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On perturbations in the leading coefficient matrix of time-varying
index-1 DAEs
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Time-varying index-1 DAEs and the effect of perturbations in the leading coefficient matrix is investigated. An appropriate
class of allowable perturbations is introduced. Robustness of exponential stability with respect to a certain class of perturba-
tions is shown in terms of the Bohl exponent and perturbation operator. Finally, a stability radius involving these perturbations
is introduced and investigated. In particular, a lower bound for the stability radius is derived.
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1 Introduction

We study exponential stability and its robustness for time-varying linear differential-algebraic equations (DAEs) of the form

E(t)ẋ = A(t)x, (1.1)

where (E,A) ∈ C(R≥0;Rn×n)2, n ∈ N. For brevity, we identify the tuple (E,A) with the DAE (1.1).
DAEs have been discovered to be the appropriate tool for modeling a vast variety of problems in mechanical systems,

multibody dynamics, electrical networks, fluid mechanics and chemical engineering [1–5], which often cannot be modeled by
standard ordinary differential equations (ODEs).

Index-1 DAEs1 are relevant in a lot of applications, as the occurring DAEs are very often of index-1. For instance, it is
shown in [6] that any passive electrical circuit containing nonlinear and possibly time-varying elements has index less than
or equal to two - and the index-2 case is exceptional. Furthermore, so called hybrid models of electrical circuits are always
index-1 [7,8]. Therefore, our approach to index-1 DAEs has a wide area of applications e.g. in electrical engineering, as linear
DAEs (E,A) arise as linearizations of nonlinear DAEs F (t, x, ẋ) = 0 along trajectories [9].

It is the first aim of this paper to introduce a class of allowable perturbations in the leading coefficient and then prove
robustness of exponential stability with respect to these perturbations using the Bohl exponent and perturbation operator. The
second aim is to introduce a stability radius for time-varying DAEs. The stability radius defined in [10, 11] is defined only
with respect to perturbations in the coefficients of A. On the other hand, [12] give a definition for the stability radius involving
perturbations in E for time-invariant DAEs. Our definition of the stability radius can be viewed as both: a generalization of
the definition given in [12] to time-varying systems and a generalization of the definition given in [10, 11] to a larger set of
allowable perturbations with respect to the leading coefficient. We then investigate this stability radius and in particular prove
a lower bound. As far as the author is aware, these results are even new for time-invariant DAE systems.

For the proofs and more details on the results in this paper see [13].

2 Index-1 DAEs

In order to define the index-1 property of a DAE (E,A) we introduce the set QE,A of special projector functions as follows.
Definition 2.1 Let (E,A) ∈ C(R≥0;Rn×n)2 be given. Define

QE,A :=

{
Q ∈ C1(R≥0;Rn×n)

∣∣∣∣ ∀ t ≥ 0 : Q(t)2 = Q(t) ∧ kerE(t) = imQ(t),

E + (EQ̇−A)Q ∈ C(R≥0;Gln(R))

}
.

The following definition of index-1 DAEs coincides with the definition of index-1 tractability in [14].
Definition 2.2 The DAE (E,A) ∈ C(R≥0;Rn×n)2 is called index-1 if, and only if, QE,A 6= ∅.
As proved in [13] we have, for any (E,A) ∈ C(R≥0;Rn×n)2,

QE,A 6= ∅ =⇒ QE,A =
{
Q ∈ C1(R≥0;Rn×n)

∣∣ ∀ t ≥ 0 : Q(t)2 = Q(t) ∧ kerE(t) = imQ(t)
}
,

which motivates the following algorithm for checking the index-1 property of given real-analytic (E,A) and calculating a
corresponding projector Q ∈ QE,A. Algorithm 1 terminates after finitely many steps with either “DAE is not index-1!” or it
returns a real-analytic matrix Q ∈ QE,A. The proof for correctness of the algorithm can be found in [13].
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Algorithm 1 Calculation of Q ∈ QE,A

1: function Q = getQ(E,A)

2: determine minimal r ≤ n := size(E) s.t. rkE(t) ≤ r for all t ≥ 0 and real analytic, pointwise nonsingular Q̃ : R≥0 →
Rn×(n−r) s.t. EQ̃ = 0;

3: if not(∀ t ≥ 0 : rkE(t) = r) then
4: print “DAE is not index-1!” STOP
5: end if
6: Q := Q̃(Q̃>Q̃)−1Q̃>;
7: if E + (EQ̇−A)Q 6∈ C(R≥0;Gln(R)) then
8: print “DAE is not index-1!” STOP
9: end if

For index-1 (E,A) ∈ C(R≥0;Rn×n)2 and Q ∈ QE,A define

P := I −Q, Ā := A− EQ̇, G := E + (EQ̇−A)Q = E − ĀQ. (2.1)

Then the DAE (E,A) satisfies:

Eẋ = Ax ⇔ E d
dt (Px) = (A+EṖ )x ⇔ (E−ĀQ)(P d

dt (Px)+Qx) = ĀPx ⇔ P d
dt (Px) = (G−1ĀP −Q)x.

It can be shown [13] that the last equation is equivalent to{
d
dt (P (t)x) = (Ṗ (t) + P (t)G(t)−1Ā(t))P (t)x,

Q(t)x = Q(t)G(t)−1Ā(t)P (t)x.
(2.2)

It can be seen from (2.2) that, roughly speaking, the solutions of the index-1 DAE (E,A) can be calculated by solving an ODE
for Px and then Qx (and therefore x) is given in terms of Px. Therefore, all solutions of the DAE (1.1) are fully determined
by the solutions of the ODE (first equation) in (2.2).

It follows from (2.2) that any solution x of (1.1) can be written as x = Px+Qx = Px+QG−1ĀPx = (I+QG−1Ā)Px.
If we are now given the initial condition x(t0) = x0 ∈ Rn, we may observe that x(t0) = (I +Q(t0)G(t0)−1Ā(t0))P (t0)x0,
and since R(t0) := (I + Q(t0)G(t0)−1Ā(t0))P (t0) is idempotent we find that x(t0) = x0 if, and only if, x0 ∈ imR(t0).
We may further deduce [13] that for x0 ∈ imR(t0) we have x(t0) = x0 if, and only if, E(t0)(x(t0) − x0) = 0. Thus, we
consider initial conditions of the type

E(t0)(x(t0)− x0) = 0, t0 ≥ 0, x0 ∈ Rn. (2.3)

It is now important that initial value problems (1.1), (2.3) may also be considered for arbitrary x0 ∈ Rn and that it can be
shown [13]: The initial value problem (1.1), (2.3) does always have a unique solution.

We use the generalized initial condition (2.3) and the unique solvability of (1.1), (2.3) for all x0 ∈ Rn to define a transition
matrix for (1.1). As in the case of ODEs, we may assign the solutions to x0 = ei as the columns of a matrix Φ(t, t0), that is
Φ(·, t0) is the unique solution of E(t) d

dtΦ(t, t0) = A(t)Φ(t, t0), E(t0)(Φ(t0, t0)− I) = 0.

3 Class of allowable perturbations

We consider perturbations of the matrix-valued function E, i.e., for given (E,A) ∈ C(R≥0;Rn×n)2 and perturbation
∆E ∈ C(R≥0;Rn×n) the perturbed system (E + ∆E , A). As exponential stability is very sensitive with respect to arbi-
trary perturbations in the leading term [12] (even in the time-invariant index-1 case) we do not allow for general perturbations
∆E , but restrict ourselves to the class of perturbations defined in the following.

Definition 3.1 Let (E,A) ∈ C(R≥0;Rn×n)2 be index-1. Then the set of allowable perturbations is defined by

PE,A :=

{
∆E ∈ C(R≥0;Rn×n)

∣∣∣∣ ∀ t ≥ 0 : kerE(t) = ker(E(t) + ∆E(t)),

∃Q ∈ QE,A : G+ ∆E(I + Q̇Q) ∈ C(R≥0;Gln(R)) for G as in (2.1)

}
Remark 3.2 The definition of the set PE,A may seem restrictive, in particular the claim for the kernel ofE to be preserved,

however, perturbations of the algebraic part are still possible. Furthermore, it is usually assumed in the perturbation theory of
DAEs that the leading coefficient E is not perturbed at all, see e.g. [10, 11, 15, 16]. Moreover, the condition on perturbations
of the leading term to preserve some kernel is not uncommon, as in [12], where time-invariant systems are considered, it is
assumed that the left kernel of E is preserved under the perturbation (see proof of [12, Lem. 3.2]). Furthermore, as argued
in [12], in practical applications the set of allowable perturbations is limited anyway, restricted by the physical structure of the
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considered system. Therefore, as it is widely believed, if the algebraic part of the DAE represents path constraints, then the
zero blocks in E are structural and are not subject to disturbances or uncertainties. However, this is not entirely true as it can
be deduced from considering a DAE in semi-explicit form:

E(t)ẋ =

[
In1 0
0 0

](
ẋ1

ẋ2

)
=

[
A11(t) A12(t)
A21(t) A22(t)

](
x1

x2

)
= A(t)x. (3.1)

Equation (3.1) consists of n1 differential equations and n2 = n − n1 algebraic constraints. Changing any of the zeros in the
second column of E would involve derivatives of x2 and therefore inevitably change the structure of the system - so these zero
blocks are structural. However, the zero block in the lower left corner is not. If we change this block to E21 for instance, then
the second equation now reads E21(t)ẋ1 = A21(t)x1 +A22(t)x2 and incorporating the first equation gives

0 = (A21 − E21A11)(t)x1 + (A22 − E21A12)(t)x2,

so the system has again the same structure as before. This shows that we have to distinguish between perturbations which
change the structure of the system and perturbations which change the structure of the matrices E and A. What is desired
is that the structure of the system is preserved under perturbations and indeed, in the above example, changing the lower left
block in E does not change the kernel of E. This shows that for semi-explicit DAEs, the perturbations which preserve the
kernel of E (and may change anything else) are those which preserve the (physical) structure of the system.

4 Bohl exponent

The Bohl exponent [17] of an index-1 DAE (E,A) ∈ C(R≥0;Rn×n)2 with transition matrix Φ(·, ·) is defined as

kB(E,A) = inf
{
ρ ∈ R

∣∣∣ ∃Nρ > 0 ∀ t ≥ s ≥ 0 : ‖Φ(t, s)‖ ≤ Nρeρ(t−s)
}
.

(E,A) is called exponentially stable if, and only if, there exist µ,M > 0 such that for all initial times t0 ≥ 0 and all t ≥ t0 it
holds ‖Φ(t, t0)‖ ≤ Me−µ(t−t0). It is easy to observe that kB(E,A) < 0 if, and only if, (E,A) is exponentially stable. We
have the following theorem on robustness of the Bohl exponent under perturbations which preserve the kernel of E.

Theorem 4.1 Let (E,A) ∈ C(R≥0;Rn×n)2 be index-1 and suppose that there exists a bounded Q ∈ QE,A. Let P, Ā,G
be as in (2.1). Suppose that Ṗ , G−1 and (I − ṖQ)G−1Ā are bounded and that kB(E,A) 6= −∞. Then, for any ε > 0 there
exists δ > 0 such that for all ∆E ∈ PE,A which satisfy ‖∆E‖∞ < δ it holds that

kB(E + ∆E , A) ≤ kB(E,A) + ε.

The proof of Theorem 4.1 can be found in [13].
As a system (E,A) is exponentially stable if, and only if, its Bohl exponent is negative, Theorem 4.1 does also state that

exponential stability of index-1 DAEs is robust with respect to perturbations in PE,A. However, Theorem 4.1 does only state
that the perturbation has to be sufficiently small in order to preserve exponential stability. In the following section we provide
a calculable upper bound on the perturbation such that exponential stability is preserved.

5 Perturbation operator

The perturbation operator (see [18] for ODEs) is defined as

Lt0 : L2([t0,∞);Rn)→ L2([t0,∞);Rn), f(·) 7→ x(·), where x(·) solves E(t)ẋ = A(t)x+ f(t), E(t0)x(t0) = 0.

Lemma 5.1 Let (E,A) ∈ C(R≥0;Rn×n)2 be index-1 and exponentially stable. Let Q ∈ QE,A, P , G be as in (2.1), and
suppose that PG−1 and QG−1 are bounded. Then we have:

(i) For all t0 ≥ 0 the operator Lt0 is bounded.

(ii) t0 7→ ‖Lt0‖ is monotonically nonincreasing on R≥0, i.e., ‖Lt0‖ ≥ ‖Lt1‖ for 0 ≤ t0 ≤ t1.

The proof of Lemma 5.1 can be found in [10, 11]. We show now that a calculable bound on the perturbation such that
exponential stability is preserved can be given in terms of the inverse norm of the perturbation operator.

Theorem 5.2 Let (E,A) ∈ C(R≥0;Rn×n)2 be index-1 and exponentially stable and suppose that there exists a bounded
Q ∈ QE,A. Let P , Ā, G be as in (2.1) and suppose that Ṗ , G−1 and G−1Ā are bounded. Furthermore, let ∆E ∈ PE,A
be bounded and such that ‖∆E(t)‖ < ‖(I − Ṗ (t)Q(t))G(t)−1‖−1 for all t ≥ 0. Set κ1 := ‖P‖∞(‖Ṗ‖∞ + ‖(I −
ṖQ)G−1Ā‖∞) ≥ 0 and κ2 := ‖(I − ṖQ)G−1‖∞ > 0. If

lim
t0→∞

∥∥∥∆E |[t0,∞)

∥∥∥
∞
<

α

κ1 + κ2α
, where α = min

{
lim
t0→∞

‖Lt0‖−1, ‖QG−1‖−1
∞

}
,

then the perturbed system (E + ∆E , A) is exponentially stable.
The proof of Theorem 5.2 can be found in [13].
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6 Stability radius

The bound on the perturbation obtained in Theorem 5.2 now rises the question for the distance to instability. To this end, we
introduce and investigate a stability radius (introduced in [19] for ODEs) in this section. In order to define the stability radius
we introduce, for given index-1 (E,A) ∈ C(R≥0;Rn×n)2, the following sets, where B(R≥0;Rn×2n) denotes the set of all
continuous and bounded functions f : R≥0 → Rn×2n:

I(E,A) :=
{

[∆E ,∆A] ∈ B(R≥0;Rn×2n)
∣∣ (E + ∆E , A+ ∆A) is index-1

}
,

K(E,A) :=
{

[∆E ,∆A] ∈ B(R≥0;Rn×2n)
∣∣ ∀ t ≥ 0 : kerE(t) = ker(E(t) + ∆E(t))

}
,

S :=
{

(E,A) ∈ C(R≥0;Rn×n)2
∣∣ (E,A) is exponentially stable

}
.

Definition 6.1 Let (E,A) ∈ C(R≥0;Rn×n)2 be index-1. Then the stability radius of (E,A) is the number

r(E,A) := inf
{
‖[∆E ,∆A]‖∞

∣∣ [∆E ,∆A] ∈ K(E,A) ∧
(
[∆E ,∆A] 6∈ I(E,A) ∨ (E + ∆E , A+ ∆A) 6∈ S

) }
.

For more comments on and properties of the stability radius see [13]. The following theorem provides a lower bound on
the stability radius in terms of the inverse norm of the perturbation operator.

Theorem 6.2 Let (E,A) ∈ C(R≥0;Rn×n)2 be index-1 and exponentially stable and suppose that there exists a bounded
Q ∈ QE,A. Let P , Ā, G be as in (2.1) and suppose that Ṗ , G−1 and G−1Ā are bounded. Set

κ1 := ‖P‖∞
(∥∥[ Ṗ

I

]∥∥
∞ +

∥∥∥[ (I−ṖQ)G−1Ā

−QG−1Ā

]∥∥∥
∞

)
≥ 0 and κ2 :=

∥∥∥[ (I−ṖQ)G−1

−QG−1

]∥∥∥
∞
> 0. Then

α

κ1 + κ2α
≤ r(E,A), where α = min

{
lim
t0→∞

‖Lt0‖−1, ‖QG−1‖−1
∞

}
.

The proof of Theorem 6.2 can be found in [13].
While Theorem 6.2 already provides a robustness result, we may also deduce from it that, roughly speaking, the set of

exponentially stable index-1 systems is open.

Corollary 6.3 Let Q ∈ C1(R≥0;Rn×n) such that Q and Q̇ are bounded and Q(t)2 = Q(t) for all t ≥ 0. Define

KQ :=
{

[E,A] ∈ B(R≥0;Rn×2n)
∣∣∣ Q ∈ QE,A and F := (E − (A− EQ̇)Q)−1 and F (A− EQ̇) are bounded

}
and SQ := KQ ∩ S . Then SQ is open in KQ.
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