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Abstract—We extend a recent approach to observer design for linear
differential-algebraic systems to systems with Lipschitz nonlinearities.
The observer design further extends the standard Luenberger type
observer design. We show that the design parameters for the observer
can be obtained by the solution of a Riccati type inequality. The
solutions of the latter can in turn be obtained by solving a set of
LMIs and BMIs which provides a computational procedure. A feature
of the presented observer design is the possibility of reformulation as an
ordinary differential equation.

Index Terms—Differential-algebraic systems, nonlinear systems, ob-
servers, Riccati inequality, LMIs.

Nomenclature:

Rxm the set of real n x m matrices

rkA, imA rank and image of A € R™*™

Gl,(R) the group of invertible matrices in R"*"

M>y0 = Vxe ¥ \{0}: x"Mx >0, for a matrix M €
R™ ™ and a subspace ¥ C R"

E*(X—Y)  set of k-times continuously differentiable functions
fiX—=Y, keNy; €(X—Y):=¢°(X—=Y)

dom f the domain of the function f

fls restriction of the function f to the set /

I. INTRODUCTION

We study observer design for nonlinear systems governed by
differential-algebraic equations (DAEs). We follow the recent ap-
proach to observer design developed in [1] for linear DAE systems.
In the main result in Theorem III.1 we show that an asymptotic
observer can be designed whenever a certain Riccati inequality is
solvable. We later show that solvability of certain linear and bilinear
matrix inequalities (LMIs and BMIs) is sufficient for solvability of
the Riccati inequality.

We consider DAE systems of the form

x61(1) = Axy (1) + Bxa (1) + fi (x1 (1), 2x2(1), (1), (1)),
0 =Cx;(t) + Dxa(t) + f2 (u(r),y(1)), 6))
y(t) = Fx(t) 4+ Gxa (1) + h(u(t)),
with A € R™" and all other matrices of appropriate sizes so that
A B Ixn pxn
{C D} e R [F,G] € RP*
where we assume that
rk |:g:| =n—r. 2)

Furthermore, fi € €' (X; x X, xR" xR? - R"), o € €' (R" x RP —
R'7"), he €' (R —RP), where X; CR",X, CR"™" are open, such
that the following Lipschitz condition is satisfied:

dL>0V (x’i,xg) €X1 xX2,i=1,2V (u,y) e R" xRP :

3)
11 (et 03,1, 5) = o (07 3, u,9) | < L (6] =y = 53) -
This work was supported by the German Research Foundation (Deutsche
Forschungsgemeinschaft) via the grant BE 6263/1-1.
Thomas Berger is with the Fachbereich Mathematik,
Universitit Hamburg, Bundesstrae 55, 20146 Hamburg, Germany,
thomas.berger@uni-hamburg.de

The functions u : I—R™ and y: [ —RP are called input and output of
the system, resp. Note that although y from the last equation in (1)
may be inserted in the first equation which may hence be written in
the form

X1 (1) = Axy (£) + Bxa (t) + fi (x1(2),%2(2), u(1)) ,

this would be a smaller class of systems since we would need to
require fj to be Lipschitz continuous w.r.t. x; and x,, while f; does
not need to be Lipschitz w.r.t. y.

The system class (1) includes any linear DAE system and numerous
important classes of nonlinear DAE systems (e.g. chemical process
systems [2], mechanical systems [3], [4] and modified nodal analysis
models of electrical circuits [5]). Nonlinear DAE systems seem
to have been first considered by LUENBERGER [6]; see also the
textbooks [7], [8] and the recent works [9], [10].

Observer design for systems of ordinary differential equations
(ODEs) with Lipschitz nonlinearities is well studied, see e.g. [11]-
[14] and also the recent paper [15]. The design of (asymptotic)
observers for DAE systems similar to (1) has been studied in [16]—
[19]. In [16] the regularity of the linear part is assumed, while in [17]
it only needs to be square and in this way quite general results are
obtained. A unified approach is presented, where existence of the
designed observer is shown to depend on the solvability of certain
LMIs. Due to the allowed Lipschitz continuity of the nonlinearities
it is clear that, compared to the linear part, the Lipschitz constant
must be small enough for an asymptotic observer to exist (e.g. when
the linear part is detectable, but unobservable); this can be made
precise in terms of the solvability of LMIs. A similar approach has
been taken before in [20], [21] for nonlinear ODE systems with
unknown inputs, which may be treated as DAE systems (1) as well.
Recently, the approach from [17] has been extended in [18], where
actuator and sensor faults (similar to [16]) as well as uncertainties
are incorporated, and in [19], where the Lipschitz nonlinearities
are also allowed in the output equation. Furthermore, the observer
design in [18] and [19] additionally requires the solvability of certain
BMlIs. Different approaches are taken in [22], where the system
is completely nonlinear, but semi-explicit and of index 1, and a
nonlinear observer is constructed, and in [23] where a nonlinear
generalized PI observer design is used, see also the references therein.

A drawback of the approach in [17] is that, as pointed out
in [24], the constructed observer is again a DAE system which cannot
necessarily be reformulated as an ODE. As discussed in [25], it is
then possible that the observer dynamics involve derivatives of the
inputs and/or outputs, which would lead to an ill-posed problem; this
is not desirable from a practical point of view. Furthermore, ODE
observers have the advantage that they can be initialized without any
further restriction. The existence of ODE observers for general linear
DAE systems is investigated in [25], [26].

In the present paper we present a novel observer design which
is based on the recent approach in [1] and extends the standard
Luenberger type observer design presented in [17], [24]. Compared
to [17] we allow for systems which are not necessarily square (i.e.,
[ # n is possible) and at the same time we guarantee that the
observer can be reformulated as an ODE system. Compared to [24]
we present a more general observer design. We stress that there exist
systems for which the Luenberger type observer presented in [17]



cannot be reformulated as an ODE system, but the observer design
presented here can be reformulated as an ODE; an example is given
in Section VI-A. Therefore, we present a novel observer design that
resolves the limitations of Luenberger type observers.

The features of our approach are as follows:

e« we do not restrict ourselves to square systems (a different

number of state variables and equations, i.e., [ # n, is allowed),

o the observers can always be reformulated as ODE systems,

even when the standard Luenberger type observer cannot be
reformulated as an ODE,

o the observer design reduces to Luenberger type observers only

in special cases.
In order to achieve an observer design which can be reformulated
as an ODE, while at the same time the system does not need to be
square, the rank condition (2) will be of importance. Applications
of the observer design are for instance error detection and fault
diagnosis, disturbance (or unknown input) estimation and feedback
control, see e.g. [27], [28].

The present paper is organized as follows: In Section II we recall
some basic definitions and concepts. The novel observer design is
presented in Section III and we prove in the main result Theorem III.1
that it works provided a certain Riccati type inequality is solvable.
In Section IV we show that solvability of certain LMIs and BMIs
is sufficient for solvability of the Riccati inequality. The case where
the presented observer design reduces to standard Luenberger type
observers is discussed in Section V along with consequences thereof.
Some illustrative examples are given in Section VI.

II. PRELIMINARIES

In order to define (asymptotic) observers for nonlinear DAE
systems we consider the general class of nonlinear systems governed
by DAEs of the form

Ex(t) = f(x(t),u(1),y(t)),
y(1) = h(x(t),u(r)),

where X C R" is open, f € €' (X xR" x RP —»R!), he €' (X xR" —
RP) and E € RP*™. Since solutions not necessarily exist globally (e.g.
finite escape times may arise) we consider local solutions of (4). A
trajectory (x,u,y) € €(I—-X x R™ x RP) is called a solution of (4),
if 1 =domx C R is an open interval, x € €' (I —R!) and (x,u,y)
solves (4) for all + € I. Note that the interval of definition / of a
solution of (4) depends on the choice of the input u and that a
solution does not need to be maximal. Furthermore, for a given initial
condition Ex(tg) = Ex" a solution does not necessarily exist, and even
if it exists it does not need to be unique. The behavior of (4) is defined
as the set of all possible solution trajectories

By ={(x,u,y) € €(I—-X xR" xRP) | I CR open interval,
(x,u,y) is a solution of (4)}.

@

A novel observer design for linear DAE systems has been intro-
duced in [1]. Here, we extend this approach and the accompanying
concepts of (asymptotic) observers to nonlinear DAE systems.

Definition I1.1. Consider a system (4). A system
ono([) :fo(xo(t),u(t),y(t)),
2(t) = ho (xo(2),u(t), (1)),

where E, € RloeXm f, € €1(X, x R" x R? — Rl), h, € €' (X, x
R™ x R? — RPe), X, C R™ open, is called an acceptor for (4), if
for all (x,u,y) € By with I = domyx, there exist x, € €1 (I—R"™),
z € €(I—RP) such that

(X(,, (?) 7Z) € %(5).

(&)

We stress that there is a directed signal flow from (4) to its
acceptor (5) via input and output, see Fig. 1. That is, (4) may
influence (5) but not vice-versa.

u(t) Exi(t) = f (x(r),u(r),y(1)) ()

y(1) = h(x(t),u(r))

W

Eoio(t) = fo (xo(t),u(r), ¥(1)) <)
> Z(t) :ho(xo(t)7u(t)7Y(t))

Fig. 1: Interconnection with an acceptor

Definition I1.2. Consider a system (4). Then a system (5) with p, =n
is called

a) an observer for (4), if it is an acceptor for (4), and

VI C R open intvl. Vg € 1
Y (x,1,9,%,2) € C(I=R" x R" x R x R" x R") :
((x,,y) € Bay A (%0, (§):2) € Bs) A Ez(to) = Ex(1g))
= z=2xX.
b) an asymptotic observer for (4), if it is an observer for (4), and
Vig € RV (x,u,y,%0,2) € €([tg,0) > R" x R" x R x R™ x R") :

((xvuyy) € %(4) A (x07 (;’) 7Z) € %(5))
= tle z2(r) —x(t) =0.

We like to note that for linear DAE systems the rank condition (2)
is equivalent to the concept of impulse observability, see e.g. the
survey [29], which is introduced using a distributional solution
framework and, roughly speaking, means that any Dirac impulses in
the state variable can be uniquely determined from the measurement
of the external signals. Our motivation to consider this condition here
is that for linear impulse observable DAE systems there always exists
an observer as shown in [1] (and it can even be reformulated as an
ODE, cf. [25]). Therefore, we restrict ourselves to nonlinear systems
of the form (1) which satisfy (2).

Concluding this section, we consider linear DAE systems

y(1) = Cx(r) (©6)

with E,A € R*", C € RP*" and recall from [29] that (6) is called
behaviorally detectable, if any continuous solution x of (6) with y=0

Ex(t) = Ax(1),

satisfies lim;_,x(¢) = 0, and this is equivalent to rk [AEC__A] =n for
all A € C with ReA > 0. In Section III we show that this property can
be generalized to a solvability condition for a Riccati type inequality
for nonlinear systems (1) which satisty (2).

III. OBSERVER DESIGN BY RICCATI INEQUALITY

In this section we propose a novel design of asymptotic observers
for systems (1). We improve upon earlier approaches by allowing
a larger class of systems and we use an observer design which
extends the Luenberger type observer design. We present a Riccati
type inequality whose solutions are used for the observer design.
In the subsequent Section IV we show that the solution of certain
LMIs and BMIs yields a solution to this Riccati inequality. The LMIs
and BMIs then yield a computational procedure for obtaining the
observer.

Motivated by the observer design in [1] (which is closely related
to that in [30] for behavioral systems) we propose the following



observer, which consists of an internal model of the system (1) driven
by additional “innovations” terms:

21(t) = Az1 (1) +Bza (1) + fi (21 (1), 22(0), u(r), (1)) + Lad (1),
0=_Cz (1) + Dot )+f2( (1).(t)) +Lad (1),
0=Fz(t) + Gz (1) ( l)) y(t)+Lsd(1), )
- ( t))
where Ly € R [, e RU=xk 15 e RP*k |k € Ny, and the additional
observer state d(t) represents the innovations; the complete observer
21(1)
(1)
d(1)
been first introduced by Polderman and Willems [31, p. 351] in order
to “express how far the actual observed output differs from what we
would have expected to observe”. Set

state is x,(t) = . The innovations in the observer design have

I. 0 0 A B L
=10 0 0|, o/=|C D L (®)
0 0 O F G Lj
and .
. 1, _7D Ly C
remlplow==e B e

provided that [hg g] is invertible. In the following main result of
the paper we show that there exists an asymptotic observer of the
form (7), if the Riccati type inequality

o TPE+E TP + %ﬁpzé"ﬂaﬁ)lﬁk <y 0 (10)

has a solution L{,Ly,L3, § >0 and P = PT € Rk x(1+k) gych that
[I,0]P [] > 0. Riccati inequalities of the form (10), i.e., restricted
to certain subspaces, have been studied before, see e.g. [32] and the
references therein, but not within the context of observer design. Note
that condition (2) implies n <[+ p, since otherwise n—r >[+p—r
which contradicts (2).

Theorem II1.1. Consider a system (1) which satisfies (2) and (3). Let
k=1+p—n and assume that L; € R"™* L, ¢ RU=">k 15 c Rp<k
§>0and P=PT € ROT*H0) solve (10 such that

[D L, I,

(1)

G L3]€Gln,,+k(R) and [I,,O}P{O

|>0

Then (7) is an asymptotic observer for (1).

Proof. System (7) is an acceptor for (1) since for any (x,u,y) € Bj)
we have that ((% , (;) X)) € B,

Step 1: We show that (7) 1s an observer for (1). To this end, let / C
R be an open interval, fy € I and ((¥.),u,y) € By, ((d) , (;) ,z) €
B(7y be defined on [ such that x (t9) = z; (o). From (7) we have that

G =16 1] (Fleo-(F5250)
for all # € I, and from (1), in a similar way,
()=l 2 (Fo GE20)):
With
)~ & (Fe (@) o
for (x1,u,y) € X1 x R™ x RP we thus have

*1(t) = Ax1 (t) + Bgy (x1 (1), u(r),y(t))
+ fi(x(0), 81 (k1 (1),u(2),y(2)) ,u(t),y(2)) + Liga (x1 (1), u(?),y(t))

for all r+ € I, and z; solves the same ODE with the same initial
value z1(f9) = x1(tp). Therefore, since g; and g, are linear in x;
and

X1 3 x Hf] (xl,g(x|,u,y),u,y)

is Lipschitz in x; for all (u,y) € R™ x R”, the uniqueness theorem
for ODEs (see [33, Thm. 4.17]) yields that x (¢) = z;(¢) for all € I.
Moreover,

ZZ(Z) =81 (Zl (t)ﬂ,t(l‘),y(t)) =81 (xl(l)vu(t)7y([)) :x2(t)
for all ¢ € I, and this shows that (7) is an observer.
Step 2: We determine the observation error dynamics. Let e] :=
z1 —x1 and ey :=zp —xp, then
é1(t) =Aei (1) + Bey(t )+L1d( )
+ fi(z1(t),22(0),u(0),y(t)) = fi (x1 (2)
0=Ce(t) + De; (1) +de(t)7
0=Fe(t) +G62(I) + L3d(1).

X (1),u(t),y(1)),

(13)
Let M and ¥ be as in (9), then (e’g))) = Me,(t), and hence any
solution (ey,ep,d) of (13) evolves in 7.

Step 3: We show that the observer (7) is asymptotic. To this end,
let o € R and ((3}),u,y) € By, ((d) (V) ,z) € B(7) be defined
on [fy, o). The corresponding observation errors solve (13) and hence
in particular, by Step 2,

el (Z)
w(t) = | ex(t)
d(1)

Vit >t ev. (14)

Use & and <7 from (8) and let
VR SR wisw' & PEW.

Set (1) = (z1(r),22(0),u(t),y(1))
(x1(2),x2(2), u(t),y(t)), then by (13) we have

&V ()
=w(t) (7 TPE+E TP (1)

w(t)TETP [18] (fl (x:(1)) = fi (xx(t)))
+ ( ’3} (A1) - £ (xx(t)))>TPgw<t)

=w(t) (TPE+ETPA Yw(t) +w(t) ETPF(t)+ f(t) PEW(),

and

where
0= [§] (5 Ge) - 7600,
Since for any vectors u,v € R? we have
u v+ vTu<uu+ %VTV
we obtain the inequality
GV () <w(t)" (7 TPE+ & TP )w(o) +
+8f(0)T F(1)
(%) w(t) (" PE+ET P+ 56T PXE+SL L, ) w(t)
=—w(n) Qw(r)
for all t > 13, where

Q:=—(o/"PE+E P + 56T PPE+ 8L, y).

Lw() "¢ TP2Ew(r)

By (10) we have Q >+ 0 and thus, invoking (14), it follows that
%V(w(l)) < —cV(w(t)), t=>1,



for some ¢ > 0, hence an application of Gronwall’s lemma yields
lim—. V (w(t)) = 0. Invoking that [,,,0]P [16] > (0 we obtain that ]
converges to zero, and hence (27) = Me; converges to zero, too.
Therefore,

,IL,IE,Z(Z) —x(t) =0,
and this completes the proof of the theorem. O

As shown in Theorem III.1, the solvability of the Riccati type
inequality (10) is a sufficient condition for the existence of an
asymptotic observer for a nonlinear system (1). This generalizes
results obtained in [1] for linear DAE systems, where it is shown that
behavioral detectability (see Section II) is equivalent to the existence
of an asymptotic observer. Indeed, if the Lipschitz constant L = 0,
then solvability of (10) is equivalent to behavioral detectability of the
linear part of (1) as shown in the following.

Lemma IIL.2. Consider a system (1) which satisfies (2) and (3)
with L = 0. Then, for k =1+ p—n there exist Ly € R™k I, €
RU=*k 1. e RP*k § >0 and P=PT € ROTRX(H0) gych thar (10)
and (11) hold if, and only if, the linear DAE (6) with

= [ o] : [A B] ~_

is behaviorally detectable.
Proof. =: From (10) it follows that the Lyapunov type inequality
A PE+ETPA <y 0 (15)

holds. Then [34, Thm. 5.10] implies that the linear DAE &x(r) =
A/x(t) is behaviorally stable, i.e., we have lim;_.x(t) = 0 for
any continuous solution x of it. As a direct consequence, (6) is
behaviorally detectable.

<: Invoking that (6) is behaviorally detectable and satisfies (2), it
follows from [1, Thm. 3.8 (d)] that for kK = [+ p — n there exist
Ly eR™K [, e RU=1*K [, e RP*K such that [g Z is invertible and
&%x(t) = o/x(t) is behaviorally stable. Then [34, Thm. 5.10] yields
that there exists P = P e RUTRX(+h) with [1,,0]P [1(;} > 0 such
that (15) holds. Choosing & > 0 large enough we then obtain that

A PE+EPA+LETPPE <y 0,
i.e., we have (10). O
L

G L3
observer (7) can be reformulated as an ODE system as follows:

40 = (A .| ﬁjl {ﬂ)m

11 (a1 (0),1 (21 (1), (0, 9(0)) ), ¥(0))
D L SFo(u(r),y(t)
“mea[g ] (pla0)),
_ z1(t)
i) = (gl (zlm,u(z»y(z))) !

where g; is as in (12). However, since this structure is quite
complicated, (7) may be preferred for implementation and numerical
computations. We also stress that (16) is not of Luenberger type in
general.

We like to stress that since [ ] is invertible the asymptotic

(16)

IV. OBSERVER DESIGN BY SOLUTION OF LMIS AND BMIs

In this section we derive a set of LMIs and BMIs and show how
their solution yields a solution of the Riccati inequality (10). LMIs
impose convex problems and can be solved efficiently with standard
algorithms, however the drawback of the general approach taken here

is that the Riccati inequality (10) cannot be completely reformulated
as an LMI, but we show that it is possible to obtain its solution from
a set of LMIs with an additional BMI constraint. This is the basis
for a computational procedure in order to construct the asymptotic
observer (7).

Lemma IV1. Ler A € R B ¢ R*07) ¢ ¢ RU=D% D ¢
RU=1x(=r) F ¢ RP*" G € RP*=") and L > 0 be such
that (2) holds. Assume that V € Gli,_,(R),W € R™" P =P €
ROHXHK) gud § > 0, where k = I+ p —n, solve the following set

of LMIs
WT+W+ (L)1 [CT,FTIvT  [I,0lPT
VI[¢] —spzli4p—r 0 |<0, (17a)
P HS] 0 _8111+k
D| _ |-
V{G}_{O}’ (17b)
Iy
Py =[I,,0]P M >0, (17¢)
under the additional BMI constraint that
(o _
A—[B,L|V {F] =P,'W (18)

for some Ly € Rk Then, with

=l

we have that the Riccati inequality (10) is satisfied, where we use
the notation from (8) and (9).

Proof. With K :=P[;"W and Z:= P[] we find that, by (17a),
KT,0z+Z" [K]+(6L*)L [cT,FTIvT  ZT
vI[F] ~splipr 0

z 0

<0.
_5[n+k

Using the Schur complement lemma this is equivalent to
{[KT,O]Z+ZT [K]+©6L?) (+[cT, FTIVIVIE]) zZT
Z

<O0.
- In+k:|

19)

~1
Now, invoking (17b), we have V = [LG) IL‘i] and hence we may

calculate

-1
DL
{ K ]@ A—[B,L] [GLﬂ (7]
O(l+p7r)><r 0(l+p—r)><r
A B L -1 A B Ly
RN ]
F G Ls 3 F G I3
where M is defined in (9). Furthermore,
T Ty T T
€ FviVv[§]=MM,

and hence (19) becomes

UM/ T2+ 20 ]+ (L) (M M) ZT )
z 761n+k .

(20)
Applying the Schur complement lemma to (20) yields

M " Z+2 a [1] + (13sz+ (8L%) (I,—l—MTM) <0

and this is equivalent to

o) (o zore 5]+ 5 ot aig) ] <o



Invoking (9) this is in turn the same as
1
A 12,00+ % |+ 5 [ ] 12,01+ (8114, <y 0.

Observing that [Z,0] = P& yields (10) and this finishes the proof. [

Remark IV.2.

(i) A careful inspection of the proof of Lemma IV.l1 reveals
that the opposite implication is true as well, that is if L; €
Rr<k L € R(l—r)xk Ly € Rpxk P =P e Rtk x(ntk) apnq
8 > 0 solve (10) such that (17¢) holds and [ LZ] is invertible,

—1
then there exists W € R"™" such that V = géi SW.P L

and 0 solve (17a)—(17¢c) and (18). Therefore, solvability of the
LMIs and BMIs is necessary and sufficient for solvability of the
Riccati inequality (10).

(ii)) Note that we refer to (18) as a BMI since the equality can be
equivalently written as two inequalities.

(iii) While the equality constraint in (17b) is not a LMI at first sight,
it can be incorporated into the other LMIs and BMIs as follows.
Let Vi,...,V, be a basis of the linear subspace

2-0)

span{ v e RUFP=r)x(4p=r) ‘ V|

and let Vy € RUTP=7)xU+P=1) pe such that

“f)-[5]

Then solve (17a), (17¢) and (18) with V =V} +Z?:1 a;V; for
W,P,Ly,6 and «,...,0; € R. Therefore, it is common to refer
to an equality constraint as in (17b) as a LMI as well.

(iv) We like to stress that the solutions of (17a)—(17¢) and (18) have
to satisfy the additional constraint that V must be invertible. This
condition is equivalent to the non-convex quadratic inequality
VTV > 0. By introducing a new variable J = V, this inequality
can also be equivalently written as a BMI as follows

ViJ>0, V-J>0, J—V>0.

Therefore, the problems (17a)—(17c), (18) consist only of LMIs
and BMIs which may be solved by standard MATLAB toolboxes
like YALMIP [35] and PENLAB [36]. For other algorithmic
approaches see e.g. the tutorial paper [37].

Consider the case C =0 and F = 0. Choose V such that (17b) is
satisfied. Then the BMI (18) yields W = P;1A and inserting this
into the LMI (17a) gives, using the Schur complement lemma,

(v

~

ATP +PyA+ §PH < —(SLA),,

and a solution to (17a), (17¢c) exists if, and only if, the above
Riccati inequality has a solution Pj; = PIT1 >0and § >0. Itis
clear that for general A and L a solution does not necessarily ex-
ist, not even if A is Hurwitz, i.e., all its eigenvalues have negative

real part; consider A =[—1] and L =2 as a counterexample. If
we fix P=1,, and choose § = % then we obtain the sufficient
condition

A+AT < 2L,

on the system data in this case. This is a reasonable condition
from the point of view that then the error dynamics

é1(t) = Aer (1) + fi (z1(1), 22(1), (1), ¥(1))
_fl (xl(t)7x2(t)7u(t)7y(t))7

(%) =0

asymptotically stable for all f| which satisfy (3).

V. OBSERVER OF LUENBERGER TYPE

In order to illustrate the observer (7) and Lemma IV.1 we consider
the question as to when the observer (7) is of Luenberger type as
considered e.g. in [17]. If we would have Lz = I, then we can
eliminate the variable d in (7) and reformulate it as

21(0) = (14,B] = Li[F.G)) (20)) + L1 (v(0) — h(u(r)))
+ £1 (210, 2(0),u(0),5(0)),
= ([€.D] = Lo[F.G) (20) ) + Lo (v(6) = h(u(r))
S ACORIO)N]

0= (300).

and the first two equations are equivalent to

5 o )= (e o] [a]re) (5)

+ ﬁj () —h(u(r))) + (fl (@0 )( éﬁ) ugi . ))>‘

Y
L

This is a Luenberger type observer for system (1) with gain [ Lz]
With e| :=z; —x; and e := zp —xp the error dynamics (13) become

o o] () -[e-r 52 (26)
N (.fl (@10, 22(0:u().y0) i (r>,xz<z>,u<z>,y(z>)) ey

Having a look at dimension, L3 = I; can only be true if k = p
or, equivalently, / = n. If the latter is the case, then the matrix D
is square, i.e., D € R(=7)%(n=7) and hence condition (2) implies
existence of L, € R("=")%k guch that D — LG is invertible. Therefore,
the matrix LZG) éf] is invertible, i.e., it is always possible to choose
Lz = I.. In this case, the second equation in (21) can be solved for e;
and with ¥ := (D — L,G) ™' (C — LyF) we find

é1(t) = (A= LiF) = (B=LiG)Y )1 (1)

+f1 (Zl (t)vz2(t)7u(t)7y(t)) _fl (X] (t)7x2
—Ye (t)

(1),u(t),y(1)), 2
e (t) =
Summarizing, we find that if / = n, then the observer (7) can be
chosen to be of Luenberger type by k = p, L3 = I; and L, such that
D — L,G is invertible.
Finally, we have a look at the solvability of the LMIs (17a)—
(17¢) together with the BMI (18) in this case. Use the notation from
Lemma IV.1, then

=[5 -]

We restrict ourselves to P =1, and W = WT. Then (17a) reads

(D—L,G)™!
G(D—-L,G)™!

—(D-1,6)" 'L,
L+GD—1,G) 'L,|"

2W 4 8L, i (F-GY)T  [I,,0]
1
F—-GY 0 — sk 0
(%] 0 0 .Y

Successively applying the Schur complement lemma yields the equiv-
alent inequality

2W + 512 (1, +(F-GY) T (F—GY)+ YTY) +in <0 (@23
The equation (18) becomes

A—LF+L,GY —BY =W,



which needs to be solved for L;. Together with (23) we obtain the
condition

A—LiF +L,GY — BY
<3 (1,+ (F—GY) (F - GY) +YTY) — 5. 24

on Ly, where Y depends on the choice of L. Choosing § = % we

obtain

A—LiF+LGY —BY < —LI,—% ((F—GY)T(F—GY)+YTY) .

(25)
This condition immediately implies the asymptotic stability of the
error dynamics (22) for any f] satisfying (3) since

Hfl (Zl (t)az2(t)7u(t)7y(t)) -h (Xl (t)7x2(t)7u(t)1y(t)) H
< L)l <L||[ 5] ler@)l

which explains the term ¥ T Y on the right hand side of (25). The term
(F—GY)T(F —GY) is due to the fact that the original Riccati in-
equality (10) is formulated on the space ¥ for the variables (e},e,d),
so it is actually possible to allow fi to depend on the “innovations”
d = (F — GY)e;, which is expected by the inequality (25) in some
sense.

Different special cases may be discussed in terms of (24). For
instance, if F =0 and C =0, then ¥ = 0 and (24) reduces to the
inequality discussed in Remark IV.2 (v).

VI. EXAMPLES

We consider two illustrative examples with [ # n, i.e., the corre-
sponding observer cannot be reformulated as an observer of Luen-
berger type as discussed in Section V. In particular, this shows that
the presented observer design is applicable to a larger class of systems
than those presented in [16], [17] for instance.

A. Example
Consider (1) with r=n=2,1=3, p=1,

A:ﬁ 8}, c=00,1, F=[11],

and some functions fi, f>,h such that (3) is satisfied; note that B,D,G
are not present since n—r=0. Then k=/+p—n =2 and in order
to find a solution to (17a)—(17c) and (18) we set P = I4 and

Ly, = [170]7 L3 = [011]7

Ly, -1
] v

The LMIs (17b) and (17c¢) are already satisfied and (17a) reads

thus

w+w'+sr’n, (V1] [b,0]
(1] —sph 0 <0
(6] 0 oL

which is equivalent to
WH+WT+6L* (L+[91][91]) + $R <o.
Choosing 6 = % gives

31
1 4

We need to find W and L; such that (26) is satisfied together
with (18), which reads

@ g-ul g

W+WT+L{ }<0. (26)

Inserting this into (26) yields

0 1 3 1 0 1 0o 1|,

[1 0] +L{1 4} —L [1 1] - [1 1]L1 <0
One possible choice is to set the left hand side of the inequality equal
to —I, and then solve for the coefficients of L. This leads to

and hence

Now, the observer (7) reads

20)=[98]0+ L1 (10)) + 41 (0. u(0).y(0),
0= [0,1]2(¢) + s (1) + fo (u(0), (¢
0=[1,1]z(t) + do(t) + h(u(t)) -y

and we stress that this is not a Luenberger type observer. Neverthe-
less, it can be simplified to the ODE observer (16) given by

£0) =Wal0)+ 1 (0 a0)50) - (V0 ).

Note that, since [g} is invertible, one could, in principle, obtain the

state x directly from (1) as

~1
.X(l):— |:0 ]:| (fZ(M(t)'/y(t))).
1 1 h(u(t)) —y(1)

However, for large systems it may not be easy to directly see which
parts of the state can be resolved, and in general none of the
matrices C, D, F, G, [C,D], [F,G], [§], [2] and [€ 2] is invertible.
The following example of such a case illustrates that the presented
observer design is still feasible.

B. Example
Consider system (1) with r=1,n=3,l=p=2,

A=1[1], B=[-21], C=]1],

-1 1 -1
=[] el ]
and some functions fi, fo,h such that (3) is satisfied. Then k =1+

p—n=1 and in order to find a solution to (17a)—(17¢c) and (18) we
set P =1, and

D =[-1,0],

Ly=[l], Ly= [ﬂ ;

thus

D L, -1 -1 1 1
3 0 1 1

The LMIs (17b) and (17c) are already satisfied and (17a) is obviously
equivalent to
2W +28L7 + § <0.

Furthermore, with L; = 1, from (18) we find that
-1
W=1-[-211] [ 0 } — 1,

and we obtain

242817+ 1 <0.
The expression on the left hand side is minimal for § = with
which we find that

1



1

L<—,
V2

which is a sufficient condition for the existence of an asymptotic
observer; this condition reveals that the linear part of the system
is (behaviorally) detectable, but unobservable. If this condition is
satisfied, then the observer (7) reads

alt)=aln)+ [2,1}zz<r>+d<>+ﬁ(a<> 2(1),u(t), (1),
0=21(1) +[~1.0)22(0) +d(0) + f2 (1), 5(0)).
0=[3]a®+[1 720+ [§d0) +h(®) ->0),

=30

and it can be simplified to the ODE observer (16) given by

22(1)*(

q)=—z0)+ fi(zi(r) ),u(t),y(t))
fo(u

~LLO G ) ))’
)+ fo (ult)

£ (ut),y(t )(t )) Ll) ” (h(u()) =¥(1)),

0 =(20).

VII. CONCLUSION

In the present paper we developed a novel observer design for
DAE systems with Lipschitz nonlinearities. The design parameters
of the asymptotic observer are constructed from the solutions of a
Riccati type inequality. We have further shown that the solution of
certain LMIs and BMIs yields a solution to this Riccati inequality.
The solvability of the LMIs and BMIs depends on the magnitude
of the Lipschitz constant in general, e.g. when the linear part of the
system is detectable, but unobservable.

The present work is the basis for extensions in several directions
such as systems which do not satisfy the rank condition (2). In-
corporating the presence of actuator and sensor faults as well as
nonlinearities in the output equation (as discussed in [18], [19] for
Luenberger type observers) is another interesting extension for future
work.
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