− k, p2 = m2− l and extend {u11, . . . ,uk1} by
{v11, . . . ,vp11} and {u12, . . . ,ul2} by {v12, . . . ,vp22} to or-
thonormal bases of Rm1 and Rm2 , resp. Define the orthogonal
matrices

U1 =
[
v11 . . . vp11 u11 . . . uk1

]
,

U2 =
[
v12 . . . vp22 u12 . . . ul2

]
.

By Proposition 3.3, we have that G11(s)u j1 = 0 and
G12(s)>u j1 is constant for all j ∈ {1, . . . ,k}. Analogously
we find that G22(s)u j2 = 0 and G12(s)u j2 is constant for all
j ∈ {1, . . . , l}. Consequently, U>G(s)U is of the form

U>G(s)U =


H11(s) 0 H13(s) L14

0 0 L23 L24
H31(s) L32 H33(s) 0

L41 L42 0 0


for some

H11(s) ∈ R(s)p1,p1 , H13(s) ∈ R(s)p1,p2 ,

H31(s) ∈ R(s)p2,p1 , H33(s) ∈ R(s)p2,p2 ,

L14 ∈ Rp1,m2−p2 , L23 ∈ Rm1−p1,p2 ,

L24 ∈ Rm1−p1,m2−p2 , L32 ∈ Rp2,m1−p1 ,

L41 ∈ Rm2−p2,p1 , L42 ∈ Rm2−p2,m1−p1 .

Reciprocity of G(s) means that G(s)S = SG(s)>. Since U =
diag(U1,U2), we obtain that US = SU and U>S = SU>.
Therefore,

U>G(s)US =U>G(s)SU =U>SG(s)>U = SU>G(s)>U,

which means that U>G(s)U is reciprocal with signature
(m1,m2). This implies

H31(s) =−H13(s)>, L32 =−L>23,

L41 =−L>14, L42 =−L>24,

and that H11(s),H33(s) are symmetric.

Step 2: We show that H11(λ )+H11(λ )
∗ > 0 and H33(λ )+

H33(λ )
∗> 0 for all λ ∈C+. Since H11(s) and H33(s) are pos-

itive real, positive semi-definiteness of the aforementioned
matrices is clear. Suppose there exists u1 ∈ Cp1 \ {0} such
that u>1 (H11(λ ) + H11(λ )

∗)u1 = 0. Then u := U1(u>1 ,0,)
>

satisfies u>(G11(λ )+G11(λ )
∗)u = 0, hence

u ∈ kerG11(λ ) = span{u11, . . . ,uk1}= imU1

[
0
Ik

]
,

which implies that u1 = 0, a contradiction. The proof for
H33(λ )+H33(λ )

∗ is analogous.

Step 3: It remains to prove (9). The inclusion “⊇” is
obvious. To show “⊆”, let u ∈ kerG(1). Then we have
u>(G(1) + G(1)>)u = 0 and, by the semi-definiteness of
G(1), we find (G(1)+G(1)>)u = 0. Partitioning

(u>1 ,u
>
2 ,u

>
3 ,u

>
4 )
> =U>u,

we obtain

u>(G(1)+G(1)>)u

=u>1 (H11(1)+H11(1)>)u1 +u>3 (H33(1)+H33(1)>)u3,

and thus u1 = 0 and u3 = 0 by the findings of Step 2. The
equation G(1)u = 0 therefore leads to

u2 ∈ ker
[

L>23
L>24

]
, u4 ∈ ker

[
L14
L24

]
.

Remark 3.5: With the orthogonal block-diagonal matrix
U as in Theorem 3.4, the residual matrices from (6) have,
for all j ∈ {1, . . . ,k}, the special form

U>M1U =


M̃11,1 0 0 0

0 0 0 0
0 0 M̃33,1 0
0 0 0 0

 ,

U>R0U =


R̃11,0 0 0 0

0 0 0 0
0 0 R̃33,0 0
0 0 0 0

 ,

U>M0U =


M̃11,0 0 M̃13,0 L14

0 0 L23 L24
−M̃>13,0 −L>23 M̃33,0 0
−L>14 −L>24 0 0

 ,
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U>R jU =


R̃11, j 0 iR̃12, j 0

0 0 0 0
−iR̃>12, j 0 R̃33, j 0

0 0 0 0

 .
IV. TRANSFER FUNCTIONS OF ELECTRICAL CIRCUITS

Electrical circuits with linear time-invariant resistances,
capacitances and inductances can be modeled by linear
differential-algebraic systems of the form

d
dt Ex(t) = Ax(t)+Bu(t)

y(t) =Cx(t) ,
(10)

where E,A ∈ Rn,n, B,C> ∈ Rn,m.
The functions u,y : R→ Rm are called input and output

of the system, resp. If the matrix pencil sE −A ∈ R[s] is
regular (that is, sE − A ∈ Gln(R(s))), then the frequency
domain behavior is described by the transfer function, which
is given by

G(s) =C(sE−A)−1B ∈ R(s)m,m.

We assume that the input is formed by the currents of current
sources and the voltages of voltage sources, and the output
is given by the currents of voltage sources together with
the voltages of voltage sources. Modified nodal analysis
(MNA) [9] leads to

sE−A =

sAC CA>C +AR GA>R AL AV
−A>L sL 0
−A>V 0 0

 ,
B> =C =

[
−A>I 0 0

0 0 −InV

]
,

(11)

x = (η>, i>L , i
>
V )
>, u = (i>I ,v>V )

>, y = (−v>I ,−i>V )
>,
(12)

where

C ∈ RnC ,nC ,G ∈ RnG ,nG ,L ∈ RnL ,nL ,AC ∈ Rne,nC ,

AR ∈ Rne,nG ,AL ∈ Rne,nL ,AV ∈ Rne,mV ,AI ∈ Rne,mI ,

n = ne +nL +nV , m = mI +mV .
(13)

Here AC , AR , AL , AV and AI denote the element-related
incidence matrices, C , G and L are the matrices expressing
the consecutive relations of capacitances, resistances and
inductances, η(t) is the vector of node potentials, iL(t), iV (t),
iI (t) are the vectors of currents through inductances, voltage
and current sources, and vV (t), vI (t) are the voltages of
voltage and current sources.

We assume that the given circuit is connected and passive,
which is guaranteed by the assumptions

(A1) rk[AC ,AR ,AL ,AV ,AI ] = ne,

(A2) C = C> > 0,G = G> > 0,L = L> > 0.

Note that regularity of sE−A is equivalent to

kerAV ={0}, and (14)

ker[AC , AR , AL , AV ]> ={0}. (15)

This is equivalent to the absence of loops of voltage sources
and cutsets of current sources (basically, this means that
the circuit does not contain any short circuits) [10], [11].
The rational function G(s) = C(sE − A)−1B is moreover
positive real and reciprocal with signature (mI ,mV ) [5].
Consequently, the overall transfer function has the form

G(s) =
[

GII (s) GI V (s)
−GI V (s)> GVV (s)

]
, (16)

where
GII (s) = GII (s)> ∈ R(s)mI ,mI ,

GVV (s) = GVV (s)> ∈ R(s)mV ,mV ,

GI V (s) ∈ R(s)mI ,mV .

Next we determine some expressions for GII (s), GI V (s),
GVV (s). Define the rational function

HCRL(s) = sAC CA>C +AR GA>R + 1
s AL L−1A>L ∈ R(s)ne,ne .

It follows by simple arithmetics that

G(s) =
[

A>I 0
0 I

][
HCRL(s) AV
−A>V 0

]−1 [AI 0
0 I

]
. (17)

Next we determine[
X11(s) X12(s)
X21(s) X22(s)

]
︸ ︷︷ ︸

X(s)

=

[
HCRL(s) AV
−A>V 0

]−1

. (18)

Let ZV be a matrix with full column rank and imZV =
kerA>V . Then the equation

I = HCRL(s)X11(s)+AV X21(s),

0 = −A>V X11(s)
(19)

leads to X11(s) = ZV Y11(s) for some real rational matrix
Y11(s). A multiplication of the first equation in (19) from
the left with Z>V gives rise to

Z>V = Z>V HCRL(s)ZV Y11(s).

Condition (15) together with kerZV = {0} implies

ker[AC , AR , AL ]
>ZV = {0}. (20)

The positive definiteness of C , G and L hence gives rise to the
positive definiteness of Z>V HCRL(1)ZV . Using that HCRL(s)
is positive real, we can apply Corollary 2.3 to see that
Z>V HCRL(λ )ZV is invertible for all λ ∈ C+. Therefore, we
obtain

X11(s) = ZV Y11(s) = ZV (Z>V HCRL(s)ZV )
−1Z>V . (21)

Inserting this expression into (19), and observing that A>V AV
is invertible by (14), a multiplication of the resulting expres-
sion with (A>V AV )

−1A>V gives rise to

X21(s)= (A>V AV )
−1A>V (I−HCRL(s)ZV (Z>V HCRL(s)ZV )

−1Z>V ).
(22)

Since its inverse is reciprocal with signature (ne,mV ), the
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rational matrix X(s) has this property, too. Thus we have

X12(s)= (ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)−I)AV (A>V AV )

−1.
(23)

The equation

0 = HCRL(s)X12(s)+AV X22(s), (24)

then leads to

X22(s) =(A>V AV )
−1A>V HCRL(s)

· (I−ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s))

·AV (A>V AV )
−1. (25)

Note that, for any matrix ZV with full column rank such
that imZV = kerA>V , the rational matrices X11(s), X12(s),
X21(s), X22(s) defined in (21)–(25) solve (18). Consequently,
the transfer function in (16) is given by

GII (s) =A>I ZV (Z>V HCRL(s)ZV )
−1Z>V AI ,

GI V (s) =A>I (ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)− I)

·AV (A>V AV )
−1,

GVV (s) =(A>V AV )
−1A>V HCRL(s)

· (I−ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s))

·AV (A>V AV )
−1,

(26)

parametrized by ZV . By the findings in Corollary 3.2, the
function GI V (s) is proper and has not pole at zero.

Now, we determine the kernels of GII (s) and GVV (s).

Proposition 4.1: Let [E,A,B,C] as in (11) be given such
that (A1),(A2), (14) and (15) hold. Then, for all λ ∈C+, the
transfer matrices as in+(26) satisfy

kerGII (λ ) = { x ∈ RnI | AI x ∈ imAV } , (27)

kerGVV (λ ) =A>V ·ker[AC , AR , AL ]
>. (28)

Proof: Since

kerZ>V = (imZV )
⊥ = (kerA>V )

⊥ = imAV ,

we find

{ x ∈ RnI | AI x ∈ imAV }= kerZ>V AI .

Then relation (27) hence follows from (20) and the fact that
HCRL(λ )+HCRL(λ )

∗ is positive semi-definite with

kerHCRL(λ )+HCRL(λ )
∗ = ker[AC ,AR , AL ]

>

for all λ ∈ C+.
Since GVV (s) ∈ R(s)nV ,nV is symmetric and positive real,
we can apply Proposition 2.2 to see that, for proving the
inclusion “⊆” in (28), it suffices to show that u ∈RmV with
u>GVV (1)u = 0 implies u ∈ A>V ·ker[AC , AR ,AL ]

>: Since

P = I−ZV (Z>V HCRL(1)ZV )
−1Z>V HCRL(1) ∈ Rne,ne

is a projector (onto kerZ>V HCRL(1) and along imZV ) with the

property that

HCRL(1)P =HCRL(1)−HCRL(1)ZV (Z>V HCRL(1)ZV )
−1

·Z>V HCRL(1)

=P>HCRL(1),

it follows that

HCRL(1)P = P>HCRL(1)P.

In particular, HCRL(1)P is positive semi-definite. As a con-
sequence, u>GVV (1)u = 0 implies that

PAV (A>V AV )
−1u ∈ kerHCRL(1) = ker[AC , AR ,AL ]

>.

Since P is a projector, we have

AV (A>V AV )
−1u

∈ kerP︸︷︷︸
=imZV =kerA>V

+( imP︸︷︷︸
=kerZ>V HCRL (1)

∩ker[AC , AR ,AL ]
>)

= kerA>V +( kerZ>V HCRL(1)︸ ︷︷ ︸
=kerHCRL (1)=ker[AC ,AR ,AL ]>

∩ker[AC , AR ,AL ]
>)

= kerA>V +ker[AC , AR ,AL ]
>.

A multiplication from the left with A>V leads to

u ∈ A>V ·ker[AC , AR ,AL ]
>. (29)

We show “⊇” in (28): If (29) holds, then u = A>V z
for some z ∈ ker[AC , AR ,AL ]

>. Since AV (A>V AV )
−1A>V ,

ZV (Z>V ZV )
−1Z>V are both orthogonal projectors, and their

ranges orthogonally sum up to Rne , we have

AV (A>V AV )
−1A>V = I−ZV (Z>V ZV )

−1Z>V . (30)

Thus we obtain

HCRL(1)PAV (A>V AV )
−1u

= HCRL(1)PAV (A>V AV )
−1A>V z

= HCRL(1) Pz︸︷︷︸
=z

−HCRL(1)PZV (Z>V ZV )
−1Z>V︸ ︷︷ ︸

=0

z

= HCRL(1)z = 0,

since z ∈ ker[AC , AR ,AL ]
> = kerHCRL(1). Thus we have

GVV (1)u = (A>V AV )
−1A>V HCRL(1)PAV (A>V AV )

−1u = 0.

Corollary 2.3 then implies GVV (λ )u = 0 for all λ ∈ C+.

Proposition 3.3 shows that GI V (s)> and GI V (s) are
constant on kerGII (λ ) and kerGVV (λ ), resp. To verify this
fact, let u1 ∈ kerZ>V AI , u2 ∈ A>V ·ker[AC , AR ,AL ]

>. Then

GI V (s)>u1 = (A>V AV )
−1A>V

· (HCRL(s)ZV (Z>V HCRL(s)ZV )
−1Z>V − I)AI u1

= − (A>V AV )
−1A>V AI u1.

Further, let z ∈ ker[AC , AR ,AL ]
> be such that u2 = A>V z.
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Then, again using (30), we obtain

GI V (s)u2

= A>I (ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)− I)

·AV (A>V AV )
−1A>V z

= −A>I AV (A>V AV )
−1A>V z

+A>I ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)

· (I−ZV (Z>V ZV )
−1Z>V )z

= −A>I AV (A>V AV )
−1A>V z

+A>I ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)z

−A>I ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)ZV (Z>V ZV )

−1Z>V z

= −A>I AV (A>V AV )
−1A>V z

+A>I ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)z︸ ︷︷ ︸

=0

−A>I ZV (Z>V ZV )
−1Z>V z = −A>I z.

From the equation 
0
0
0
u2

=


A>C
A>R
A>L
A>V

z,

we obtain, by multiplying from the left with
[AC , AR , AL , AV ] and using (15), that

z = (AC A>C +AR A>R +AL A>L +AV A>V )
−1AV u2.

This gives rise to

GI V (s)u2 =−A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1AV u2.

Using the above computations, we can determine the
form (8). Consider a matrix ZCRL with imZCRL =
ker[AC , AR , AL ]

>. Further, let ZI−V , Z′I−V , ZV−CRL ,
Z′V−CRL be matrices with orthonormal columns and

imZI−V = kerZ>V AI , imZ′I−V = imA>I ZV ,

imZV−CRL = kerZ>CRL AV , imZ′V−CRL = imA>V ZCRL .

Then the matrix

U =

[
Z′I−V ZI−V 0 0

0 0 ZV−CRL Z′V−CRL

]
is orthogonal. The previous calculations further give rise to
U>G(s)U being in the form (8) with

L14 = −Z′>I−V A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1

·AV Z′V−CRL ,

L23 = −Z>I−V A>I AV (A>V AV )
−1ZV−CRL ,

L24 = −Z>I−V A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1

·AV Z′V−CRL ,

H11(s) =Z′>I−V A>I ZV (Z>V HCRL(s)ZV )
−1Z>V AI Z′I−V ,

H13(s) =Z′>I−V A>I (ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s)− I)

·AV (A>V AV )
−1ZV−CRL ,

H33(s) =Z>V−CRL(A
>
V AV )

−1A>V HCRL(s)

· (I−ZV (Z>V HCRL(s)ZV )
−1Z>V HCRL(s))

·AV (A>V AV )
−1ZV−CRL .

We finally give an expression for the kernels of the circuit
transfer function.

Proposition 4.2: Let [E,A,B,C] as in (11) be given such
that (A1), (A2), (14) and (15) hold. Then the rational function
G(s) =C(sE−A)−1B ∈ R(s)m,m satisfies, for all λ ∈ C+,

kerG(λ ) = kerAI ×
(

A>V ·ker[AC , AR , AL , AI ]>
)
.

Proof: Using (9) and the above expressions for L14,
L23 and L24, it suffices to prove that

(i) {
x ∈ kerZ>V AI

∣∣∣ (A>V AV )
−1A>V AI x = 0

}
= kerAI ,

(ii) {
x ∈ ker[AC , AR , AL ]

>
∣∣∣ A>I (AC A>C +AR A>R

+AL A>L +AV A>V )
−1AV A>V x = 0

}
.

= ker[AC , AR , AL , AI ]>.

(i) The inclusion “⊆” follows from invertibility of[
(A>V AV )−1A>V

Z>V

]
. The converse inclusion is obvious.

(ii) To prove “⊆”, let x ∈ ker[AC , AR , AL ]
> satisfy

A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1AV A>V x = 0.

Then

0 =A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1

· (AC A>C +AR A>R +AL A>L +AV A>V )x

=A>I x,

and thus x ∈ ker[AC , AR , AL , AI ]>.
Assuming conversely that x∈ ker[AC , AR , AL , AI ]>,
we clearly have x ∈ ker[AC , AR , AL ]

>, and further

A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1AV A>V x

=A>I (AC A>C +AR A>R +AL A>L +AV A>V )
−1

· (AC A>C +AR A>R +AL A>L +AV A>V )x

=A>I x = 0.
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