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Abstract

We study matrix pencils sE — A using the associated linear subspace ker[A, —E].
The distance between subspaces is measured in terms of the gap metric. In particular,
we investigate the gap distance of a regular matrix pencil to the set of singular pencils
and provide upper and lower bounds for it. A relation to the distance to singularity in
the Frobenius norm is provided.
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1 Introduction

We consider square matrix pencils A(s) = sE — A with E, A € C"*", which are regular, i.e.,
det(sE — A) is not the zero polynomial. If det(sE — A) = 0 for all s € C, then the matrix
pencil A(s) is called singular. In the numerical treatment of matrix pencils it turns out that
regular pencils which are close to a singular one are difficult to handle [16]. It is a hard task
to compute canonical forms, because rank decisions seem to be impossible in general.

One way to characterize the distance to singularity 6(E, A) for a regular matrix pencil
sE — A is the Frobenius norm of the smallest perturbation which leads to a singular pencil

0(E,A) = AE,A1££C”M {I[AE, AA]||r|s(E + AE)—(A+ AA) is singular}, (1)
see [9]. Here | M||p := +/tr (M*M) is the Frobenius norm of a matrix M € C™*", and M*

is the adjoint of M.
Although in [9] several upper and lower bounds for 6(E, A) were obtained, they were all
claimed to be insufficient. For current purposes we mention only (cf. [3, 9])
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where W,,(E, A) is the block matrix

E 0 0
A FE
Wa(E, 4) = | o 0| € clmrmnt,
: A FE
0 ... 0 A

see also [18], and oyin (M) is the smallest positive singular value of the matrix M € C™**,

Recently, in [21], new estimates were obtained in the case that the perturbation sSAE — AA
in (1) has rank one and the pencil is Hermitian. In [16], the authors proposed a successful
gradient based algorithm for finding a nearby singular pencil, however the cost function
there is not the distance §(E, A) itself.

Following [7], we associate with A(s) = sE — A the subspace £4 = ker[A, —E] of C*",
see also [2, 27]. Note that if E equals the identity, then £ 4 coincides with the graph of A.
For two pencils A(s) = sE — A and A(s) = sE — A we define their gap distance as

O(AA) = [Py — Peyll

where Pz, and P are the orthogonal projections onto L4 = ker[A,—E] and L; =

ker[A, —E|, respectively, and | M| := max|| =1 ||Mz| denotes the spectral norm. The
central notion of the present paper is the gap distance to singularity Osing (E, A) of a pencil
A(s), which is defined as the infimum of all §(A, A) where A(s) is a singular matrix pencil.

Let us mention here the basic property of fsng (£, A) that distinguishes it from 6(E, A).
Namely, if the subspaces £4 and L 7 coincide (i.e., the pencils A(s) and A(s) generate the
same linear relation, see [7]) then Oging (E, A) = Oging (E,A). In other words, the distance
Osing (£, A) depends on (the linear relation generated by) the subspace £ 4 only. In partic-
ular, Oging (SE, SA) = bging (E, A) for any invertible S, while in contrast, §(7E,7A) — oo
for 7 — oo. Observe also that if (A, ./Z) < bsing (E, A), then regularity of any matrix pencil
generating the same linear relation as /T(s) is guaranteed. This fact allows to study large
norm deviations of the matrices E and A, see Section 7.2.

Another important issue is the asymmetry of Oging (E, A) with respect to the Kronecker
canonical form, see Section 3. This fact is particularly interesting when applied to classes
with already restricted Kronecker canonical form. Applications to a recently studied class
of pencils connected with port-Hamiltonian systems can be found in Section 7.3.

In the present paper, we give several bounds on g, (E, A). For instance, in Theorem 4.3
we prove that
Omin(Wr(E, A))

V2B, A

In Theorem 5.4 we obtain upper bounds in terms of the geometry of the underlying sub-
spaces. A simplified version says that if z,y € C™ \ {0} are such that Az = AFz and
Ay = pFEy for A\, u € C with \ # u, then with

L (Nﬂ; - gy) . 7 :=span { (Axx> ’ (iy) }

and P;. denoting the orthogonal projection onto the orthogonal complement J+ of 7, we
have

esing (E; A) Z

oo )< 127l
sine (20 2) S Byl

(3)



Furthermore, in Theorem 6.2 we prove that fsne (£, A) and §(E, A) are related by

5(E,A) 5(E, A)
T Al = s B A) < o 20— 58, 4) @

Note that combining e.g. (3) and (4) yields a new upper bound for §(E, A). Another bound,
the proof of which is based on comparing the distances, is

1
VI+[ATE|?

where A is assumed to be invertible, see Theorem 6.5.

The paper is organized as follows: We recall the gap distance between subspaces in
Section 2 together with some basic properties that are needed in due course. In order to
define the gap distance between matrix pencils we associate with a pencil A(s) = sE — A
the linear subspace £ 4 = ker[A, —E], which is discussed in Section 3 together with some
of its properties. Then we introduce the gap distance between matrix pencils and the gap
distance to singularity fging (E, A). We derive upper and lower bounds for this number in
Sections 4 and 5. A comparison of the gap distance to singularity with the distance to
singularity §(F, A) is discussed in Section 6. In Section 7 we discuss some examples and,
in particular, we show that there are classes of matrix pencils for which regularity can be
concluded using Oging (E, A), but not using §(E, A).

Throughout this article, we use the following notation: For a subspace £ C C™ we denote
by Sg :={ax €L |||z]| =1 } the unit sphere in £ and by d(z, L) := infycr ||z — y|| the
distance of a vector € C™ to L. Furthermore, P; denotes the orthogonal projection onto
the subspace £. By £; + Lo we denote the direct sum of two subspaces £, Lo C C" with
L1 N Ly =10}, and by £1 @& Ly their orthogonal sum provided that £, L Lo. The singular
value decomposition of a matrix A € C"*™ reads

Gsing (E7 A) Z

A=USVE, %= [zg) 8} 5, = diag (01,....0,), (5)
with unitary matrices U € C**", V € C™*™ and singular values o1 > ... > o, > 0,
r = rk A. Note that |A|| = 01 = omax(4), and for the reduced minimum modulus of A we

have min| ;=1 { [|Az|| | z Lker A } = 0, = omin(A). We denote by onmin(A) the minimum
modulus of A, that is Gmin(A) := minj, = {||Az|}. In other words, Gumin(A4) = omin(A) if
ker A = {0} and omin(A) = 0 otherwise.

2 The gap between subspaces

Recall from [13, 14, 19] that the gap distance between subspaces £, M C C" with £ # {0}
or M # {0} is given by

0(L,M) = max{ sup d(z, L), sup d(m,./\/l)}. (6)

€S M rESL

The next proposition collects some well known properties of the gap distance, see [19,
Corollary IV.2.6, Theorem IV.2.9], [14, Section S4.3].

Proposition 2.1. For any two subspaces L, M C C™ the gap 0(L, M) has the properties:
(a) 0(L, M) = |[Pam — Pell;
(b) (L, M) <1, and if (L, M) < 1 then dim £ = dim M, Py L =M and PcM = L;



(c) (L, M) =0(LH M*);
(d) O(£, M) = max{||[Pree |l 1P [aall}-

Every matrix C € C"*? induces a subspace £ C C" via £ = ran C and vice versa. For
matrices C' € C™*% of full rank with 1 < d < n, the following formula for the orthogonal
projection onto the range of C' holds.

Pranc = C(C*C)71C*. (7)

If C has orthonormal columns then C*C = I; and the equation (7) simplifies to Pranc =
CC*. Moreover, with Proposition 2.1 (d) we obtain the following corollary.

Corollary 2.2. Let L, L C C" be d-dimensional subspaces, 1 < d < n, with L =ranC and
L =ranC for some matrices C, C € C"*4, Then

6(£, L) = max{||(In = C(C*C) "' C")| &l 1(In — C(C™C) ' C ) rance |}

For later use we record a formula for the gap between two d-dimensional subspaces of C".
In the case of R™, a proof using the C'S-decomposition can be found in [15]; here we present
a direct method.

Proposition 2.3. Let L, L C C" be d-dimensional subspaces, 1 < d < n, such that L =
ranC' and £ = ranC for some matrices C, C e Ccnxd of rank d with orthonormal columns.
Then

0(L,L) = \/1 — Grin(C*C)2. (8)

Proof. Choose C1 and C} such that U = [C, Cy] and U = [C, C4] are unitary matrices. Then
also @ = U*U is unitary. Note that @ is of block form

_Qu Q2|
@= [Qm Q22}

With Q*Q = QQ* = I we find that

I=Q7,Qu + Q5,Qa1,
I =QuQ7T; + Q120Q7,.

cC C*Cl
CIC Cl Cl

The above relations imply that

1—5min(C*C) —1—Hm1n [|Q11x H —1—Hn‘1‘1n1x (I —Q5,Q21)x

= ax @ *Q5,Q212 = [|Qa1?

Using that Fumin(C*C) = Gmin(C*C) and [|Q12]| = [|Q%, |, similarly we obtain that
1-— CTmm(cw< ) = HQ12H2 (10)

With Pz = CC* and Pz = CC* we find that

0L, £) = ||Pe — Pg|| = |[ccr - e

- HU*(CC* —CCHU

and a straightforward calculation using U*U = UU=1 gives
ok . A A A 0 C*Cy 0 Q2
ccr—-coconHe, ] = ~ = .
[Ci‘} ( eal=1_ca [Qzl 0 }




Since
H |: 12:|
Q21 0

the last relation together with (9), (10) and (11) implies the formula (8). O

’ = max{| Qa1 |}, | Quall},

Remark 2.4. Note that also the following relations hold, cf. (9) and (10):
0(L, L) = |C*Ci|| = ||ICEC|.

Furthermore, if 21,29 € C™ are non-zero vectors and £; = span {z;}, ¢ = 1,2, then Propo-

sition 2.3 gives
|zi2|?
0(Ly,Lo) =41 — ———. (12)
[l ][22

We stress that in complex vector spaces, the formula for the gap as in (12) is not the same
as the sine of the angle between the two spanning vectors, which is defined by

TiT2

sin <(z1,29) := \/1 — cos? (21, 22), cos<(x1, ) := Re —— .
[z [[[]22]]

For the convenience of the reader, some properties of the Frobenius norm ||A||r of a
matrix A = (a;;) € C"*™ are mentioned:

1Allr = Vo (A*A) = V/tr (AA*) =

and for unitary matrices U € C"*™ and V € C™*™ we have
[M|[p=[UMV|F.

A direct consequence of the above invariance is the following elementary lemma.

Lemma 2.5. For A € C"*™ and B € C"™*F we have
|AB||r < [|Allr |B]| and [[AB|[r < [|A]||B]F-

Proof. Consider the singular value decomposition B = UXV* with unitary U € C™*™,
V € Ck*k. Using the fact that ||B|| = omax(B) we find that

[AB||p = [AUUBV ||p = [[AUX|p < omax(B)[| AU r = [|Al| 7 [| Bl
The second inequality can be inferred in a similar way. O

In the following we show that if the gap distance between the subspaces L"/:' cCC"is
small, then the representing matrices can be chosen in such way that the norm of their
difference is small.

Proposition 2.6. Let E,E C C™ be subspaces with G(E,E) <1 and L = ranC for some

matriz C € C™*? with linearly independent columns cy,...,cq € C*. Then L = ran PzC
and

1PzC = Cl <0(L,L)[[Cll, [[PzC = Cllr < 0L, L)IC]p- (13)



Proof. Since 0(£,£) < 1 we have from Proposition 2.1 (b) that £ = ran PzC. The first
inequality in (13) follows from

Prop.:241 (a) 9 ~

|PzC — C|| = ||PzC — P:C|| < ||Pz — Pz || €] L, L)

The second inequality in (13) can be inferred from

m. 2.5

Ler ~
1PzC = Cll = [[PeC = PCll < [|Pe = Pz[ €1l = (£, £)[Clle- 0

Next, we prove a converse to Proposition 2.6: a small distance of the representing ma-
trices C' and C implies a small gap distance. To this end, we need another elementary
lemma.

Lemma 2.7. Let A € C"™™ and x € ran A such that ||x|| = 1. Then there exists z € C™
such that x = Az and ||z| < (0min(A)) 7 .

Proof. Consider a singular value decomposition A = UXV* of A as in (5) with unitary
matrices U € C**"*, V € C™*™, Denote ¥+ = {Eél 8] and put z = VXTU*z. Since
ran A = ran UY, let © = UXy for some y € C™. It follows that Az = USV*VETU*USy =
UXy = z. Furthermore,

] < IZF U2 < o7t = (omin(A4) 7 m
Proposition 2.8. Let L,Z C C™ be subspaces with L = ranC' and L =ranC for C’,CN' €

C"*d\ {0}, d < n. Then we have

ic—cl
min{omin(C), omin(C)}

0(L, L) < (14)

Proof. Let = € ranC with ||z|| = 1 and choose, according to Lemma 2.7, z € C? such that
x=Czand ||z|| < (0min(C))~!. Then we have
d(z,ranC) = inf ||Cz — CZ| < inf (||Cz— CZ|| +|(C - O)Z
(,an ) = inf €z — G2 < nf, (IC= — €] + (€ - O)z])
< min{{|Cz[], [(C = C)z]]},

where the last inequality follows from setting z = z or Z = 0. Since ||C|| > owin(C) one
finds that

~ _lIc-c
d(z,ranC) < |C|Tmin(0;|7 (15)
and by symmetry it follows for all € ranC with ||z|| = 1 that
d(z,ran C) < e =ci (16)
CTmin(cv)
The inequalities (15) and (16) together with (6) imply (14). O

Formula (14) is a slight improvement of a formula from [1, Proposition 1.1 (i)] for oper-
ators in a Hilbert space.



Remark 2.9. The upper bound (14) is sharp, but on the other hand it can be arbitrarily
large. To see that (14) is sharp choose subspaces L, £ C C" and matrices C, Ce crd, d<n
with orthonormal columns such that P, = CC* and P; = CC*. We apply Proposition 2.8
to Py and P;. From owmin(Pz) = omin(Pz) = 1 and Proposition 2.1 (a) we see that (14)
holds with equality. On the other hand, for n € N\ {0} let

ooy g ol
Then £ = ran C = ran C' = £ and therefore G(L,Z) =0 but omin(C) = amin(é) =1 and
|IC—C||=n-1.
In the next lemma we compare the gap between two subspaces of a certain structure.
Lemma 2.10. For subspaces L1, Lo, L C C™ the following holds.
(a) If L; L L,i=1,2, then 0(L1 & L, La® L) = 0(Ly, L2).
(b) If L;NnL=A{0}, i =1,2, then O(L1 + L, Lo+ L) = 0(Ppr L1, Prr Lo).
(c) If L; N L ={0} as well as L; # {0}, L # {0}, i = 1,2, then

0(L1, L2)

i i < .
Olr+ L, Lo+ L) < min{min(Pes Pz, ), Omin(Prs Pz, )}

Proof. Since Pr,ap = Pr, + P, i = 1,2, we have Pz o — Pr,ec = Pr, — P, and then (a)
follows from Proposition 2.1 (a).

To show (b), decompose C" as C* = L; & L = P L; ® Py L;® L}, hence (Ppi L)t =
PrL; ® L;-. We conclude

(P i @ L) = (Ppu L) N L =cinet =2+ 0)*.
By taking orthogonal complements we see £; + £ = P,. L; & L and (b) follows from (a) as
9(51 + L, Lo + L) = Q(PELLH D ﬁ,PLLﬁg &) [,) = 0(P£L£17 PL"L,CQ).
Statement (c) follows from (b) and (14) by choosing C := P,. Py, and C := P.. P, since
[ PesPr, — PraPr, |

min{amin(PEL P£1)7 Jmin(PLJ_ Pﬁz)}

< ”Pﬁl _Pﬁzll
- min{o’min(Pﬁipﬁl),O’min(PﬁLP£2)}

G(Pﬁlﬁl, PﬁLEQ) <

3 Gap distance to singularity

In the following linear subspaces £ of C?" are considered, which are known under the
name linear relations, see e.g. [10, 17, 24, 25]. To a matrix A € C™*™ the subspace
graph A := {(z, Ar) € C>" | x € C"} C C*" is associated. Note that

graph A = ker[A4, —1].

A similar correspondence can be obtained for matrix pencils. By [7, Theorem 3.3], to any
subspace £ of C?” with dim £ = d there exist matrices F, A € C**" with r = 2n — d such
that

L = ker[A, —E],



which is called the kernel representation of £. In what follows, to a matrix pencil A(s) =
sE — A with E, A € C"*" the subspace

L 4 :=ker[A, —F]

is associated. These spaces are used to investigate the maximal gap distance between pencils
A(s) and A(s) that guarantees regularity of A(s).

Definition 3.1. For pencils A(s) = sE — A and /T(s) = sE — A with E,A,E, A € Cn*n

the gap distance between two matriz pencils is defined as

0(AA) = 0(La,L7) = | Prrta, 51— Proi 55 |-
The gap distance to singularity of a regular matriz pencil A(s) = sE — A is defined as
Osing (B, A) := _ inf { 0(A, A) ‘ A(s) = sE — A is singular }
E,AeCnxn

Remark 3.2. Clearly Oging (E, A) < 1 for any regular matrix pencil sE — A. It is also
obvious that fgng (E,A) = 1 for E = A = [1]. We leave it to the reader to show that
Osing (A, A) = 1 for any invertible matrix A.

Recall that every pencil A(s) = sE — A can be transformed into Kronecker canonical
form, see e.g. [5, 6, 12]. To introduce this form the following notation is used: For a multi-

index a = (ay,...,0q) € N', [ > 1, with absolute value |a| = 22:1 o; and k € N we define
the matrices

0
Ny = |! € CPk N, :=diag (Na,, ..., No,) € Clolxlol,
k \10 ) o g (o5} ) (6%

If k > 2 rectangular matrices are defined as

B[N [ e

and if k=1

Kl = L1 = 00><1.
The expression Opx; means that there is a O-column (0,...,0)" € C"*! in the matrix (17)
below, and 0], means that there is a O-row (0,...,0) € C'*™ in (17) at the corresponding

block. The notation 0py; indicates that there is no contribution to the number of rows
in (17), whereas 0, gives no contribution to the number of columns. For a multi-index
a=(ai,...,a;) € N' we define

K, =diag (Ka,,...,Ka,), Lo :=diag(La,,...,La,) € Clal=0xlal,

According to a result of Kronecker [20], there exist invertible matrices S,T € C™*™ such
that S(sE — A)T has a block diagonal form

§lhy —J 0 0 0
0 SNa - I‘a| 0 0
0 0 SKg - ng 0 (17)
0 0 0 sKI — LT

for some J € C™*™ in Jordan canonical form, which is unique up to a permutation of its
Jordan blocks, and multi-indices @ € N"» 3 € N8 ~v € N™ which are unique up to a
permutation of their entries. If £ € N is one of the entries of the multi-indices § or « in the
Kronecker canonical form (17), we say that A(s) has a singular block of size k. Recall that
A(s) is regular if and only if there are no singular blocks in the Kronecker canonical form.
In the literature the numbers 3, —1,..., 3,, — 1 (respectively v; —1,...,7,, — 1) are often
called right (left) minimal indices of sE — A, see e.g. [11, 12].



Lemma 3.3. For a matriz pencil A(s) = sE — A with E, A € C"*" the following holds:
A*
(a) L% =ran {—E*} :
(b) dim L4 =2n —rk[A,—E] > n.

(c) If A(s) is reqular, then dim L4 = n.
Proof. Property (a) follows from ker[A, —E] = (ran [_A];*})L. Since L4 = ker[A, —E], we
see that (b) is a consequence of the dimension formula. Obviously, [4, —E] € C"*2", hence
its kernel has at least dimension n. To show (c) we use the Kronecker canonical form (17)
without singular blocks since A(s) is regular, i.e., there exist invertible matrices S, T € C™**"

such that
~In, 0 ] =n. O

rtk [4, —E] =tk <S [A, —E] [€ 3})& B 1,(1‘ 0  —N,

The following example shows that the converse of statement (c) in Lemma 3.3 is not
true.

Example 3.4. Consider the matrix pencil given by

010 0 0 1
sE—A=s|1 0 0| -0 0 O
0 0 0 1 00

Then A(s) = sE — A is singular but

001 0 —10
tk[A,—~E]=1k [0 0 0 -1 0 0]|=3
100 0 0 0

which implies by Lemma 3.3 (b) that dim £4 = 3.

If the gap distance between a regular pencil and a singular pencil is smaller than one,
then the singular pencil has a singular block of size at least two, as shown in the next
proposition. Note that below we use the notation of (17) for the Kronecker canonical form

of A(s), not of A(s).

Proposition 3.5. Let E, A, E, A € C"™" be such that A(s) = sE— A is regular and .Z(s) =
sE — A is singular. If 6(A, A) < 1, then in the Kronecker canonical form (17) of A(s) we
have ny, > 0 and v; > 2 for all i = 1,...,n,, i.e., all left minimal indices of .Z(s) are at
least one.

Proof. Since A(s) = sE — A is regular, dimker[A, —E] = n by Lemma 3.3, and the condition
6(A, A) < 1 implies by Proposition 2.1 (b) that

dim ker[A, —E] = dimker[4, —E] = n. (18)

Let S,T € C"*" be invertible matrices such that SSET — SAT is in Kronecker canonical
form (17). As A(s) is a square singular pencil, the number n, of left minimal indices in (17)
has to be nonzero, see e.g. [7]. Furthermore, if 4; = 1 for some i € {1,...,n,}, then
sSET — SAT contains a zero row. Hence, rk [SAT, fSET} < n, and consequently

T 0

rk[A, —E] = rk (S[Z, —E) [0 T

D =1k [SAT, —SET] < n,

which contradicts (18). O



We show now that the assumptions of Proposition 3.5 do not restrict the right minimal
indices of A(s), i.e., we may have 3; = 1 for some i € {1,...,nz}.

Example 3.6. Let

0 0 ~ 0 0 = 0 1
Sl ST I B
Then clearly A(s) = sE — A is regular for € > 0 and A(s) = sE— A is in Kronecker canonical
form (17) with one right minimal index 0 and one left minimal index 1, i.e., § = (1) and
~v = (2). Furthermore,

1 0 1 0
— 0 = 0 0
ker[A, —F] = span ol 11 , ker[A, —F] = span NEE
0 0 0 0

By Lemma 2.10 (a) and equation (12) we see that 6(.A,.A) converges to zero for ¢ — 0.

The above asymmetry of Ogng (£, A) with respect to the Kronecker canonical form will
be further discussed in Section 7.3.

4 Lower bounds for 6, (E, A)

In this section we present lower bounds for 6, (E, A) of a regular matrix pencil A(s) =
sE — A with E, A € C"*™. The main tool is the matrix

E 0 ... 0]
A FE
Wk(E,A) =10 . . 0 S C(k_‘—l)nan, k> 1,
: A FE
0 0 A

which has been studied e.g. in [12, 18]. The following characterization of regularity of A(s)
is a consequence of [18, Theorem 3.1].

Theorem 4.1. Let E,A € C™*" and A(s) = sE — A be a matriz pencil with Kronecker
canonical form (17). Then ker Wi (E, A) # {0}, k > 1, if and only if there exists some
entry B; of the multi-index B in (17) with 8; < k. In particular, A(s) is regular if and only
if ker W, (E, A) = {0}.

The next lemma contains some properties of the matrices Wy (E, A).
Lemma 4.2. Let E, A € C"*" and k € N. Then the following holds:
(a) ker Wy (SE,SA) = ker Wy (E, A) for all invertible S € C"*";
(b) [Wi(E, )|l < VII[E, Al for all k > 1.

Proof. The assertion (a) is an immediate consequence of

Wi(SE,SA) = diag (S, ..., S) Wi(E, A).

10



To show (b) in case k = 1 note that

I3

If k> 2take x = (21 ,...,z; )" € CF" with ||z|| = 1, then

2

= max {|Ezl* + [42[?} < max  {|En? + [ Azsl} <2)(2, ).
llzll=1 l|(z1,22)|=v2

k—1
Wi (E, A)z|| < \l BN e1ll? + > IE, AP leal? + i) + [1A]?]|2x]|?
=1
< V2||[E, 4]]. H

The following lower bounds for fne (£, A) are one of our main results.

Theorem 4.3. Let A(s) = sE—A and .Z(s) = sE—A be two matriz pencils with E, A, E, A €
C™ ™ such that A(s) is regular. Then the following holds:

(a) If for some k > 1 we have

Umin(Wk(E7 A))
V2 ([B Al

then B; > k + 1 holds for all the entries 3; of the multi-index 3 in the Kronecker
canonical form (17) of A(s).

0(A,A) < (19)

(b) We have

Trmin (Wi (SE, SA))
V2|[SE, SA]|

Osing (£, A) > sup{ S e C™", S invertible } (20)

and, in particular,

Umin(Wn(Ea A)) )

Gsing aA =
sing (B 4) 2 = 11, Al

(21)

(c) If E (or A) is invertible, then

W, (I, E71A))
1+ ||[E-1A]|?

asing (E, A) Z Umin(

min n ITuAilE
(resp. Osing (B, A) > Tmin (W ))>

1+ ||ALE)?
(22)

Proof. Note that ker Wi, (E, A) = {0} for all £ > 1 by Theorem 4.1 since A(s) is regular.
Furthermore, by regularity, the Lemma 3.3 yields that [ “..] has full column rank. Now
assume that (19) holds, then Lemma 4.2 (b) implies that 6(A, A) < 1. Define matrices
E, Aecnxn by

A
_E*

Since fi; =ran {_‘g*] and £} = ran [_AI;*] according to Lemma 3.3 (a) and (L%, Ej) =

6(A, A) <1 by Proposition 2.1 (c), it follows with Proposition 2.6 that

*

~
A*
~
*

ran = ran (23)

—F*
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and

H e ‘ <ok e[| 5| - o Dz, ayy < 2 CELEAD,
Lemma 4.2 (b) yields
||Wk<E,A>ﬂwk<E,A>|| N ACE f;’A " g Fa— A= H Ee | 1
and a combination of the last two inequalities gives
Wi (E, A) = Wi(E, A)|| < omin(Wi(E, A)). (24)

Note that by [15, Theorem 2.5.3]
Omin(Wi(E, A)) = kgl<in ) |[Wi(E, A) — B||, where r =rkWy(F,A)=kn.

Therefore, it follows from the inequality (24) that rk Wk(E, ﬁ) =1k Wi(E, A), thus
ker Wy (E, A) = ker Wy, (E, A) = {0}. (25)

In particular, the matrix [ XEL} has full column rank n. Moreover, the relation (23) implies

that there is some invertible matrix S € C™*™ such that [_AEZ} S* = {_‘%* }, which leads
to SA = A and SE = E. Now it follows from Lemma 4.2 (a) with the relation (25) that
ker Wy, (E, ﬁ) = {0}. By Theorem 4.1 this implies 8; > k + 1 for all entries of 5. For k = n,
Theorem 4.1 gives that A(s) is regular and therefore (21) holds.

In the following we will use the fact that for A(s) = sE — A the pencil SA(s) = sSE—SA
for any invertible S € C™*™ generates the same subspace, i.e., L4 = Lg .4, hence we have

esing (SE7 SA) = esing (Eu A)7
which shows (20). With S = E~! (or S = A7!) in (20) and noting that ||[I,,, E~*A]|| =
O

V1+|(E~1A)|? we immediately get (22).

5 Upper bounds for 64, (E, A)

In this section we show that Lemma 2.10 leads to an upper bound for 0, (E, A). For a
given singular matrix pencil we obtain with Lemma 2.10 (c), with Lemma 2.10 (b) and (12)
and with Lemma 2.10 (a) and (12) the following bounds.

Proposition 5.1. Let A(s) = sE — A and A(s) = sE — A be two matriz pencils with
E, A, E, A € C"™" such that A(s) is reqular and A(s) is singular. Let £, L1, Lo C C?"\ {0}
be such that

La=ket[A,~E]=Li+L and Lz=ker[A,~E]=Ly+L.

Then

0(L1, L)
; < +) < .
Qsmg (E’A) - 0(£A7£‘A) - min{o’min(P[:Lpgl),O'min(PﬁLpﬁz)}

If £ = span{xz1} and Lo = span{xs} for some non-zero vectors x1 and xs, then

|2} Ppraf?
[Ppraa ||| Perael?

Osing (B, A) < 0(La, L z) = 0(Ppr Ly, Prols) = \/1

12



If, in addition x1,xo € LT then

@i f?
Ouing (B, A) < 0(L.4, £ ) = |1 — A2
6 (B, A) < 0La L R

Proposition 5.1 is only applicable to a given singular pencil .Z(s) In the next theorem
we construct a singular pencil in terms of the eigenvectors and eigenvalues of a given regular
pencil and derive an upper bound for fsn, (E, A).

For this let us introduce the following notions. Let A(s) = sE — A with E, A € C™*" be
a matrix pencil. We say that x € C™\ {0} is an eigenvector corresponding to the eigenvalue
A€ C, if A(N)x = 0 or, equivalently, if () € L4 = ker[A, —E]. Moreover, x € C™ \ {0}
is an eigenvector corresponding to the eigenvalue A = oo, if Ex = 0 or, equivalently, if
(V) € L. The set of all eigenvalues of A(s) is denoted by o(A). Observe that for a singular
pencil we have o(A) = CU {o0}.

Recall from [4, 14] that a Jordan chain of A(s) corresponding to the eigenvalue A is a
sequence (z1,...,x5) € (C™\ {0})k satisfying

(A= AE)z1 =0, (A= AE)xo = Ex1, ...,(A—=AE)xp = Exp,, itAeC

and
Ex1 =0, Exo = Azq, ..., FEx, = Axp_1, if A = cc.

Note that these conditions can be rewritten as

(xoy) s (anien 1) €L, ifAEC (26)

and
(0),...,(m§;1)€£A, if A = o0, (27)

Z1

respectively. An entry in a Jordan chain corresponding to A € o(A) is called a root vector
of A. The linear span R (A) of these vectors is called the root subspace of the matrix pencil
A(s):

RA(A) :=span { z € C" | z is a root vector of \ }.

The next result is a direct consequence of Theorem 3.7 in [8] for matrix pencils, it also
follows from Corollary 3.3 in [24].

Proposition 5.2. Let A(s) = sE — A with E, A € C"*" be a matriz pencil. If there exist
A € CU{oo} with A # u such that

RA(A) NRu(A) # {0}, (28)
then A(s) is singular.

Remark 5.3. Note that the above definitions of eigenvalues, eigenvectors and Jordan chains
essentially differ from those used e.g. in [11, 21, 22, 23], where the eigenvalues are defined
via the Kronecker form and the spectrum of any matrix pencil is a finite set. Another recent
approach to matrix pencils are the Wong sequences, where the root subspaces can be defined
via sequences of certain subspaces, see [4, 5, 6].

After these preparations we present our second main result: an upper bound for the gap

distance to singularity Osng (E, A). Below, if £, is a subspace of a linear space £; C C*",
we use the symbol £, © Lo for £, N EQL in the standard inner product on C2".
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Theorem 5.4. Let E,A € C"*" and A(s) = sE — A be a regular matriz pencil with a
Jordan chain (x1,...,xy) corresponding to an eigenvalue X € CU {oo} and a Jordan chain
(y1,...,u1) corresponding to an eigenvalue i € C with A # u. Define

)7" (Axkil;k 1)’(52}1)a-~'7(uyzflyz_1)}a Zf)‘EC:

j:: Span {(}\ 21
span { (2 )5 ("5 ) () s Gty ) 3 if A = o0
d let
e ( Ty ) ifAeC
z::{ pTE—Ayr | ’
(uwf-iyz ) , if A= oo.
Th h
en we nave 0 E A |‘P£jz||
sne (5, 4) < p o 2

Furthermore, if Oging (E, A) = 1, then Pz, 72 =0.

Proof. First note that J C L4, because of (26) and (27). Now we prove the following fact:
If span {z} + J C L ; for some matrix pencil A(s) = sE — A with E, A € C"™*", then the

pencil A(s) is singular. Indeed, for A € C we have

T — Yl n n Y — Tk
— (- A —(u— A — .
(28 ) =0 (3 1) =00 () 1= o)

Note that n # 0, otherwise y; = z;, € Rx(A) N R, (A), which contradicts regularity of A(s)
by Proposition 5.2. Hence, it follows from (30) that

n n
= €L,
(x\n + xk) (un + yz) A

which implies that (z1,...,zx,n) is a Jordan chain of .Z(s) corresponding to A and (y1,...,v,7)
is a Jordan chain of A(s) corresponding to . We thus obtain that n € Ry(A) N RM(.Z)
and X(s) is singular by Proposition 5.2. For A = co we obtain similarly that (y1,...,y, x)
is a Jordan chain of A(s) corresponding to p, while (21,...,2;) is a Jordan chain of A(s)
corresponding to oo and singularity of .Z(s) follows, again by Proposition 5.2.

Now let 2 := Pr,o92 # 0 and £ := L4 ©span{Z}. Note that J C L. Then, by
what has been proved above, we have z ¢ £, otherwise the pencil A(s) would be smgular
Consequently, dim(span {z} + £) = n and by [7, Theorem 3.3] there exist E, A € C™*" such
that A(s) = sE — A satisfies L 7 = span{z} + L. By the first part of the proof, the pencil
A(s) is singular.

Assume that z # 0. Then Proposition 5.1 applied to £; = span{Z} and Ls = span{z}
yields

|2* Py Z|?
Ouine (B, A) < (|1 — . 31
o )—¢ [Pe-=PIPe A oy
The definition of £ implies that £+ = span{z} @ £} and hence P, .z = Z = Pr o7z
Further, as Pypan 5y = Z;”2 we find that
|2"z| _ |2 Prie07]
Pi an {Z = =7 — = ||P, ’
|| span { }Z” ”ZH HPEAGJZH || ﬁA@JZ”
thus
[1Pez)|? = [|1Peass2|? + |1 Ps2*. (32)
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A combination of (32) with (31) gives

Osing (B, A) < \/1 - o Thaeril \/PLM|2 [Peaegzl®
sing 5 =~

1Pz 2|2 Praeg | [1Peez]?
1Pzl

IPeaca el + 1Pyl

Since J+ = (L4 6 J) & L} holds, we have

HPJLZ”Q = ||PLA@JZH2 + ||P£jZH2
and with this, (33) can be written as

1Py 2l

Ouing (E, A) < :
¢ 1Prz]

If Z = Pr,c7% = 0, then the upper bound in (33), and hence (29), is trivially satisfied,
which finishes the proof of (29).

Assume now that 6gng (E, A) = 1. Then (33) immediately gives that Pz o7z = 0 as
claimed. O

Remark 5.5. We stress that the Jordan chains (z1,...,zx) and (y1,...,¥;) in Theorem 5.4
are not required to be maximal (cf. also Example 5.6). Manipulating with these chains may
lead to different bounds on bsng (E, A).

Further, observe that the proof is based on the construction of an (n — 1)-dimensional
subspace £ with 7 C L C L4 and an element Z € £ 4 \ £ in order to get

La=L+span{z}, Lz=L-+span{z} (34)

for some singular matrix pencil .,Z(s) = sE — A. Note that for every such £ and Z the
inequality (31) holds. However, one may also easily see that the specific choice of £ and 2
constructed in the proof provide an optimal bound in (31) (for fixed z and J).

Finally, we note that (34) essentially says that the singular pencil /Nl(s) is a rank one
perturbation of the original regular pencil A(s). We refer the reader to [11, 21, 22] for other
studies on low rank perturbations of singular pencils.

We illustrate Theorem 5.4 by the following example, where the right hand side of (29)
can be made arbitrarily small.

Example 5.6. Consider the regular matrix pencil

Then

1

0
L 4 = ker[A, —FE] = span 8)

0

0

QM ==OO

T at oo and (1,0,0)" at 0. The
7sNQ — I5). Then with

which implies o(A) = {0,00} with eigenvectors (0,0,
Kronecker canonical form (17) of A(s) is given by diag

ozl = 1Pgezll = V2,

0

0
J = span 0
0
1

[elel=lelely
I\
I
corHoOo
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and

IPegal = = ool = <25
the bound (29) from Theorem 5.4 gives
Ouiug (B, A) < ———.
Viie

6 Distance and gap distance to singularity

Here we derive some relations between the distance to singularity §(E, A) from (1) and the
gap distance to singularity fsng (E, A), which lead to new lower bounds for g, (E, A).
First note the following scaling property of 6(E, A).

Proposition 6.1. Let A(s) = sE — A be a regular matriz pencil with E; A € C"*™, then
for any invertible S, T € C™"*™ we have

MG < 0B A) < S(SET.SAT)S 7. (35)
In particular, if T € C\ {0}, then 6(TE,7A) = |7|6(E, A).

Proof. As A(s) is regular, det(sSET — SAT) = det Sdet T det(sE — A) # 0 and therefore
the pencil sSET — SAT is regular. Let AEy, AAy, € C"*™ and s(E + AEy) — (A+ AAyg)
be a sequence of singular matrix pencils with

k—o0

Then
—00

where the last inequality follows from Lemma 2.5. This proves the lower bound for §(E, A)
in (35). The upper bound follows from the same inequality:

S(STHSET)T ', S Y SAT)T™) < |S~H|TH|6(SET, SAT). 0

Next we show that the distance to singularity can be estimated by the gap distance to
singularity.

Theorem 6.2. Let A(s) = sE — A be a regular matriz pencil with E, A € C"*™, then

0(E,A) _
1B, Al = %one (54 )
and
(O'min ([Ea A]) - 6(Ev A)) : esing (Ea A) S 5(E7 A) (37)

Proof. Let A(s) = sE — A be a matrix pencil with E, A € C"*" such that

_ (B, A)
P4 < E Al
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By regularity of A(s) and Lemma 3.3 we have that [fg*] has full column rank. Also note

that (38) together with (2) implies that (A, .A) < 1. Hence, by Proposition 2.6, there exist

E, A € C™" with
A~ A
= ran ~ and ~
where L 7 = ker[ﬁ, —E], and we have, invoking Lemma 3.3 (a),

| 4]

Then, from (38) we obtain

~

—F*

ran

— P [AE**} 7 (39)

A* — A*

. <Ly, Lt
_pr 4 Be||| SOERLR)

F

ncacal[4]

F

A* — A
_E* 4+ E*

=0(A A)||[E,A]|lr < §(E, A).

I[E-E,A-Allr = H
F

e[

| F

Hence, by the definition of §(E, A), the pencil sE — A is regular and by Lemma 3.3 and (39)
the pencil A(s) is regular as well and (36) is shown.

We show (37). Note that by (2) we have §(E, A) < omin([E, 4]). §(E, A) = omin([E, 4)),
then (37) is true, so assume that §(E, A) < omin([E, A]). Let 0 < € < omin([E, A]) —(E, A)
and let A(s) = sE — A with E, A € C"*™ be a singular pencil such that [E, A] # 0 and
H [E —E,A- A} ”F < 6(E,A) +e. Hence

L Lo A* AV*
Osing (B, A) < 0(A, A) =0(L4,LZ) =0 (ran {E* ran | e,
A* — A
(14) —FE*+ E*
< =
. . A* . A*
min Omin _E* y Omin _E’,*
|[E-r.d- 4] 8(E,A) +<

 min {amm([E, A]), Gmin ([E,Z])} : min{amin([E,A]),amin ([E,Z])}'

According to Mirsky’s Theorem [26, Theorem IV.4.11] the inequality
Omin([B: AJ) = owin (B, A))| < ||[E - B, A 4|

holds, and by use of the matrix norm inequality || - || < || - ||r one finds that
0 < omin([E, A]) — 6(E, A) — & < omin([E, A)).
As a consequence,
I(E,A)+¢
omin([E, A]) —6(E, A) — ¢

and for € — 0 we obtain (37). O

gsing (E7 A) S
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Using lower bounds for §(E, A) from [9, Section 5.2] and from [3],

5(E,A)> max owm(sE —cA) and o, A) > Zmn(Vn(E 4))

T (s,0)€S? N
1+ cos m)
where S! is the unit circle in C2, we obtain the following corollary.
Corollary 6.3. Let A(s) = sE — A be a regular matriz pencil with E, A € C"*"™, then

Max(s ¢)e St Omin(SE — cA)
IE, Alllr

Umin(Wn (E7 A))

osing (EaA) 2 .
1+ cos (525 ) ITE, Al

and Gsing (B, A) >

The inequalities (36) and (37) also yield the following.
Corollary 6.4. For all E; A € C"*"™ we have

Hsing (E7 A)

Womm([E,A]) < (B, A) < bsing (E, A)I[E, AlllF-

To conclude this section we improve the lower bound for fgne (£, A) for the case that E
or A is invertible.

Theorem 6.5. Let A(s) = sE — A be a reqular pencil with E; A € C**™. If E is invertible,
then
max{1l, omin(E~1A)}

esin EaA Z
& (£, 4) 1+ |E-TA|?

(40)

If A is invertible, then

max{1l, min(A1E)}
1+||A-LE|?

Osing (£, A) > (41)

Proof. We consider the case that F is invertible; the case of invertible A is analogous and
omitted. Consider the distance to singularity in spectral norm,

5o (E,A) = AEAE&{OM{ IAE, AA]|| | s(F+ AE) — (A+ AA) is singular }.

Note that 62(E, A) < 6(E,A) for all E;A € C"*™ as a consequence of the matrix norm
inequality || - || < || - ||r. Adapting the proof of Theorem 6.2 it is straightforward that

5(B,4) _
[ .

and
(min ([, A]) = 02(5, A)) - Osing (B, A) < 0(E, A).
We prove that for all M € C**™
62(Ip, M) > max{1, Gmin(M)}. (43)

Let AE,AA € C"*™ be such that ||[AE, AA]|| < max{1,Tmin(M)}. We consider two cases.
Case 1: max{l,omin(M)} = 1. Then ||[AE| < ||[AE,AA]|| < 1 and hence I + AE is
invertible. Therefore, the pencil s(I,, + AE) — (M + AA) is regular.
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Case 2: max{l,0min(M)} = omin(M). Then ||AA|| < ||[AE,AA]|| < omin(M) and

hence
[AA]
Omin (M)
Therefore, I + M ~1AA is invertible, by which M + AA is invertible and the pencil s(I,, +
AE) — (M + AA) is regular.
This shows (43). With S = E~! in Theorem 4.3 (¢) we obtain

IMTEAAN < M- |AA] = <1

(42) —14) (43) Gmin (BT
Ouing (B, A) = Oung (I, E-LA) ' > 9o (I, E~+A) max{1l, omin(E~tA)}

T T ETRAIL T A [ETTAR

where for the last inequality we also used that ||[I,, E~'A]|| = /1 + [[E-TA]]%. O

7 Applications

7.1 Badly scaled matrix pencils

In this subsection, we consider examples which illustrate that the gap distance to singularity
can be applied to detect a bad scaling of a given matrix pencil, i.e., one is able to see whether
a small distance to singularity is only the result of a bad scaling of the pencil. The first
example can be found as Example 5 in [9]. We consider

1 -1 -1 ... -1 1 -1 -1 ... -1
o 1 -1 ... -1 o 1 -1 ... -1
sE—A=s|: e e P
1 -1 1 -1

0o ... 1 0o ... 1

According to [9],
5(E,A) == \/iamin(E) S \/522777‘7

which is arbitrarily small for large n. On the other hand, since E is invertible and F = A,
we have from Remark 3.2 that g, (E, A) = 1. This suggest that the small distance to
singularity 6(E, A) is only due to a bad scaling of the coefficients E, A. Here one could
rescale the pencil by multiplying with E~! from the left, which leads to the matrix pencil
sI, — I,, that satisfies §(I,,, I,) = v/2 (as shown in [9]).

As a second example, we consider the Example 4 from [9], which is the regular matrix
pencil

01 0 1 0 0
sE—A=s|0 0 1| —-|0 ¢ 0], 0<ex<l.
0 0 O 0 0 1

The singular values of [E, A] are given by {1,v/1+¢2,v/2}, hence o, ([F, A]) = 1 and
I[E, A]|| = V2. From [9] we have 6(E, A) = ¢ with

0 0 O
AA:= |0 — 0], AE:=0
0 0 O

and a singular pencil A(s) = sE — A is given by

~_ Jo1o0] [too
sE—A=s[0 0 1| -0 0 0
000 [0o01
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We have ||[E — E, A— A]|| = ¢ and o ([E, ;l]) = 1. Then (14) together with Theorem 6.2
implies
€ 0(E,A)

— = == <l (F,A) <
V3 B A < Yeine (B 4)

I[E - E, A A
min {Omin ([E, A]) , omin ([E’ Z])}

However, in this case, Proposition 5.1 and Theorem 6.5 yield better bounds. Since A(s) and

A(s) differ only by one row, we consider

=£.

1 0 0 0
0 0 1 1
L =ran 00 T, = 0 To = 0
0 1|’ 01’ 0
1 0 0 0
0 0 € 0

Then L4 = L @ span{z:1}, L 7 = L @ span {r2} and hence Proposition 5.1 gives

|z xe|? 5
esin (E,A) S 1- = .
: Voo llPllell VT e

Applying (41) from Theorem 6.5 gives the improved lower bound

~ o A-17\2
9Sing (E’ A) Z max{l’ Umln(A E) } = 1 = c k)
VITIATEE VIt (AR Vite
thus
€
Oing (E, A) = . 44
S(BA) = ey (44)

In this example, we see that distance to singularity §(F, A) and gap distance to singular-
ity Osing (£, A) are equally small and both tend to zero as ¢ — 0. This suggests that the
small distance to singularity is not the result of a bad scaling of the pencil.

7.2 Example for regularity ensured by 6,, (£, A) but not by 6(E, A)

We show that there are classes of matrix pencils where for the investigation of regularity
Osing (E, A) is more suitable than §(E, A). Here we consider a family of matrix pencils
that have a gap distance less than 64, (E, A), but the Frobenius norm of the coefficient
matrices of the pencils gets arbitrarily large. Therefore, Oging (E, A) can be used to guarantee
regularity of this family of matrix pencils, while §(E, A) is not suitable for this. Consider
the regular matrix pencil A(s) = sE — A from Section 7.1 and the pencils

~ - . 0 1 0 T1 0 0
A(S) =sE—-A=s ToG1 To2G2 To2a3| — |[T2a2 T2a4 0
0 0 0 0 0 3

with parameters 71, 72, 73 € R\{0} and a1, as, as, as € R. We seek to investigate regularity of
the pencils A(s). To this end, we use that ker[4, —E]* =ran [ “..] and hence we compute
the gap distance between

1 0 0 T1 T202 0
0 ¢ 0 0 may O
ran 0 0 1 and ran 0 0 &
0 0 O 0 —1ma; 0
-1 0 0 —T1 —ag T2 0
0 -1 0 0 —T2a3 0
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Subtracting in the representing matrix the first column times —*2%2 from the second
column we can rewrite the second subspace as follows:

T1 T202 0 1 0 0 1 0 0
0 T2Q4 0 0 T2Q4 0 0 0 T204
ran 0 0 I = ran 0 0 L = ran 0 L D Span 0
0 —ToQ1 0 0 —ToQ1 0 0 0 —To07
—T1 —A2Ty 0 -1 0 0 -1 0 0
0 —masz 0 0 —mas 0 0 0 —Toa3
=:L =:To

With z; := (0,£,0,0,0,—1)" we may observe that ran | “,.] = £ @ span {z1}, hence an
application of Proposition 5.1 yields

9(.A,.Z):9(/;l’/;j) :\/1_||x’{q:2|2:\/1_ (a3 + cas)? (45)

212|212 (1+e2)(af + a3 + af)’

Regularity of A(s) is guaranteed if we choose aj,as,as,as such that (45) is less than
Osing (B, A) = == (cf. (44)), which is equivalent to

1+e2
(a3 + cay)?
a? +ad% +a3
This condition is independent of the parameters 7;, 72, 73. On the other hand, choosing

these parameters large enough we see that the Frobenius norm ||[E — E, A — A]||p becomes
arbitrarily large, eventually exceeding §(F, A) = ¢; in other words, for these parameters

regularity of A(s) cannot be concluded by investigating §(E, A) only.

> 1.

7.3 Pencils connected with linear systems

In this subsection we show how the properties of fsing (£, A) can be combined with structured
assumptions on the matrix pencil. We investigate a recent class of pencils associated with
linear time-invariant dissipative Hamiltonian descriptor systems, see [23]. Let A(s) = sE—A
with E, A € C"*" be such that there exist @, L € C"*" with

A=LQ, E'Q=Q'E>0, L+L"<0, sE—Q isregular. (46)

It was proved in [23] that if A(s) is singular then all left minimal indices of A(s) are zero,
ie,y =1forall i =1,...,n, in the Kronecker canonical form (17). Additionally, all
right minimal indices of \A(s) are at most one and there are several other constraints on
the Kronecker canonical form, see [23]. Moreover, it was also shown in [23] that a singular
pencil A(s) = sE — A satisfying

AE* = EA* (47)

has only zero left minimal indices. Combining this with Proposition 3.5 we get the following
result.

Corollary 7.1. Let E,A,E,;l € C™" and let A(s) = sE — A be a reqular matriz pencil.
Then for the pencil A(s) = sE — A the following holds true:

(a) If A(s) is singular and satisfies (46) or (47), then 0(A, A) = 1.

(b) If Oging (E, A) < 1, then there exists a singular pencil A(s) with 0(A, A) < 1 which
does neither satisfy (46) nor (47).

In particular, Corollary 7.1 (a) implies that a singular pencil which satisfies (46) or (47) has
gap distance one to any regular matrix pencil.
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8 Conclusion

Utilizing the gap distance between subspaces, we introduced a new distance measure for
matrix pencils and studied the properties of this distance. We exploited this measure to
define the gap distance of a regular pencil to the set of singular pencils. In due course we
have provided upper and lower bounds for the gap distance to singularity. We compared the
latter with the distance to singularity defined in terms of the Frobenius norm. The main
difference was that the gap distance is invariant under multiplications of the pencil from the
left with an arbitrary invertible matrix.

The examples in Section 7.1 suggested that the gap distance to singularity may be used as
tool to detect whether a small distance to singularity is a result of bad scaling of a matrix
pencil in the following way: If the gap distance to singularity is also small, then probably
the pencil is indeed close to a singular pencil (at least with respect to these two distance
measures). If, however, the gap distance to singularity is not equally small, then this suggests
that the small distance to singularity is only due to bad scaling of the matrix pencil.
Furthermore, in Section 7.2 we considered an example, where regularity of a perturbed
pencil could only be guaranteed using the gap distance to singularity Oging (£, A), but not
the distance to singularity 6(E, A).
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