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Abstract

We consider tracking control for uncertain linear systems with known relative degree which are possibly non-minimum
phase, i.e., their zero dynamics may have an unstable part. For a given sufficiently smooth reference signal we design
a low-complexity controller which achieves that the tracking error evolves within a prescribed performance funnel. We
present a novel approach where a new output is constructed, with respect to which the system has a higher relative
degree, but the unstable part of the zero dynamics is eliminated. Using recent results in funnel control, we then design
a controller with respect to this new output, which also incorporates a new reference signal. We prove that the original
output stays within a prescribed performance funnel around the original reference trajectory and all signals in the

closed-loop system are bounded. The results are illustrated by some simulations.
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1. Introduction

We study output tracking for uncertain linear non-
minimum phase systems with arbitrary relative degree by
funnel control. The concept of funnel control was origi-
nally developed in [24], see also the survey [23] and the
references therein. The funnel controller is an adaptive
controller of high-gain type and proved to be the appropri-
ate tool for tracking problems in various applications, such
as temperature control of chemical reactor models [26],
control of industrial servo-systems [19] and underactuated
multibody systems [2], speed control of wind turbine sys-
tems [17, 18], voltage and current control of electrical
circuits [4], control of peak inspiratory pressure [37] and
adaptive cruise control [3].

The above mentioned applications have the advantage
that their underlying dynamics are minimum-phase, i.e.,
their internal dynamics (zero dynamics in the linear case)
are bounded-input, bounded-output stable. The internal
dynamics and the minimum phase property are extensively
studied in the literature, see e.g. [8, 27, 33, 34]. A main
obstacle for feedback controllers are systems which are not
minimum phase, i.e., their internal dynamics have an un-
stable part. Such unstable parts of the internal dynam-
ics may impose fundamental limitations on the transient
tracking performance as shown in [38]. These limitations
were already highlighted in the seminal work by Byrnes
and Isidori [7], where they prove that the regulator prob-
lem is solvable provided that the internal dynamics of the
system have a hyperbolic equilibrium. The solution is con-
structed from the solution of a set of partial differential-
algebraic equations, which however may be very difficult to
solve, if not impossible. Extending the approach from [7],
in [16] so called ideal internal dynamics are used and made
attractive by a suitable redefinition of the output which
does not change the relative degree. Using a sliding control
law, it is achieved that the new output tracks a suitably
modified reference signal and in the end, the original out-
put asymptotically tracks the original reference trajectory.
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However, the ideal internal dynamics require a trackability
assumption, i.e., the existence of a bounded solution of the
internal dynamics when the reference signal is inserted for
the output. In [39] the approach from [16] is extended by
using the so called system center method, and [40] develop
further improvements. These methods aim at asymptoti-
cally obtaining the ideal internal dynamics, however suffi-
cient conditions for their feasibility are not available.

In a different approach, [9, 12] aim to resolve the prob-
lem imposed by unstable internal dynamics using the con-
cept of stable system inversion. In contrast to [7], an open-
loop (feedfoward) control input is calculated here for all
times, based on the given reference trajectory. A drawback
of this approach is that in the case of non-minimum phase
systems, a reverse-time integration is used and hence the
computed control input must start in advance to achieve
the desired tracking performance. Therefore, the open-
loop control input is non-causal in this case. Extensions of
this approach are discussed in [11, 13, 21, 41] for instance.

Noteworthy is also the approach presented by Isidori
in [29], where stabilization of non-minimum phase systems
by dynamic compensators is considered. The crucial as-
sumption imposed in the aforementioned work is that an
auxiliary system resulting from the interconnection with
the compensator is itself stabilizable by dynamic output
feedback. Later, [36] pointed out that this is equivalent to
using a compensator which provides a new output with re-
spect to which the interconnection has relative degree one.
The assumption then is that the internal dynamics of the
interconnection are stable. Extensions of this approach to
regulator problems have been studied in [30, 32, 35]. It
is an advantage of this approach that by using high-gain
observers the control objective can be achieved by output
feedback only. However, prescribed performance of the
original tracking error cannot be achieved, not even if a
funnel controller would be used in this framework, since
transient bounds for the new output given by the com-
pensator do not lead to transient bounds for the original
tracking error.

Last but not least, we like to mention the approach
presented in [20], where tracking for slightly non-minimum
phase systems is considered.
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In the present paper, we introduce a novel approach
to treat output tracking with prescribed performance of
the tracking error for uncertain linear non-minimum phase
systems with arbitrary relative degree. Similar to [16] we
define a new output for the system. However, our aim is
not to keep the relative degree as it is and stabilize the
internal dynamics, but to completely remove the unstable
part of the internal dynamics by increasing the relative
degree. The new output is a part of the former internal
dynamics, and a suitable redefinition of the reference tra-
jectory is necessary as well. To this end, we insert the orig-
inal reference signal into the part of the internal dynamics
which has been eliminated by the output redefinition. If
the internal dynamics have a hyperbolic equilibrium, then
it is possible to suitably adjust the initial value so that
the solution, which provides the new reference signal, is
bounded; this is different from the trackability assump-
tion in [16]. Under a mild assumption, we may also allow
for a non-hyperbolic equilibrium. We may then apply the
funnel controller for systems with arbitrary relative degree
developed in [1] to the system with new output and new
reference signal. We show that by a suitable choice of the
design parameters it can be achieved that the original out-
put stays within a prescribed performance funnel around
the original reference trajectory. As far as the author is
aware, another result on tracking with prescribe perfor-
mance for non-minimum phase systems is not available in
the literature.

We stress that a main feature of funnel control is that
it is model-free (only structural assumptions on the system
class are required, such as the minimum phase property)
and hence inherently robust. Moreover, it was recently
shown that even for higher relative degree systems funnel
control is feasible using output error feedback only, and
no derivatives of the output are required, see [5, 6]. These
features are partially lost when dealing with non-minimum
phase systems, where some knowledge of the system pa-
rameters and measurement of additional state variables is
required. The additional knowledge is used to construct
the new output and reference signal to which the funnel
controller is applied. Robustness with respect to a large
class of uncertainties is still retained.

Throughout this article, we use the following notation:
We write R>¢ = [0,00) and C_, (C;) denotes the set
of complex numbers with negative (positive) real part.
GI1,(R) denotes the group of invertible matrices in R™*"
and o(A) the spectrum of A € R"*™. By L£>(I — R")
we denote the set of essentially bounded functions f :
I — R™ with norm || f|jcc = ess sup,c;||f(¢)]]. The set
Wk:>o(I — R") contains all k-times weakly differentiable
functions f : I —R" such that f,..., f®) € £L®(I —R").
By CK(I —R"™) we denote the set of k-times continuously
differentiable functions, where k € Ny U {o0}.

1.1. System class

We consider uncertain linear systems given by
%(t) = Ax(t) + Bu(t) + d(t),
y(t) = Cult),

where A € R™*" and B,CT € R"*™, with the same num-

ber of inputs u : R>g — R™ and outputs y : R>g — R™,
and d : R>g — R™ accounts for possible disturbances and

z(0) = 2° € R™, 1)

uncertainties. We assume that (1) has strict relative de-
gree r € N, that is

CA*B =0, k=0,...,r—2, CA""'B € G1,(R),
CA*d()=0, k=0,...,7—2,

cf. [28], and that d € L>(R>¢ — R™). While adaptive con-
trol of minimum phase linear systems is well-studied, see
e.g. the classical works [8, 31, 33, 34], we stress that we do
not assume that (1) is minimum phase or, equivalently, its
zero dynamics are asymptotically stable, cf. [27]. The lat-
ter would mean that rk [Afc):ln Ig] =n+miforall A\ € C_,
see e.g. [25, 28]. As an important tool for the forthcom-
ing controller design we recall the Byrnes-Isidori form for
linear systems (1). By a straightforward extension of [25,
Lem. 3.5] (see also [28]) we have that, if (2) is satisfied,
then there exists a state-space transformation U € Gl,,(R)
such that Uz(t) = (y()T,9()7,..., s (O ,n1)T) ",
where 7 : R>g — R®™"™, transforms (1) into

VO = 3" Ray0(0) + Sn(t) + Tu(t) + d, (1),

n(t) = Py(t) +Qn(t) + dy(1),

where R; € R™*™ for i =1,...,r, §,PT € Rmx(n—rm)
Q € Rv—rm)x(n—rm) T .— CA""'B and (dI,dJ)T =
Ud. Furthermore, (1) is minimum phase if, and only if,
o(Q) C C_. The second equation in (3) represents the
internal dynamics of the linear system (1); if y = 0, then

these dynamics are called zero dynamics.

1.2. Control objective

To treat the non-minimum phase property of sys-
tem (1) the system parameters A, B, C need to be known,
at least partially, and additional components of the state x
need to be available to the controller; the required infor-
mation is made precise in Sections 2 and 3. For the time
being, assume that the measurement of a partial state
#(t) = Hx(t) is available, where H will be specified by the
presented controller design. We stress that the measure-
ment of the full state z(-) or knowledge of the full initial
value ° and the disturbance d(-) are, in general, not re-
quired. Therefore, the objective is to design a dynamic
partial state feedback of the form

Z(t) = F(tvz(t)a‘%(t)vyrcf(t));
u(t) = G(t, 2(t), £(t), yrer (t)),

where yref : R>9 = R™ is a sufficiently smooth reference
signal, such that in the closed-loop system the tracking
error e(t) = y(t) — yret(t) evolves within a prescribed per-
formance funnel

2(0) = 2Y,
(0) 0

Fo:={(t;e) e Rxo xR™ | o(t)]le]l <1}, (5)
which is determined by a function ¢ belonging to

©,9,...,¢") are bounded,
peC"(R>g = R)| ¢(r) >0 forall 7 >0,
and liminf, . (1) >0

D, =

Furthermore, all signals x,u,z should remain bounded,
even though (1) is non-minimum phase.



The funnel boundary is given by the reciprocal of ¢
as depicted in Fig. 1. In contrast to most other works on
funnel control, cf. e.g. [1, 24], we do not allow for the case
©(0) = 0, which would mean that there is no restriction
on the initial value since ¢(0)]/e(0)]] < 1 and the funnel
boundary 1/¢ has a pole at t = 0. For technical reasons,
we require that the funnel boundary is “finite” at ¢ = 0.

Figure 1: Error evolution in a funnel F,, with boundary ¢(t)~".

Each performance funnel F, with ¢ € ®, is bounded
away from zero as boundedness of ¢ implies that there
exists A > 0 such that 1/¢(¢t) > A for all ¢ > 0. The
funnel boundary is not necessarily monotonically decreas-
ing, which might be advantageous in several applications.
There are situations where widening the funnel over some
later time interval might be beneficial, for instance in the
presence of periodic disturbances or strongly varying ref-
erence signals. A variety of different funnel boundaries are
possible, see e.g. [22, Sec. 3.2].

1.3. Organization of the present paper

In Section 2 we discuss the crucial assumptions in our
framework for tracking uncertain non-minimum phase sys-
tems. These assumptions lead to the construction of a new
output, with respect to which the system has a higher rel-
ative degree than r, but the unstable part of the internal
dynamics is eliminated. In Section 3 the controller design
is presented, which is based on the funnel controller de-
veloped in the recent work [1]. The necessary redefinition
of the reference signal is discussed as well and incorpo-
rated in the controller. Feasibility of the control is proved
in Theorem 3.3. In Section 4 we calculate a bound for
the original tracking error, which can be adjusted to be as
small as desired by an appropriate choice of the design pa-
rameters. The developed controller is then illustrated by
a simulation in Section 5 and some conclusions are given
in Section 6.

2. Trackability assumptions

It is revealed in [16] that for tracking non-minimum
systems certain trackability assumptions are necessary. In
the following, we state the assumptions that are used in
the present paper. We stress that these assumptions are
much milder than the trackability assumption used in [16],
which essentially states that the equation

i(t) = Qn(t) + Pyrer(t)

must have a bounded solution 7 : R>¢g — R"~"™ for the
given reference trajectory yrer : R>9 — R™. Here, roughly
speaking, we only require this for the non-hyperbolic part

of the above equation. We make the following assump-
tions:

(A1) There exists T' € Gl,_,,(R) and ¢ € N such that
5, N

Q; TP — P 6

Q| P’ (6)

where QL € Rkxk (), € REXtm () ¢ Rimxtm P ¢
RF*™. P e R | = n —rm —fm > 0 with
(1) CC_ and

o [@
TQT _[0

[P,QP,...,Q" 'P] € Gl (R), (7)
and the disturbance satisfies
Vt>0: [0, Im]Td,(t) € im P. (8)

(A2) Let yror € W1°(Rsg — R™) be a given reference
signal and W € Glg,,, (R) be such that

- Ql 0 0 B P1
WOQWl=|0 Q 0|, WP=|P]|,
0 0 Qs Ps

where Q; € RF>Fi | j = 1,23, and 0(Q1) C C_,
0(Q2) C C4 and 0(Q3) C iR. Then the equation

n3(t) = Q3n3(t) + Psyrer(t), 13(0) =0
has a bounded solution 13 : R>¢ — RFs.

We will frequently choose the smallest ¢ such that (A1) is
satisfied.

Remark 2.1. (i) We like to give a motivation for assump-
tion (Al). Basically it states that the unstable part of the
matrix @ in the Byrnes-Isidori form (3) is completely con-
tained in the matrix Q which, together with P, satisfies the
condition (7) that will be explained in more detail later.
Note that @ may contain some of the stable eigenvalues
of Q. Furthermore, we stress that the zero block in TQT !
in (6) imposes an additional condition on ) which is not
automatically satisfied, because Q must be of size ¢m x {m,

where m is given. As an example where such a decompo-
—110

sition is not possible consider ) = {—1 -1 0} and m = 2,

where the eigenvalues of Q are given by {—1,—1,1}. Then
the only possible choice for ¢ would be ¢ = 1, but a de-
composition (6) is not available in this case.

(ii) In the case of single-input, single-output systems we
have m = 1 and hence in condition (A1) it is always pos-
sible to find a decomposition (6) with ¢(Q) C C, for
some ¢ € N. However, in order to satisfy the invertibil-
ity condition (7) in may be helpful to choose a larger ¢,
but then a decomposition (6) may not necessarily exist,
cf. the example given in (i) above.

(iii) If the internal dynamics of (1) have a hyperbolic equi-
librium, i.e., o(Q) NiR = @ it follows that k3 = 0. There-
fore, assumption (A2) is always satisfied in this case.

(iv) One may wonder whether, instead of assuming (A1)
and (A2), it could be possible to simply assume that
the pair (A, B) is stabilizable and a apply a feedback
u(t) = Fx(t) + v(t), where v is the new input, so that
o(A+ BF) C C_. However, this does not necessarily re-
sult in a system which is minimum phase. As a counterex-
ample consider (1) with A = [91], B = [}], C = [1,0]



and d(-) = 0. Then assumption (Al) is satisfied and the
system is controllable. However, for any (stabilizing) feed-
back u(t) = fix1(t) + fox2(t) + v(t) the resulting system

(o)=L 3 G) oo

is in Byrnes-Isidori form with y = x; and n = z9, but
is not minimum phase since ¢ = 1. Thus, a controllable
system cannot be rendered minimum phase by a suitable
choice of feedback in general.

In the following, choose the smallest £ € N such that
assumption (A1) is satisfied. With the decomposition of @
as in (6) we may further transform the system from (3)
using Tn = (n{,ng )" with 9y : Rsg — RP=mm=m gy
R>0 — Rém into

ZRy(z 1)

n(t) = Q1771( )+ Qama(t) + Py(t) + do, (¢),
n2(t) = Qna(t) + Py(t) + do, (1),
where [S1, 53] = ST~! and (d,) ,d,),)" = Td,.

Based on this, we define a new output for system (1).
Invoking (7), set

(t)+S1m1(t) +Samz (t) +Tu(t) + d.(t),

(9)

K:=10,...,0,T7Y[P,QP,...,Q" ' P]7! e Rmx*/m
(10)
and observe that this implies
KP=KQP=..=KQ"?P=0, KQ"'P=T"".

It is a straightforward calculation that the condition (8)
on the disturbance is equivalent to Kd,,(-) = KQd,,(-) =
... = KQ'?d,,(-) = 0. Therefore, the linear system
2(t) = Qz(t) + Pa(t) + dy, (1), §(t) = Kz(t) has strict
relative degree (. In view of (8), let 6 : R>g — R™ be
such that P§(t) = d,, (t) for all t > 0; it can be calculated
that & = TKQ'™ 1dn2 is uniquely determined. For later
use, we record that it follows from [25, Lem. 3.5] that

K
KQ
. S Glgm(R). (11)
KQ.Z—I
As new output for system (1) we now define
Ynew () 1= Kna ().

(
We show that system (1) with the new output as in (12)
has strict relative degree r + ¢. Assume that § €
W (R>¢ — R™) and observe that

12)

Ynew (t) K~ 0
ynew (t) KQ .
: = o+ | (wt) +6(1)),
O I o
yih () KQ'

hence it follows from (1
Rfm*m guch that
¢

1) that there exist Fiy,...,Fp €

m(t) =) FiylaH ),
y( ) new + Z FKQZ ’L ynew )(t) - J(t) (13)

Therefore, invoking (9) it follows that

B+ TRIyET (1)

i=1

£
Yt (1) = *Z KQFyli Mt

+ZZT "RITKQ Fy yliti =) (1)

lel

+ Z D18, Fyy UV (8) 4 Suma(t) + u(t)

i=1
+ Y TR () + T (8N (1) + do (1)
i=1
and by some straightforward simplification we obtain

r+L

Z Ry (1)
+ Z D6 V() 4T~
=1

l+1

Z Pyl D (t)

for some R;,D; € R™ ™ 4§ = 1 ... r+ { and Pj €
R(n—rm—tm)xm 5 — 1 ¢4 1. Note that the unstable
part of the internal dynamics of (1), represented by Qs
and @3, has been completely removed in (14) by using the
new output as in (12).

(7"+€)

ynew

+ S (t) + u(t)
LU () + dn (1)), (14)

)+ Qumn (1) + dy, (1),

Remark 2.2. The determination of the new output (12) is
related to finding a so called flat output for the subsystem
M2 (t) = Qna(t) + Py(t) + d,, (t) of the internal dynamics
as represented in (9), where y is viewed as the input of
this subsystem. Recall that all state and input variables
can be parameterized in terms of a flat output, if it exists,
see e.g. [14]. While for linear systems as discussed here
this is straightforward, cf. (13), appropriate results from
the theory of differentially flat systems may be helpful for
an extension of the results derived in the present paper to
nonlinear systems.

3. Controller design and feasibility

In this section, we propose a novel and simple funnel
controller which achieves the control objective. To this
end, we will use the recently developed funnel controller
from [1] and apply it to the system (1) with new out-
put (12). In order for this to work, since the output has
been redefined, tracking requires an appropriate redefini-
tion of the reference signal as well, so that in the end
the original output tracks the original reference trajectory
with the desired behavior. By the construction of the new
output in (12), the new reference signal is generated by
the corresponding subsystem of (9) when the original ref-
erence signal is inserted for the original output and the
disturbance (which is unknown) is ignored, i.e.,

772,ref(t) = Qn2,ref(t) + Pyref(t)a 772,ref(0)
gref (t) = K772,ref (t)

We show in the following that if yer € W™ H®(R>o —
R™), then by assumption (A2) and an appropriate choice

_ .0
772,ref7 (15)



of the initial value 79 ., we may achieve that the deriva-
(@)

ot are bounded for

tives of the new reference signal g
1=0,...,7+ /.

Lemma 3.1. Let yrof € WL (Rsg — R™), assume
that (A2) holds and use the notation given there. If

Okl X ko o
0 _ -1
N2 ref = w 71/62
Ok‘3 X ko

e_stngref(s) ds, (16)
0

then the initial value problem (15) has a unique global so-
lution such that fref € W (Rso — R™).

Proof. Recall the decomposition of WQW ! and WP
from (A2). First note that (16) is well-defined since yyct
is bounded and o(—Q2) € C_. Furthermore, the initial
value problem

Zl(t) = lel(t) + Plyrcf(t)7

has a unique global solution which satisfies 2z; €
W (Rsq — RIm=k2=ks) Tt follows from (A2) that

23(t) = Q323(t) + Payre(t),

has a unique global solution which is bounded. Succes-
sively taking the derivative of z3 and evaluating the dif-
ferential equation gives that zz € W™ (R>q — RF2). Fi-
nally, to show that

Z2(t) = Q222(t) + Payret (1),

2(0) = — / ¢ Py or(s) ds,
0

Z1 (0) = O,

z3(0) = 0,

has a bounded and unique global solution, although
0(Q2) C C,, we use the following straightforward result
for linear systems: For A € R™*™ with ¢(4) C C; and
B € RV™™ 4 € L2%R>q — R™), 2° € R" there exists
r € WH*(R>o — R") which solves i(t) = Axz(t) + Bu(t)
with z(0) = 20 if, and only if, 2° + fooc e~ 4% Bu(s)ds = 0.
Therefore, we infer zp € W™ (R — RF2).

Now, we have that mo,er = W1(2],29 ,24 )"
similar to Section 2, we may derive that

3t = KQ'na et (1) + T et (1),

and hence it follows that ¢, € WT+Z’°°(R20 —R™). O

and,

The computation of ng’ref in (16) requires the knowl-
edge of yref(t) for all ¢ > 0, hence it is an acausal problem
which may impose a challenge in applications. However, a
large class of reference signals can be generated by linear
exosystems (as in linear regulator problems, cf. [15]) of the
form

w(t) = Acw(t),

where the parameters A, € RF*F C, € R™** and w® € R¥
are known, and o(A.) C C_ so that any eigenvalue
A € o(Ae) NiR is semisimple; this guarantees yer €
Wr=Leo(Rsy — R™) as required in (A2). In fact, by a
Fourier series argument, on any interval of interest we may
approximate any given y¢ arbitrarily good by a exosys-
tem (17), when k is large enough. We show that then nJ
can be computed using the solution of a certain Sylvester
equation.

Yret (1) = Cow(t), w(0) =w°, (17)

Lemma 3.2. Consider the exosystem (17) with out-
put Yret, assume that (A2) holds and use the notation given
there. Then the Sylvester equation

Q22X — XA, = PC. (18)

has a unique solution X € R*** and 03 ¢ as in (16) is
given by

Ok x ks

—Ip, | Xuw'. (19)
Ok x ko

Proof. Since o(A.)Na(Q2) = 0 it follows from [10, Thm. 1]
that the Sylvester equation (18) always has a unique so-
lution X € R¥2XF. Now, in view of yf(t) = Coedetw?,
using integration by parts we find that

0 _ -1
772,1"ef =W

o0 o0
/ —Qge_stPgCeeAesds—i—/ e~ Q5P CLe et A ds
0 0

= [eiQQSPQCeeA"‘S]OO

0o — _PQCev

where the latter equality follows since s — e?<® is bounded
and lim,_,o, e~92% = 0. This equation is of the form (18),
and uniqueness of X gives

X:/ e~ @25 PyCe?eds.
0

Invoking (16), this implies (19). O

Note that the Sylvester equation (18) can be solved in
MATLAB using the SYLVESTER command for instance.

The generator (15) of the new reference signal will now
be incorporated as a dynamic part into the controller de-
sign and the funnel controller from [1] will be applied to
system (1) with new output ynew as in (12). The final
controller design is of the form (4) and given by:

hQ,ref(t) 2 ref(t) + Pyref(t)a n2,ref(0) = ng,refa
yref(t) = K772 ref (t)
€o(t) = Ynew(t) = Jret (1),
ex(t) = éo(t) + ko(t) eo(t),
ea(t) = éx(t) + ki (t) ea(2),
6r+e—1(t)::ér+e—2(t)**kr+e—2(t)6r+e—2(t%
ki(t) = 1—%—(1&) e =0
u(t) = —krye-1(t) erpo-1(t),
(20)

where the initial value 77(2)7ref is as in (16) and the reference
signal and funnel functions have the following properties:

Yref € WT'_LOO(RZO — Rm)a

(21)
00 € Prie, 1 € Py, .-

, Pryo—1 € .

The construction of the funnel controller (20) is summa-
rized in Fig. 2

We stress that the derivatives éq, ..., é.4¢—2 Wwhich ap-
pear in (20) only serve as short-hand notations and may
be resolved in terms of the virtual tracking error ey, the
funnel functions ¢; and the derivatives of these, cf. [1,



|d € L%(Rxo — R")l

|

i(t) = Ax(t) + Bu(t) + d(t)

Compute (3)

y(t) = Cx(t)

Compute K in (10)

K

N
Y

Y1) = 37 R0 0) + Sn(t) + Tut) + (1)

n(t) = Py(t) + Qn(t) + dy(t)

Check (A1)-(A3)

obtain (Q, P) with

apply Ynew (1) = Kn2(t) [¢

ia(t) = Qua(t) + Py(t)

Compute 73 ¢ in (16)

Controller (20) ¢

|<,9ie<1>r+z,i, i:O,..,,r+€—1|

ﬁ?,ref'(t) = Qn2,ref(t) + f)yref’(t% 772,ref(0) = ng,ref

gref (t) = Kn?,ref (t)
1

|yref € WL (Ryg — Rm)|

Figure 2: Construction of the funnel controller (20) depending on its design parameters.

Rem. 2.1]. For (20) to be robust, it is necessary that
€0,---,€r+e—2 can be obtained from measurements inde-
pendent of the disturbance. However, by (13) the deriva-
tives yr(f;)w, . y“Hfl) depend on 4,4, ...,87=1. There-
fore, since r > 1, we need to require that § = 0 and hence

(A3) 0=d,,(-) = [0, Ien]T0, In_rm]UA(:).

This assumption essentially means that the unstable part
of the internal dynamics of (1) is not affected by the dis-
turbance. The controller structure is depicted in Fig. 3.

The application of the controller (20) to the linear sys-
tem (1) with new output as in (12) results in a nonlinear
and time-varying closed-loop differential equation in gen-
eral, defined on a proper subset of R>g x R*™™ due to
the poles introduced by k;. Hence, some care must be
exercised with the existence of a solution of (1), (20), by
which we mean a weakly differentiable function (z, 72 rer) :
[0,w) — R ™ () € (0,00], which satisfies the initial con-
ditions and differential equations in (1), (20) for almost all
t € [0,w); (z,m2ref) is called mazimal, if it has no right
extension that is also a solution.

Concluding this section, we show feasibility of the novel
funnel controller design (20), which is one of the main
results of the present paper.

Theorem 3.3. Consider a linear system (1) which sat-
isfies (2) and assumptions (A1)-(A3). Let £ € N be the
smallest number such that (A1) is satisfied. Further let
Yrefs P0s - - - Prav—1 be as in (21) and 2° € R™ be an ini-
tial value such that ey, ..., eryo—1 as defined in (20) satisfy

0i(0)]le;(0)|| <1 fori=0,...,r+£€—1.

Then the controller (20) applied to (1) yields a closed-
loop system which has a unique global solution (x, M2 ref) :
[0, 00) — R ™ with the properties:

(i) all  involved  signals — x(-),
ko(-), ..  krre—1(-) are bounded;

(ii) the errors evolve uniformly within the respective per-
formance funnels in the sense

772,ref('); u();

Vi=0,....r+0—13g;>0Yt>0:

Jest) < gty —er

Proof. By assumptions (2), (Al) and (A2) and the calcu-
lations made in Section 2 we find that system (1) with
new output (12) is equivalent to (14) and, in particular,
it has strict relative degree r + £. Since o(Q1) C C_,
0 = 0 by (A3) and d,,d,, are bounded it is straight-
forward to see that (14) belongs to the system class dis-
cussed in [1]. Furthermore, the new reference signal {f
generated by (15) satisfies grer € WX (R5o — R™)
by Lemma 3.1. Therefore, we may apply [1, Thm. 3.1]
to (1) with new output (12) and new reference signal Jyef,
which implies the statements of the theorem, except for
uniqueness of the solution (x, 12 ref). However, the latter
follows from the theory of ordinary differential equations,
see e.g. [42, § 10, Thm. XX], since the right-hand side
of the closed-loop differential equation is measurable and
locally integrable in ¢ and locally Lipschitz in the other
variables. O

Remark 3.4. We like to emphasize that the con-
troller (20) depends on the initial 79 . which must be com-
puted as in (16) in order to obtain fyef € W2 (Rsg —
R™) so that the control is feasible. If a small error is made
in this computation, say ﬁg,ref = ng,ref + £ is computed,
where £ € R“™ with ||£|| < e for some & > 0, then . may
not be bounded, and hence the controller does not provide
a bounded global solution in general (although a global so-
lution still exists). The reason is that the unstable part of
the internal dynamics may amplify the error, i.e., we have
(with Q = Q, and P = P, for simplicity), no(t) = p(t) +
e@'E, where p(t) = €' ¢ + fot eQ2(t=9) Pyyy 4 (s) ds is
bounded by Lemma 3.1, but ¢ + e?2*£ grows unbounded.
One possibility to resolve this is to recalculate the value
of n9 ..+ as in (16) at discrete time points ¢, = nT for
n € N and fix T > 0. If the error 715 rot = N3 ref + En made
cach time satisfies ||€,|| < e, then the correction term is
bounded,

VneNVte [nT,(n+1)T]: He%(t*"T)EnH < ell@z2ITg,

and hence 7 and ¢ are globally bounded; note that this
is independent of the choice of T > 0 and € > 0, and
the latter does not even need to be known. Therefore,
accordingly restarting the funnel controller (20) at each



Yref (t)
IW\
d(t)l y(t)
u(t) &(t) = (t) + Bu(t) + d(t) ynew(t) 7.72:rcf(t) i Qn?,rcf(t) + P?/rcf(t)
(t) = OCE(t) yref(t) = KUZ,ref(t)
ynew(t) - K772 (t) 772,rcf(0) = ngﬁref as in (16)
:’)ref (f)
+
Funnel Controller| o ()
from [1] i ~

Figure 3: The funnel controller (20), indicated by the grey box, applied to system (1) with new output as in (12). The controller consists of
the generator of the new reference signal (15) and the funnel controller developed in [1].

time ¢, = nT and ensuring that ¢;(t,)]lei(tn)]] < 1 is
satisfied fori = 0,...,r+/¢—1, n € N, guarantees existence
of a global bounded solution of the closed-loop system such
that (22) is satisfied; this relies on estimating the input by
the global bound derived in [1, Prop. 3.2] on each interval
[nT, (n+1)T)] using the uniform bound for ¢, from above.

We stress that Theorem 3.3 does not provide a bound
for the original tracking error e(t); this will be discussed
in the subsequent section.

4. Transient behavior of the original tracking error

In this section we provide a bound for the transient
behavior of the tracking error e(t), which may be calcu-
lated a priori and can be adjusted using the funnel func-
tions g, ...,pe. To obtain a reasonable bound we first
need to improve the estimate (22) in the sense that at
each time ¢ > 0 we need to find “the best” ¢;(¢) such that
lle:(®) < @i(t)™! — &i(t); still ensuring that &;(-) can be
calculated a priori. One possible choice for (constant) ¢; is
provided in [1], but this choice is far from being optimal.
In the following we derive an improvement of this.

To this end, use the notation and assumptions from
Theorem 3.3, and set v;(t) := ;(t)~* for all t > 0 and all

’L:O 7"+€—1 Then by( ), %‘ :REO —>R>0
is contmuously differentiable and 1/Ji is bounded, i =
0,...,7+ ¢ — 1. Consider the initial value problems

. : w<>(¢z<>—a( )

i(t) = ¥i(t) = Vit )

€i(0) = i(0) — [[e:(0)]]

fori =0,...,74+ ¢ — 2. In the following result we show
that (23) indeed has a unique global solution and provide
some bounds for it.

Lemma 4.1. Use the notation and assumptions from The-
orem 3.3. Set

i 1= gg Y (t) >0

ki = [Yit1 — Yilloo,
. 22

- mm{m,wm - Hez—<o>u} >0

O} =0

i=0,...,r+0—1,

1=0,...,7+€—2,

€4, min

e i 4 Ait1Ae
€i,max *= mm{ T A

Then, for all i = 0,...,
lem (23) has a unique global solution €,
satisfies

r + ¢ — 2, the initial value prob-
:R>p — R that

VE> 05 imim < ei(t) < ¥i(t) (24)

— &{,max-
Proof. Since the right hand side of the differential equa-
tion in (23) is measurable and locally integrable in ¢ and
locally Lipschitz in €; (as a function defined on the rel-
atively open set { (t,6) ER>o xR | e >0 }), it follows
from the theory of ordinary differential equations, see

g. [42, § 10, Thm. XX], that (23) has a unique maxi-
mal solution ¢; : [0,w) — R with w € (0, o], such that ¢;
is weakly differentiable and €;(¢) > 0 for all ¢ € [0,w). Fur-
thermore, the closure of the graph of ¢; is not a compact
subset of { (t,e) € Rsg xR | ¢ >0 }. It remains to show
w =00 and (24).

We first show that &; min < &(t) for all ¢ € [0,w).
Seeking a contradiction assume that there exists t; € [0,w)
such that 0 < €;(t1) < €; min. Since €;(0) > &€; min there
exists

to = max{ t e [O,tl) | Ei(t) = €4,min },

and we find that ;(t) < ; min for all ¢ € [tg,t1]. Then it
follows that

&(t) = ¢z(t) —hi1(t) + Pi(t) (w;a(fgt) €¢(t))
2~k + 2;72 - % >0

for almost all ¢ € [to,t1]. Therefore,
€imin = €i(t0) < €i(t1) < €i min,

a contradiction.

Now we show that €;(t) < 9;(t) — €;max for all t €
[0,w). Again seeking a contradiction assume that there
exists ¢1 € [0,w) such that g;(t1) > ;(t1) — Since
€i(0) = 4i(0) — [[es (0) ]| < ¢4(0)

tg = max{ t e [O,tl) | Ei(t)

€4, max-
— €i,max there exists

= (1)

Then it follows that €;(¢t) > ¥;(t) — € max >

— €i,max } .

Ai
5 for all



€ [to,t1] and hence
/(/) ( )(wz< ) _52( ))
261'( )

iloo €i,max ]
[illoe St <

Therefore, Ei(tl) — Ei(to) <

i(t) = i) — Yipa (t) +

< Pi(t) — Nir +

for almost all ¢ € [to,t1].
’(ﬂi (tl) — 1% (to) which gives

= i(to) — €i(to) < ¥i(t1) — €i(t1) < €imax;

a contradiction.

To see that w = oo, assume w < oo which, invoking
€imin < €;(t) < i(t) —€imax for all t € [0,w), implies that
the closure of the graph of the solution ¢; is a compact sub-
set of { (t,e) € R>o xR | £ >0 }, a contradiction. O

€i,max

Note that in (24) it is possible that €; max = 0, which
is the case if, and only if, ¢;(0) = 0.

Example 4.2. We illustrate a typical situation, where
the funnel functions 9;(-) = ¢;(-)~! are of exponential
decreasing form ;(t) = a;e " + ¢;. Here we choose

¥o(t) P1(t) = 27 4 0.02,

and ||e;(0)|| = ¥0(0)/2 = 0.55. The solution g; of (23) for
1 = 0 is depicted in Fig. 4.

=e 2 40.1,

N Po(t) — £o(t)

Figure 4: Solution g9 of (23) for i = 0.

Using the solutions of (23) we may now improve the
estimates (22) from Theorem 3.3.

Lemma 4.3. Use the notation and assumptions from The-
orem 3.3. Let (x,Maref) : R>g — R™™ pe the solution

of (1), (20) and let ; : R>g — R be the solution of (23)
fori=0,...,7r+£€—2. Then we have that
Vi=0,...,7+£—=2Vt>0: |le;(t)] < ¢i(t)—ei(t). (25)

Proof. Let i € {0,...,r + ¢ — 2}. Seeking a contradic-
tion assume that there exists t; > 0 such that |le;(¢1)]] >
i (t1) —e;(t1). Since we have £;(0) = ¢;(0) — ||e;(0)]| it fol-
lows that to := max{ t € [0,¢1) | |les(t)|| = i(t) — &i(t) }
is well defined. Therefore,

(24)

||ez(t)H > ql)z(t) - E’L(t) 2 Ei,max 2 0»
1 ()2

X OHE O] AT Ol PO
Wilt) vit)
= 30 — @) = 220

for all t € (to,t1]. Hence we find that by (20)
sarlle®® = —ki(®)llea®)]* + eira(t) "ei(t)

< (- 28 (i) - ) + 41 0) e

(23) (s(t) — (1) les (@) |

for almost all ¢ € (to,t1]. Then we have

t1
lei(t)ll = llei(to)ll = /t slles @ g llea(t)]1* dt
0

< / 1 (Wi(t) — &i(t)) dt

= (¢i(t1) —&i(t1)) — (vi(to) — eilto)),
and thus
0 = vhi(to)—ei(to)—[lei(to) || < Pi(t1)—ei(tr)—llei(t1)]l <O,
a contradiction. O

Remark 4.4. We like to emphasize that the estimate (25)
also holds for the class of general nonlinear systems of
functional differential equations considered in [1] and the
proof is the same as given above. This improves the result
of [1, Thm. 3.1].

In the following we utilize the estimate (25) to obtain
a bound for the original tracking error e(t). To this end,
we need to introduce some additional notation which is
motivated by [1, Prop. 3.2]. Let eq,...,&r4¢—2 be the so-
lutions of (23) and fix ¢ > 0. Set N, o(t) := ¢;(t) for

1=0,...,7+£—1 and
N; ot
Kiﬁo(t) = ’0( ), Mi’o(t) = Ni’o(t)Kiyo(t)
&i(t)
fori=0,...,r+/¢—2. Define, fori =0,...,r+¢—2 and
j=0,...,r+£€—i—1,
N; j(t) == Niy1,;-1(8) + M, ;-1 (),
Lio(t) == Nipo(t)?,
j—1
=2 ( 1 U l(t)
1=0
P; () _(Pz(t)27
l
—22 U @ e @),

¥ii(t) = %(‘I’z‘,O(t)Li,Hl(t)+‘1’i,1(t)Lz‘,j (t)+®;;(t)Li(2)

+ Li,o(t)‘pi,j+1(t)>

=l
+Z (7, < 0 (t Z () Nity (O)Ni -ty 1, (t)

=1 l2=0

l1
Lo, () > ()l )] |¢§“2><t>> ,

lo=0
Kij(t) := K;o(t)*i j-1(t)
=1 1—1

+Y > OBt —1 (O K1 (DK, 1,1 (1),

M () == () Kia()Niji(1).



Finally, set
k—l(t) = Oa

: 26
) :ZMj’i_j(t) fOI‘ ’L:O,7T‘+£72 ( )

We stress that Kz depends only on g, ...,¢;+1 and the
initial errors eg(0),...,e;(0), and it is always possible to
shape the funnel boundaries 1y, ..., ;1 accordingly to

achieve that K; is as small as desired. To illustrate this,

we calculate that Ko = 11;0((2) and

)+
@1

Y1 (t)? 2%( \<Po(>|
() eo(t)?

Now, we see that Ko(t) and K(t) are small provided

that 1o(t),¥1(t),|9o(t)] and the ratios fg((:)), ?11((:)) are
small.

Note that &; depends on t;, ;11 and |le;(0)]|
by (23). Investigating the behavior for large times ¢,
we find that for typical funnel functions (or, least, they
may be designed in this way) we have that ¢z(t) ~ 0,
¥;(t) = A; and 1;11(t) & A\;11, where we use the notation
from Lemma 4.1. As a consequence, from (23) we obtain
that

Ki(t) = M01t Mlo()

. )\z(/\z — €i(t)) (2)\i+1 + )\,‘)81@) — )2
i(t) = = =- :,

ilt) T 24,(1)

which is solved by &;(t) = %i\%’ thus ¢; is approxi-

mately equal to this constant for large ¢t. Therefore, we

have
i)  Ai(2hip1 + i) _ 2din
e’:‘z‘(t) /\12 /\z
As a consequence, if A\;jy; < BA; for some 5 > 0 and
allt =0,...,7r + ¢ — 2, then we may guarantee that the

ratios f((:)) stay below some a priori known constant for

+ 1.

large ¢ and hence, in order to make K;(t) smaller it is
indeed sufficient to make Ag, . .., A;+1 smaller in a way that
Aj+1 < BA; is still guaranteed for j =0,...,14

In the example above, choosing g (t), ¥ (t) small with
A1 < BXo and Ay < BA; while keeping |¢o(t)| small (for ¢
large enough) establishes any desired quantity for Ko(t)
and Ki(t).

Theorem 4.5. Use the notation and assumptions from
Theorem 3.3. Let (x,1M2 vet) : R>0 — R™™ pe the solution

of (1), (20). Then the original tracking error e(t) = y(t)—
Yret (t) satisfies
41 R
VE>0: et <D ai(via(t) + Kioa(t),  (27)
i=1
where o; = HFKAQZFiH for F; as in (13), i = 1,...,¢,
ot = ||| and K; is as in (26), i = L0—1.

Proof. By (13), and a similar equation for yef in terms
of grer, both with § = 0 by (A3), we find that

l
e(t) =Tel)(t) + Y TKQ Fel (1)

i=1

for all ¢ > 0. Inequality (27) now follows from [I,
Prop. 3.2], where we use a straightforward extension of
this result here: Instead of using the estimate (22) with
constant €; we use (25) with the solutions ;(-) of (23) and
instead of taking the supremum norm of ; and cpl(j ) in
the definition of IAQ we use the values at each ¢ > 0. The
modification of the proof of [1, Prop. 3.2] is obvious and
omitted. O

We like to highlight that it is a consequence of inequal-
ity (27) that indeed the controller (20) achieves prescribed
performance of the tracking error e(t) = y(t) — yret(t)
for (1), ie., [le(®)] < @()~! for all ¢ > 0. Given
any ¢ € ® such that ¢(0)]|e(0)|| < 1, we may always

choose @, ..., pr1e—1 satisfying (21) such that
£+1 A
VE>0: Y (e () + Kia(t) <e(t)7!, (28)
i=1

since, as illustrated above, it can be achieved that K; is as
small as desired. For instance, if r = ¢ = 2 and ay, as, as
as in Theorem 3.3 are given and, for simplicity, we assume
that ep(0) = e1(0) = 0, then we may choose constant
Y = w;l = )\;1, 4 =0,1,2, such that \; < 8\q for some
B > 0. In this case, the initial value problem (23) is given
by

(A1 + Ay)e () = A3
2¢;(t)

g(t) =—
2
for j = 0,1. Since€;(0) = —\;11 < 0and &;(¢t) = m]:\ﬁ
is the equilibrium solution, a simple analysis reveals that ¢
is strictly monotonically decreasing with lim;_, €;(t) =
A2
2/\]+1+,\
Ko( ) <2A1 + X < (26 + 1))\0,
2(221 4+ o) (A1 + Xo) (41 + 3Xo)
A3
<2028+ 1)(B+1)(48 + 3)Xo + A1 + 2Xa.
Then, we find that [e(t)|| < ¢(¢)~! holds for all ¢ > 0, if
Ao, A1, A2 are chosen small enough so that the inequality
a1 o + az (A1 + (28 + 1)Xo)
+ a3 (3 +A1+2(28-+1)(B+1)(48+3)A0) < inf o)™t

Therefore, we obtain

Ki(t) < + A1+ 2)2

is satisfied.

Remark 4.6. We stress that a general construction
formula for ¢q,...,@.4e—1 such that (28) holds for a
given ¢ € @ is not available yet. Further research is neces-
sary to find a suitable way for handling K; in (28), which
depends on o, ...,p;+1 and eg(0),...,¢e;(0). Neverthe-
less, the design parameters may be appropriately adjusted
with the help of offline simulations.

5. Simulations

We illustrate the funnel controller (20) by means of a
modified linear version of the example discussed in [12].
To this end, consider a system (1) with

-1 1 0 O 0
A: |: (1) 63 —02 (1) :| 9 B: |:(2):| ) C: [1707_3a0]7
0o 0 3 -1 0



and d = (0,d2,0,ds)" € L(R>q — R*), which has strict
relative degree r = 2. The initial value is chosen as 2% = 0
and the reference trajectory as

(1 — cost),
0,

t € (0,27,
Yret () = { t> [27'(. |
Clearly, we have yof € WH(R>0 — R). As disturbances
we consider

da(t) = 5 sin(5t) + cos(8t),
for t > 0. In order to determine the new output as
in (12) we need to transform the system into Byrnes-Isidori
form (3). With n; = x4 and 12 = 23 this form is given by

dy(t) = sin(6t) + 1 cos(4t)

§(t) = —18y(t) — Ty(t) + m(t) — 24m2(t) + 2u(t) + da(t),
m(t) = —m(t) + 3na2(t) + da(t),
m2(t) = n2(t) + y(t).

It is now easy to see that assumption (A1) is satisfied
with the choice £ =1 and Q = P = 1, assumption (A2) is
satisfied since ks = 0, and assumption (A3) is satisfied as
6 = 0. Hence, K as in (10) is given by K = TP~ = 1
and the new output (12) is ynew (t) = 372(t) = 1x3(t). The
initial value ng7rcf as in (16) needed for the controller (20)
can be computed as

1069

2w
0 —s
=— 1- ds = ——~.
772,1rcf /0 e ( COSS) S 238

The funnel functions are chosen as
o1 (t) = (2672 +0.01) ",

olt) = (e72 +0.01) 7",

pa(t) = (2671 +0.01) ",

and clearly (21) is satisfied and the initial errors
€0(0),e1(0), e2(0) lie within the respective funnel bound-
aries. Therefore, feasibility of the controller (20) is guar-
anteed by Theorem 3.3.

The bound (27) for the original tracking error e = y —
Yret as given in Theorem 4.5 reads as follows:

le(t)]] < arho(t) + ao (1 (t) + Ko(t)) =: U(t), t >0,

where ;(-) = ¢;(-)~! for i = 0,1. Clearly, az = |T'[| = 2
and we calculate that a; ITKQF;|| = 2. Then we

obtain that
where ¢ is the solution of (23) for i = 0.

The simulation of the controller (20) applied to sys-
tem (1) over the time interval [0, 10] has been performed
in MATLAB (solver: odel5s, rel. tol.: 1078, abs. tol.:
10~7) and is depicted in Fig. 5. Fig. 5a shows the original
output y, the reference signal y,ef and the bounds y,er £ ¥
for the output. The states are depicted in Fig. 5b and the
input in Fig. 5c. It can be seen that, even in the presence
of the disturbances, a prescribed performance of the track-
ing error can be achieved with the funnel controller (20),
while at the same time the generated input is bounded and
shows an acceptable performance as well.

Po(t)?
€o (t)

le(t)] < w(r) =2 (%(t) ) +

10

10

0 2 4 6 8

Fig. 5b: States
5 r
0 k
-5
-10
-15
u(t)
-20 . . . . !
0 2 4 6 8 10

Fig. 5c: Input function
Figure 5: Simulation of the controller (20) for system (1).

6. Conclusion

In the present paper we proposed a novel controller
for achieving tracking with prescribed performance of the
tracking error for uncertain linear non-minimum phase sys-
tems. Our approach is based on the construction of a new
output for the system given by (12) to which the recently
developed funnel controller from [1] is applied. To guaran-
tee feasibility a new reference signal needs to be calculated
as well, which is given by the solution of (15) with initial
value (16). Approximating the reference signal (on an in-
terval of interest) by an exosystem of the form (17), we
may compute the latter initial value via the solution of a
Sylvester equation. The resulting controller (20) is shown
to be feasible in Theorem 3.3, independent of the distur-
bance d. Bounds for the original tracking error have been
derived in Theorem 4.5. It has been shown that, by appro-
priately designing the funnel functions, these bounds can
be adjusted to be as small as desired. At the same time,
the input u generated by (20) remains bounded.

We stress that some features of funnel control (see
e.g. [1, 6, 24]) are lost with this approach: The con-



troller (20) is not model-free in general, since knowl-
edge of Q and P is required to determine the new out-
put (12) and the new reference (15). Furthermore, mea-
surement of v,7, ...,y Y is not sufficient, but it is re-
quired that additional state variables can be measured so
that Ynew Unew, - - - ,yr(@jf*l) are available to the controller.
However, knowledge of the full initial value 2° and the dis-
turbance d(-) are not required, cf. Section 1.2.

While the controller design (20) is robust with respect
to disturbances satisfying (2) and (A3), further research is
necessary to extend this class.
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