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THE QUASI-KRONECKER FORM FOR MATRIX PENCILS∗

THOMAS BERGER† AND STEPHAN TRENN‡

Abstract. We study singular matrix pencils and show that the so-called Wong sequences yield a
quasi-Kronecker form. This form decouples the matrix pencil into an underdetermined part, a regular
part, and an overdetermined part. This decoupling is sufficient to fully characterize the solution
behavior of the differential-algebraic equations associated with the matrix pencil. Furthermore, we
show that the minimal indices of the pencil can be determined with only the Wong sequences and
that the Kronecker canonical form is a simple corollary of our result; hence, in passing, we also
provide a new proof for the Kronecker canonical form. The results are illustrated with an example
given by a simple electrical circuit.
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1. Introduction. We study (singular) linear matrix pencils

sE −A ∈ Km×n[s], where K is Q, R, or C,

and the associated differential algebraic equation (DAE)

(1.1) Eẋ = Ax+ f,

where f is some inhomogeneity. In the context of DAEs it is natural to call matrix
pencils sE1−A1 and sE2−A2 equivalent and write sE1−A1

∼= sE2−A2 or (E1, A1) ∼=
(E2, A2), if there exist invertible matrices S and T such that

S(sE1 −A2)T = sE2 −A2.

In the literature this is also sometimes called strict or strong equivalence; see, e.g.,
[16, Chap. XII, section 1] and [21, Def. 2.1]. Based on this notion of equivalence it
is of interest to find the “simplest” matrix pencil within an equivalence class. This
problem was solved by Kronecker [19] (see also [16, 21]). Nevertheless, the analysis of
matrix pencils is still an active research area (see, e.g., the recent paper [18]), mainly
because of numerical issues, or to find ways to obtain the Kronecker canonical form
efficiently (see, e.g., [36, 37, 8, 12, 13, 38]).

Our main goal in this paper is to highlight the importance of the Wong sequences
[40] for the analysis of matrix pencils. The Wong sequences for the matrix pencil
sE −A are given by the following sequences of subspaces:

V0 := Kn, Vi+1 := A−1(EVi) ⊆ Kn,

W0 := {0}, Wi+1 := E−1(AWi) ⊆ Kn.
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We will show (see Theorem 3.2 and Remark 3.3) that the Wong sequences are suffi-
cient to completely characterize the solution behavior of the DAE (1.1) including the
characterization of consistent initial values as well as constraints on the inhomogeneity
f .

The Wong sequences can be traced back to Dieudonné [14]; however, his focus is
only on the first of the two Wong sequences. Bernhard [10] and Armentano [3] used
the Wong sequences to carry out a geometric analysis of matrix pencils. In [27] the
first Wong sequence is introduced as a “fundamental geometric tool in the character-
ization of the subspace of consistent initial conditions” of a regular DAE. Both Wong
sequences are introduced in [26] where the authors obtain a quasi-Kronecker staircase
form; however, they did not consider both Wong sequences in combination so that
the important role of the spaces V∗ ∩ W∗, V∗ +W∗, EV∗ ∩ AW∗, EV∗ + AW∗ (see
Definition 2.1, Figure 2.1, and Theorem 2.3) is not highlighted. They also appear
in [1, 2, 20, 35]. In control theory modified versions of the Wong sequences (where
imB is added to EVi and AWi, resp.) have been studied extensively for not nec-
essarily regular DAEs (see, e.g., [1, 4, 5, 6, 15, 22, 24, 28, 29]) and they have been
found to be the appropriate tool to construct invariant subspaces, the reachability
space, and provide a Kalman decomposition, just to name a few features. However, it
seems that their relevance for a complete solution theory of DAEs (1.1) associated to
a singular matrix pencil has been overlooked. We therefore believe that our solvability
characterizations solely in terms of the Wong sequences are new.

The Wong sequences directly lead to a quasi-Kronecker triangular form (QKTF),
i.e.,

sE −A ∼=

⎡⎣sEP −AP ∗ ∗
0 sER −AR ∗
0 0 sEQ −AQ

⎤⎦ ,

where sER−AR is a regular matrix pencil. sEP −AP is the “underdetermined” pencil
and sEQ−AQ is the “overdetermined” pencil (Theorem 2.3). With only a little more
effort (invoking solvability of generalized Sylvester equations) we can get rid of the
off-diagonal blocks and obtain a quasi-Kronecker form (QKF) (Theorem 2.6). From
the latter it is easy to obtain the Kronecker canonical form (KCF) (Corollary 2.8)
and hence another contribution of our work is a new proof for the KCF. We have to
admit that our proof does not reach the elegance of the proof of Gantmacher [16];
however, Gantmacher does not provide any geometrical insight. At the other end of
the spectrum, Armentano [3] uses the Wong sequences to obtain a result similar to ours
(the QKTF but with more structured diagonal block entries); however, his approach
is purely geometrical so that it is not directly possible to deduce the transformation
matrices which are necessary to obtain the QKTF or QKF. Our result overcomes
this disadvantage because it presents geometrical insights and, at the same time, is
constructive. Furthermore, our work is self-contained in the sense that only results
on regular matrix pencils are assumed to be well known.

Different from other authors, we do not primarily aim to decouple the regular
part of the matrix pencil, because (1) the decoupling into three parts which have
the solution properties “existence, but nonuniquess” (underdetermined part), “exis-
tence and uniqueness” (regular part), and “uniqueness, but possible nonexistence”
(overdetermined part) seems very natural, and (2) the regular part can be further
decoupled if necessary—again with the help of the Wong sequences as we showed in
[9]. Furthermore, we are also not aiming for a staircase form as is common in the
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numerical literature; here the matrix pencils sEP − AP , sER − AR and sEQ − AQ

have no further structure, which has the advantage that the transformation matrices
can be chosen to be simple (in any specified way).

Another advantage of our approach is that we respect the domain of the entries in
the matrix pencil, e.g., if our matrices are real-valued, then all transformations remain
real-valued. This is not true for results about the KCF, because, due to possible
complex eigenvalues and eigenvectors, even in the case of real-valued matrices it is
necessary to allow for complex transformations and complex canonical forms. This is
often undesirable, because if one starts with a real-valued matrix pencil, one would
like to get real-valued results. Therefore, we formulated our results in such a way
that they are valid for K = Q, K = R, and K = C. Especially for K = Q it was
also necessary to recheck known results, whether or not their proofs are also valid
in Q. We believe that the case K = Q is of special importance because this allows
the implementation of our approach in exact arithmetic which might be feasible if
the matrices are sparse and not too big. In fact, we believe that the construction of
the QK(T)F is also possible if the matrix pencil sE − A contains symbolic entries
as is common for the analysis of electrical circuits, where one might just add the
symbol R into the matrix instead of a specific value of the corresponding resistor.
However, we have not formalized this, but our running example will show that it
is no problem to keep symbolic entries in the matrix. This is a major difference of
our approach compared to those available in literature which often aim for unitary
transformation matrices (due to numerical stability) and are therefore not suitable
for symbolic calculations.
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Fig. 1.1. An electrical circuit with sources and an open terminal used as the origin of the DAE
(1.2) (used as a running example).

As a running example we use a DAE arising from an electrical circuit as shown in
Figure 1.1. The electrical circuit has no practical purpose and is for academic analy-
sis only. We assume that all the quantities L,C,R,RG, RF are positive. To obtain the
DAE description, let the state variable be given by x = (p+, p−, po, pT , iL, ip, im, iG, iF ,
iR, io, iV , iC , iT )

� consisting of the node potentials and the currents through the
branches. The inhomogeneity is f = Bu with u = (I, V )� given by the sources
and the matrix B as below. The defining property of an ideal operational amplifier
in feedback configuration is given by

p+ = p− and i+ = 0 = i−.

Collecting all defining equations of the circuit we obtain 13 equations for 14 state
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variables, which can be written as a DAE as follows:

(1.2)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 L 0 0 0 0 0 0 0 0 0
0 0 -C C 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
ẋ=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 -1 0 0 0 0 0 RG 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 RF 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 R 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
1 -1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 -1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 -1 0 1 -1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 1
0 0 -1 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
x+

⎡⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0
0 1

⎤⎥⎥⎥⎥⎥⎥⎦
(
I
V

)
.

The coefficient matrices are not square, hence the corresponding matrix pencil sE−A
cannot be regular, and standard tools cannot be used to analyze this description of
the circuit.

The paper is organized as follows. In section 2 we present our main results, in
particular how the Wong sequences directly yield the QKTF (Theorem 2.3) and the
minimal indices associated with the pencil (Theorem 2.9). Afterward, we show how
the QKF can be used to fully characterize the solution behavior of the correspond-
ing DAE in section 3. The proofs of the main results are carried out in section 5.
Preliminary results are presented and proved in section 4.

We close the introduction with the nomenclature used in this paper.
N set of natural numbers with zero, N = {0, 1, 2, . . .}
Q,R,C field of rational, real, and complex numbers, resp.

K either Q, R, or C

Gln(K) the set of invertible n× n matrices over K

K[s] the ring of polynomials with coefficients in K

Km×n the set of m× n matrices with entries in K

I or In the identity matrix of size n× n for n ∈ N

A� the (conjugate) transpose of the matrix A ∈ Km×n

AS := { Ax ∈ Km | x ∈ S }, the image of S ⊆ Kn under A ∈ Km×n

A−1S := { x ∈ Kn | Ax ∈ S }, the preimage of S ⊆ Km under A ∈ Km×n

A−�S := (A�)−1S
S⊥ :=

{
x∈Kn

∣
∣∀s∈S : x�s=0

}
, the orthogonal complement of S⊆Kn

rankC(λE − A) the rank of (λE − A) ∈ Cm×n, E,A ∈ Km×n, for λ ∈ C;
rankC(∞E − A) :=rankC E

C∞ the space of smooth (i.e., arbitrarily often differentiable) functions

DpwC∞ the space of piecewise-smooth distributions as introduced in [33, 34]

2. Main results. As mentioned in the introduction, our approach is based on
the Wong sequences which have been introduced in [40] for the analysis of matrix
pencils. They can be calculated via a recursive subspace iteration. In a precursor [9]
of this paper we used them to determine the quasi-Weierstraß form and it will turn
out that they are the appropriate tool to determine a QKF as well.

Definition 2.1 (Wong sequences [40]). Consider a matrix pencil sE − A ∈
Km×n[s]. The Wong sequences corresponding to sE −A are given by

V0 := Kn, Vi+1 := A−1(EVi) ⊆ Kn,

W0 := {0}, Wi+1 := E−1(AWi) ⊆ Kn.
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Let V∗ :=
⋂

i∈N
Vi and W∗ :=

⋃
i∈N

Wi be the limits of the Wong sequences.
It is easy to see that the Wong sequences are nested, terminate, and satisfy

(2.1)
∃k∗∈N ∀j∈N : V0�V1� · · ·�Vk∗ =Vk∗+j=V∗=A−1(EV∗)⊇kerA

∃�∗∈N ∀j∈N : W0⊆kerE=W1� · · ·�W�∗ =W�∗+j=W∗=E−1(AW∗)

⎫⎬⎭
as well as

(2.2) AV∗ ⊆ EV∗ and EW∗ ⊆ AW∗ .

For our example DAE (1.2), we obtain

V1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
R 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 -1 1
-1 1 -1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= V∗

and

W1 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, W2 = im

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
= W∗.

We carried out the calculation with MATLAB and its Symbolic Tool Box and the
following short function for calculating the preimage:

Listing 1

MATLAB function for calculating a basis of the preimage A−1(imS) for some matrices A and S.

function V=getPreImage(A,S)
[m1,n1]= size(A); [m2,n2]=size(S);
if m1==m2

H=null([A,S]);
V=colspace(H(1:n1 ,:));

else
error(’Both matrices must have same number of rows’);

end;

Before stating our main result we repeat the result concerning the Wong sequences
and regular matrix pencils.

Theorem 2.2 (the regular case, see [9]). Consider a regular matrix pencil sE−
A ∈ Km×n[s], i.e., m = n and det(sE − A) ∈ K[s] \ {0}. Let V∗ and W∗ be the
limits of the corresponding Wong sequences. Choose any full rank matrices V and W
such that imV = V∗ and imW = W∗. Then T = [V,W ] and S = [EV,AW ]−1 are
invertible and put the matrix pencil sE −A into quasi-Weierstraß form,

(SET, SAT ) =

([
I 0
0 N

]
,

[
J 0
0 I

])
,
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where J ∈ KnJ×nJ , nJ ∈ N, and N ∈ KnN×nN , nN = n−nJ , is a nilpotent matrix. In
particular, when choosing TJ and TN such that T−1

J JTJ and T−1
N NTN are in Jordan

canonical form, then S′ = [EV TJ , AWTN ]−1 and T ′ = [V TJ ,WTN ] put the regular
matrix pencil sE −A into Weierstraß canonical form.

Important consequences of Theorem 2.2 for the Wong sequences in the regular
case are

V∗ ∩W∗ = {0}, EV∗ ∩ AW∗ = {0},
V∗ +W∗ = Kn, EV∗ +AW∗ = Kn.

These properties do not hold anymore for a general matrix pencil sE−A; see Figure 2.1
for an illustration of the situation.

Kn

nQ

V∗ +W∗

nR

V∗ ∩W∗

nP

Km

mQ

EV∗ +AW∗

mR

EV∗ ∩ AW∗

mP

Fig. 2.1. The relationship of the limits V∗ and W∗ of the Wong sequences of the matrix
pencil sE−A ∈ Km×n[s] in the general case; the numbers nP , nR, nQ,mP ,mR,mQ ∈ N denote the
(difference of the) dimensions of the corresponding spaces.

We are now ready to present our first main result which states that the knowledge
of the spaces V∗ and W∗ is sufficient to obtain the QKTF, which already captures
most structural properties of the matrix pencil sE − A. With the help of the Wong
sequences Armentano [3] already obtained a similar result; however, his aim was to
obtain a triangular form where the diagonal blocks are in canonical form. Therefore,
his result is more general than ours, however, the price is a more complicated proof
and it is also not clear how to obtain the transformation matrices explicitly.

Theorem 2.3 (quasi-Kronecker triangular form (QKTF)). Let sE−A ∈ Km×n[s]
and consider the corresponding limits V∗ and W∗ of the Wong sequences as in Defi-
nition 2.1. Choose any full rank matrices P1 ∈ Kn×nP , P2 ∈ Km×mP , R1 ∈ Kn×nR ,
R2 ∈ Km×mR, Q1 ∈ Kn×nQ, Q2 ∈ Km×mQ such that

imP1 = V∗ ∩W∗, imP2 = EV∗ ∩ AW∗,
V∗ ∩W∗ ⊕ imR1 = V∗ +W∗, EV∗ ∩ AW∗ ⊕ imR2 = EV∗ +AW∗,

(V∗ +W∗)⊕ imQ1 = Kn, (EV∗ +AW∗)⊕ imQ2 = Km.

Then Ttrian = [P1, R1, Q1] ∈ Gln(K) and Strian = [P2, R2, Q2]
−1 ∈ Glm(K) transform

sE −A in QKTF:

(2.3) (StrianETtrian, StrianATtrian) =

⎛⎝⎡⎣EP EPR EPQ

0 ER ERQ

0 0 EQ

⎤⎦ ,

⎡⎣AP APR APQ

0 AR ARQ

0 0 AQ

⎤⎦⎞⎠ ,
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where
(i) EP , AP ∈ KmP×nP , mP < nP , are such that rankC(λEP −AP ) = mP for all

λ ∈ C ∪ {∞},
(ii) ER, AR ∈ KmR×nR , mR = nR, with sER−AR regular, i.e., det(sER−AR) 
≡

0,
(iii) EQ, AQ ∈ KmQ×nQ , mQ > nQ, are such that rankC(λEQ −AQ) = nQ for all

λ ∈ C ∪ {∞}.
The proof is carried out in section 5.
Remark 2.4. The sizes of the blocks in (2.3) are uniquely given by the matrix

pencil sE − A because they depend only on the subspaces constructed by the Wong
sequences and not on the choice of bases thereof. It is also possible that mP = 0 (or
nQ = 0) which means that there are matrices with no rows (or no columns). On the
other hand, if nP = 0, nR = 0, or mQ = 0, then the P -blocks, R-blocks, or Q-blocks
are not present at all. Furthermore, it is easily seen that if sE −A fulfills (i), (ii), or
(iii) itself, then sE −A is already in QKTF with Ttrian = P1 = I, Ttrian = R1 = I, or
Ttrian = Q1 = I, and Strian = P−1

2 = I, Strian = R−1
2 = I, or Strian = Q−1

2 = I.
Remark 2.5. From Lemma 4.4 we know that E(V∗ ∩ W∗) = EV∗ ∩ AW∗ =

A(V∗ ∩W∗); hence

EV∗ ∩AW∗ = E(V∗ ∩W∗) +A(V∗ ∩W∗).

Furthermore, due to (2.2),

EV∗ +AW∗ = E(V∗ +W∗) +A(V∗ +W∗).

Hence the subspace pairs (V∗ ∩ W∗, EV∗ ∩ AW∗) and (V∗ + W∗, EV∗ + AW∗) are
reducing subspaces of the matrix pencil sE − A in the sense of [37] and are in fact
the minimal and maximal reducing subspaces.1

In our example (1.2) we have

V∗ ∩W∗ = V∗, V∗ +W∗ = W∗

and, with K := RG+RF

RG
,

EV∗∩AW∗ = EV∗ = im

⎡⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ , EV∗+AW∗ = AW∗ = im

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

-K 0 -
RF
RG

1 0 0 -RF K RF 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Therefore, we can choose

[P1, R1, Q1] =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
R 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 -1 1
-1 1 -1

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣∣

0
0
0
0
1
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, [P2, R2, Q2] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0
0
0
0
0
0
0

0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 -1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

-K -
RF
RG

1 0 0 -RF K RF 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
1 0
0 0
0 0
0 0

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

1We thank the anonymous reviewer for making us aware of this relationship.
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With this choice we obtain the following QKTF for our example:

(E,A) ∼=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

CR 0 0 0 0 -C 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 L
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0LK

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 -1 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 -1 0 0 0RG 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 RF 0 0 0 0
0 0 0 0 0 0 0 0 0 0 R 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 1 -1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 -1 0 0 0 0
0 0 0 0 0 0 0 0 0 -1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 -1

0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The QKTF is already useful for the analysis of the matrix pencil sE−A and the
associated DAE Eẋ = Ax+ f . However, a complete decoupling of the different parts,
i.e., a block triangular form, is more satisfying from a theoretical viewpoint and is
also a necessary step to obtaining the KCF as a corollary. In the next result we show
that we can transform any matrix pencil sE −A into a block triangular form, which
we call quasi-Kronecker form (QKF) because all the important features of the KCF
are captured. In fact, it turns out that the diagonal blocks of the QKTF (2.3) already
are the diagonal blocks of the QKF.

Theorem 2.6 (QKF). Using the notation from Theorem 2.3 the following equa-
tions are solvable for matrices F1, F2, G1, G2, H1, H2 of appropriate size:

0 = ERQ + ERF1 + F2EQ,

0 = ARQ +ARF1 + F2AQ,
(2.4a)

0 = EPR + EPG1 +G2ER,

0 = APR +APG1 +G2AR,
(2.4b)

0 = (EPQ + EPRF1) + EPH1 +H2EQ,

0 = (APQ + APRF1) +APH1 +H2AQ,
(2.4c)

and for any such matrices let

S :=

⎡⎣I −G2 −H2

0 I −F2

0 0 I

⎤⎦−1

Strian = [P2, R2 − P2G2, Q2 − P2H2 −R2F2]
−1

and

T := Ttrian

⎡⎣I G1 H1

0 I F1

0 0 I

⎤⎦ = [P1, R1 + P1G1, Q1 + P1H1 +R1F1].

Then S ∈ Glm(K) and T ∈ Gln(K) put sE −A in QKF

(2.5) (SET, SAT ) =

⎛⎝⎡⎣EP 0 0
0 ER 0
0 0 EQ

⎤⎦ ,

⎡⎣AP 0 0
0 AR 0
0 0 AQ

⎤⎦⎞⎠ ,

where the block diagonal entries are the same as for the QKTF (2.3). In particular,
the QKF (without the transformation matrices S and T ) can be obtained with only the
Wong sequences (i.e., without solving (2.4)). Furthermore, the QKF (2.5) is unique
in the following sense:

(2.6) (E,A) ∼= (E′, A′)
⇔ (EP , AP ) ∼= (E′

P , A
′
P ), (ER, AR) ∼= (E′

R, A
′
R), (EQ, AQ) ∼= (E′

Q, A
′
Q),
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where E′
P , A

′
P , E

′
R, A

′
R, E

′
P , A

′
P are the corresponding blocks of the QKF of the matrix

pencil sE′ −A′.
The proof is carried out in section 5. In order to actually find solutions of (2.4),

the following remark might be helpful.

Remark 2.7. Matrix equations of the form

0 = M + PX + Y Q,

0 = R+ SX + Y T

for given matrices M,P,Q,R, S, T of appropriate size can be written equivalently as
a standard linear system[

I ⊗ P Q� ⊗ I
I ⊗ S T� ⊗ I

](
vec(X)
vec(Y )

)
= −

(
vec(M)
vec(R)

)
,

where ⊗ denotes the Kronecker product of matrices and vec(H) denotes the vector-
ization of the matrix H obtained by stacking all columns of H over each other.

For our example (1.2) we already know the QKF, because, as mentioned in The-
orem 2.6, the diagonal blocks are the same as for the QKTF. However, we do not yet
know the final transformation matrices which yield the QKF. Therefore, we have to
find solutions of (2.4):

F1 =

⎡⎢⎢⎢⎣
0
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎦, F2 =

⎡⎢⎢⎢⎢⎣
0 - 1

K
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎦, G1 =

[
0 0 1

R 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0

]
,

G2 = [ -1
RG

-1
RG

0 0 0 -1 1
RG

1 -1 0 ],

H1 =
[
0
0
0

]
,

H2 = [ 0 0 ] .

The transformation matrices S and T which put our example into a QKF are then

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0
R 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1
0 -1 1
-1 1 -1

1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 1

R 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0
0 0 -1

R 0 0 0 0 0 0 1

0
0
0
0
1
0
0
0
0
0
0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and S =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 -1
RGK

-1
RGK 0 0 -1

K 0 0 1
K -1 0 1

RGK

0 0
-RF
RGK

1
K 0 0

-RF
K 1 0

RF
K 0 0 -1

K

0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1 0 0 0 0

K 0
RF
RG

-1 0 0 RF -K 0 -RF 0 0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Finally, an analysis of the matrix pencils sEP − AP and sEQ − AQ in (2.5),
invoking Lemma 4.12 and Corollary 4.13, together with Theorem 2.2, now allows us
to obtain the KCF as a corollary.

Corollary 2.8. For every matrix pencil sE − A ∈ Km×n[s] there exist trans-
formation matrices S ∈ Glm(C) and T ∈ Gln(C) such that, for a, b, c, d ∈ N and
ε1, . . . , εa, ρ1, . . . , ρb, σ1, . . . , σc, η1, . . . , ηd ∈ N, S(sE −A)T =

diag(Pε1(s), . . . ,Pεa(s),Jρ1 (s), . . . ,Jρb
(s),Nσ1 (s), . . . ,Nσc(s),Qη1(s), . . . ,Qηd

(s)),
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where

Pε(s) = s

⎡⎢⎣0 1
. . .

. . .

0 1

⎤⎥⎦−

⎡⎢⎣1 0
. . .

. . .

1 0

⎤⎥⎦ ∈ Kε×(ε+1)[s], ε ∈ N,

Jρ(s) = sI −

⎡⎢⎢⎢⎢⎣
λ 1

. . .
. . .

. . . 1
λ

⎤⎥⎥⎥⎥⎦ ∈ Cρ×ρ[s], ρ ∈ N, λ ∈ C,

Nσ(s) = s

⎡⎢⎢⎢⎢⎣
0 1

. . .
. . .

. . . 1
0

⎤⎥⎥⎥⎥⎦− I ∈ Kσ×σ[s], σ ∈ N,

Qη(s) = s

⎡⎢⎢⎢⎢⎣
0

1
. . .

. . . 0
1

⎤⎥⎥⎥⎥⎦−

⎡⎢⎢⎢⎢⎣
1

0
. . .

. . . 1
0

⎤⎥⎥⎥⎥⎦ ∈ K(η+1)×η[s], η ∈ N.

The numbers ρi, σi, εi, and ηi in Corollary 2.8 are usually called (degrees of)
elementary divisors and minimal indices and play an important role in the analysis of
matrix pencils; see, e.g., [16, 23, 24, 25]. More precisely, ρ1, . . . , ρb are the degrees of
the finite elementary divisors, σ1, . . . , σc are the degrees of the infinite elementary di-
visors, ε1, . . . , εa are the columns minimal indices, and η1, . . . , ηd are the row minimal
indices. The minimal indices completely determine (under the standing assumption
that 0 ≤ ε1 ≤ · · · ≤ εa and 0 ≤ η1 ≤ · · · ≤ ηd) the singular part of the KCF. The
following result shows that the minimal indices can actually be determined via the
Wong sequences. Another method for determining the minimal indices via the control
theoretic version of the Wong sequences can be found in [24, Prop. 2.2]; however, the
minimal indices there correspond to a feedback canonical form.

Theorem 2.9 (minimal indices). Consider the Wong sequences (2.1) and the

notation of Corollary 2.8. Let K = V∗ ∩ W∗, Ŵi := (EVi−1)
⊥, i = 1, 2, . . . , and

K̂ = (AW∗)⊥ ∩ (EV∗)⊥. Then

a = dim(W1 ∩ K), d = dim(Ŵ1 ∩ K̂),

and with, for i = 0, 1, 2, . . . ,

Δi := dim(Wi+2 ∩ K)− dim(Wi+1 ∩K), Δ̂i := dim(Ŵi+2 ∩ K̂)− dim(Ŵi+1 ∩ K̂),

it holds that

ε1 = · · · = εa−Δ0 = 0, εa−Δi−1+1 = · · · = εa−Δi = i, i = 1, 2, . . . ,

and

η1 = · · · = ηd−̂Δ0
= 0, ηd−̂Δi−1+1 = · · · = ηd−̂Δi

= i, i = 1, 2, . . . .
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Furthermore, the minimal indices are invariant under matrix pencil equivalence. In
particular, the KCF is unique.

The proof is carried out in section 5. This proof uses the KCF and, therefore, in
particular it uses Lemma 4.12 and Corollary 4.13, which provide an explicit method
to obtain the KCF for the full rank matrix pencils sEP − AP and sEQ − AQ in
the QKF (2.5). However, if one is only interested in the singular part of the KCF
(without the necessary transformation), the above result shows that knowledge of the
Wong sequences is already sufficient; there is no need to actually carry out the tedious
calculations of Lemma 4.12 and Corollary 4.13.

Note that Δi−1 = Δi or Δ̂i−1 = Δ̂i is possible for some i. In that case there
are no minimal indices of value i because the corresponding index range is empty.
Furthermore, once Δi = 0 or Δ̂

̂i = 0 for some index i or î, then Δi+j = 0 and

Δ̂
̂i+̂j = 0 for all j ≥ 0 and ĵ ≥ 0. In particular, there are no minimal indices with

values larger than i and î, respectively.

3. Application of the QK(T)F to DAE solution theory. In this section
we study the DAE (1.1)

Eẋ = Ax+ f

corresponding to the matrix pencil sE−A ∈ Rm×n[s]. Note that we restrict ourselves
here to the field K = R, because (1) the vast majority of DAEs arising from modeling
physical phenomena are not complex valued, (2) all the results for K = R carry over
to K = C without modification (the converse is not true in general), (3) the case
K = Q is rather artificial when considering solutions of the DAE (1.1), because then
we had to consider functions f : R → Q or even f : Q → Q.

We first have to decide in which (function) space we actually consider the DAE
(1.1). To avoid problems with differentiability, one suitable choice is the space of
smooth functions C∞, i.e., we consider smooth inhomogeneities f ∈ (C∞)m and
smooth x ∈ (C∞)n. Unfortunately, this excludes the possibility of considering step
functions as inhomogeneities which occur rather frequently. It is well known that the
solutions of DAEs might involve derivatives of the inhomogeneities, hence jumps in the
inhomogeneity might lead to nonexistence of solutions due to a lack of differentiability.
However, this is not a “structural nonexistence” since every smooth approximation
of the jump could lead to well defined solutions. Therefore, one might extend the
solution space by considering distributions (or generalized functions) as formally in-
troduced by Schwartz [31]. The advantage of this larger solution space is that each
distribution is “smooth,” in particular the unit step function (Heaviside function) has
a derivative: the Dirac impulse. Unfortunately, the whole space of distributions is too
large; for example it is, in general, not possible to speak of an initial value, because
evaluation of a distribution at a specific time is not defined. To overcome this obstacle
we consider the smaller space of piecewise-smooth distributions DpwC∞ as introduced
in [33, 34]. For piecewise-smooth distributions a left- and right-sided evaluation is
possible, i.e., for D ∈ DpwC∞ the values D(t−) ∈ R and D(t+) ∈ R are well defined
for all t ∈ R.

Altogether, we will formulate all results for both solution spaces S = C∞ and S =
DpwC∞ , so that readers who feel uneasy about the distributional solution framework
can ignore it.

Before stating our main results concerning the solution theory of the DAE (1.1),
we need the following result about polynomial matrices. A (square) polynomial matrix
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U(s) ∈ Kn×n[s] is called unimodular if and only if it is invertible within the ring
Kn×n[s], i.e., there exists V (s) ∈ Kn×n[s] such that U(s)V (s) = I.

Lemma 3.1 (existence of unimodular inverse). Consider a matrix pencil sE−A ∈
Km×n[s], m 
= n, such that rankλE −A = min{m,n} for all λ ∈ C. Then there exist
polynomial matrices M(s) ∈ Kn×m[s] and K(s) ∈ Kn′×m′

[s], n′,m′ ∈ N, such that, if
m < n, [M(s),K(s)] is unimodular and

(sE −A)[M(s),K(s)] = [Im, 0],

or, if m > n, [M(s)
K(s) ] is unimodular and[

M(s)
K(s)

]
(sE −A) =

[
In
0

]
.

The proof is carried out in section 4.4.
The following theorem gives a complete characterization of the solution behavior

of the DAE (1.1). Note that a discussion of the solution behavior of a DAE which is
already in KCF is rather straightforward (see, e.g., [39]); however, a characterization
based just on the QKF (2.5) without knowledge of a more detailed structure (e.g.,
some staircase form or even the KCF of sEP −AP and sEQ −AQ) seems new.

Theorem 3.2 (complete characterization of solutions of the DAE). Let sE−A ∈
Rm×n[s] and use the notation from Theorem 2.6. Consider the solution space S = C∞

or S = DpwC∞ and let f ∈ Sm. According to Theorem 2.2, let SR, TR ∈ GlnR(R) be
the matrices which transform sER −AR in quasi-Weierstraß form, i.e.,

(3.1)
[
I 0 0
0 SR 0
0 0 I

]
S(sE −A)T

[
I 0 0
0 TR 0
0 0 I

]
=

⎡⎢⎢⎣
sEP −AP 0 0 0

0 sI − J 0 0
0 0 sN − I 0
0 0 0 sEQ −AQ

⎤⎥⎥⎦
and let (f�

P , f�
J , f�

N , f�
Q )� :=

[
I 0 0
0 SR 0
0 0 I

]
Sf , where the splitting corresponds to the block

sizes in (3.1). According to Lemma 3.1 choose unimodular matrices [MP (s),KP (s)] ∈
RnP×(mP+(nP−mP ))[s] and

[
MQ(s)
KQ(s)

]
∈ R(nQ+(mQ−nQ))×mQ [s] such that

(sEP −AP )[MP (s),KP (s)] = [I, 0] and

[
MQ(s)
KQ(s)

]
(sEQ −AQ) =

[
I
0

]
.

Then there exist solutions of the DAE Eẋ = Ax+ f if and only if

KQ(
d
dt )(fQ) = 0 .

If this is the case, then an initial value x0 = T
[
I 0 0
0 TR 0
0 0 I

]
(x0

P
�
, x0

J
�
, x0

N
�
, x0

Q
�
)
�

is

consistent at t0 ∈ R, i.e., there exists a solution of the initial value problem

(3.2) Eẋ = Ax+ f, x(t0−) = x0,

if and only if

(3.3) x0
Q =

(
MQ(

d
dt )(fQ)

)
(t0−) and x0

N = −
(

nN−1∑
k=0

Nk( d
dt )

k(fN )

)
(t0−) .
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If (3.3) holds, then any solution x = T
[
I 0 0
0 TR 0
0 0 I

] (
xP

�, xJ
�, xN

�, xQ
�)� of the initial

value problem (3.2) has the form

xP =MP (
d
dt )(fP ) +KP (

d
dt )(ux0

P
),

xJ = eJ(·−t0)x0
J + eJ·

∫
t0

(
e−J·fJ

)
,

xN =−
∑nN−1

k=0 Nk( d
dt )

k(fN ),
xQ =MQ(

d
dt )(fQ),

,

where ux0
P
∈ SnP−mP is such that the initial condition at t0 for xP is satisfied (which

is always possible due to Lemma 4.17), but apart from that, arbitrary.
The proof is carried out in section 5.
Note that the antiderivative operator

∫
t0

: S → S, f �→ F as used in Theorem 3.2

is uniquely defined by the two properties d
dtF = f and F (t0−) = 0 (for S = C∞

this is well known and for S = DpwC∞ this is shown in [34, Prop. 3]; see also [33,
Prop. 2.3.6]).

We want to use Theorem 3.2 to characterize the solutions of our example DAE
(1.2). We first observe that the regular part can be brought into quasi-Weierstraß form
s0 − I by premultiplying with SR = A−1

R . In particular, the J-part is nonexistent,
which means that the circuit contains no classical dynamics. We choose

[MP (s),KP (s)] =

⎡⎣ 0 1 0
0 0 1
−1 CRs 1

⎤⎦ and

[
MQ(s)
KQ(s)

]
=

[
1 0

−LKs 1

]
.

Furthermore, fP = V
RG+RF

, fJ = ∅, fN = V
K [−1,−1,−K, 0, 0,− 1

RG
,− 1

RG
, 0,− 1

RG
, 1
RG

]�,
fQ = [I, V ]�, TR = I; hence the DAE (1.2) is solvable if and only if

0 = KQ(
d
dt )(fQ) = −LK d

dtI + V or, equivalently, V = LK d
dtI ,

i.e., the voltage source must be proportional to the change of current provided by the
current source. In that case, the initial value must fulfill

x(0−) = T [∗, ∗, ∗,−fN(0−)�,MQ(
d
dt )(fQ)(0−)]�,

i.e., recalling that x = (p+, p−, po, pT , iL, ip, im, iG, iF , iR, io, iV , iC , iT )
�, iR(0−), io(0−),

iV (0−) are arbitrary, and p−(0−) = V (0−)
K , p+(0−) = V (0−)

K , po(0−) = V (0−),

pT (0−) = RiR(0−), iL(0−) = I(0−), ip(0−) = 0, im(0−) = 0, iG = V (0−)
RF+RG

,

iF = V (0−)
RF+RG

, iC(0−) = iV (0−) − io(0−) + V (0−)
RF+RG

, iT (0−) = io(0−) − iR(0−) −
iV (0−) − V (0−)

RF+RG
. If these conditions are satisfied, then all solutions of the initial

value problem corresponding to our example DAE (1.2) are given by

x = T [u1, u2,
−V

RG+RF
+RCu̇1+u2,

V
K , V

K , V, 0, 0, V
RF+RG

, V
RF+RG

, 0, V
RF+RG

, −V
RF+RG

, I]�,

= [ VK , V
K , V, pT (u1), I, 0, 0,

V
RF+RG

, V
RF+RG

, iR(u1), io(u2), iV (u1, u2), iC(u1), iT (u1)]
�,

where u1, u2 ∈ S are arbitrary, apart from the initial conditions

u1(0−) = iR(0−)−V (0−)
R , u̇1(0−) = 1

CR

(
iV (0−) + V (0−)

RF+RG
− io(0−)

)
, u2(0−) = io(0−)
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and

pT (u1) = V +Ru1, iR(u1) = u1 +
V
R , io(u2) = u2,

iV (u1, u2) = u2 − V
RF+RG

+ CRu̇1, iC(u1) = CRu̇1, iT (u1) = −u1 − V
R − CRu̇1.

Remark 3.3. A similar statement as in Theorem 3.2 is also possible if we consider
only the QKTF (2.3), i.e., instead of (3.1) we consider[

I 0 0
0 SR 0
0 0 I

]
Strian(sE −A)Ttrian

[
I 0 0
0 TR 0
0 0 I

]

=

⎡⎢⎢⎣
sEP −AP sEPJ −APJ sEPN −APN sEPQ −APQ

0 sI − J 0 sEJQ −AJQ

0 0 sN − I sENQ −ANQ

0 0 0 sEQ −AQ

⎤⎥⎥⎦ .

The corresponding conditions for the Q-part remain the same; in the condition for the
N -part the inhomogeneity fN is replaced by fN − (ENQ

d
dt −ANQ)(xQ), in the J-part

the inhomogeneity fJ is replaced by fJ − (EJQ
d
dt −AJQ)(xQ), and in the P -part the

inhomogeneity fP is replaced by fP − (EPJ
d
dt −APJ )(xJ )− (EPN

d
dt −APN )(xN )−

(EPQ
d
dt −APQ)(xQ).

4. Useful lemmas. In this section we collect several lemmas which are needed
to prove the main results. Since we use results from different areas we group the
lemmas accordingly into subsections.

4.1. Standard results from linear algebra.
Lemma 4.1 (orthogonal complements and (pre-)images). For any matrix M ∈

Kp×q we have
(i) for all subspaces S ⊆ Kp it holds that (M−1S)⊥ = M�(S⊥);
(ii) for all subspaces S ⊆ Kq it holds that (MS)⊥ = M−�(S⊥).
Proof. Property (i) is shown, e.g., in [7, Property 3.1.3]. Property (ii) follows

from considering (i) for M�,S⊥ instead of M,S and then taking orthogonal comple-
ments.

Lemma 4.2 (rank of matrices). Let A,B ∈ Km×n with imB ⊆ imA. Then for
almost all c ∈ K ,

rankA = rank(A+ cB),

or, equivalently,

imA = im(A+ cB).

In fact, rankA < rank(A+ cB) can only hold for at most r = rankA many values of
c.

Proof. Consider the Smith form [32] of A,

UAV =

[
Σr 0
0 0

]
with invertible matrices U ∈ Km×m and V ∈ Kn×n and Σr = diag(σ1, σ2, . . . , σr),
σi ∈ K \ {0}, r = rankA. Write

UBV =

[
B11 B12

B21 B22

]
,
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where B11 ∈ Kr×r. Since imB ⊆ imA, it follows that B21 = 0 and B22 = 0. Hence,
we obtain the following implications:

rank(A+ cB) < rankA ⇒ rank[Σr + cB11, cB12] < rank[Σr, 0] = r

⇒ rank(Σr + cB11) < r ⇒ det(Σr + cB11) = 0.

Since det(Σr + cB11) is a polynomial in c of degree at most r but not the zero poly-
nomial (since det(Σr) 
= 0), it can have at most r zeros. This proves the claim.

Lemma 4.3 (dimension formulae). Let S ⊆ Kn be any linear subspace of Kn and
M ∈ Km×n. Then

dimMS = dimS − dim(kerM ∩ S).

Furthermore, for any two linear subspaces S, T of Kn we have

dim(S + T ) = dimS + dim T − dim(S ∩ T ).

Proof. See any textbook on linear algebra for the proof.

4.2. The Wong sequences. The next lemma highlights an important property
of the intersection of the limits of the Wong sequences.

Lemma 4.4 (property of V∗ ∩W∗
). Let sE − A ∈ Km×n[s] and V∗, W∗ be the

limits of the corresponding Wong sequences. Then

E(V∗ ∩W∗) = EV∗ ∩AW∗ = A(V∗ ∩W∗).

Proof. Clearly, invoking (2.2),

E(V∗∩W∗) ⊆ EV∗∩EW∗ ⊆ EV∗∩AW∗ and A(V∗∩W∗) ⊆ AV∗∩AW∗ ⊆ EV∗∩AW∗;

hence it remains to show the converse subspace relationship. To this end we choose
x ∈ EV∗ ∩ AW∗, which implies the existence of v ∈ V∗ and w ∈ W∗ such that

Ev = x = Aw;

hence

v ∈ E−1{Aw} ⊆ E−1(AW∗) = W∗, w ∈ A−1{Ev} ⊆ A−1(EV∗) = V∗.

Therefore v, w ∈ V∗∩W∗ and x = Ev ∈ E(V∗∩W∗) as well as x = Aw ∈ A(V∗∩W∗),
which concludes the proof.

For the proof of the main result we briefly consider the Wong sequences of the
(conjugate) transposed matrix pencil sE� − A�; these are connected to the original
Wong sequences as follows.

Lemma 4.5 (Wong sequences of the transposed matrix pencil). Consider a matrix
pencil sE − A ∈ Km×n[s] with corresponding limits of the Wong sequences V∗ and

W∗. Denote with V̂∗ and Ŵ∗ the limits of the Wong sequences of the (conjugate)
transposed matrix pencil sE� −A�. Then the following holds:

Ŵ∗ = (EV∗)⊥ and V̂∗ = (AW∗)⊥.

Proof. We show that for all i ∈ N,

(4.1) (EVi)
⊥ = Ŵi+1 and (AWi)

⊥ = V̂i,
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from which the claim follows. For i = 0 this follows from

(EV0)
⊥ = (imE)⊥ = kerE� = E−�(A�{0}) = Ŵ1

and

(AW0)
⊥ = {0}⊥ = Rm = V̂0.

Now suppose that (4.1) holds for some i ∈ N. Then

(EVi+1)
⊥ =

(
EA−1(EVi)

)⊥
Lem. 4.1(ii)

= E−�(A−1(EVi))
⊥

Lem. 4.1(i)
= E−� (A�(EVi)

⊥)
= E−�

(
A�Ŵi+1

)
= Ŵi+2,

and analogously it follows that (AWi+1)
⊥ = V̂i+1; hence we have inductively shown

(4.1).

4.3. Singular chains. In this subsection we introduce the notion of singular
chains for matrix pencils. This notion is inspired by the theory of linear relations
(see [30]), where they are a vital tool for analyzing the structure of linear relations.
They also play an important role in former works on the KCF; see, e.g., [16, Chap. XII]
and [3]. However, in these works only singular chains of minimal length are considered.
We use them here to determine the structure of the intersection V∗∩W∗ of the limits
of the Wong sequences.

Definition 4.6 (singular chain). Let sE − A ∈ Km×n[s]. For k ∈ N the tuple
(x0, . . . , xk) ∈ (Kn)k+1 is called a singular chain of the matrix pencil sE − A if and
only if

0 = Ax0, Ex0 = Ax1, . . . , Exk−1 = Axk, Exk = 0

or, equivalently, the polynomial vector x(s) = x0 + x1s + · · · + xks
k ∈ Kn[s] satisfies

(sE −A)x(s) = 0.

Note that with every singular chain (x0, x1, . . . , xk) also the tuple (0, . . . , 0, x0, . . . ,
xk, 0, . . . , 0) is a singular chain of sE − A. Furthermore, with every singular chain,
each scalar multiple is a singular chain and for two singular chains of the same length
the sum of both is a singular chain. A singular chain (x0, . . . , xk) is called linearly
independent if the vectors x0, . . . , xk are linearly independent.

Lemma 4.7 (linear independency of singular chains). Let sE − A ∈ Km×n[s].
For every nontrivial singular chain (x0, x1, . . . , xk), k ∈ N, of sE − A there ex-
ists � ∈ N, � ≤ k, and a linearly independent singular chain (y0, y1, . . . , y�) with
span{x0, x1, . . . , xk} = span{y0, y1, . . . , y�}.

Proof. This result is an extension of [30, Lem. 3.1]; hence our proof resembles
some ideas of the latter.

If (x0, x1, . . . , xk) is already a linearly independent singular chain, then nothing
is to show, therefore, assume existence of a minimal � ∈ {0, 1, . . . , k − 1} such that
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x�+1 =
∑�

i=0 αixi for some αi ∈ K, i = 0, . . . , �. Consider the chains

α0 (0, 0, . . . , 0, 0, x0, x1, . . . , x�, x�+1, . . . , xk−1, xk),
α1 (0, 0, . . . , 0, x0, x1, . . . , x�, x�+1, . . . , xk−1, xk, 0),
α2 (0, 0, . . . , x0, x1, . . . , x�, x�+1, . . . , xk−1, xk, 0, 0),

...
α�−1 (0, x0, x1, . . . , x�−2, x�−1, x�, x�+1, . . . xk, 0, . . . , 0),

α� (x0, x1, . . . , x�−2, x�−1, x�, x�+1, . . . xk, 0, . . . , 0, 0)

and denote its sum by (z0, z1, . . . , zk+�). Note that by construction z� =
∑�

i=0 αixi =
x�+1. Now consider the singular chain (v0, v1, . . . , vk+�+1) :=(x0, x1, . . . , xk, 0, . . . , 0)−
(0, z0, z1, . . . , z�+k), which has the property that v�+1 = x�+1 − z� = 0. In particular
(v0, v1, . . . , v�) and (v�+2, v�+3, . . . , vk+�+1) are both singular chains. Furthermore (we
abbreviate αiI with αi),⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

v0
v1
v2
...
vk

vk+1

...
vk+�+1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 ··· 0
-α� I 0 ··· 0
-α�-1 -α� I 0 ··· 0

. . .

-α1 -α2 ··· -α� I
-α0 -α1 -α2 ··· -α� I
0 -α0 -α1 -α3 ··· -α� I

. . .
. . .

0 ··· 0 -α0 -α1 -α3 ··· -α� I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

x0

x1

x2

...
xk

0
...
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

hence span{v0, v1, . . . , vk+�+1} = span{x0, x1, . . . , xk} = span{v0, v1, . . . , vk}. In par-
ticular

span{vk+1, vk+2, . . . , vk+�+1} ⊆ span{v0, v1, . . . , vk};

hence, by applying Lemma 4.2, there exists c 
= 0 such that (note that � < k)

(4.2) im[v0, v1, . . . , vk] = im([v0, v1, . . . , vk] + c [vk+1, vk+2, . . . , vk+�+1, 0, . . . , 0]).

Therefore, the singular chain

(w0, w1, . . . , wk−1) := c (v�+2, . . . , vk, vk+1, vk+2, . . . , vk+�+1)+(0, . . . , 0, v0, v1, . . . , v�)

has the property

span{w0, w1, . . . , wk−1} = span{v�+2, v�+3, . . . , vk}
+span{cvk+1 + v0, cvk+2 + v1, . . . , cvk+�+1 + v�}

v�+1=0
= im([v0, v1, . . . , vk] + c [vk+1, vk+2, . . . , vk+�+1, 0, . . . , 0])

(4.2)
= im[v0, v1, . . . , vk]

= span{v0, v1, . . . , vk} = span{x0, x1, . . . , xk}.

Altogether, we have obtained a shorter singular chain which spans the same subspace
as the original singular chain. Repeating this procedure until one obtains a linearly
independent singular chain proves the claim.
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Corollary 4.8 (basis of the singular chain manifold). Consider a matrix pencil
sE −A ∈ Km×n[s] and let the singular chain manifold be given by

K :=
{
x∈Rn

∣∣ ∃ k, i∈N ∃ sing. chain (x0, . . . , xi−1, x = xi, xi+1, . . . , xk) ∈ (Kn)k+1
}
,

i.e., K is the set of all vectors x appearing somewhere in some singular chain of
sE − A. Then there exists a linearly independent singular chain (x0, x1, . . . , xk) of
sE −A such that

K = span{x0, . . . , xk}.

Proof. First note that K is indeed a linear subspace of Kn, since the scalar
multiple of every chain is also a chain and the sum of two chains (extending the
chains appropriately with zero vectors) is again a chain.

Let y0, y1, . . . , y� be any basis of K. By the definition of K, for each i = 0, 1, . . . , �
there exist chains (yi0, y

i
1, . . . , y

i
ki
), which contain yi. Let (v0, v1, . . . , vk̂) with k̂ = k0+

k1+ . . .+k� being the chain which results by concatenating the chains (yi0, y
i
1, . . . , y

i
ki
).

Clearly, span{v0, . . . , vk̂} = K; hence, Lemma 4.7 yields the claim.
The following result can, in substance, be found in [3]. However, the proof therein

is difficult to follow, involving quotient spaces and additional sequences of subspaces.
Our presentation is much more straightforward and simpler.

Lemma 4.9 (singular chain manifold and the Wong sequences). Consider a
matrix pencil sE − A ∈ Km×n[s] with the limits V∗ and W∗ of the Wong sequences.
Let the singular chain manifold K be given as in Corollary 4.8; then

V∗ ∩W∗ = K.

Proof. Step 1. We show K ⊆ V∗ ∩W∗.
Let (x0, . . . , xk) be a singular chain. Clearly we have x0 ∈ A−1(E{0}) = kerA ⊆

V∗ and xk ∈ E−1(A{0}) = kerE ⊆ W∗; hence, inductively we have, for i =
0, 1, . . . , k − 1 and j = k, k − 1, . . . , 1,

xi+1 ∈ A−1(E{xi}) ⊆ A−1(EV∗)=V∗ and xj−1 ∈ E−1(A{xj}) ⊆ E−1(AW∗)=W∗.

Therefore,

x0, . . . , xk ∈ V∗ ∩W∗.

Step 2. We show V∗ ∩W∗ ⊆ K.
Let x ∈ V∗ ∩ W∗, in particular, x ∈ W∗ = Wl∗ for some l∗ ∈ N. Hence there

exists x1 ∈ Wl∗−1, x2 ∈ Wl∗−2, . . . , xl∗ ∈ W0 = {0}, such that, for x0 := x,

Ex0 = Ax1, Ex1 = Ax2, . . . , Exl∗−1 = Axl∗ , Exl∗ = 0.

Furthermore, since, by Lemma 4.4, E(V∗∩W∗) = A(V∗∩W∗), there exist x−1, x−2, . . . ,
x−(l∗+1) ∈ V∗ ∩W∗ such that

Ax0 = Ex−1, Ax−1 = Ex−2, . . . , Ax−(l∗−1) = Ex−l∗ , Ax−l∗ = Ex−(l∗+1).

Let x̃−(l∗+1) := −x−(l∗+1) ∈ V∗∩W∗ ⊆ W∗; then (with the same argument as above)
there exist x̃−l∗ , x̃−(l∗−1), . . . , x̃−1 ∈ W∗ such that

Ex̃−(l∗+1) = Ax̃−l∗ , Ex̃−l∗ = Ax̃−(l∗−1), . . . , Ex̃−2 = Ax̃−1, Ex̃−1 = 0,
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and thus, defining x̂−i = x−i + x̃−i, for i = 1, . . . , l∗ + 1, we have x̂−(l∗+1) = 0 and
we get

0=Ex̂−(l∗+1)=Ax̂−l∗ , Ex̂−l∗ =Ax̂−(l∗−1), . . . , Ex̂−2=Ax̂−1, Ex̂−1=Ex−1=Ax0.

This shows that (x̂−l∗ , x̂−(l∗−1), . . . , x̂−1, x0, x1, . . . , xl∗) is a singular chain and x =
x0 ∈ K.

The last result in this section relates singular chains with the column rank of the
matrix pencil sE −A.

Lemma 4.10 (column rank deficit implies singular chains). Let sE − A ∈
Km×n[s]. If rankC(λE − A) < n for all λ ∈ C ∪ {∞}, then there exists a nontrivial
singular chain of sE −A.

Proof. It suffices to observe that Definition 4.6 coincides (modulo a reversed
indexing) with the notion of singular chains in [30] applied to the linear relation
E−1A := {(x, y) ∈ Kn × Kn|Ax = Ey}. Then the claim follows for K=C from [30,
Thm. 4.4]. The main idea of the proof there is to choose anym+1 different eigenvalues
and corresponding eigenvectors. This is also possible for K = R and K = Q; hence
the proof in [30] is also valid for K = R and K = Q.

4.4. Polynomial matrices. In the following we will say that P (s) ∈ Km×n[s]
can be extended to a unimodular matrix if and only if, in the case m < n, there exists

Q(s) ∈ Kn−m×n[s] such that [
P (s)
Q(s) ] is unimodular, in the case m > n, there exists

Q(s) ∈ Km×m−n[s] such that [P (s), Q(s)] is unimodular, and, in the case m = n,
P (s) itself is unimodular.

Lemma 4.11 (unimodular extension). A matrix P (s) ∈ Km×n[s] can be extended
to a unimodular matrix if and only if rankC P (λ) = min{m,n} for all λ ∈ C.

Proof. Necessity is clear; hence it remains to show that under the full rank
assumption a unimodular extension is possible. Note that K[s] is a principal ideal
domain; hence we can consider the Smith normal form [32] of P (s) given by

P (s) = U(s)

[
Σr(s) 0
0 0

]
V (s),

where U(s), V (s) are unimodular matrices and Σ(s) = diag(σ1(s), . . . , σr(s)), r ∈ N,
with nonzero diagonal entries. Note that rankC P (λ) = rankC Σ(λ) for all λ ∈ C;
hence the full rank condition implies r = min{m,n} and σ1(s), . . . , σr(s) are constant
(nonzero) polynomials. For m = n this already shows the claim. For m > n, i.e.,
P (s) = U(s)

[
Σn(s)

0

]
V (s), the sought unimodular extension is given by

[P (s), Q(s)] = U(s)

[
Σn(s) 0

0 I

] [
V (s) 0
0 I

]
and, for m < n, [

P (s)
Q(s)

]
=

[
U(s) 0
0 I

] [
Σm(s) 0

0 I

]
V (s).

Proof of Lemma 3.1. Let Q(s) be any unimodular extension of sE −A according

to Lemma 4.11. If m < n, choose [M(s),K(s)] = [ sE−A
Q(s) ]−1, and if m > n, let

[
M(s)
K(s) ] := [sE −A,Q(s)]−1.
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4.5. KCF for full rank pencils. In order to derive the KCF as a corollary
of the QKF and also for the proof of the solvability of (2.4), we need the following
lemma, which shows how to obtain the KCF for the special case of full rank pencils.

Lemma 4.12 (KCF of full rank rectangular pencil, m < n case). Let sE − A ∈
Km×n[s] be such that m < n, and let l := n − m. Then rankC(λE − A) = m for
all λ ∈ C ∪ {∞} if and only if there exist numbers ε1, . . . , εl ∈ N and matrices
S ∈ Glm(K), T ∈ Gln(K) such that

S(sE −A)T = diag(Pε1(s), . . . ,Pεl(s)),

where Pε(s), ε ∈ N, is as in Corollary 2.8.

Proof. Sufficiency is clear; hence it remains to show necessity.

If m = 0 and n > 0, then nothing is to show since sE − A is already in the
“diagonal form” with ε1 = ε2 = · · · = εl = 0. Hence assume m > 0 in the following.
The main idea is to reduce the problem to a smaller pencil sE′−A′ ∈ Km′×n′

[s] with
rankC(λE

′ − A′) = m′ < n′ < n for all λ ∈ C ∪ {∞}. Then we can inductively use
the transformation to the desired block diagonal structure for the smaller pencil to
obtain the block diagonal structure for the original pencil.

By assumption E does not have full column rank; hence there exists a column
operation T1 ∈ Gln(K) such that

ET1 =

⎡⎢⎣0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

⎤⎥⎦ .

There are two cases now: Either the first column of AT1 is zero or it is not. We
consider the two cases separately.

Case 1. The first column of AT1 is zero.

Let ET1 =: [0, E′] and AT1 =: [0, A′]. Then, clearly, rankC(λE−A)=rankC(λE
′−

A′) = m′ := m for all λ ∈ C ∪ {∞}. Furthermore, with n′ := n − 1, it follows that
n′ ≥ m′. Seeking a contradiction, assume n′ = m′. Then the full rank matrix E′ is
square and hence invertible. Let λ ∈ C be any eigenvalue of the matrix E′−1

A′. Thus
0 = det(λI − E′−1

A′) = det(E′)−1 det(λE′ − A′), and hence rankC(λE
′ − A′) < m′,

a contradiction. Altogether, this shows that sE′ − A′ ∈ Km′×n′
[s] is a smaller pencil

which satisfies the assumption of the lemma; hence we can inductively use the result
of the lemma for sE′ − A′ with transformation matrices S′ and T ′. Let S := S′

and T := T1

[
1 0
0 T ′

]
; then S(sE −A)T has the desired block diagonal structure which

coincides with the block structure of sE′ −A′ apart from one additional P0 block.

Case 2. The first column of AT1 is not zero.

Then there exists a row operation S1 ∈ Glm(K) such that

S1(AT1) =

⎡⎢⎢⎢⎣
1 ∗ ∗ · · · ∗
0 ∗ ∗ · · · ∗
...

...
...

0 ∗ ∗ · · · ∗

⎤⎥⎥⎥⎦ .

Since E has full row rank, the first row of S1ET1 cannot be the zero row; hence,
there exists a second column operation T2 ∈ Gln(n) which does not change the first
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column such that

(S1ET1)T2 =

⎡⎢⎢⎢⎣
0 1 0 · · · 0
0 ∗ ∗ · · · ∗
...

...
...

0 ∗ ∗ · · · ∗

⎤⎥⎥⎥⎦ .

Now let T3 ∈ Gln(K) be a column operation which adds multiples of the first column
to the remaining columns such that

(S1AT1T2)T3 =

⎡⎢⎢⎢⎣
1 0 0 · · · 0
0 ∗ ∗ · · · ∗
...

...
...

0 ∗ ∗ · · · ∗

⎤⎥⎥⎥⎦ .

Since the first column of S1ET1T2 is zero, the column operation T3 has no effect on
the matrix S1ET1T2. Let

S1ET1T2T3 =:

⎡⎢⎢⎢⎣
0 1 0 · · · 0
0
... E′

0

⎤⎥⎥⎥⎦ and S1AT1T2T3 =:

⎡⎢⎢⎢⎣
1 0 0 · · · 0
0
... A′

0

⎤⎥⎥⎥⎦ ,

with sE′−A′ ∈ Km′×n′
[s] and m′ := m−1, n′ := n−1, in particular m′ < n′. Seeking

a contradiction, assume rankC λE′ −A′ < m′ for some λ ∈ C ∪ {∞}. If λ = ∞, then
this implies that E′ does not have full row rank, which would also imply that E does
not have full row rank, which is not the case. Hence we may choose a vector v′ ∈ Cm′

such that v′(λE′ − A′) = 0. Let v := [0, v′]S1. Then a simple calculation reveals
v(λE −A) = [0, v′(λE′ −A′)](T1T2T3)

−1 = 0, which contradicts full complex rank of
λE−A. As in the first case we can now inductively use the result of the lemma for the
smaller matrix pencil sE′−A′ to obtain transformations S′ and T ′ which put sE′−A′

in the desired block diagonal form. With S :=
[
1 0
0 S′

]
S1 and T := T1T2T3

[
1 0
0 T ′

]
we

obtain the same block diagonal structure for sE − A as for sE′ − A′ apart from the
first block, which is Pε1+1 instead of Pε1 .

The following corollary follows directly from Lemma 4.12 by transposing the re-
spective matrices.

Corollary 4.13 (KCF of full rank rectangular pencils, m > n case). Let
sE −A ∈ Km×n[s] be such that m > n, and let l := m−n. Then rankC(λE −A) = n
for all λ ∈ C ∪ {∞} if and only if there exist numbers η1, . . . , ηl ∈ N and matrices
S ∈ Glm(K), T ∈ Gln(K) such that

S(sE −A)T = diag(Qη1(s), . . . ,Qηl
(s)),

where Qη(s), η ∈ N, is as in Corollary 2.8.

4.6. Solvability of linear matrix equations. In generalization of the method
presented in [11, sect. 6] we reduce the problem of solvability of (2.4) to the problem
of solving a generalized Sylvester equation

(4.3) AXB − CXD = E.
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To this end the following lemma is crucial.
Lemma 4.14. Let A,C ∈ Km×n, B,D ∈ Kp×q, E,F ∈ Km×q, and consider the

system of matrix equations with “unknowns” Y ∈ Kn×q and Z ∈ Km×p,

(4.4)
0 = E +AY + ZD,

0 = F + CY + ZB.

Suppose there exists λ ∈ K and Mλ ∈ Kq×p such that Mλ(B − λD) = I, in particular
p ≥ q. Then, for any solution X ∈ Kn×p of the matrix equation

AXB − CXD = −E − (λE − F )MλD,

the matrices

Y = X(B − λD),

Z = −(C − λA)X − (F − λE)Mλ

solve (4.4).
Proof. We calculate

E +AY + ZD = E +AX(B − λD)− (C − λA)XD − (F − λE)MλD

= E −AXλD + λAXD − (F − λE)MλD − E − (λE − F )MλD

= 0,

F + CY + ZB = F + CX(B − λD) − (C − λA)XB − (F − λE)MλB

= F + CXB − CXB − (F − λE)MλB − λ (E + (λE − F )MλD)

= (F − λE)− (F − λE)MλB − λ(λE − F )MλD

= (F − λE)
(
Iq −Mλ(B − λD)

)
= 0.

The following result is well known and since it considers only a regular matrix
pencil we do not repeat its proof here. However, we need to introduce the notion of
spectrum of a regular pencil sE−A ∈ Kn×n[s]: this is the set of all λ ∈ C∪{∞} such
that rankC(λE −A) < n.

Lemma 4.15 (solvability of the generalized Sylvester equation: regular case [11,
17]). Let A,C ∈ Kn×n, B,D ∈ Kp×p, E ∈ Kn×p, and consider the generalized
Sylvester equation (4.3). Assume that (sB −D) and (sC − A) are both regular with
distinct spectra. Then (4.3) is solvable.

Finally, we can state and prove the result about the solvability of the generalized
sylvester equation which is needed to prove Theorem 2.6.

Lemma 4.16 (solvability of the generalized Sylvester equation with special prop-
erties). Let A,C ∈ Km×n, m ≤ n, B,D ∈ Kp×q, p > q, E ∈ Km×q, and consider
the generalized Sylvester equation (4.3). Assume that (λB −D) has full rank for all
λ ∈ C ∪ {∞} and that either (λC − A) has full rank for all λ ∈ C ∪ {∞} or that
(sC −A) is regular. Then (4.3) is solvable.

Proof. The proof follows that of [17, Thm. 2]. By Theorem 2.2 and Lemmas 4.12
and 4.13 we already know that we can put the pencils sC −A and sB−D into KCF.
Therefore, choose invertible S1, T1, S2, T2 such that sC0 − A0 = S1(sC − A)T1 and
sB0−D0 = S2(sB−D)T2 are in KCF. Hence, with X0 = T−1

1 XS−1
1 and E0 = S1ET2,

equation (4.3) is equivalent to

A0X0B0 − C0X0D0 = E0.
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Let sC0−A0 = diag(sC1
0 −A1

0, . . . , sC
n1
0 −An1

0 ), n1 ∈ N, and sB0−D0 = diag(sB1
0 −

D1
0, . . . , sB

n2
0 −Dn2

0 ), n2 ∈ N, corresponding to the block structure of the KCF as in
Corollary 2.8, then (4.3) is furthermore equivalent to the set of equations

Ai
0X

ij
0 Bj

0 − Ci
0X

ij
0 Dj

0 = Eij
0 , i = 1, . . . , n1, j = 1, . . . , n2,

where X ij
0 and Eij

0 are the corresponding subblocks of X0 and E0, respectively. Note
that (using the notation of Corollary 2.8) by assumption each pencil sCi

0 − Ai
0 is a

Pε(s), Jρ(s), or Nσ(s) block, and all pencils sBj
0−Dj

0 are Qη(s) blocks. If sC
i
0−Ai

0 is
a Pε(s) block, we consider a reduced equation by deleting the first column of sCi

0−Ai
0,

which results in a regular Jε(s) block with spectrum {0}, and by deleting the last
row of sBj

0 −Dj
0, which results in a regular Nη(s) block with spectrum {∞}. Hence,

we use Lemma 4.15 to obtain solvability of the reduced problem. Filling the reduced
solution for X ij

0 by a zero row and a zero column results in a solution for the original
problem. If sCi

0 − Ai
0 is a Jρ(s) block, we can apply the same trick (this time we

delete only the last row of sBj
0 −Dj

0) to arrive at the same conclusion, as sCi
0 − Ai

0

has only finite spectrum. Finally, if sCi
0 − Ai

0 is a Nσ(s) block with spectrum {∞},
we have to reduce sBj

0 −Dj
0 by deleting the first row, which results in a Jη(s) block

with spectrum {0}. This concludes the proof.

4.7. Solutions of DAEs. In order to prove Theorem 3.2 we need the following
lemmas, which characterize the solutions of DAEs in the case of full rank pencils. As
in section 3 we restrict ourselves to the case K = R.

Lemma 4.17 (full row rank pencils). Let sE − A ∈ Rm×n[s] such that m < n
and rankC(λE − A) = m for all λ ∈ C ∪ {∞}. According to Lemma 3.1 choose
M(s) ∈ Rn×m[s] and K(s) ∈ Rn×(n−m)[s] such that (sE − A)[M(s),K(s)] = [I, 0]
and [M(s),K(s)] is unimodular. Consider the DAE Eẋ = Ax+ f and the associated
solution space S = C∞ or S = DpwC∞. Then, for all inhomogeneities f ∈ Sm, x ∈ Sn

is a solution if and only if there exists u ∈ Sn−m such that

x = M( d
dt )(f) +K( d

dt )(u).

Furthermore, all initial value problems have a solution, i.e., for all x0 ∈ Rn, t0 ∈ R,
and all f ∈ Sm there exists a solution x ∈ Sn such that

x(t0−) = x0.

Proof. Step 1. We show that x = M( d
dt )(f) +K( d

dt )(u) solves Eẋ = Ax + f for
any u ∈ Sn−m.

This is clear since

(E d
dt −A)

(
M( d

dt )(f) +K( d
dt )(u)

)
= f + 0 = f.

Step 2. We show that any solution x of the DAE can be represented as above.
To this end let u := [0, I][M( d

dt ),K( d
dt )]

−1x ∈ Sn−m, which is well defined due
to the unimodularity of [M(s),K(s)]. Then

f = (E d
dt −A)x = (E d

dt −A)[M( d
dt ),K( d

dt )]

[
[I, 0][M( d

dt ),K( d
dt )]

−1x

[0, I][M( d
dt ),K( d

dt )]
−1x

]
= [I, 0][M( d

dt ),K( d
dt )]

−1x,
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and therefore it follows that

M( d
dt )f +K( d

dt )u = [M( d
dt ),K( d

dt )]

[
[I, 0][M( d

dt ),K( d
dt )]

−1x

[0, I][M( d
dt ),K( d

dt )]
−1x

]
= x.

Step 3. We show that every initial value is possible.

Write K(s) = K0 + K1s + . . . + Kps
p, p ∈ N, and let K be the singular chain

manifold of sE −A as in Corollary 4.8.
Step 3a. We show im[K0,K1, . . . ,Kp] = K = Rn.
Remark 2.4 and Lemma 4.9 yield Rn = V∗ ∩W∗ = K. From (sE − A)K(s) = 0

it follows that

0 = AK0, EK0 = AK1, . . . , EKp−1 = AKp, EKp =;

hence the ith column vectors of K0,K1, . . . ,Kp, i = 1, . . . , n − m, form a singular
chain. This shows im[K0,K1, . . . ,Kp] ⊆ K.

For showing the converse inclusion, we first prove imK0 = kerA. From AK0 =
(λE−A)K(λ)

∣∣
λ=0

= 0 it follows that imK0 ⊆ kerA. By unimodularity of [M(s),K(s)]
it follows that K(0) = K0 must have full rank, i.e., dim imK0 = n − m. Full rank
of (sE − A) for all s ∈ C also implies full rank of A; hence dimkerA = n − m and
imK0 = kerA is shown.

Let (x0, x1, . . . , xl), l ∈ N, be a singular chain. Then Ax0 = 0, i.e., x0 ∈ kerA =
imK0. Proceeding inductively, assume x0, x1, . . . , xi ∈ im[K0,K1, . . . ,Ki] for some
i ∈ N with 0 ≤ i < l. For notational convenience set Kj = 0 for all j > p. From
Axi+1 = Exi ∈ im[EK0, EK1, . . . , EKi] = im[AK1, AK2, . . . , AKi+1] it follows that
xi+1 ∈ kerA + im[K1,K2, . . . ,Ki+1] = im[K0,K1, . . . ,Ki+1]. This shows that each
singular chain is contained in im[K0,K1, . . . ,Kp].

Step 3b. We show existence of u ∈ Sn−m such that x(t0−) = x0.
By Step 3a there exist u0, u1, . . . , up ∈ Rn−m such that

(4.5) K0u0 +K1u1 + · · ·+Kpup = x0 −M( d
dt )(f)(t0−).

Let

u(t) := u0 + (t− t0)u1 +
(t− t0)

2

2
u2 + · · ·+ (t− t0)

p

p!
up, t ∈ R.

Then we have that u ∈ S and

(4.6) K( d
dt )(u)(t0−) = K0u0 +K1u1 + · · ·+Kpup

(4.5)
= x0 −M( d

dt )(f)(t0−),

which implies that the solution x = M( d
dt )(f) +K( d

dt )(u) satisfies

x(t0−) = M( d
dt )(f)(t0−) +K( d

dt )(u)(t0−)
(4.6)
= x0.

Remark 4.18. A careful analysis of the proof of Lemma 4.17 reveals that for the
solution formula the full rank of λE − A for λ = ∞ is not necessary. The latter is
only necessary to show that all initial value problems have a solution.

Lemma 4.19 (full column rank pencils). Let sE−A ∈ Rm×n[s] such that m > n
and rankC(λE − A) = n for all λ ∈ C ∪ {∞}. According to Lemma 3.1 choose
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M(s) ∈ Rn×m[s] and K(s) ∈ R(m−n)×m[s] such that [M(s)
K(s) ](sE−A) = [ I0 ] and [M(s)

K(s) ]

is unimodular. Then, for f ∈ Sm, x ∈ Sn is a solution of Eẋ = Ax+ f if and only if

x = M( d
dt )(f) and K( d

dt )(f) = 0.

Furthermore, every component or linear combination of f is restricted in some way;
more precisely K(s)F has no zero column for any invertible F ∈ Rm×m.

Proof. The characterization of the solution follows from the equivalence

(E d
dt −A)x = f ⇐⇒

[
M( d

dt )

K( d
dt )

]
(E d

dt −A)︸ ︷︷ ︸
=[ I0 ]

x =

[
M( d

dt )f

K( d
dt )f

]
.

To show that K(s)F does not have any zero column, write K(s) = K0 +K1s+ · · ·+
Kks

k. Since (sE�−A�)K(s)� = 0 it follows with the same arguments as in Step 3a of
Lemma 4.17 that im[K�

0 ,K�
1 , . . . ,K�

k ] = Rm. Hence, ker[K�
0 ,K�

1 , . . . ,K�
k ]� = {0},

which shows that the only v ∈ Rm with Kiv = 0 for all i = 1, . . . , k is v = 0. This
shows that K(s)F does not have a zero column for any invertible F ∈ Rm×m.

Remark 4.20. Analogously, as pointed out in Remark 4.18, the condition that
λE −A must have full rank for λ = ∞ is not needed to characterize the solution. It
is only needed to show that the inhomogeneity is “completely” restricted.

5. Proofs of the main results.

5.1. Proof of Theorem 2.3: The QKTF. We are now ready to prove our
main result about the QKTF. We proceed in several steps.

Step 1. We show the block-triangular form (2.3).
By the choice of P1, R1, Q1 and P2, R2, Q2 it follows immediately that Ttrian and

Strian are invertible. Note that (2.3) is equivalent to the solvability (for given E,A,
and P1, R1, Q1, P2, R2, Q2) of

EP1 = P2EP , AP1 = P2AP ,

ER1 = P2EPR +R2ER, AR1 = P2APR +R2AR,

EQ1 = P2EPQ +R2ERQ +Q2EQ, AQ1 = P2APQ +R2ARQ +Q2AQ.

The solvability of the latter is implied by the following subspace inclusions:

E(V∗ ∩W∗) ⊆ EV∗ ∩ AW∗, A(V∗ ∩W∗) ⊆ EV∗ ∩ AW∗,
E(V∗ +W∗) ⊆ EV∗ +AW∗, A(V∗ +W∗) ⊆ EV∗ +AW∗,

EKn ⊆ Km, AKn ⊆ Km,

which clearly hold due to (2.2).
Step 2. We show (i).
Step 2a. Full row rank of EP and AP .
From Lemma 4.4 it follows that

imP2EP = imEP1 = imP2 and imP2AP = imAP1 = imP2;

hence, invoking the full column rank of P2, imEP = KmP = imAP , which implies
full row rank of EP and AP . In particular this shows full row rank of λEP − AP for
λ = 0 and λ = ∞.
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Step 2b. Full row rank of λEP −AP for all λ ∈ C \ {0}.
Seeking a contradiction, assume existence of λ ∈ C\{0} with rankC(λEP −AP ) <

mP . Then there exists v ∈ CmP such that v�(λEP − AP ) = 0. Full column rank of
P2 ∈ Km×mP implies existence of w ∈ Cm such that w�P2 = v�; hence

0 = v�(λEP −AP ) = w�(λP2EP − P2AP ) = w�(λE −A)P1.

Invoking Lemma 4.9, there exists a linearly independent singular chain (x0, x1, . . . , xk)
such that

span{x0, x1, . . . , xk} = imP1 = V∗ ∩W∗.

In particular, xi ∈ imP1 for i = 0, 1, . . . , implies

∀i ∈ {0, 1, . . . , k} : w�(λE −A)xi = 0.

Since Exk = 0 it follows that w�Axk = 0 and inductively it follows that

0 = w�(λExi−1 −Axi−1) = w�(λAxi −Axi−1) = −w�Axi−1

and, therefore,

0 = w�AP1 = w�P2AP = v�AP .

This shows that AP ∈ KmP×nP does not have full row rank over C which implies also
a row rank defect over K. This is the sought contradiction because the full row rank
of AP was already shown in Step 2a.

Step 3. We show (ii).
For notational convenience let K := V∗ ∩W∗.
Step 3a. We show that mR = nR.
Invoking

(5.1) kerE ∩ K = kerE ∩ V∗, kerA ∩K = kerA ∩W∗,

and Lemmas 4.3 and 4.4, the claim follows from

mR = rankR2

= dim(EV∗ +AW∗)− dim(EV∗ ∩ AW∗)
= dimEV∗ + dimAW∗ − 2 dim(EV∗ ∩ AW∗)
= dimV∗ − dim(kerE ∩ V∗) + dimW∗ − dim(kerA ∩W∗)− dimEK − dimAK
= dimV∗ − dim(kerE ∩ V∗) + dimW∗ − dim(kerA ∩W∗)− dimK

+ dim(kerE ∩ K)− dimK + dim(kerA ∩K)
(5.1)
= dimV∗ + dimW∗ − 2 dimK
= dim(V∗ +W∗)− dim(V∗ ∩W∗)
= rankR1 = nR.

Step 3b. We show that det(sER −AR) 
≡ 0.
Seeking a contradiction, assume det(sER − AR) is the zero polynomial. Then

λER −AR has a column rank defect for all λ ∈ C ∪ {∞}; hence

∀λ ∈ C ∪ {∞} : rankC(λER −AR) < nR.
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Now, Lemma 4.10 ensures existence of a nontrivial singular chain (y0, y1, . . . , yk) of
the matrix pencil sER −AR.

We show that there exists a singular chain (x0, x1, . . . , xk, xk+1, . . . , xk̂) of sE−A
such that xi = [P1, R1] (

zi
yi ) for i = 0, . . . , k. To this end denote some right inverse of

AP (invoking full row rank of AP as shown in Step 2a) with A+
P and let

z0 = −A+
PAPRy0, zi+1 = A+

P (EP zi + EPRyi −APRyi+1), i = 0, . . . , k,

where yk+1 = 0. Then it follows that

Axi = A[P1, R1]

(
zi
yi

)
= ATtrian

⎛⎝zi
yi
0

⎞⎠ = S−1
trian

⎡⎣AP APR APQ

0 AR ARQ

0 0 AQ

⎤⎦⎛⎝zi
yi
0

⎞⎠
= S−1

trian

⎛⎝AP zi +APRyi
ARyi
0

⎞⎠
and, analogously,

Exi = S−1
trian

⎛⎝EP zi + EPRyi
ERyi
0

⎞⎠ ;

hence Ax0 = 0 and Exi = Axi+1 for i = 0, . . . , k. Note that, if we set xk+1 = P1zk+1,
then xk+1 ∈ V∗ ∩ W∗ ⊆ W∗, and identically as shown in the first part of Step
2 of the proof of Lemma 4.9 there exist xk+2, . . . , xk̂, k̂ > k such that Exk+1 =
Axk+2, . . . , Exk̂−1 = Axk̂, Exk̂ = 0 and, therefore, (x0, x1, . . . , xk̂) is a singular chain
of sE −A. Lemma 4.9 implies that {x0, x1, . . . , xk̂} ⊆ imP1; hence xi = [P1, R1](

zi
yi )

implies yi = 0 for all i ∈ {0, . . . , k}, which contradicts nontriviality of (y0, . . . , yk).
Step 4. We show (iii).
We will consider the transposed matrix pencil sE�−A� with correspondingWong

sequences and show that the block (E�
Q , A�

Q) will play the role of the block (EP , AP ).

Therefore, denote the limits of the Wong sequences of sE� −A� by V̂∗ and Ŵ∗. Let

Q̂1 := ([0, 0, InQ ][P1, R1, Q1]
−1)� and Q̂2 := ([0, 0, ImQ ][P2, R2, Q2]

−1)�;

then

Q̂�
i Qi = I and im Q̂i = (im[Pi, Ri])

⊥ for i = 1, 2.

In fact, the latter follows from n− nQ = nP + nR and

Q̂�
1 [P1, R1] = [0, 0, InQ ]

⎡⎣InP 0
0 InR

0 0

⎤⎦ = 0

for i = 1 and analogously for i = 2. We will show in the following that

E�Q̂2 = Q̂1E
�
Q , A�Q̂2 = Q̂1A

�
Q,

im Q̂2 = V̂∗ ∩ Ŵ∗, im Q̂1 = E�V̂∗ ∩ A�V̂∗;

then the arguments from Step 2 can be applied to sE�
Q −A�

Q and the claim is shown.
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Step 4a. We show E�Q̂2 = Q̂1E
�
Q and A�Q̂2 = Q̂1A

�
Q.

Using (2.3) we obtain

Q̂�
2 E=Q̂�

2 [P2, R2, Q2]︸ ︷︷ ︸
=[0 0 I]

[
EP EPR EPQ

0 ER ERQ

0 0 EQ

]
[P1, R1, Q1]

−1=[0 0 EQ][P1, R1, Q1]
−1=EQQ̂

�
1 ;

hence E�Q̂2 = Q̂1E
�
Q . Analogous arguments show that A�Q̂2 = Q̂1A

�
Q.

Step 4b. We show im Q̂2 = V̂∗ ∩ Ŵ∗.
By construction and Lemma 4.5,

im Q̂2 = (im[P2, R2])
⊥ = (EV∗ +AW∗)⊥ = (EV∗)⊥ ∩ (AW∗)⊥ = V̂∗ ∩ Ŵ∗.

Step 4c. We show im Q̂1 = E�V̂∗ ∩A�V̂∗.
Lemma 4.5 applied to (E�, A�) gives

(E�V̂∗)⊥ = W∗ and (A�Ŵ∗)⊥ = V∗

or, equivalently,

E�V̂∗ = W∗⊥ and A�Ŵ∗ = V∗⊥.

Hence

im Q̂1 = (im[P1, R1])
⊥ = (V∗ +W∗)⊥ = V∗⊥ ∩W∗⊥ = A�Ŵ∗ ∩ E�V̂∗.

This concludes the proof of our first main result.

5.2. Proof of Theorem 2.6: The QKF. By the properties of the pencils
sEP −AP , sER−AR and sEQ−AQ there exist λ ∈ K and full rank matrices NP

λ , NR
λ ,

MR
λ , andMQ

λ such that (λEP−AP )N
P
λ = I, (λER−AR)N

R
λ = I, MR

λ (λER−AR) = I,

and MQ
λ (λEQ − AQ) = I. Hence Lemma 4.14 shows that it suffices to consider

solvability of the following generalized Sylvester equations:

ERX1AQ −ARX1EQ = −ERQ − (λERQ −ARQ)M
Q
λ EQ,(5.2a)

EPX2AR −APX2ER = −EPR − (λEPR −APR)M
R
λ ER,(5.2b)

EPX3AQ −APX3EQ = −(EPQ + EPRF1)

− (λ(EPQ + EPRF1)− (APQ +APRF1))M
Q
λ EQ,(5.2c)

where F1 is any solution of (2.4a), whose existence will follow from solvability of
(5.2a). Furthermore, the properties of sEP −AP , sEQ−AQ, and sER−AR imply that
Lemma 4.16 is applicable to (5.2) (where (5.2b) must be considered in the (conjugate)
transposed form) and ensures existence of solutions. Now, a simple calculation shows
that for any solution of (2.4) the second part of the statement of Theorem 2.6 holds.

Finally, to show uniqueness in the sense of (2.6) assume first that (E,A) ∼=
(E′, A′). Then there exist invertible matrices S′ and T ′ such that (E′, A′) = (S′ET ′,
S′AT ′). It is easily seen that the Wong sequences V ′

i, W ′
i, i ∈ N, of the pencil sE′−A′

fulfill

(5.3) V ′
i = T ′−1Vi, W ′

i = T ′−1Wi, E′V ′
i = S′EVi, A′W ′

i = S′AWi.
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Hence, using the notation of Theorem 2.3, there exist invertible matrices MP , MR,
MQ, NP , NR, NQ such that

[P ′
1, R

′
1, Q

′
1] = T ′−1

[P1MP , R1MR, Q1MQ], [P ′
2, R

′
2, Q

′
2] = S′[P2NP , R2NR, Q2NQ];

in particular the block sizes of the corresponding QKFs coincide. Therefore,

s

⎡⎣EP ∗ ∗
0 ER ∗
0 0 EQ

⎤⎦−

⎡⎣AP ∗ ∗
0 AR ∗
0 0 AQ

⎤⎦ = [P2, R2, Q2]
−1(sE −A)[P1, R1, Q1]

=

⎡⎣NP 0 0
0 NR 0
0 0 NQ

⎤⎦ [P ′
2, R

′
2, Q

′
2]S

′(sE −A)T ′[P ′
1, R

′
2, Q

′
2]

⎡⎣MP 0 0
0 MR 0
0 0 MQ

⎤⎦−1

=

⎡⎣NP 0 0
0 NR 0
0 0 NQ

⎤⎦ [P ′
2, R

′
2, Q

′
2](sE

′ −A′)[P ′
1, R

′
2, Q

′
2]

⎡⎣M−1
P 0 0
0 M−1

R 0
0 0 M−1

Q

⎤⎦
= s

⎡⎣NPE
′
PM

−1
P ∗ ∗

0 NRE
′
RM

−1
R ∗

0 0 NQE
′
QM

−1
Q

⎤⎦
−

⎡⎣NPA
′
PM

−1
P ∗ ∗

0 NRARM
−1
R ∗

0 0 NQAQM
−1
Q

⎤⎦ .

Hence the necessity part of (2.6) is shown. Sufficiency follows from the simple ob-
servation that equivalence of the QKFs implies equivalence of the original matrix
pencils.

5.3. Proof of Theorem 2.9: The minimal indices. First consider two equiv-
alent matrix pencils sE − A and sE′ − A′ and the relationship of the corresponding
Wong sequences (5.3). From this it follows that the subspace dimension used for the

calculations of a, d, Δi and Δ̂i, i = 0, 1, 2, . . . , are invariant under equivalence trans-
formations. Hence it suffices to show the claim when the matrix pair is already in
KCF as in Corollary 2.8. In particular, uniqueness of the KCF then also follows from
this invariance.

Note that the Wong sequences of a matrix pencil in QKF (2.5) fulfill

Vi =

⎡⎣I0
0

⎤⎦VP
i ⊕

⎡⎣0I
0

⎤⎦VR
i ⊕

⎡⎣00
I

⎤⎦VQ
i , Wi =

⎡⎣I0
0

⎤⎦WP
i ⊕

⎡⎣0I
0

⎤⎦WR
i ⊕

⎡⎣00
I

⎤⎦WQ
i ,

where VP
i , WP

i , VR
i , WR

i , VQ
i , WQ

i , i ∈ N, are the Wong sequences corresponding
to the matrix pencils sEP − AP , sER − AR, and sEQ − AQ. Furthermore, due to
Theorem 2.6 and the uniqueness result therein, it follows that

V∗ ∩W∗ = im

⎡⎣I 0 0
0 0 0
0 0 0

⎤⎦ .

Altogether it is, therefore, sufficient to show the claim for the singular block
sEP − AP with its Wong sequences VP

i and WP
i . The result for the singular block
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sEQ −AQ follows by considering the (conjugate) transpose and invoking Lemma 4.5.

Since KP := VP ∗ ∩WP ∗
= Rnp , we have WP

i ∩ KP = WP
i , and the claim simplifies

again.

The remaining proof is quite simple but the notation is rather cumbersome.
Therefore we accompany the proof with an illustrative example:

(5.4) sEP −AP = s

[
0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1

]
−
[

0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

]
.

In this example a = 5, ε1 = ε2 = 0, ε3 = ε4 = 1, and ε5 = 3. Denote with
κ1, κ2, . . . , κa the position where a new Pε(s) block begins in sEP − AP ; for the
example this is κ1 = 1, κ2 = 2, κ3 = 3, κ4 = 5, κ5 = 7. By definition

WP
1 = kerEP = im[eκ1 , eκ2 , . . . , eκa ] =: imWP

1 ,

where e� denotes the �th unit vector. This shows a = dimWP
1 = dim (W1 ∩ K).

Let νi, i = 0, 1, 2, . . . ,mP be the number of Pε(s)-blocks of size i in sEP − AP ;
for our example (5.4) this means ν0 = 2, ν1 = 2, ν2 = 0, ν3 = 1, ν4 = 0, ν5 = 0. Then

APW
P
1 = [0, . . . , 0︸ ︷︷ ︸

ν0

, e1, . . . , eν1︸ ︷︷ ︸
ν1

, eν1+1, eν1+3, . . . , eν1+2(ν2−1)︸ ︷︷ ︸
ν2

, . . . ,

eν1+2ν2+···+(mP−1)νmP −1+1, . . . , eν1+2ν2+···+(mP−1)νmP −1+mP (νmP
−1)︸ ︷︷ ︸

νmP

].

For (5.4) this reads as

APW
P
1 =

[
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0
0 0 0 0 0

]
.

Denote with β1 the smallest index such that εβ1 ≥ 1, if it exists, β1 = a+1 otherwise
(for our example, β1 = 3). It then follows that

WP
2 = EP

−1(APWP
1 )

= WP
1 ⊕ im[eκβ1

+1, eκβ1+1+1, . . . , eκa+1]

= im[eκ1 , . . . , eκβ1−1
, eκβ1

, eκβ1
+1, eκβ1+1

, eκβ1+1+1, . . . , eκa , eκa+1]

=: imWP
2 .

For the example (5.4) this is

WP
2 = WP

1 ⊕ im[e4, e6, e8] = im[e1, e2, e3, e4, e5, e6, e7, e8].

Since Δ0 = dimWP
2 − dimWP

1 = a − (β1 − 1) and ε1 = · · · = εβ1−1 = 0 we have
shown that ε1 = · · · = εa−Δ0 = 0.

With βi being the smallest index such that εβi ≥ i (or βi = a + 1 if it does not
exist) and with an analogue argument as above we inductively conclude that

WP
i+1 = WP

i ⊕ im[eκβi
+i, eκβi+1+i, . . . , eκa+i], i = 2, 3, . . . .
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In the example we obtain β2 = β3 = 5 and β4 = β5 = · · · = 6 and

WP
3 = WP

2 ⊕ im[e9],

WP
4 = WP

3 ⊕ im[e10],

WP
5 = WP

4 , WP
6 = WP

5 , . . . .

Hence Δi−1 = dimWi+1−dimWi = a−(βi−1) and by induction Δi = a−(βi+1−1).
By definition, εβi−1 = · · · = εβi−1 = i and, therefore, εa−Δi−1 = · · · = εa−(Δi−1) =
i.

5.4. Proof of Theorem 3.2: Characterization of the solutions of asso-
ciated DAE. The claim is a simple consequence of Lemmas 4.17 and 4.19 together
with the well-known solution properties of a DAE corresponding to a regular DAE in
(quasi-) Weierstraß form (see, e.g., [9]).

6. Conclusions. We have studied singular matrix pencils sE − A and the as-
sociated DAE Eẋ = Ax + f . With the help of the Wong sequences we were able
to transform the matrix pencil into a quasi-Kronecker form (QKF). The QKF de-
couples the original matrix pencil into three parts: the underdetermined part, the
regular part, and the overdetermined part. These blocks correspond to different so-
lution behavior: existence but nonuniqueness (underdetermined part), existence and
uniqueness (regular part), and possible nonexistence but uniqueness (overdetermined
part). Furthermore, we have shown that the minimal indices of the pencil can be
determined with only the Wong sequences.

7. Acknowledgments. We thank the anonymous reviewers for very helpful
comments which helped us to improve this paper significantly. In particular, we
added Theorem 2.9 in response to a question of one reviewer about the relationship
between the Wong sequences and the minimal indices.
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[26] C. Oară and P. M. Van Dooren, An improved algorithm for the computation of structural

invariants of a system pencil and related geometric aspects, Systems Control Lett., 30
(1997), pp. 39–48.

[27] D. H. Owens and D. L. Debeljkovic, Consistency and Liapunov stability of linear descriptor
systems: A geometric analysis, IMA J. Math. Control & Information, 2 (1985), pp. 139–
151.
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