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Abstract

We study the concept of locally controlled invariant submanifolds for nonlinear differential-algebraic/descriptor systems. In
contrast to classical approaches, we define controlled invariance as the property of solution trajectories to evolve in a given
submanifold whenever they start in it. It is then proved that this concept is equivalent to the existence of a feedback which
renders the closed-loop vector field invariant in the descriptor sense. This result is exploited to show that the outcome of the
differential-algebraic version of the zero dynamics algorithm yields a maximal output zeroing submanifold. The latter is then
used to characterize the zero dynamics of the system. In order to guarantee that the zero dynamics are locally autonomous
(i.e., locally resemble the behavior of an autonomous dynamical system), sufficient conditions involving the locally maximal
output zeroing submanifold are derived.
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submanifold, zero dynamics.

1 Introduction

We consider nonlinear descriptor systems governed by
differential-algebraic equations (DAEs) of the form

d
dtE(x(t)) = f(x(t)) + g(x(t))u(t),

y(t) = h(x(t)),
(1)

where X ⊆ Rn is open, 0 ∈ X, f ∈ C(X;Rl), h ∈
C(X;Rp), E ∈ C1(X;Rl) are vector-valued functions
such that f(0) = 0, h(0) = 0, and g ∈ C(X;Rl×m) is a
matrix-valued function. The set of these systems is de-
noted by ΣXl,n,m,p; and we write [E, f, g, h] ∈ ΣXl,n,m,p.
Throughout the paper, N denotes the set of natural num-
bers, N0 = N∪ {0}. Ck(X;Y ) denotes the set of k-times
continuously differentiable functions f : X → Y for
k ∈ N0 ∪ {∞}; if k =∞ the function f is called smooth.
By dom f we denote the domain of f and f |I denotes
the restriction of f to the set I ⊆ R. Furthermore, Rn×m
is the set of real n ×m matrices, rkA, imA denote the
rank and image of A ∈ Rn×m, resp., and Gln(R) is the
group of invertible matrices in Rn×n.
Note that the class ΣXl,n,m,p encompasses any linear sin-
gular descriptor system and various important classes of
nonlinear singular descriptor systems (e.g. chemical pro-
cess systems [15], mechanical systems [29] and electrical
circuits [28]). Nonlinear descriptor systems seem to have
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been first considered by Luenberger [21]; see also the re-
cent textbooks [16,17].
The functions u : I → Rm and y : I → Rp, I ⊆ R, are
called input and output of the system, resp. Since so-
lutions not necessarily exist globally (e.g. finite escape
times may arise) we consider maximal solutions of (1).

Definition 1 (Solutions) For [E, f, g, h] ∈ ΣXl,n,m,p a

trajectory (x, u, y) ∈ C(I;X × Rm × Rp) is called a so-
lution of (1), if I = domx ⊆ R is an open interval,
E ◦ x ∈ C1(I;Rl) and (x, u, y) solves (1) for all t ∈ I. A
solution (x, u, y) of (1) is called maximal, if any other
solution (x̃, ũ, ỹ) of (1) satisfies

J := dom x̃ ∩ domx 6= ∅ ∧ (x̃, ũ, ỹ)|J = (x, u, y)|J
=⇒ dom x̃ ⊆ domx.

We use the behavioral approach due to Willems [33], see
also [25], and define the behavior of (1) as the set of
maximal solution trajectories

B(1) := { (x, u, y) ∈ C(I;X × Rm × Rp) | I ⊆ R open

interval, (x, u, y) is maximal solution of (1) }.

In the present paper, we consider questions related to
controlled invariance and the zero dynamics of (1). The
concept of (locally) controlled invariant submanifolds
has been introduced by Isidori and Moog [14] (see also
the textbooks [13, 23]) and it is an extension of the
well-studied concept of controlled invariant subspaces
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for linear systems. Loosely speaking, a locally controlled
invariant submanifold M is a connected submanifold
which is invariant under the flow of the closed-loop vec-
tor field f(x) + g(x)u(x) for some feedback u(x); in the
case of DAEs this invariance has to be formulated with
respect to E(·). In the present paper, we show that the
above “classical” definition in terms of feedback is equiv-
alent to the “natural” definition, that for any initial value
in M there exists an input such that the corresponding
state trajectory remains in M for all times or reaches its
boundary in finite time.
Locally controlled invariant submanifolds which are out-
put zeroing (i.e.,M ⊆ h−1(0)) are related to the zero dy-
namics of the system (1). The zero dynamics are, loosely
speaking, those dynamics that are not visible at the out-
put and they are defined as the set of trajectories

ZD(1) :=
{

(x, u, y) ∈ B(1)

∣∣ y = 0
}
.

If the system (1) is governed by an ordinary differential
equation (ODE), i.e., n = l and E(x) = x, then the con-
cept of zero dynamics has been introduced by Byrnes
and Isidori [10] and studied extensively since then, see
e.g. the textbooks [13,23]. For linear DAEs, the zero dy-
namics are a real vector space (which is not true for non-
linear systems) and have been investigated in detail re-
cently [1,3]; for nonlinear DAEs some results for a class
of semi-explicit systems [31], for semi-explicit index-1
systems [32] and for systems which are affine in the al-
gebraic variables [19] are available. In the present paper
we investigate general systems (1).
The present paper is organized as follows: We consider
the concept of controlled invariant subspaces for linear
descriptor systems in Section 2 and prove characteriza-
tions of it. In Section 3 we give a brief summary of the
differential geometric concepts used in the remainder of
the paper. Motivated by the results for linear systems,
local controlled invariance of submanifolds for nonlinear
DAE systems is defined and characterized in Section 4;
crucial preliminary results on constant rank matrix func-
tions and the existence and extension of solutions to an
important class of DAEs are provided. In Section 5 we
consider locally controlled invariant submanifolds that
are output zeroing and derive an extension of the zero
dynamics algorithm (see e.g. [13,23]) to DAE systems in
order to compute a locally maximal output zeroing sub-
manifold. This submanifold is exploited for a character-
ization of the zero dynamics of the system. The concept
of locally autonomous zero dynamics, which has been
successively used for the analysis of linear time-varying
ODEs in [5] and of linear time-invariant DAEs in [3], is
introduced in Section 6. We prove a sufficient condition
for locally autonomous zero dynamics in terms of the
locally maximal output zeroing submanifold. A conclu-
sion is given in Section 7.
A summary of the present paper is also available at [2].

2 The linear case

The present section serves as a motivation for the non-
linear case. We study controlled invariance for linear
differential-algebraic systems of the form

d
dtEx(t) = Ax(t) +Bu(t), (2)

where E,A ∈ Rl×n and B ∈ Rl×m. The set of these
systems is denoted by Σl,n,m and we write [E,A,B] ∈
Σl,n,m. Since [E,A,B] is linear we consider only global
solutions and hence define the behavior of (2) as the set

B(2) := { (x, u) ∈ C(R;Rn × Rm) | Ex ∈ C1(R;Rl)
and (x, u) satisfies (2) for all t ∈ R }.

If (2) is an ODE, i.e., l = n and E = I, then a subspace
V ⊆ Rn is called controlled invariant (see e.g. [30]) if,
loosely speaking, for all initial values in V there exists
an input such that the corresponding state trajectory re-
mains in V for all times. It is well-known that this is the
case if, and only if, there exists a friend F ∈ Rm×n such
that (A+BF )V ⊆ V, or, equivalently, AV ⊆ V + imB.
We introduce controlled invariance for linear DAEs (2)
and generalize the above characterizations. To the au-
thor’s best knowledge these characterizations are new.

Definition 2 (Controlled invariant subspaces)
Let [E,A,B] ∈ Σl,n,m and V ⊆ Rn be a subspace.
Then V is called controlled invariant, if

∀x0 ∈ V ∃ (x, u) ∈ B(2) ∀ t ≥ 0 :

x ∈ C1(R;Rn) ∧ x(0) = x0 ∧ x(t) ∈ V.

In order to prove that controlled invariance is equiva-
lent to the existence of a friend we need the following
crucial lemma which guarantees existence of solutions to
a certain class of linear DAEs. This result is contained
in [9, Cor. 11], however we provide a different proof here
which serves as a basis for the generalization to the non-
linear case.

Lemma 3 (Existence lemma) Let E,A ∈ Rl×n be
such that imA ⊆ imE. Then, for all x0 ∈ Rn, there exists
x ∈ C∞(R;Rn) such that x(0) = x0 and Eẋ(t) = Ax(t)
for all t ∈ R.

PROOF. Since imA ⊆ imE there exists R ∈ Rn×n
such that A = ER. Let S, T ∈ Gln(R) be such that
SET =

[
Ir 0
0 0

]
, where r = rkE. Then

SAT = SETT−1RT =
[
Ir 0
0 0

]
T−1RT =:

[
T1 T2
0 0

]
.

Now let x0 ∈ Rn and let x1 ∈ C∞(R;Rr), x2 ∈
C∞(R;Rn−r) be such that, for all t ∈ R,

ẋ1(t) = T1x1(t) + T2x2(t), and
(
x1(0)
x2(0)

)
= T−1x0.
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This is always possible as x2 is free of choice (up to the
initial value) and x1 is the solution of an ODE. Define

x(·) := T
(
x1(·)
x2(·)

)
∈ C∞(R;Rn) and observe that x(0) =

x0 and, for all t ∈ R,

Eẋ(t) = S−1
[
Ir 0
0 0

]
T−1T

(
ẋ1(t)
ẋ2(t)

)
= S−1

(
ẋ1(t)
0

)
= S−1

(
T1x1(t)+T2x2(t)

0

)
= S−1

[
T1 T2
0 0

] ( x1(t)
x2(t)

)
= Ax(t). 2

Note that the solution x in Lemma 3 is not unique. The
non-uniqueness amounts to the freedom in choosing x2
in the proof of the lemma.
We are now in the position to state and prove the main
result of the present section. This is the differential-
algebraic analog of [30, Thm. 4.2]; note that its proof is
also new in the ODE case as it uses Lemma 3.

Theorem 4 (Controlled invariance) Let
[E,A,B] ∈ Σl,n,m and V ⊆ Rn be a subspace. Then the
following statements are equivalent:

(i) V is controlled invariant.
(ii) AV ⊆ EV + imB.
(iii) There exists F ∈ Rm×n such that (A+BF )V ⊆ EV.

PROOF. (i)⇒(ii): Let x0 ∈ V. Then there exists
(x, u) ∈ B(2) with x ∈ C1(R;Rn), x(0) = x0 and x(t) ∈ V
for all t ≥ 0. The latter implies that d

dtEx(t) ∈ EV
for all t > 0 and continuity gives d

dtEx(0) ∈ EV, thus

Ax0 = d
dtEx(0) + Bu(0) ∈ EV + imB. This implies

AV ⊆ EV + imB.
(ii)⇒(iii): Let V ∈ Rn×k be such that rkV = k and
imV = V. By assumption there exist W ∈ Rk×k and
U ∈ Rm×k such that AV = EVW + BU . Setting
F := −U(V >V )−1V > ∈ Rm×n gives (A + BF )V =
AV −BU = EVW and hence (A+BF )V ⊆ EV.
(iii)⇒(i): Let x0 ∈ V and V ∈ Rn×k be such that
rkV = k and imV = V. Then there exists w0 ∈ Rk such
that x0 = V w0. Since (A + BF )V ⊆ EV we have that
im(A + BF )V ⊆ imEV and by Lemma 3 there exists
w ∈ C∞(R;Rk) such that w(0) = w0 and EV ẇ(t) =
(A + BF )V w(t) for all t ∈ R. Then x(·) := V w(·) and
u(·) := FV w(·) satisfy (x, u) ∈ B(2), x(0) = x0 and
x(t) = V w(t) ∈ V for all t ≥ 0. 2

Note that a subspace V satisfying property (ii) in The-
orem 4 is usually called a (A,E,B)-invariant subspace,
see [22,24] and also the survey [6].

3 Differential geometric preliminaries

We use the terminology of smooth manifolds and other
differential geometric concepts as in [18]. Apart from
that, by a submanifold we will always mean an embedded

smooth k-submanifold of Rn for some k ≤ n. Further-
more, we define the tangent space to a submanifold M
of Rn at x ∈M as the linear subspace

TxM :={
v ∈ Rn

∣∣∣∣∣ ∃ I ⊆ R open interval ∃ γ ∈ C∞(I;M) :

γ(0) = x ∧ γ̇(0) = v

}
.

The above definition is different from the standard con-
cept of the tangent space, usually introduced as the set
of all derivations at x. However, by [18, Lem. 3.11] the
derivations can be identified with tangent vectors to
smooth curves, which in turn can be embedded into Rn;
cf. also [12, Thm. 2.2]. Again using smooth curves, we
define the boundary ∂M of a submanifold M of Rn (if
it exists) as the set

∂M :=

{
v ∈ Rn

∣∣∣∣∣ v 6∈M, ∃ γ ∈ C∞((a, b);M), a < b :

limt→b γ(t) = v

}
.

Let X ⊆ Rn be an open set (which is a manifold) and
M ⊆ X be submanifold. For any x0 ∈M there existU ⊆
X open with x0 ∈ U , W ⊆ Rk open for k = dimM ≤ n
and a diffeomorphism ϕ : M ∩ U → W . Without loss
of generality, W and ϕ can be chosen such that 0 ∈ W
and ϕ(x0) = 0. (U,ϕ) is a coordinate chart for M at x0

and ϕ is a coordinate map. Since ϕ is a diffeomorphism
between submanifolds (in the sense of [18]) andM ⊆ Rn,
ϕ is a diffeomorphism in the sense of classical calculus,
i.e., ϕ ∈ C∞(M ∩U ;W ) and ϕ−1 ∈ C∞(W ;M ∩U). We
call ψ := ϕ−1 a parametrization for M at x0 and record
the following well known result for later use.

Lemma 5 (Parametrization and tangent space)
Let M be a submanifold of an open set X ⊆ Rn and let
ψ : W → M ∩ U be a parametrization of M at x0 ∈ M .
Then

∀x ∈M ∩ U : TxM = imψ′(ψ−1(x)).

4 Local controlled invariance

In Section 2 controlled invariant subspaces have been
characterized for linear descriptor systems (2). In the
present section we extend this approach to nonlinear sys-
tems (1) by considering a local version of controlled in-
variance for submanifolds of X (instead of subspaces).
In classical textbooks [13,23] on nonlinear ODE systems
a locally controlled invariant submanifold M is, loosely
speaking, defined by the existence of a feedback u(x)
such that the vector field f(x) + g(x)u(x) is locally tan-
gent to M . In the linear case f(x) = Ax, g(x) = B,
as considered in Section 2, this is equivalent to the ex-
istence of a friend F such that (A + BF )M ⊆ M , i.e.,
property (iii) in Theorem (4). However, the characteri-
zation in terms of solution trajectories as in Definition 2

3



is usually not considered for nonlinear systems.
In the following we extend Definition 2 to nonlinear DAE
systems (1) by considering controlled invariance locally
on a connected submanifold of X. Then we derive, as a
characterization, the existence of a feedback which (in
some sense) renders the closed-loop vector field invari-
ant, see Theorem 9. The idea for the proof comes from
the consideration of the linear case discussed in Sec-
tion 2: First we generalize Lemma 3 to nonlinear DAE
systems, where additionally some care must be taken of
the extendability of solutions, which results in Lemma 8.
Then we prove the characterizations of locally controlled
invariant submanifolds in Theorem 9.
A special feature of local controlled invariance in the
nonlinear case which has to be heeded is that a submani-
fold may be bounded, for instance it may be an open ball
in Rn. Thus solutions starting in it may reach the bound-
ary in finite time and this cannot be prevented in gen-
eral. For example, consider the system ẋ(t) = x(t) and
the submanifold M = (−1, 1) ⊆ R. Choosing u(x) = 0
we find that the vector field f(x) + g(x)u(x) = x is
clearly locally tangent to M , as TxM = R for all x ∈M .
Hence, M is locally controlled invariant in the sense of
the classical definition given in [13, 23]. However, every
solution x(t) = etx(0) starting at x(0) ∈ M \ {0} even-
tually leaves M in finite time. This has to be accounted
for in the definition.

Definition 6 (Controlled invariant submanifolds)
Let [E, f, g, h] ∈ ΣXl,n,m,p and M be a connected subman-
ifold of X such that 0 ∈ M . Then M is called locally
controlled invariant, if there exists an open neighborhood
U ⊆ X of the origin in Rn such that

∀x0 ∈M ∩ U ∃ (x, u, y) ∈ B(1), x ∈ C1(domx;Rn)

∃ t0 ∈ domx, x(t0) = x0 :(
∀ t ∈ domx, t ≥ t0 : x(t) ∈M ∩ U

)
∨
(
∃ t̂ ∈ domx,

t̂ > t0 ∀ t∈ [t0, t̂) : x(t) ∈M ∩ U ∧ x(t̂)∈∂(M ∩ U)
)
.

In Definition 6 only the existence of a maximal solu-
tion (x, u, y) with x starting at x0 and staying in M ∩U
or reaching its boundary is required. For DAE systems,
this solution is not unique, not even if we fix x0 and u.
Therefore, in contrast to ODE systems, it is possible to
find at the same time solutions staying in M ∩ U and
solutions leaving M ∩ U generated by the same input.
Furthermore, possible state constraints restrict the set
of locally controlled invariant submanifolds in a natural
way (for ODEs, the whole set X is always locally con-
trolled invariant, but not necessarily for DAEs) and pos-
sible input constraints make it harder to find a suitable
control which establishes evolution in the submanifold.
Next, we record a result on smooth constant rank ma-
trix functions as an important lemma. This result is a
consequence of the implicit function theorem. It is also
mentioned in [23, Exercise 2.4], however there the con-
stant transformation S from the left is missing.

Lemma 7 (Constant rank matrix functions) Let
U ⊆ Rn be open, x0 ∈ U and A ∈ Ck(U ;Rp×q),
k ∈ N ∪ {∞}, be such that rkA(x) = r for all x ∈ U .
Then there exists an open neighborhood V ⊆ U of x0 and
S ∈ Glp(R), T ∈ Ck(V ; Glq(R)), L ∈ Ck(V ;R(p−r)×r)
such that

∀x ∈ V : SA(x)T (x) =
[

Ir 0
L(x) 0

]
.

If moreover rkA(x) = p for all x ∈ U , then there exists
T ∈ Ck(V ; Glq(R)) such that A(x)T (x) = [Ir, 0] for all
x ∈ V .

The proof of the equivalence between controlled invari-
ance and the existence of a desired feedback as explained
above relies on the following lemma which guarantees ex-
istence and extendability of solutions to a certain class of
DAE systems; this is the nonlinear version of Lemma 3.

Lemma 8 (Existence and extension lemma) Let
U ⊆ Rn be open and E ∈ Ck+1(U ;Rl), f ∈ Ck(U ;Rl),
k ∈ N ∪ {∞}, be such that, for all x ∈ U ,
f(x) ∈ E′(x)TxU and rkE′(x) = r. Then the following
statements are true:

a) For all (t0, x
0) ∈ R × U , there exists an open inter-

val I ⊆ R, t0 ∈ I, and x ∈ Ck+1(I;U) such that
d
dtE(x(t)) = f(x(t)) for all t ∈ I and x(t0) = x0.

b) If x ∈ Ck+1((a, b);U) is such that d
dtE(x(t)) =

f(x(t)) for all t ∈ (a, b) and x0 := limt→b x(t) ∈ U ex-
ists, then there exists ε > 0 and x̃ ∈ Ck+1((a, b+ε);U)
with d

dtE(x̃(t)) = f(x̃(t)) for all t ∈ (a, b + ε) and
x̃|(a,b) = x.

PROOF. a): Lemma 7 applied to the transpose of
E′(·) yields existence of an open neighborhood V ⊆ U
of x0 and S ∈ Gln(R), T ∈ Ck(V ; Gll(R)), L ∈
Ck(V ;Rr×(n−r)) such that

∀x ∈ V : T (x)E′(x)S =
[
Ir L(x)
0 0

]
.

Since f(x) ∈ E′(x)TxU ⊆ imE′(x) it follows that[
Ir L(x)
0 0

]
T (x)f(x) = T (x)f(x) for all x ∈ V , and hence

with

w(·) := S
[
Ir L(·)
0 0

]
T (·)f(·) ∈ Ck(V ;Rn)

we have that there exists f1 ∈ Ck(V ;Rr) such that for
all x ∈ V

T (x)f(x) = T (x)E′(x)w(x)

=
[
Ir L(x)
0 0

]
S−1w(x) =

(
f1(x)

0

)
.

Partition S−1x0 =
(
z01
z02

)
∈ Rr × Rn−r and let z1 ∈

Ck+1(I;Rr), I ⊆ R an open interval with t0 ∈ I, be a
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local solution of the ODE

ż1(t) = f1

(
S
(
z1(t)

z02

))
, z1(t0) = z01 ,

which exists since x0 ∈ dom f1 and f1 is continuously

differentiable. Then x(·) := S
(
z1(·)
z02

)
∈ Ck+1(I;Rn) sat-

isfies x(t) ∈ V ⊆ U for all t ∈ I by construction and,
furthermore,

d
dtE(x(t))=E′(x(t))ẋ(t)=T (x(t))−1

[
Ir L(x(t))
0 0

] (
ż1(t)
0

)
= T (x(t))−1

(
f1(x(t))

0

)
= f(x(t))

for all t ∈ I as well as x(t0) = x0.
b): Using the notation from a) and choosing V ⊆ U as
a neighborhood of x0, we find that there exists h > 0

such that
(
z1(·)
z2(·)

)
:= S−1x(·) ∈ Ck+1((b − h, b);S−1V )

and it can be extended continuously to t = b. Let z01 :=
limt→b z1(t). Similar to a) we obtain that, for all t ∈
(b− h, b),

ż1(t) = f1

(
S
(
z1(t)
z2(t)

))
− L

(
S
(
z1(t)
z2(t)

))
ż2(t). (3)

Now, let h̃ > 0 and z̃2 ∈ Ck+1((b − h, b + h̃);Rn−r) be

such that z̃2|(b−h,b] = z2 and for all t ∈ (b − h, b + h̃)

there exists v ∈ Rr such that
( v
z2(t)

)
∈ S−1V , which is

clearly possible. Then there exists a local solution z̃1 ∈
Ck+1((b − ε, b + ε);Rr) of the initial value problem (3),
z̃1(b) = z01 . Define the continuous function

ẑ1 : (b− h, b+ ε)→ Rr, t 7→

{
z1(t), t ∈ (b− h, b]
z̃1(t), t ∈ (b, b+ ε).

Since ẑ1 satisfies (3) on (b−h, b) and on (b, b+ε) it follows
from continuity of ẑ1, z̃2,

d
dt z̃2, f1 and L that d

dt ẑ1 is con-
tinuous and hence, because ẑ1 is a continuously differen-
tiable solution of (3), ẑ1 ∈ Ck+1((b−h, b+ε);Rr). Simi-

lar to a), we may now calculate that x̃(·) := S
(
ẑ1(·)
z̃2(·)

)
∈

Ck+1((b − h, b − ε);V ) satisfies d
dtE(x̃(t)) = f(x̃(t)) for

all t ∈ dom x̃ and x̃|(b−h,b) = x|(b−h,b). Gluing together

x and x̃ yields an extension of x on (a, b+ε) and finishes
the proof of the lemma. 2

We are now in the position to prove the main result of
this section. This is the local, nonlinear analog of Theo-
rem 4.

Theorem 9 (Local controlled invariance) Let
[E, f, g, h] ∈ ΣXl,n,m,p be such that E ∈ C2(X;Rl),

f ∈ C1(X;Rl) and g ∈ C1(X;Rl×m) and let M
be a smooth connected submanifold of X such that
0 ∈ M . Suppose that there exists an open neighbor-
hood V of 0 ∈ X such that both dimE′(x)TxM and

dim
(
E′(x)TxM + im g(x)

)
are constant for x ∈M ∩ V .

Then the following statements are equivalent:

(i) M is locally controlled invariant.
(ii) There exists an open neighborhood U of 0 ∈ X such

that f(x) ∈ E′(x)TxM +im g(x) for all x ∈M ∩U .
(iii) There exists an open neighborhood U of 0 ∈ X and

u ∈ C1(M ∩ U ;Rm) such that f(x) + g(x)u(x) ∈
E′(x)TxM for all x ∈M ∩ U .

PROOF. (i)⇒(ii): Let U be as in Definition 6 and
x0 ∈ M ∩ U . Then there exists (x, u) ∈ B(1) with x ∈
C1(domx;Rn) and some t0 ∈ domx such that x(t0) = x0

and x(t) ∈M ∩U for all t ∈ domx∩ [t0,∞) =: I. There-
fore, d

dtE(x(t)) = E′(x(t))ẋ(t) ∈ E′(x(t))Tx(t)M for all
t ∈ I and hence

f(x0) = d
dtE(x(t))

∣∣
t=0
− g(x0)u(0)

∈ E′(x0)Tx0M + im g(x0).

(ii)⇒(iii): Letψ : G→M∩W be a parametrization ofM
at 0 ∈M and let U1 := U ∩V ∩W , G1 := ψ−1(M ∩U1).
Then, by Lemma 5 and the assumption we have

f(x) ∈ imE′(x)ψ′(ψ−1(x)) + im g(x) = imK(ψ−1(x))

for all x ∈ U1 ∩ M , where K(·) :=
[E′(ψ(·))ψ′(·), g(ψ(·))] ∈ C1(G1;Rl×(q+m)) and
q = dimM . Since dim

(
E′(x)TxM + im g(x)

)
is con-

stant for x ∈M ∩ V , we have that, for some r ≤ q +m,
rkK(z) = r for all z ∈ G1. From Lemma 7 it then fol-
lows that there exists an open neighborhood G2 ⊆ G1

of 0 ∈ Rq and S ∈ Gll(R), T ∈ C1(V3; Glq+m(R)),

L ∈ C1(V3;R(l−r)×r) such that

∀ z ∈ G2 : SK(z)T (z) =
[
Ir 0
L(z) 0

]
.

Let the open set U2 be such that M ∩ U2 = ψ(G2) and
observe that 0 ∈ U2. Now, we find that

Sf(x)∈ imSK(ψ−1(x))=im
[

Ir 0

L(ψ−1(x)) 0

]
T (ψ−1(x))−1

by which
[

Ir 0
L(x) 0

]
Sf(x) = Sf(x) for all x ∈ M ∩ U2.

Therefore, with

v(·) := T (ψ−1(·))
[

Ir 0

L(ψ−1(·)) 0

]
Sf(·)

∈ C1(M ∩ U2;Rq+m),

we obtain that K(x)v(x) = f(x) for all x ∈ M ∩ U2.
Partitioning v(x) = (v1(x)>, u(x)>)> with v1(x) ∈ Rq
and u(x) ∈ Rm for all x ∈M ∩ U2 yields that

∀x ∈M ∩ U2 : f(x) + g(x)u(x) ∈ E′(x)TxM

with u ∈ C1(M ∩ U2;Rm).
(iii)⇒(i): Let ψ, U1 and G1 be as above.
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Step 1 : We show that for all x0 ∈M ∩ U1 there exists a
local solution (x, u, y) ∈ C1(I;X ×Rm×Rp) of (1) with
x(t) ∈M ∩ U1 for all t ∈ I. Define

Ẽ : G1 → Rl, x 7→ E(ψ(x)),

f̃ : G1 → Rl, x 7→ f(ψ(x)) + g(ψ(x))u(ψ(x)).

Since ψ : G1 →M ∩U1 is a diffeomorphism, it is imme-
diate that

∀x ∈ G1 : ψ′(x)TxG1 = Tψ(x)(M ∩ U1) = Tψ(x)M.

By assumption we obtain

∀x ∈ G1 : f̃(x) ∈ E′(ψ(x))Tψ(x)M

= E′(ψ(x))ψ′(x)TxG1 = Ẽ′(x)TxG1.

Furthermore,

rk Ẽ′(x) = rkE′(ψ(x))ψ′(x)

= dim imE′(ψ(x))ψ′(x)
Lem. 5

= dimE′(ψ(x))Tψ(x)M

for all x ∈ G1 and since ψ(x) ∈ V it follows that Ẽ′ has
constant rank. We may now conclude from Lemma 8 a)
that for arbitrary x0 ∈ M ∩ U1 there exists an open
interval I ⊆ R, 0 ∈ I, and z ∈ C2(I;G1) such that

z(0) = ψ−1(x0) and d
dt Ẽ(z(t)) = f̃(z(t)). Then x(·) :=

ψ(z(·)) ∈ C2(I;U1) satisfies, for all t ∈ I,

d
dtE(x(t)) = f(x(t)) + g(x(t))u(x(t)), x(0) = x0,

and x(t) ∈ im ψ|G1
= M ∩ U1 for all t ∈ I with t ≥ 0.

Step 2 : We show that (x, u◦x, h◦x) can be extended to a
differentiable maximal solution of (1) of the same struc-
ture which evolves in M ∩ U1 or reaches its boundary
in finite time. We prove this by using a standard tech-
nique which invokes Zorn’s Lemma (cf. for instance [20,
Thm. 4.8]): Denote I = (a, b) and define

E :=

(ω, z)

∣∣∣∣∣∣∣∣∣
ω ≥ b, J = (a, ω), z ∈ C1(J ;X),

z(t) ∈M ∩ U1 for all 0 ≤ t < ω,

(z, u ◦ z, h ◦ z) is a solution of (1),

z|I = x

 .

Since (b, x) ∈ E , the set is nonempty. We endow E with
a partial order � defined by

(ω1, z1) � (ω2, z2)

:⇐⇒ ω1 ≤ ω2 ∧ ∀ t ∈ (a, ω1) : z1(t) = z2(t).

Now let O be a totally ordered subset of E . Define
ω∗ := sup { ω | (ω, z) ∈ O } and z∗ ∈ C1((a, ω∗);X) by
z∗|(a,ω) = z for all (ω, z) ∈ O; (ω∗, z∗) is well-defined

since O is totally ordered. It is clear that (ω∗, z∗) ∈ E is
an upper bound for O. Zorn’s Lemma now implies ex-
istence of at least one maximal element of E . Let (ω, x̃)
denote such an element and let (x̃, u ◦ x̃, h ◦ x̃) be a cor-
responding solution of (1).
Using the same technique, this solution can be extended
to a maximal solution (x̂, û, ŷ) ∈ C((ã, ω̃);X×Rm×Rp)
of (1) with x̂ ∈ C1((ã, ω̃);X), ã ≤ a, ω ≤ ω̃ and
x̂|(a,ω) = x̃. If ω = ω̃, then we have found a maximal

solution that evolves in M ∩ U1, so there is nothing to
show. Hence, assume that ω < ω̃. Since x̃(t) ∈M∩U1 for
all t ∈ (a, ω), α := limt→ω x̃(t) exists. If α ∈ ∂(M ∩U1),
then we have found a maximal solution that reaches the
boundary of M ∩ U1 in finite time. If α 6∈ ∂(M ∩ U1),
then α ∈ M ∩ U1 by definition of the boundary. Then
z̃(·) := ψ−1(x̃(·)) ∈ C1((a, ω);G1) and similar to Step 1

we find that d
dt Ẽ(z̃(t)) = f̃(z̃(t)) for all t ∈ (a, ω).

Since z0 = ψ−1(α) = limt→ω z̃(t) ∈ G1 exists, it fol-
lows from Lemma 8 b) that there exists ε > 0 and

ẑ ∈ C1((a, ω + ε);G1) with d
dt Ẽ(ẑ(t)) = f̃(ẑ(t)) for all

t ∈ (a, ω+ε) and ẑ|(a,ω) = z̃. But then x̌(·) := ψ(ẑ(·)) ∈
C1((a, ω + ε);M ∩ U1) satisfies (ω + ε, x̌) ∈ E as can be
easily checked and this contradicts the fact that (ω, x̃)
is a maximal element of E . Hence, α 6∈ ∂(M ∩U1) is not
possible. 2

Remark 10 If, under the assumptions of Theorem 9,
additionally E is (k+1)- and f, g, h are k-times continu-
ously differentiable, then the feedback u(x) for the locally
controlled invariant submanifoldM in (iii) can be chosen
to be k-times continuously differentiable, k ∈ N0 ∪ {∞}.
Furthermore, the implication (ii)⇒(iii) is true without
the assumption that dimE′(x)TxM is constant in a cer-
tain region, (iii)⇒(i) holds true without the assumption
that dim

(
E′(x)TxM + im g(x)

)
is constant in a certain

region, and the implication (i)⇒(ii) does not need any of
these assumptions.

5 Output zeroing submanifolds

In this section we investigate the concept of output ze-
roing submanifolds for nonlinear DAEs (1). This is im-
portant for the characterization of the zero dynamics of
the system.

Definition 11 (Output zeroing submanifold) Let
[E, f, g, h] ∈ ΣXl,n,m,p and M be a connected submanifold
of X such that 0 ∈M . Then M is called output zeroing,
if M is locally controlled invariant and h(x) = 0 for all
x ∈M .

To illustrate the above definition we consider the follow-
ing example.

Example 12 Consider the system (1) with X = R2

and E(x) = ( x1
0 ), f(x) =

(
0
x1

)
, g(x) = [ 01 ] and
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h(x) = x1 − x22 for x = ( x1
x2

). It is clear that the sub-
manifold M :=

{
(x1, x2)> ∈ R2

∣∣ x1 = x22
}

is a sub-

set of h−1(0). For any x0 = (x01, x
0
2)> ∈ M , the choice

x1(·) ≡ x01, x2(·) ≡ x02 and u(·) ≡ −x01 yields a solution
((x1, x2)>, u, 0) ∈ B(1) which is globally defined, smooth

and evolves in M for all times, starting at x0. Therefore,
M is an output zeroing submanifold. Note that it was
necessary to make an appropriate choice of u(·) so that
the algebraic constraint of the DAE system is satisfied.

In the following we seek an output zeroing submani-
fold M that is locally maximal, i.e., there exists an open
neighborhood U of 0 ∈ X such that any output zeroing
submanifold M̃ satisfies M̃∩U ⊆M∩U . To this end, we
extend the zero dynamics algorithm developed in [11,14]
to nonlinear DAE systems (1), where we stay close to
the representation in [13, Sec. 6.1] and [23, Sec. 11.1].

Theorem 13 (Zero dynamics algorithm) Let
[E, f, g, h] ∈ ΣXl,n,m,p be such that E, f, g and h are

smooth. Define M0 := h−1(0) and for any k ∈ N the
set Mk recursively as follows: Suppose that for some
open neighborhood Uk−1 of 0 ∈ X, Mk−1 ∩ Uk−1 is a
submanifold, define

M̃k−1 :=
⋃{

Mk−1 ∩ U

∣∣∣∣∣U ⊆ X open, Mk−1 ∩ U
is a submanifold

}
,

let M c
k−1 be the connected component of M̃k−1 which

contains 0 ∈ X and define

Mk :=
{
x ∈M c

k−1
∣∣ f(x) ∈ E′(x)TxM

c
k−1 + im g(x)

}
.

(4)
Then we have the following:

(i) The sequence (Mk) is nested, terminates and satis-
fies

∃ k∗ ∈ N0 ∀ j ∈ N : M0 )M1 ) . . . )Mk∗

⊇M c
k∗ = Mk∗+j = M c

k∗+j .

(ii) If Z∗ := M c
k∗ satisfies, for some open neigh-

borhood U of 0 ∈ X, that dimE′(x)TxZ
∗ and

dim
(
E′(x)TxZ

∗ + im g(x)
)

are both constant for
x ∈ Z∗ ∩ U , then Z∗ is a locally maximal output
zeroing submanifold.

(iii) There exists an open neighborhood U of 0 ∈ X such
that for all open O ⊆ U and all solutions (x, u, y) ∈
C(I;X × Rm × Rp) of (1) with x ∈ C1(I;X) and
x(t) ∈ O for all t ∈ I we have

y = 0 ⇐⇒ x(t) ∈ Z∗ ∩O ∀ t ∈ I.

PROOF. Step 1 : We show (i). It is clear that for all
k ∈ N0, Mk ⊇M c

k ⊇Mk+1 ⊇M c
k+1.

Step 1a: We show that if, for some k ∈ N, dimM c
k =

dimM c
k−1, then M c

k = Mk+j = M c
k+j for all j ∈ N.

Let (Ui, ϕi), i ∈ I, be an atlas for M c
k . Since dimM c

k =
dimM c

k−1, for all i ∈ I, (Ui, ϕi) is also a coordinate chart
for M c

k−1, and hence Ui is open in M c
k−1. Since the Ui

cover M c
k , it follows that each point in M c

k has an open
neighborhood in M c

k−1, thus M c
k is open in M c

k−1. This
implies that there exists an open subset U of X such
that M c

k−1 ∩ U = M c
k . Then we find that

x ∈Mk ∩ U
⇐⇒ x ∈M c

k−1 ∧ f(x) ∈ E′(x)TxM
c
k−1 + im g(x)

∧ x ∈ U
⇐⇒ x ∈M c

k−1 ∩ U
∧ f(x) ∈ E′(x)Tx(M c

k−1 ∩ U) + im g(x)

⇐⇒ x ∈M c
k ∧ f(x) ∈ E′(x)TxM

c
k + im g(x)

⇐⇒ x ∈Mk+1,

by which Mk ∩ U = Mk+1. Therefore, M c
k = M c

k ∩ U ⊆
Mk ∩ U and M c

k = M c
k−1 ∩ U ⊇ Mk ∩ U , thus M c

k =
Mk ∩U = Mk+1. Hence, Mk+1 is a connected submani-

fold containing zero, by which M c
k+1 = M̃k+1 = Mk+1.

By the formula (4) it then follows that M c
k+1 = Mk+2

and continuing these arguments finally gives the asser-
tion.
Step 1b: Since each of theM c

k is a finite dimensional sub-
manifold and they are nested, there exists some k∗ ∈ N
such that dimM c

k∗ = dimM c
k∗−1. Then, by Step 1a the

sequence (Mk) terminates and the proof of (i) is com-
plete.
Step 2 : We show (ii). Since Z∗ = Mk∗+1 it follows
from (4) that

∀x ∈ Z∗ ∩ U : f(x) ∈ E′(x)TxZ
∗ + im g(x).

Then Theorem 9 implies that Z∗ is locally controlled
invariant. As Z∗ ⊆ M0 = h−1(0) it follows that Z∗

is an output zeroing submanifold. It remains to show
that Z∗ is locally maximal. To this end, let Z ′ be any
other output zeroing submanifold. By local controlled
invariance of Z ′, there exists an open neighborhood O of
0 ∈ X with the property as in Definition 6. We show that
Z ′∩O ⊆Mk by induction over k ∈ N0. SinceZ ′ is output
zeroing, it follows that Z ′ ⊆ h−1(0) = M0. Assume that
Z ′ ∩O ⊆Mk for some k ∈ N0. Then Z ′ ∩O ⊆M c

k since
Z ′ ∩O is a submanifold with 0 ∈ Z ′ ∩O. Now, for x0 ∈
Z ′ ∩ O there exists (x, u, y) ∈ B(1) with x ∈ C1(I;X),

I ⊆ R an open interval with t0 ∈ I, such that x(t0) = x0

and x(t) ∈ Z ′ ∩ O for all t ∈ I with t ≥ t0. Therefore,
ẋ(0) ∈ Tx0Z ′ and hence

f(x0) = d
dtE(x(t))

∣∣
t=0
− g(x0)u(0)

∈ E′(x0)Tx0Z ′+im g(x0) ⊆ E′(x0)Tx0M c
k+im g(x0),

thus x0 ∈Mk+1. We may now deduce that in particular
Z ′ ∩O ⊆Mk∗+1 ∩O = Z∗ ∩O, thus Z∗ is locally max-
imal.
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Step 3 : We show (iii). Choose the open set U small
enough so that Mk ∩ U = M c

k ∩ U for all k = 0, . . . , k∗.
Now, it is easy to see the implication “⇐”. For “⇒”,
observe that since O ⊆ U we have

Mk ∩O = (Mk ∩ U) ∩O = (M c
k ∩ U) ∩O = M c

k ∩O

for all k = 0, . . . , k∗. Furthermore, we have from (x, u, y)
being a solution of (1) with y = 0 and differentiabil-
ity of x that f(x(t)) = E′(x(t))ẋ(t) + g(x(t))u(t) and
h(x(t)) = 0 for all t ∈ I. Therefore, x(t) ∈ M0 ∩ O =
M c

0 ∩ O and ẋ(t) ∈ Tx(t)M
c
0 for all t ∈ I, whence

x(t) ∈ M1 ∩ O = M c
1 ∩ O. Inductively, we obtain that

x(t) ∈M c
k∗ ∩O = Z∗ ∩O for all t ∈ I. 2

Note that in the case g(·) = 0 the sequence (Mk) resem-
bles the sequences of submanifolds derived in [26, 27].
If the system (1) is linear, then the sequence (Mk) be-
comes a modification of the first Wong sequence [8, 34],
see [1, Lem. 4.1.2]. Furthermore, Theorem 13 (iii) has
been proved in [1, Prop. 4.1.4] in the case of a linear
DAE system.

Remark 14 (Zero dynamics algorithm) We con-
sider the algorithm for the construction of the sequence
(Mk) in Theorem 13. Note that in the corresponding al-
gorithm for ODE systems as in Isidori’s book [13, p. 294]
and several other papers on that topic, usually the state-
ment “suppose that, for some neighborhood Uk−1 of 0,
Mk−1 ∩ Uk−1 is a smooth submanifold, let M c

k−1 denote
the connected component of Mk−1∩Uk−1 which contains
the point 0 [...]” can be found, which defines M c

k−1 in
a different way than in Theorem 13, but still the claim
is that (i) is true. However, this is not quite correct,
since the “dimensionality argument” used by Isidori in
his proof does not apply to submanifolds; in general his
construction of (Mk) does not lead to a terminating
sequence, if the open sets Uk are not chosen maximal
so that Mk ∩ Uk = M̃k. For instance, for the system
ẋ(t) = x(t) + u(t), y(t) = 0, we have M0 = R and the
choice Uk = (− 1

k+1 ,
1
k+1 ), k ≥ 0, leads to Mk+1 = Uk

and therefore to a nested sequence of submanifolds of the
same dimension which does not terminate after finitely
many steps. Hence, the intermediate step of defining M̃k

as in Theorem 13 is indispensable.

That the assumption of constant dimension of
E′(x)TxZ

∗ and E′(x)TxZ
∗ + im g(x) in Theorem 13 (ii)

cannot be omitted in general has been shown in [23,
p. 325]. However, it is not necessary for Z∗ to be locally
maximal output zeroing as the following example illus-
trates.

Example 15 (Example 12 revisited) Consider

the system [E, f, g, h] ∈ ΣR2

2,2,1,1 from Exam-
ple 12. The output zeroing submanifold M ={

(x1, x2)> ∈ R2
∣∣ x1 = x22

}
is locally maximal, since

M = M0 ⊇ Z∗, which implies M ∩ U = Z∗ ∩ U for

some open U ⊆ X with 0 ∈ U by Theorem 13. A simple
calculation actually yields that M = M0 = M1 = Z∗.
However,

dimE′(x)TxZ
∗ = dim im

[
2x2
0

]
and dim

(
E′(x)TxZ

∗ + im g(x)
)

= dim im
[
2x2 0
0 1

]
are not constant on Z∗ ∩U for any open neighborhood U
of 0 ∈ R2, since there is a drop of dimension in x = 0.

6 Locally autonomous zero dynamics

Statement (iii) of Theorem 13 shows that the submani-
fold Z∗ allows to characterize the zero dynamics of (1)
locally. However, this does not imply that the zero dy-
namics are (locally) autonomous, i.e., are the (local) be-
havior of a dynamical system governed ODEs. This prob-
lem is treated in the present section.
Here we use the behavioral approach [25,33] to dynami-
cal systems and treat them as a set of trajectories; the so-
lution behavior B(1) and the zero dynamics ZD(1) have
already been defined as behaviors. In the following we
introduce the notion of locally autonomous zero dynam-
ics by generalizing the concept of autonomy introduced
for linear behaviors in [25, Sec. 3.2].

Definition 16 (Autonomous zero dynamics) Let
[E, f, g, h] ∈ ΣXl,n,m,p. We call the zero dynamics ZD(1)

locally autonomous, if there exists an open neighborhood
U of 0 ∈ X such that for all (x1, u1, 0), (x2, u2, 0) ∈
ZD(1), J := domx1 ∩ domx2 6= ∅, and for all open
intervals I ⊆ J we have:

(∀ t ∈ J : x1(t), x2(t) ∈ U ∧ ( x1
u1

)|I = ( x2
u2

)|I)
=⇒ domx1 = domx2 ∧ ( x1

u1
) = ( x2

u2
) .

Note that locally autonomous zero dynamics carry in a
certain sense the structure of a dynamical system.
In the following, we derive sufficient conditions for lo-
cally autonomous zero dynamics. To this end, we use
the submanifold Z∗ from Theorem 13, which is a locally
maximal output zeroing submanifold if dimE′(x)TxZ

∗

and dim
(
E′(x)TxZ

∗ + im g(x)
)

are constant for x ∈
Z∗ ∩ U . In order to obtain uniqueness of the feedback
u(x) in the characterization of local controlled invari-
ance in Theorem 9 (iii), we need to strengthen the latter
condition to dim

(
E′(x)TxZ

∗ + im g(x)
)

= q +m for all
x ∈ Z∗ ∩ U , where q = dimZ∗; in fact, for this it is suf-
ficient to assume dim

(
E′(0)T0Z

∗ + im g(0)
)

= q + m.
It is also necessary to consider only those trajectories in
the zero dynamics which have a continuously differen-
tiable state trajectory, i.e., under the above assumptions
(specified in the following theorem) we prove that

ZDC
1

(1) :=
{

(x, u, 0) ∈ ZD(1)

∣∣ x ∈ C1(domx;X)
}
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is locally autonomous, using the same definition as for
local autonomy of ZD(1). This requirement seems un-
satisfactory (since it is not necessary in the linear case)
and it is an open problem whether it can be omitted.

Theorem 17 (Autonomous zero dynamics) Let
[E, f, g, h] ∈ ΣXl,n,m,p be such that E, f, g and h are

smooth and assume, for the sets Mk as in (4), that
for some open neighborhood Uk of 0 ∈ X, Mk ∩ Uk is
a submanifold, for all k ∈ N0. Use the notation from
Theorem 13 and assume that

dim
(
E′(0)T0Z

∗ + im g(0)
)

= q +m, (5)

where q = dimZ∗. Then the zero dynamics ZDC
1

(1) are
locally autonomous.

PROOF. Let ψ : V → Z∗ ∩ U be a parametriza-
tion of Z∗ at 0 ∈ Z∗. By (5) and the fact that by
Lemma 5 TxZ

∗ = imψ′(ψ−1(x)) for all x ∈ Z∗ ∩ U ,
it follows that [E′(0)ψ′(ψ−1(0)), g(0)] has full column
rank q + m. From continuity we may infer existence of
an open neighborhood U1 ⊆ U of 0 ∈ X such that
rk[E′(x)ψ′(ψ−1(x)), g(x)] = q + m for all x ∈ Z∗ ∩ U1.
Let V1 := ψ−1(Z∗∩U1) and observe that by full column
rank of [E′(ψ(z))ψ′(z), g(ψ(z))] for all z ∈ V1, Lemma 7
applied to its transpose gives existence of an open neigh-
borhood V2 ⊆ V1 of 0 ∈ Rq and S ∈ C∞(V2; Gll(R))
such that

∀ z ∈ V2 : S(z)[E′(ψ(z))ψ′(z), g(ψ(z))] =

[
Iq 0
0 Im
0 0

]
.

Let the open neighborhood U2 ⊆ U1, 0 ∈ U2, be such
that Z∗ ∩ U2 = ψ(V2). Furthermore, let U3 be an open
neighborhood of 0 ∈ X as in Theorem 13 (iii).

Now, define Ũ := U2∩U3∩U4, let (x1, u1, 0), (x2, u2, 0) ∈
ZDC

1

(1) be such that J := domx1 ∩ domx2 6= ∅ and

x1(t), x2(t) ∈ Ũ for all t ∈ J , and let I ⊆ J be an
open interval such that ( x1

u1
)|I = ( x2

u2
)|I . Let i ∈ {1, 2}.

Then Theorem 13 (iii) implies that xi(t) ∈ Z∗ ∩ Ũ for
all t ∈ J . Therefore, xi(t) ∈ ψ(V2) and thus there exists
zi(t) ∈ V2 such that xi(t) = ψ(zi(t)), t ∈ J . Since xi is
continuously differentiable and ψ has a smooth inverse
it follows that zi ∈ C1(J ;V2) and ẋi(t) = ψ′(zi(t))żi(t)
for all t ∈ J . Furthermore, by (xi, ui, 0) ∈ ZD(1) we find
that, for all t ∈ J ,

E′(ψ(zi(t)))ψ
′(zi(t))żi(t)− g(ψ(zi(t)))ui(t)

= f(ψ(zi(t))),

and a multiplication from the left by S(zi(t)) yields
żi(t)

−ui(t)
0l−q−m

 = S(zi(t))f(ψ(zi(t))) =:


f1(zi(t))

f2(zi(t))

f3(zi(t))

 ,

where f1 ∈ C∞(V2;Rq), f2 ∈ C∞(V2;Rm), f3 ∈
C∞(V2;Rl−q−m). Since

z1(t) = ψ−1(x1(t)) = ψ−1(x2(t)) = z2(t), t ∈ I,

it follows from uniqueness of solutions of the ODE
ẇ(t) = f1(w(t)) that z1|J = z2|J and hence x1|J = x2|J
and u1|J = u2|J . From maximality of solutions it then
follows that domx1 = domx2 = J . This concludes the
proof of the theorem. 2

In the case of a linear DAE system, (locally) autonomous
zero dynamics are equivalent to the assumption (5) in
Theorem 17, which is equivalent to the assumptions
(A1)–(A3) in [3]. Although it is possible to show that
locally autonomous zero dynamics always imply that
rk g(0) = m, the converse of the statement of Theo-
rem 17 is not true in general for nonlinear DAE systems,
not even in the case where E′(·) is constant. This is il-
lustrated by the following example.

Example 18 (Examples 12, 15 revisited)

Consider the system [E, f, g, h] ∈ ΣR2

2,2,1,1 from Ex-
amples 12 and 15. As already calculated, the locally
maximal output zeroing submanifold Z∗ satisfies

dim
(
E′(0)T0Z

∗ + im g(0)
)

= 1 6= 2 = q +m,

and thus (5) is violated. However, the zero dynamics are
locally autonomous, since the system equations (1) read
ẋ1(t) = 0, x1(t) = −u(t) and x1(t) = x2(t)2, by which
we may infer that any solution satisfies x2 ≡ c for some
c ∈ R, x1 ≡ c2 and u ≡ −c2. Note that the system does
not have a solution if the initial value for x1 is negative.

7 Conclusion

In the present paper we have introduced the concept of
local controlled invariance for connected submanifolds
as the property of local solution trajectories to evolve
in a given submanifold whenever they start in it. Mo-
tivated by the observations in the linear case, we have
shown that local controlled invariance is equivalent to
the existence of a feedback which renders the closed-loop
vector field invariant. Furthermore, the zero dynamics
algorithm has been extended to DAE systems and the
resulting locally maximal output zeroing submanifold
has been exploited for a characterization of the zero dy-
namics. Under some appropriate conditions on the latter
submanifold, the zero dynamics are proved to be locally
autonomous.
The concept of (locally) autonomous zero dynamics can
be used to derive conditions for the application of adap-
tive controllers to nonlinear DAE systems. For instance,
in [3] it is shown for linear descriptor systems, that au-
tonomous zero dynamics and right invertibility of the
system are required for the application of funnel control.
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Further studies have the aim to derive a local zero dy-
namics form for nonlinear DAE systems (1) under the
assumption of locally autonomous zero dynamics; this
normal form would provide the basis for the application
of adaptive control techniques. In particular, it is our
aim to use the results of [4] and show feasibility of funnel
control for nonlinear descriptor systems which encom-
pass nonlinear electrical circuits, extending the results
for the linear case [7].
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