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Funnel Control for Linear DAEs
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We study funnel control for linear differential-algebraic multi-input multi-output systems which are not necessarily regular.
We show that the funnel controller (that is a static nonlinear output error feedback) achieves - for a special class of right-
invertible systems with asymptotically stable zero dynamics - tracking of a reference signal by the output signal within a
pre-specified performance funnel.
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1 Introduction

We consider linear constant coefficient DAEs of the form

d
dtEx(t) = Ax(t) +Bu(t), y(t) = Cx(t) , (1.1)

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rm×n. The set of these systems is denoted by Σl,n,m and we write [E,A,B,C] ∈
Σl,n,m. In the present paper, we put special emphasis on the non-regular case, i.e., we do not assume that sE − A is regular,
that is l = n and det(sE −A) ∈ R[s] \ {0}.

The functions u : R → Rm and y : R → Rp are called input and output of the system, resp. A trajectory (x, u, y) : R →
Rn × Rm × Rp is said to be a solution of (1.1) if, and only if, it belongs to the behavior of (1.1):

B(1.1) :=
{

(x, u, y) ∈ C(R;Rn × Rm × Rp)
∣∣ Ex ∈ C1(R;Rl) and (x, u, y) solves (1.1) for all t ∈ R

}
.

Particular emphasis is placed on the zero dynamics of (1.1). These are, for [E,A,B,C] ∈ Σl,n,m, defined by ZD(1.1) :=
{ (x, u, y) ∈ B(1.1) | y = 0 }. By linearity of (1.1), ZD(1.1) is a real vector space. The zero dynamics of (1.1) are called

autonomous :⇐⇒ ∀w1, w2 ∈ ZD(1.1) ∀ I ⊆ R open interval : w1|I = w2|I =⇒ w1 = w2 ;

asymptotically stable :⇐⇒ ∀ (x, u, y) ∈ ZD(1.1) : lim
t→∞

(
x(t), u(t)

)
= 0.

Note that the above definitions are within the spirit of the behavioral approach [1] and take into account that the zero dynamics
ZD(1.1) are a linear behavior. In this framework the definition for autonomy of a general behavior was given in [1, Sec. 3.2]
and the definition of asymptotic stability in [1, Def. 7.2.1]. (Asymptotically stable) zero dynamics are the vector space of
those trajectories of the system which are, loosely speaking, not visible at the output (and tend to zero).

In the present paper we concentrate on systems [E,A,B,C] ∈ Σl,n,m with autonomous ZD(1.1) for which the matrix

Γ = − lim
s→∞

s−1[0, Im]L(s)[0, Im]> ∈ Rm×m (1.2)

exists and satisfies Γ = Γ> ≥ 0, where L(s) is a left inverse of
[
sE−A −B
−C 0

]
over R(s); it is shown in [2] that autonomous

zero dynamics imply left-invertibility of
[
sE−A −B
−C 0

]
and that Γ does not depend on the choice of L(s).

It is the aim of the present paper to show that funnel control is feasible for the class of right-invertible systems [E,A,B,C] ∈
Σl,n,m with asymptotically stable zero dynamics for which the matrix Γ in (1.2) exists and satisfies Γ = Γ> ≥ 0. This class en-
compasses all regular systems with a vector relative degree which is component-wise smaller or equal to one, see [2, App. B].
Furthermore, linear passive electrical circuits may be treated as well within this framework [3].

For the proofs and more details on the results in the present paper see [2].

2 System decomposition and funnel control

We show that right-invertibility, autonomy of the zero dynamics and the existence of Γ in (1.2) allow for a decomposition of the
system. The main result of the present paper, Theorem 2.2, is based on this decomposition. A system [E,A,B,C] ∈ Σl,n,m
is called

right-invertible :⇐⇒ ∀ y ∈ C∞(R;Rp) ∃ (x, u) ∈ C(R;Rn)× C(R;Rm) : (x, u, y) ∈ B(1.1).
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Theorem 2.1 Let [E,A,B,C] ∈ Σl,n,m be right-invertible and have autonomous ZD(1.1). Suppose that, for a left inverse
L(s) of

[
sE−A −B
−C 0

]
over R(s), the matrix Γ in (1.2) exists. Then there exists T ∈ Gln(R) such that, for any (x, u, y) ∈

B(1.1) ∩
(
C1(R;Rn)× C0(R;Rm)× Cν+1(R;Rm)

)
and Tx = (x>1 , y

>, x>3 )> ∈ C1(R;Rk+m+n3), (Tx, u, y) solves

ẋ1(t) = Qx1(t) +A12 y(t), Γ ẏ(t) = A22y(t) + Ψ(x1(0), y)(t) + u(t), x3(t) =

ν−1∑
k=0

NkE32 y
(k+1)(t),

whereN ∈ Rn3×n3 , n3 = n−k−m, is nilpotent withNν = 0 andNν−1 6= 0, ν ∈ N,Q ∈ Rk×k,E22, A22 ∈ Rm×m and all
other matrices are of appropriate sizes. Furthermore, Ψ : Rk × Cν(R;Rm) → Cν+1(R;Rm) is defined by Ψ(x01, y(·))(t) =

A21e
Qtx01 +

∫ t
0
A21e

Q(t−τ)A12y(τ) dτ and, if ZD(1.1) are asymptotically stable, then σ(Q) ⊆ C−.
Now, we consider funnel control for systems [E,A,B,C] ∈ Σl,n,m. The aim is to achieve tracking of a reference trajectory

by the output signal with prescribed transient behavior. We use the notation B`(R≥0;Rn) = {f ∈ C`(R≥0;Rn)
∣∣ di

dti f is
bounded for i = 0, . . . , `}. For any function ϕ belonging to

Φµ :=
{
ϕ ∈ Cµ(R≥0;R) ∩ B1(R≥0;R)

∣∣∣ ϕ(0) = 0, ϕ(s) > 0 for all s > 0 and lim inf
s→∞

ϕ(s) > 0
}

t

1
ϕ(t)

‖e(t)‖

Fig. 1: Error evolution in a funnel Fϕ with boundary ϕ(t)−1.

for µ ∈ N, we associate the performance funnel Fϕ :={
(t, e) ∈ R≥0 × Rm

∣∣ ϕ(t)‖e‖ < 1
}

, see Figure 1. The
control objective is feedback control so that the tracking error
e = y − yref , where yref is the reference signal, evolves within
Fϕ and all variables are bounded. To ensure this, we introduce,
for k̂ > 0, the funnel controller:

u(t) = −k(t) e(t), k(t) =
k̂

1− ϕ(t)2‖e(t)‖2
. (2.1)

If we assume asymptotically stable zero dynamics, we see intuitively that, in order to maintain the error evolution within
the funnel, high gain values may only be required if the norm ‖e(t)‖ of the error is close to the funnel boundary ϕ(t)−1:
k(·) increases if necessary to exploit the high-gain property of the system and decreases if a high gain is not necessary. This
intuition underpins the choice of the gain k(t) in (2.1). The control design (2.1) has two advantages: k(·) is non-monotone
and (2.1) is a static time-varying proportional output feedback of striking simplicity.

In [4, 5] funnel control has been proved to work for two important classes of DAE systems. We generalize these results in
the following.

Theorem 2.2 Let [E,A,B,C] ∈ Σl,n,m be right-invertible and have asymptotically stable zero dynamics. Suppose that,
for a left inverse L(s) of

[
sE−A −B
−C 0

]
over R(s), the matrix Γ in (1.2) exists and satisfies Γ = Γ> ≥ 0. Using the notation

from Theorem 2.1, let ϕ ∈ Φν+1 define a performance funnel Fϕ. Then, for any reference signal yref ∈ Bν+2(R≥0;Rm), any
consistent initial value x0 ∈ Rn, and initial gain k̂ >

∥∥lims→∞
(
[0, Im]L(s)[0, Im]> + sΓ

)∥∥, the application of the funnel
controller (2.1) to (1.1) yields a closed-loop initial-value problem that has a solution and every solution can be extended
to a global solution. Furthermore, for every global solution x(·), x(·) is bounded and the corresponding tracking error
e(·) = Cx(·)− yref(·) evolves uniformly within the performance funnel Fϕ; more precisely,

∃ ε > 0 ∀ t > 0 : ‖e(t)‖ ≤ ϕ(t)−1 − ε .

The assumption of asymptotically stable zero dynamics is characterized in [6] via stabilizability, detectability and the
location of transmission zeros of the system.
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