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Fault tolerant funnel control for uncertain linear systems
Thomas Berger

Abstract—We study adaptive fault tolerant tracking control for uncer-
tain linear systems. Based on recent results in funnel control and the
time-varying Byrnes-Isidori form, we develop a low-complexity model-
free controller which achieves prescribed performance of the tracking
error for any given sufficiently smooth reference signal. Within the
considered system class, we allow for more inputs than outputs as long as
a certain redundancy of the actuators is satisfied. An important role in
the controller design is played by the controller weight matrix. This is a
rectangular input transformation chosen such that in the resulting system
the zero dynamics, which are assumed to be uniformly exponentially
stable, are independent of the new input. We illustrate the fault tolerant
funnel controller by an example of a linearized model for the lateral
motion of a Boeing 737 aircraft.

Index Terms—Linear systems, fault tolerant control, model-free con-
trol, funnel control, relative degree.

I. INTRODUCTION

Being able to handle system uncertainties and, at the same time,
failures or degrading efficiency of actuators is an important task in
the design of control techniques. There are basically four different
research directions in fault tolerant control, see the nice literature
survey in [1]. These are (a) multiple-model, switching, and tuning,
(b) direct and indirect adaptive designs, (c) fault detection and diag-
nosis, and (d) robust control design. We also refer to the exhaustive
review paper [2] and the recent surveys [3], [4] for more references.

The uncertainties and actuator faults appearing in the system are
usually unknown both in their nature and extent. In this framework, an
adaptive control approach seems a suitable choice. The fault tolerant
funnel controller that we introduce in the present paper is such a
direct adaptive design. The area of adaptive design methods is quite
active, see the recent articles [5], [6], [7]. Different approaches have
been pursued, such as filter design and backstepping [5], strategies
based on solving optimal control problems [8], [6], [9] and (model-
free) adaptive control techniques [1], [10], [7].

In the present paper we consider adaptive fault tolerant tracking
control for uncertain linear systems with prescribed performance of
the tracking error. The uncertainties incorporate modelling errors
and process faults as well as bounded noises and disturbances. The
actuator faults encompass possible failures and degrading efficiency
of the actuators as well as actuator stuck, locked actuator faults,
actuator bias and actuator saturation. In the literature, some types
of faults are often excluded; in [7] no total faults are allowed, in [1],
[10] only actuator stuck is considered, and actuator saturation is
considered in none of the aforementioned works.

Most results in fault tolerant control are model-based, cf. [3], [6].
The approach presented in [7] is completely model-free, however only
single-input, single-output systems with trivial internal dynamics are
considered and total faults are excluded. The approaches in [1], [10]
require only little knowledge about the system parameters.

As the first result in fault tolerant tracking control that the author is
aware of, the design in [7] is able to achieve prescribed performance
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of the tracking error and it is based on the approach of Prescribed
Performance Control developed in [11], see also [12]. However, in
the present paper we follow the complementary approach of Funnel
Control which was developed in [13], see also the survey [14] and the
references therein. The funnel controller is an adaptive controller of
high-gain type and thus inherently robust, which makes it a suitable
choice for fault tolerant control tasks. The funnel controller has
been successfully applied e.g. in temperature control of chemical
reactor models [15], control of industrial servo-systems [16] and
underactuated multibody systems [17], voltage and current control of
electrical circuits [19], DC-link power flow control [18] and adaptive
cruise control [20], [21].

Since it is usually not possible to foresee which actuator may fail
during the operation of a system, a certain redundancy of the actuators
is required, so that the remaining actuators are able to compensate
for the (total) fault of others. Therefore, a larger number of actuators
than sensors is required, which leads to systems with more inputs
than outputs and thus additionally complicates the control task. For
instance, funnel control has only been investigated for systems with
the same number of inputs and outputs, see e.g. [14], [13]. The
funnel control design that we introduce in the present paper extends
the recently developed funnel controller for systems with arbitrary
relative degree [22].

We provide extensions of the above mentioned results for uncertain
linear systems in the following regard:

• the allowed uncertainties and actuator faults encompass essen-
tially all relevant cases,

• the control design is model-free,
• more inputs than outputs are allowed, which in particular extends

available results in funnel control,
• the relative degree of the system may be arbitrary, but known,

and the zero dynamics may be nontrivial,
• prescribed performance of the tracking error is achieved,
• the controller is simple in its design and of low complexity.
Throughout this article, we use the following notation: We write

R≥0 = [0,∞) and C−, (C+) denotes the set of complex numbers with
negative (positive) real part. Gln(R) denotes the group of invertible
matrices in Rn×n, σ(A) the spectrum of A ∈ Rn×n, and M† and
rkM the Moore-Penrose pseudoinverse and rank of M ∈Rn×m, resp.
By L∞(I,Rn) we denote the set of essentially bounded functions
f : I →Rn with norm ‖ f‖∞ = ess supt∈I‖ f (t)‖. The set L∞

loc(I,R
n)

contains all locally essentially bounded functions and W k,∞(I,Rn) is
the set of k-times weakly differentiable functions f : I→Rn such that
f , . . . , f (k) ∈ L∞(I,Rn). By Ck(I,Rn) we denote the set of k-times
continuously differentiable functions, where k ∈ N0 ∪{∞}, and we
use C(I,Rn) = C0(I,Rn). Finally, f |J denotes the restriction of the
function f : I→Rn to J ⊆ I.

A. System class

In the present paper we consider linear systems with time-varying
and nonlinear uncertainties and possible actuator faults of the form

ẋ(t) = Ax(t)+BL(t)u(t)+ f
(
t,x(t),u(t)

)
, x(0) = x0

y(t) =Cx(t)
(1)

where x0 ∈ Rn, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n with m ≥ p,
f ∈C(R×Rn ×Rm,Rn) is bounded and the following properties are
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satisfied:

(P1) L ∈C∞(R,Rm×m) such that L, L̇, . . . ,L(n) are bounded and there
exists q ∈ N such that rkBL(t) = q ≥ p for all t ∈ R;

(P2) the system has (strict) relative degree r ∈ N, i.e.,
• CAkBL(·) = 0 and CAk f (·) = 0 for all k = 0, . . . ,r−2 and
• the “high-frequency gain matrix” Γ := CAr−1B ∈ Rp×m

and L satisfy rkΓL(t) = p for all t ∈ R.
The functions u : R≥0 → Rm and y : R≥0 → Rp are called input and
output of the system (1), resp. Some comments on the system class (1)
are warranted.

(i) The control objective is fault tolerant control (see Subsec-
tion I-B), hence a certain redundancy of the actuators is neces-
sary in (1), i.e., m is usually much larger than p. The (unknown)
matrix-valued function L from (P1) describes the reliability of
the actuators. Typically we have L(t) = diag(l1(t), . . . , lm(t))
with li ∈C∞(R, [0,1]) monotonically non-increasing and li(0) =
1; in this way, possible failures and degrading efficiency of the
actuators may be described, cf. also [8], [6], [9]. In our frame-
work, we allow for a general smooth matrix-valued function
such that rkBL(t) = q for all t ∈ R; one may think of q groups
of actuators, where actuators in the same group perform the
same control task, and it is assumed that in each group at least
one actuator remains (partially) functional. If q = p, then this
situation is close to the concept of uniform actuator redundancy,
see [23]. Clearly, rkBL(t) ≥ p is necessary for the application
of adaptive control techniques.

(ii) The (unknown) nonlinearity f describes possible modelling
errors or process faults, uncertainties, bounded noises and distur-
bances, and types of actuator failures not covered by the matrix
function L, see e.g. [24]. The latter means for instance locked
actuator faults, actuator bias or actuator saturation, i.e., f (ui) =
sat(ui)+ bi with i ∈ {1, . . . ,m}, bi ∈ R and sat(ui) = sgn(ui) ûi
for |ui| ≥ ûi and sat(ui) = ui for |ui|< ûi, cf. [25].

(iii) The conditions in (P2) are slightly stronger than the assumption
of a strict and uniform relative degree r ∈ N as introduced for
time-varying nonlinear systems with m = p in [26, Def. 2.2].
We use the stronger concept, and call it (strict) relative degree
again, since, in view of (iii), we do not want to impose any
differentiability assumptions on the nonlinearity f which are
required in [26]. For the linear part of (1), i.e., f (·) = 0 and
L(·) = Im, the notion of strict relative degree as in (P2) is
justified (note that m > p is possible) since by [27, Def. B.1] the
transfer function G(s) =C(sI−A)−1B has vector relative degree
(r, . . . ,r), cf. also [28], [29].

(iv) We assume that the system parameters A, B, C, L(·), f (·), x0

are unknown; in particular the state space dimension n does
not need to be known. We only require knowledge of the
relative degree r ∈ N. Furthermore, we will derive a class of
rectangular input transformations of the form u(t) = K(t)v(t),
where K ∈ C∞(R,Rm×p), such that in the resulting system
the zero dynamics are independent of the new input v. As a
structural assumption, we will require that the zero dynamics of
the time-varying linear system (A,BL(·)K(·),C) are uniformly
exponentially stable for one (and hence any) K in this class;
it is hence independent of the choice of K. Some additional
knowledge of system parameters, such as the high-frequency
gain matrix Γ = CAr−1B from (P2), may be helpful for the
construction of K, while it is not required; see Subsection III-D.

We stress that even in the case L(·) = Im the results of the present
paper are new when m > p, since m = p is usually assumed in funnel
control.

B. Control objective

The objective is fault tolerant tracking of a reference trajectory
yref ∈ W r,∞(R≥0,Rp) with prescribed performance, i.e., we seek an
output error derivative feedback such that in the closed-loop system
the tracking error e(t) = y(t)− yref(t) evolves within a prescribed
performance funnel

Fφ := { (t,e) ∈ R≥0 ×Rp | φ(t)‖e‖< 1 } , (2)

which is determined by a function φ belonging to

Φr :=

φ ∈Cr(R≥0,R)

∣∣∣∣∣∣
φ, φ̇, . . . ,φ(r) are bounded,
φ(τ)> 0 for all τ > 0,
and liminfτ→∞ φ(τ)> 0

 .

Furthermore, the state x and the input u in (1) should remain bounded.
The funnel boundary is given by the reciprocal of φ , see Fig. 1.

If φ(0) = 0, then no restriction is put on the initial error e(0).
Furthermore, the boundary of each performance funnel Fφ with

λ

b

(0,e(0))
φ(t)−1

t

Fig. 1: Error evolution in a funnel
Fφ with boundary φ(·)−1.

φ ∈ Φr is bounded away
from zero, since bounded-
ness of φ gives 1/φ(t) ≥
λ for all t > 0 and some
λ > 0. While it is often con-
venient to choose a mono-
tonically decreasing funnel
boundary, it might be advan-
tageous to widen the fun-
nel over some later time in-
terval, for instance in the
presence of periodic distur-
bances or strongly varying
reference signals.

C. Organization of the present paper

The paper is structured as follows. In Section II we derive a
normal form for system (1) which extends the Byrnes-Isidori form
for time-varying linear systems from [26]. We derive a class of
rectangular input transformations such that in the resulting system
the zero dynamics are independent of the new input and uniformly
exponentially stable. The rectangular input transformation is exploited
as controller weight matrix in the design of a fault tolerant funnel
controller in Section III and possible choices are discussed. The
performance of the proposed funnel controller is illustrated by means
of a linearized model for the lateral motion of a Boeing 737 aircraft
in Section IV.

II. A TIME-VARYING NORMAL FORM

We derive a normal form for systems (1) which is an extension of
the Byrnes-Isidori form for time-varying linear systems from [26]. In
this paper, with “normal form” we do not mean a “canonical form”
which would be a unique representative of its equivalence class with
respect to a certain set of transformations (or the mapping to this
representative, resp.), but rather a weaker notion. We will see that the
freedom left within the non-zero entries of the derived decomposition
of (1) can be specified and is not significant which justifies to call it
“normal form”.

We introduce the following matrix-valued functions:

B(t) :=
[

BL(t),
(

d
dt −A

)(
BL(t)

)
, . . . ,

(
d
dt −A

)r−1(
BL(t)

)]
∈Rn×rm,

C :=
[
C>,(CA)>, . . . ,

(
CAr−1)>]> ∈ Rrp×n, t ∈ R.

Let ρ := rkC , choose V ∈Rn×(n−ρ) such that imV = kerC and define

N (t) :=V †
[
In −B(t)

(
C B(t)

)†
C
]
∈ R(n−ρ)×n, t ∈ R,
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as well as

U(t) :=
[

C
N (t)

]
∈ R(n−ρ+pr)×n, t ∈ R. (3)

Lemma II.1. Consider a system (1) with (P1) and (P2). Then we
have for all t ∈ R that ρ = rkC = rkC B(t) = pr and

C B(t) =

 0 (−1)r−1ΓL(t)
...

ΓL(t) ∗

 . (4)

Furthermore, U(·) as in (3) is invertible with

U(t)−1 =
[
B(t)

(
C B(t)

)†
,V
]
, t ∈ R. (5)

Proof. Similar to the proof of [26, Prop. 3.1] and using (P2) it is
straightforward to show that (4) holds. Hence rkC B(t) = pr for all
t ∈ R since rkΓL(t) = p. Therefore, C B(t)

(
C B(t)

)†
= Ipr, which

implies
[

C
N (t)

][
B(t)

(
C B(t)

)†
,V
]
=
[

Ipr 0
0 In−ρ

]
, thus n ≥ rkU(t) =

rk
[

C
N (t)

]
= n−ρ + pr for all t ∈ R. As a consequence, pr ≤ ρ =

rkC ≤ pr and this shows ρ = rkC = pr and (5).

U as in (3) will serve as a time-varying state space transformation
in the following. Therefore, it will be important that U is a Lyapunov
transformation.

Definition II.2. We call M ∈C1(R,Gln(R)) a Lyapunov transforma-
tion, if M, M−1 and Ṁ are bounded.

By (3) and (5) it is straightforward to see that U is a Lyapunov
transformation if, and only if, B

(
C B

)† and d
dt

(
B
(
C B

)†
)

are
bounded. A simpler condition, which however is only sufficient, is
given in the next result.

Lemma II.3. Consider a system (1) with (P1) and (P2). Then U as
in (3) is a Lyapunov transformation, if

∃α > 0 ∀ t ∈ R : det
(
C B(t)

(
C B(t)

)>)≥ α. (6)

The converse implication is false in general.

Proof. First we show that a Lyapunov transformation U does not
necessarily satisfy (6). To this end, consider A = 0, B =C = 1, f = 0
and L(t) = 1

t2+1 . Then (P1) and (P2) are satisfied with r = 1 and
U = 1 is a Lyapunov transformation, but (6) is not satisfied.

It remains to show that (6) implies that U is a Lyapunov trans-
formation. This can be inferred using that B and Ḃ are bounded
by (P1) and that for any pointwise invertible M ∈ C∞(R,Rk×k) we
have M(t)−1 =

adjM(t)
detM(t) ,

d
dt M(t)−1 =

( d
dt adjM(t)

)
detM(t)− adjM(t)

( d
dt detM(t)

)
(detM(t))2 .

Note that, in view of Lemma II.1, det
(
C B(·)

(
C B(·)

)>) is a
positive and smooth function and condition (6) only requires that,
roughly speaking, it does not decay to zero for t → ∞ (or t →−∞,
if this is of relevance).

A crucial tool for the proof of the main result of this section is the
following relation.

Lemma II.4. Consider a system (1) with (P1) and (P2) such that
q = p in (P1). Then

∀ t ∈ R :
(

In −B(t)
(
C B(t)

)†
C
)
B(t) = 0 (7)

and, as a consequence, N (t)B(t) = 0 for all t ∈ R.

Proof. First observe that by property (P1) and [30, Thm. 3.9] there
exists W ∈C∞(R,Rn×q) with rkW (t) = q for all t ∈R and pointwise
orthogonal [R1,R2] ∈C∞(R,Rm×(q+(m−q))) such that

∀ t ∈ R : BL(t)[R1(t),R2(t)] = [W (t),0]. (8)

Define, for all t ∈ R,

W (t) :=
[
W (t),

(
d
dt −A

)
W (t), . . . ,

(
d
dt −A

)r−1
W (t)

]
,

R(t) :=
(
Ri, j

)
i, j=1,...,r , Ri, j(t) :=

{ ( j−1
i−1
)
R( j−i)

1 (t)>, j ≥ i,
0, j < i.

Step 1: Fix t ∈ R. We show that W (t)R(t) = B(t) by proving that

W j(t) :=W (t)R(t)
[0( j−1)m×m

Im
0(r− j)m×m

]
=B(t)

[0( j−1)m×m
Im

0(r− j)m×m

]
=:B j(t)

for all j = 1, . . . ,r. For any j ∈ {1, . . . ,r} we have

W j(t) = ∑ j
i=1

[
( d

dt −A)i−1W (t)
]( j−1

i−1
)
R( j−i)

1 (t)>

and invoking formula [26, (3.2)] with C = I and i = 0 it follows that

W j(t) = ∑ j−1
i=0 ∑i

k=0(−1)k( i
k
)( j−1

i
)
AkW (i−k)(t)R( j−i−1)

1 (t)>.

Changing the summation over the “triangle” in the double sum we
obtain

W j(t) = ∑ j−1
k=0 ∑ j−1

i=k (−1)k( i
k
)( j−1

i
)
AkW (i−k)(t)R( j−i−1)

1 (t)>

= ∑ j−1
k=0 ∑ j−k−1

l=0 (−1)k( j−1
l+k

)(l+k
k
)
AkW (l)(t)R( j−l−k−1)

1 (t)>

= ∑ j−1
k=0(−1)k( j−1

k

)
∑ j−k−1

l=0

( j−k−1
l

)
AkW (l)(t)R( j−l−k−1)

1 (t)>

= ∑ j−1
k=0(−1)k( j−1

k

)( d
dt
) j−k−1

[
AkW (t)R1(t)>

]
,

where we used
( j−1

l+k

)(l+k
k
)
=
( j−1

k

)( j−k−1
l

)
. Again using formula [26,

(3.2)] we finally obtain

W j(t) = ( d
dt −A) j−1[W (t)R1(t)>

]
= ( d

dt −A) j−1[BL(t)
]
= B j(t).

Step 2: We show that rkB(t) = pr for all t ∈ R. It follows
from (P2) and (8) that CAkW (t) = 0 for k = 0, . . . ,r − 2 and
rkCAr−1W (t) = p for all t ∈R, by which, using q = p, CAr−1W (t)∈
Glp(R). Therefore, [26, Cor. 3.3] implies that rkW (t) = pr for
all t ∈ R. Furthermore, it is clear that rkR(t) = pr for all t ∈ R
and hence we may infer from Sylvester’s rank inequality that pr =
rkW (t)+ rkR(t)− pr ≤ rkW (t)R(t)≤ min{rkW (t), rkR(t)}= pr.
This shows rkB(t) = rkW (t)R(t) = pr for all t ∈ R.

Step 3: We show the assertion of the lemma. Since B has
constant rank we may again apply [30, Thm. 3.9] to find
Y ∈ C∞(R,Rn×pr) with rkY (t) = pr and pointwise orthogonal
[V1,V2] ∈ C∞(R,Rrm×(pr+(m−p)r)) such that B(t)[V1(t),V2(t)] =
[Y (t),0] for all t ∈ R. Then using that B(t) = Y (t)V1(t)> and
that [V1,V2] is pointwise orthogonal, by which V1(t)>V1(t) =
Ipr for all t ∈ R, we obtain from a straightforward compu-
tation that B(t)

(
C B(t)

)†
= Y (t)

(
CY (t)

)†. Clearly, rkCY (t) =
rkC B(t)[V1(t),V2(t)] = rkC B(t) = pr, thus CY (t) ∈ Glpr(R) for
all t ∈ R. Therefore, it finally follows that

B(t)
(
C B(t)

)†
C B(t) = Y (t)

(
CY (t)

)−1
CY (t)V1(t)>

= Y (t)V1(t)> = B(t).

We are now in the position to state the main result on the time-
varying normal form.

Theorem II.5. Consider a system (1) with (P1) and (P2) such that U
as in (3) is a Lyapunov transformation. Then

(Â, B̂,Ĉ) :=
(
(UA+U̇)U−1,UBL,CU−1) (9)
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and f̂ (t,z,u) :=U(t) f
(
t,U(t)−1z,u

)
, (t,z,u) ∈ R1+n+m, satisfy

Â(t) =


0 Ip 0 ··· 0 0
0 0 Ip 0
...

...
. . .

. . .
...

0 0 ··· 0 Ip 0
R1(t) R2(t) ··· Rr−1(t) Rr(t) S(t)
P1(t) P2(t) ··· Pr−1(t) Pr(t) Q(t)

 , B̂(t) =


0
0
...
0

ΓL(t)
N(t)

 ,
Ĉ =

[
Ip 0 · · · 0

]
, f̂ (t,z,u) =

(
0, . . . ,0, fr(t,z,u), fη (t,z,u)

)>
(10)

where Ri ∈ C∞(R,Rp×p), Pi,S> ∈ C∞(R,R(n−pr)×p),
Q ∈ C∞(R,R(n−pr)×(n−pr)), N ∈ C∞(R,R(n−pr)×m),
fr ∈ C(R × Rn × Rm,Rp), fη ∈ C(R × Rn × Rm,Rn−pr) are all
bounded. Furthermore, the following holds true:

(i) There exists K ∈ C∞(R,Rm×p) such that ΓL(t)K(t) = Ip and
N(t)K(t) = 0 for all t ∈ R if, and only if,

∀ t ∈ R : imB(t)
(
C B(t)

)†
[

0
Ip

]
⊆ imBL(t); (11)

in this case we may choose

K(t) :=
(
BL(t)

)†
B(t)

(
C B(t)

)†
[

0
Ip

]
. (12)

(ii) If q = p for q in (P1), then P2 = P3 = . . .= Pr = 0 and N = 0.

Proof. By the choice of U as in (3) and the representation of
its inverse as in Lemma II.1 it follows immediately that Â, B̂,Ĉ, f̂
have the structure as in the statement of the theorem, cf. also [26,
Thm. 3.5]. Boundedness of all entries follows from the fact that U
is a Lyapunov transformation. It remains to show (i) and (ii).

(i): Existence of K with the mentioned properties is, in view of (9),
equivalent to

BL(t)K(t) =U(t)−1

[
0p(r−1)×p

Ip
0(n−pr)×p

]
(5)
= B(t)

(
C B(t)

)†
[

0p(r−1)×p
Ip

]
(13)

for some K ∈ C∞(R,Rm×p). Clearly, (13) implies (11). Conversely,
if (11) holds, then

∃X : R→ Rm×pr : B(t)
(
C B(t)

)†
[

0
Ip

]
= BL(t)X(t) (14)

and hence K as in (12) satisfies

BL(t)K(t)
(12)
= BL(t)

(
BL(t)

)†
B(t)

(
C B(t)

)†
[

0
Ip

]
(14)
= BL(t)

(
BL(t)

)†BL(t)X(t)

= BL(t)X(t)
(14)
= B(t)

(
C B(t)

)†
[

0
Ip

]
.

In view of (13), this finishes the proof of (i).
(ii): If q = p, then Lemma II.4 yields that N (t)B(t) = 0 for all

t ∈ R. This implies

N(t)
(9)
= [0, In−pr]U(t)BL(t)

(3)
= N (t)BL(t) = N (t)B(t)

[ Im
0

]
= 0

for all t ∈R. It remains to show that P2 = . . .= Pr = 0. Fix t ∈R and
note that [P1(t), . . . ,Pr(t),Q(t)]

(10)
= [0, In−pr]Â(t)

(9)
= [0, In−pr](U(t)A+

U̇(t))U(t)−1 (3),(5)
=

(
N (t)A+ ˙N (t)

)
[B(t)

(
C B(t)

)†
,V ], hence

[P1(t), . . . ,Pr(t)]C B(t)=
(
N (t)A+ ˙N (t)

)
B(t)

(
C B(t)

)†
C B(t)

(7)
=
(
N (t)A+ ˙N (t)

)
B(t).

Since N (·)B(·) = 0 we find that d
dt
(
N (·)B(·)

)
= 0, thus

˙N (t)B(t) =−N (t)Ḃ(t). Therefore, we have

[P1(t), . . . ,Pr(t)]C B(t) =
(
N (t)A+ ˙N (t)

)
B(t)

=−N (t)
( d

dt −A
)(

B(t)
)

=−N (t)
[(

d
dt −A

)(
BL(t)

)
, . . . ,

(
d
dt −A

)r (
BL(t)

)]
N (t)B(t)=0

=
[
0, . . . ,0,−N (t)

( d
dt −A

)r(BL(t)
)]

.

We may infer, using (4), that Pr(t)ΓL(t) = 0, hence Pr(t) = 0 since
ΓL(t) has full row rank p by (P2). Successively we obtain Pr−1(t) =
. . .= P2(t) = 0 and this finishes the proof of the theorem.

The time-varying Byrnes-Isidori form from [26] has a certain
uniqueness property as derived in [31, Thm. B.7]. With the same
proof we obtain the following result.

Corollary II.6. Consider a system (1) with (P1) and (P2) such that
q = p for q in (P1). Then uniqueness of the entries in the normal
form (10) holds as follows:

(i) the entries [R1, . . . ,Rr] =CArB
(
C B

)† are uniquely defined;
(ii) the time-varying linear (sub-)system (Q,P1,S) is unique up to(

(WQ+Ẇ )W−1,WP1,SW−1) for any Lyapunov transformation
W ∈C∞(R,Gln−rm(R)).

We stress that the uniqueness property from Corollary II.6 is not
true for q > p in general. Consider (1) with A =

[
0 1
0 1
]
, B =

[
1 1
1 3
]
,

C = [1,0], f = 0 and L = I2, which is in the form (10) with Q =
1. Computing the normal form (10) with U as in (3) gives Â =[ 2 1
−2 1

]
, B̂ =

[ 1 1
−1 1

]
, Ĉ =C. Therefore, the new Q-block is given by

Q̂ =−1, and it is straightforward to show that it cannot be obtained
by a Lyapunov transformation of Q. In the case q > p it is thus
important to follow exactly the construction procedure which leads
to the transformation U in (3).

Also note that condition (11) is not always satisfied. Consider (1)

with A =

[0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

]
, B =

[0 0
1 0
0 1
1 0

]
, C = [1,0,0,0], f = 0 and L = I2 as a

counterexample.

Remark II.7. An important system property in high-gain based
adaptive control is a bounded-input, bounded-output property of the
internal dynamics of the system, see e.g. [22], [14], [13]. In the case
of linear time-invariant systems, this is implied by (but not equivalent
to) asymptotic stability of the zero dynamics of the system; the latter
property is extensively studied in the literature, see [32], [33], and
commonly known as the minimum phase property, although this is
not completely correct, see [34] and the references therein.

The usual assumption on system (1) would be that the zero
dynamics of the linear part (ignoring the bounded nonlinearity) are
uniformly exponentially stable. However, for system (1) with f = 0,
a fixed output y ∈C∞(R,Rp) does not uniquely define (up to initial
values) a corresponding state x and input u since the actuator
redundancy leads to BL(t) not having full column rank in general.
In other words, the zero dynamics are not necessarily autonomous,
cf. [31]. To circumvent this problem we apply a rectangular input
transformation u(t) = K(t)G(t)−1v(t) to system (1) for K and G such
that ΓL(t)K(t) = G(t) and N(t)K(t) = 0. Since

BL(t)u(t)=BL(t)K(t)G(t)−1v(t)=B(t)
(
C B(t)

)†
[

0
Ip

]
v(t)

by Theorem II.5, this leads to the time-varying linear system(
A,B(·)

(
C B(·)

)†
[

0
Ip

]
,C
)

and hence we may assume that its zero
dynamics are uniformly exponentially stable; this assumption is inde-
pendent of the existence of K and G, which is actually characterized
by condition (11) since an additional invertible transformation does
not change this condition: Assuming existence of K ∈C∞(R,Rm×p)
and G∈C∞(R,Glp(R)) such that ΓL(t)K(t) =G(t) and N(t)K(t) = 0
for all t ∈ R leads to ΓL(t)F(t) = Ip and N(t)F(t) = 0 for F(t) =
K(t)G(t)−1, t ∈ R. We stress that by Theorem II.5, clearly (11) is
always satisfied in the case q = p.

It is straightforward to show that there is a one-to-one corre-
spondence between the zero dynamics of

(
A,B(·)

(
C B(·)

)†
[

0
Ip

]
,C
)

and the solution set of the time-varying linear differential equation
η̇(t)=Q(t)η(t) for Q as in (10). Therefore, our assumption simplifies
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to assuming that η̇(t) = Q(t)η(t) is uniformly exponentially stable,
i.e., there exist M,µ > 0 such that for any solution η ∈ C1(R,Rn)
of η̇(t) = Q(t)η(t) we have ‖η(t)‖ ≤ Me−µ(t−t0)‖η(t0)‖ for all
t ≥ t0 ≥ 0.

Example II.8. As a running example we consider a linearized model
for the lateral motion of a Boeing 737 aircraft, which is taken from [1,
Sec. 5.4]. The model is of the form (1) with n = 5, m = 4, p = 2,

A =

−0.13858 14.326 −219.04 32.167 0
−0.02073 −2.1692 0.91315 0.000256 0
0.00289 −0.16444 −0.15768 −0.00489 0

0 1 0.00618 0 0
0 0 1 0 0

 ,
B =

 0.15935 0.15935 0.00211 0.00211
0.01264 0.01264 0.21326 0.21326
−0.12879 −0.12879 0.00171 0.00171

0 0 0 0
0 0 0 0

 , C =
[

0 0 0 1 0
0 0 0 0 1

]
and

x = (vb, pb,rb,ϕ ,ψ)>, u = (dr1,dr2,da1,da2)
>.

Here vb denotes the lateral velocity, pb the roll rate, rb the yaw rate,
ϕ the roll angle and ψ the yaw angle. The roll angle ϕ and the yaw
angle ψ are chosen as outputs of the system. The inputs consist of
the rudder position dr1 + dr2 and the aileron position da1 + da2, so
we see that we have two groups of actuators which are both double
redundant. For this example we assume that no faults occur in the
actuators dr1 and da1, while dr2 and da2 experience some faults, i.e.,

L(t) = diag
(
1, l2(t),1, l4(t)

)
, f (t,u) = B

(
0, f2(t,u2),0, f4(t,u4)

)>
,

where u = (u1,u2,u3,u4)
>, for some bounded l2, l4 ∈ C∞(R, [0,1])

(with bounded derivatives) and bounded f2, f4 ∈ C(R2,R) to be
specified later. We compute the transformation matrix U as in (3)
and the normal form (10). Since CB = 0 and Γ = CAB =[ 0.01184 0.01184 0.21327 0.21327
−0.12879 −0.12879 0.00171 0.00171

]
has full row rank, we find that the

relative degree of the system is r = 2. Using MATLAB we calculate
that, approximately,

U =

0 0 0 1 0
0 0 0 0 1
0 1 0.00618 0 0
0 0 1 0 0
1 −0.0198 1.23534 −14.16314 219.17412

, f̂ (t,u)=

0
Γ
0

( 0
f2(t,u2)

0
f4(t,u4)

)
,

Â=

 0 0 1 0 0
0 0 0 1 0

−0.29312 4.53957 −2.17063 0.95118 −0.02071
0.03604 −0.63341 −0.16438 −0.16023 0.00289
30.2546 29.50071 0 0 −0.1346

 , B̂(t) =

 0
ΓL(t)

0


and Ĉ = [I2,0]. In particular, U and Â are time-invariant and indepen-
dent of l2 and l4, and U is a Lyapunov transformation. Furthermore,
we find that Q as in Theorem II.5 is given by Q = −0.1346 ∈ C−,
hence η̇(t) = Qη(t) is exponentially stable.

III. FAULT TOLERANT CONTROL

A. Preliminaries

Before we introduce a fault tolerant funnel controller we discuss
some available results for nonlinear systems with arbitrary known
relative degree and equal number of inputs and outputs without any
faults. A funnel controller for such systems has been developed
in [22]. This controller is of the form

e0(t) = e(t) = y(t)− yref(t),

e1(t) = ė0(t)+ k0(t)e0(t),

e2(t) = ė1(t)+ k1(t)e1(t),
...

er−1(t) = ėr−2(t)+ kr−2(t)er−2(t),

ki(t) = 1/(1−φi(t)2‖ei(t)‖2), i = 0, . . . ,r−1,

(15)

with feedback law

u(t) =−kr−1(t)er−1(t), (16)

where yref ∈ W r,∞(R≥0,Rm) and φi ∈ Φr−i for i = 0, . . . ,r − 1. We
stress that while the derivatives ė0, . . . , ėr−2 appear in (15), they
only serve as short-hand notations and may be resolved in terms of
the tracking error, the funnel functions and the derivatives of these,
cf. [22, Rem. 2.1]. After rewriting these variables, the controller is
real-time capable.

The controller (15), (16) is shown to be feasible for a large class
of nonlinear systems of the form

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γ
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈W r−1,∞([−h,0],Rm),

(17)

where h> 0 is the “memory” of the system, r ∈N is the strict relative
degree, and

(N1) the disturbance satisfies d ∈ L∞(R≥0,Rp), p ∈ N;
(N2) f ∈C(Rp ×Rq,Rm), q ∈ N;
(N3) the high-frequency gain matrix function Γ ∈C(Rp ×Rq,Rm×m)

satisfies Γ(d,η)+Γ(d,η)> > 0 for all (d,η) ∈ Rp ×Rq;
(N4) T : C([−h,∞),Rrm) → L∞

loc(R≥0,Rq) is an operator with the
following properties:
a) T maps bounded trajectories to bounded trajectories, i.e,

for all c1 > 0, there exists c2 > 0 such that for all ζ ∈
C([−h,∞),Rrm) with ‖ζ (t)‖≤ c1 for all t ∈ [−h,∞) we have
supt∈[0,∞) ‖T (ζ )(t)‖ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ ,ξ ∈C([−h,∞),Rrm)

with ζ |[−h,t) = ξ |[−h,t) we have T (ζ )|[0,t)
a.a.
= T (ξ )|[0,t),

where “a.a.” stands for “almost all”.
c) T is locally Lipschitz continuous in the following sense: for

all t ≥ 0 and all ξ ∈ C([−h, t],Rrm) there exist τ,δ ,c > 0
such that, for all ζ1,ζ2 ∈C([−h,∞),Rrm) with ζi|[−h,t] = ξ
and ‖ζi(s)− ξ (t)‖ < δ for all s ∈ [t, t + τ] and i = 1,2, we
have

∥∥∥(T (ζ1)−T (ζ2)) |[t,t+τ]

∥∥∥
∞
≤ c
∥∥∥(ζ1 −ζ2)|[t,t+τ]

∥∥∥
∞
.

In [22], [13], [35] it is shown that the class of systems (17)
encompasses linear and nonlinear systems with strict relative degree
and input-to-state stable internal dynamics and that the operator T
allows for infinite-dimensional linear systems, systems with hysteretic
effects or nonlinear delay elements, and combinations thereof.

In [22], the existence of global solutions of the initial value prob-
lem resulting from the application of the funnel controller (15), (16)
to a system (17) is investigated. By a solution of (15)–(17) on
[−h,ω) we mean a function y ∈ Cr−1([−h,ω),Rm), ω ∈ (0,∞],
with y|[−h,0] = y0 such that y(r−1)|[0,ω) is weakly differentiable and
satisfies the differential equation in (17) with u defined in (16) for
almost all t ∈ [0,ω); y is called maximal, if it has no right extension
that is also a solution. Note that in [22] a slightly stronger version
of conditions (N3) and (N4) c) is used. However, the proof does
not change; in particular, regarding (N4) c), the existence part of the
proof in [22] relies on a result from [35] where the version from the
present paper is used.

B. Controller structure

We introduce the fault tolerant funnel controller for systems of
type (1) as an extension of the controller (15), (16) where we only
change the feedback law (16). That is, the fault tolerant funnel
controller consists of (15) together with the new feedback law

u(t) =−kr−1(t)K(t)er−1(t), (18)

where the reference signal and funnel functions have the following
properties:

yref ∈ W r,∞(R≥0,Rp), φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1. (19)
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We choose the bounded controller weight matrix function K ∈
C∞(R,Rm×p), if possible, such that

∃α > 0 : ΓL(t)K(t)+
(
ΓL(t)K(t)

)> ≥ αIp

and N(t)K(t) = 0,
(20)

where we use the notation from Theorem II.5. Note that con-
dition (20) is not always satisfied under the assumptions (P1)
and (P2). Existence and possible choices for K are discussed in
Subsection III-D. The first condition in (20) is required to meet
assumption (N3) after a reformulation of the closed-loop system; the
second condition is important to make the zero dynamics of (1) with
the input transformation u(t) = K(t)v(t) independent of the action of
the new input v, cf. Remark II.7. We stress that (18) can be interpreted
as (16) multiplied with the controller weight K(t).

In the sequel we investigate existence of solutions of the initial
value problem resulting from the application of the funnel con-
troller (15), (18) to a system (1). Even if (1) is a linear system
with f = 0 and L= Im, some care must be exercised with the existence
of a solution of (1), (15), (18) since this closed-loop differential
equation is time-varying, nonlinear and only defined on an open
subset of R≥0 ×Rn. By a solution of (1), (15), (18) on [0,ω) we
mean a weakly differentiable function x : [0,ω) → Rn, ω ∈ (0,∞],
which satisfies x(0) = x0 and the differential equation in (1) with u
defined in (15), (18) for almost all t ∈ [0,ω); x is called maximal, if
it has no right extension that is also a solution.

C. Feasibility of the controller

We show feasibility of the controller (15), (18) for every system (1)
which satisfies the assumptions (P1), (P2) and
(P3) U as in (3) is a Lyapunov transformation,
(P4) η̇(t) = Q(t)η(t) is uniformly exponentially stable for Q as

in (10).
We stress that assumptions (P1)–(P4) and condition (20) are only of

structural nature and hold for a large class of systems; the controller
design (15), (18) does not depend on the specific system parameters.

Note that (P3) is satisfied, if (6) holds. Under assumptions (P1)–
(P3) it follows from Theorem II.5 that the transformation matrix U
from (3) can be used for a state space transformation as follows.
Setting z(t) :=U(t)x(t) we obtain from (1) that

ż(t) =
(
U(t)A(t)+U̇(t)

)
U(t)−1z(t)+U(t)BL(t)u(t)

+U(t) f
(
t,U(t)−1z(t),u(t)

)
and y(t) =CU(t)−1z(t). By Theorem II.5 this implies that

ż(t) = Â(t)z(t)+ B̂(t)u(t)+ f̂
(
t,z(t),u(t)

)
, y(t) = Ĉz(t)

and this is equivalent to

y(r)(t) = ∑r
i=1 Ri(t)y(i−1)(t)+S(t)η(t)+ΓL(t)u(t)

+ fr
(
t,y(t), . . . ,y(r−1)(t),η(t),u(t)

)
,

η̇(t) = ∑r
i=1 Pi(t)y(i−1)(t)+Q(t)η(t)+N(t)u(t)

+ fη
(
t,y(t), . . . ,y(r−1)(t),η(t),u(t)

)
,

(21)

where z(t) =
(
y(t), . . . ,y(r−1)(t),η(t)

)
. By (P4) it further follows that

η̇(t) = Q(t)η(t) is uniformly exponentially. Together with (20) these
are the main ingredients for the proof of the following result.

Theorem III.1. Consider a system (1) which satisfies assumptions
(P1)–(P4). Let yref,φ0, . . . ,φr−1 be as in (19) and x0 ∈ Rn be an
initial value such that e0, . . . ,er−1 as defined in (15) satisfy

φi(0)‖ei(0)‖< 1 for i = 0, . . . ,r−1. (22)

Assume that there exists a bounded K ∈C∞(R,Rm×p) such that (20)
is satisfied. Then the funnel controller (15), (18) applied to (1) yields

an initial-value problem which has a solution, and every solution can
be extended to a maximal solution x : [0,ω)→Rn, ω ∈ (0,∞], which
satisfies:

(i) The solution is global (i.e., ω = ∞).
(ii) The signal u : R≥0 →Rm, k0, . . . ,kr−1 : R≥0 →R and x : R≥0 →

Rn are bounded.
(iii) The functions e0, . . . ,er−1 : R≥0 →Rp evolve in their respective

performance funnels and are uniformly bounded away from the
funnel boundaries in the sense:

∀ i = 0, . . . ,r−1 ∃εi > 0 ∀ t > 0 : ‖ei(t)‖ ≤ φi(t)−1 − εi. (23)

In particular, the error e(t) = y(t)−yref(t) evolves in the funnel
Fφ0 as in (2) and stays uniformly away from its boundary.

Proof. We proceed in several steps.
Step 1: We show existence of a solution of (1), (15), (18) and

that it can be extended to a maximal solution. By assumptions (P1)–
(P3) it follows from Theorem II.5 that the state space transformation(
y(t)>, ẏ(t)>, . . . ,y(r−1)(t)>,η(t)>)> := U(t)x(t) puts system (1)

into the form (21). Set v(t) :=−kr−1(t)er−1(t), then u(t) = K(t)v(t).
Using the same technique as in Step 1 of the proof of [22, Thm. 3.1]
we find that there exist a relatively open set D ⊆ R≥0 ×Rrp and
G : D → Rp such that

v(t) =−
G
(
t,y(t), ẏ(t), . . . ,y(r−1)(t)

)
1−φ2

r−1(t)‖G
(
t,y(t), ẏ(t), . . . ,y(r−1)(t)

)
‖2

and
(
0,y(0), ẏ(0), . . . ,y(r−1)(0)

)
∈ D . Using the no-

tation Y (t) =
(
y(t), ẏ(t), . . . ,y(r−1)(t)

)
and Ξ(t) =(

t,Y (t),η(t), −K(t)G(t,Y (t))
1−φ2

r−1(t)‖G(t,Y (t))‖2

)
, the closed-loop sys-

tem (1), (15), (18) can be reformulated as, invoking that N(t)K(t) = 0
by (20),

y(r)(t)=∑r
i=1 Ri(t)y(i−1)(t)+S(t)η(t)− ΓL(t)K(t)G(t,Y (t))

1−φ2
r−1(t)‖G(t,Y (t))‖2 + fr (Ξ(t))

η̇(t) = ∑r
i=1 Pi(t)y(i−1)(t)+Q(t)η(t)+ fη (Ξ(t)) .

(24)
It is clear that (24) can be reformulated as a first-order system

d
dt

(
Y (t)
η(t)

)
= F

(
t,
(

Y (t)
η(t)

))
,
(

Y (0)
η(0)

)
=U(0)x0,

with a suitable continuous function F : D ×Rn−rp → Rn. Further-
more, (0,U(0)x0) ∈ D ×Rn−rp and D ×Rn−rp is relatively open in
R≥0 ×Rn. Hence, by [36, § 10, Thm. XX] there exists a weakly
differentiable solution of (24) satisfying the initial conditions and
every solution can be extended to a maximal solution; let (Y,η) :
[0,ω)→ Rn, ω ∈ (0,∞], be such a maximal solution.

Step 2: We show that (Y,η) also solves a closed-loop system which
is of the form (17), (15) and u(t) = v(t) in (17). Set d1(t) := fη (Ξ(t))
for t ∈ [0,ω) and let ΦQ(·, ·) be the transition matrix of the linear
time-varying system η̇(t) = Q(t)η(t). Then the variation of constants
formula yields that

η(t) = ΦQ(t,0)η(0)+
∫ t

0
ΦQ(t,s)

(
∑r

i=1 Pi(s)y(i−1)(s)+d1(s)
)

ds

for all t ∈ [0,ω). Set

d(t) := S(t)ΦQ(t,0)η(0)+
∫ t

0
S(t)ΦQ(t,s)d1(s)ds + fr (Ξ(t))

for t ∈ [0,ω). Since S, fη and fr are bounded and η̇(t) = Q(t)η(t) is
uniformly exponentially by assumptions (P1)–(P4), it follows that d
is bounded on [0,ω). If ω < ∞, we define d(t) := 0 for t ≥ ω and
obtain d ∈ L∞(R≥0,Rp). Define the operator T : C([0,∞),Rrp) →
L∞

loc(R≥0,Rp) by

T (ζ1, . . . ,ζr)(t)=∑r
i=1 Ri(t)ζi(t)+∑r

i=1

∫ t

0
S(t)ΦQ(t,s)Pi(s)ζi(s)ds
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for t ≥ 0. Then we have y(r)(t) = T (Y )(t)+d(t)+ΓL(t)K(t)v(t) for
almost all t ∈ [0,ω). Finally, we seek a function g ∈ C(Rℓ,Rp×p),
ℓ ∈ N, and a bounded function d̄ ∈ C∞(R,Rℓ) such that g

(
d̄(t)

)
=

ΓL(t)K(t) for all t ≥ 0 and g(x) + g(x)> > 0 for all x ∈ Rℓ.
The construction is as follows: By assumption (20) we have that
A(t) :=ΓL(t)K(t)+

(
ΓL(t)K(t)

)>− α
2 Ip > 0 for all t ≥ 0, hence there

exists a pointwise Cholesky decomposition A(t) = H(t)H(t)>. For

x = (x11, . . . ,x1p,x21, . . . ,xpp)
> ∈ Rp2

set M (x) =

[ x11 ··· x1p
...

...
xp1 ··· xpp

]
and

define, for α > 0 as above,

g1 : Rp2
→ Rp×p, x 7→ 1

2 M (x)M (x)>+ α
4 Ip,

g2 : Rp2
→ Rp×p, x 7→ 1

2

(
M (x)−M (x)>

)
.

Let H(t) =
(
hi j(t)

)
i, j=1,...,p and ΓL(t)K(t) =

(
ki j(t)

)
i, j=1,...,p, then

g1
(
h11(t), . . . ,hpp(t)

)
= 1

2 H(t)H(t)>+ α
4 Ip

= 1
2

(
ΓL(t)K(t)+

(
ΓL(t)K(t)

)>)
,

g2
(
k11(t), . . . ,kpp(t)

)
= 1

2

(
ΓL(t)K(t)−

(
ΓL(t)K(t)

)>)
, thus

g1
(
h11(t), . . . ,hpp(t)

)
+ g2

(
k11(t), . . . ,kpp(t)

)
= ΓL(t)K(t).

Define g : Rp2 ×Rp2 → Rp×p,(x,z) 7→ g1(x) + g2(z), then we find
that g(x,z) + g(x,z)> = g1(x) + g1(x)> + g2(z) + g2(z)> = g1(x) +
g1(x)> ≥ α

2 Ip > 0 for all x,z ∈ Rp2
. With the bounded function

d̄(·) :=
(
h11(·), . . . ,hpp(·),k11(·), . . . ,kpp(·)

)
we finally obtain that the solution (Y,η) from Step 1 satisfies

y(r)(t) = T (Y )(t)+d(t)+g
(
d̄(t)

)
v(t) (25)

for almost all t ∈ [0,ω), where the input v(t) = −kr−1(t)er−1(t) is
obtained from the controller (15).
Invoking boundedness of d and d̄, system (25) satisfies assump-
tions (N1) and (N2). Assumption (N3) is a consequence of the con-
struction of g. The operator T is clearly causal and locally Lipschitz.
By (P4), T maps bounded trajectories to bounded trajectories and
therefore (25) satisfies condition (N4).

Step 3: By Steps 1 and 2, the maximal solution (Y,η) is also a
solution of (25) with (15) and v(t) = −kr−1(t)er−1(t), hence [22,
Thm. 3.1] yields that it can be extended to a global solution, i.e.,
ω = ∞. Statements (ii) and (iii) are consequences of [22, Thm. 3.1]
as well.

Remark III.2. We like to point out that a drawback of the controller
design (15), (18), which still needs to be resolved, is that the
derivatives of the output must be available for the controller. However,
there are several applications where this condition is not satisfied,
and it may even be hard to obtain suitable estimates of the output
derivatives, in particular in the presence of measurement noise. A first
approach to treat these problems using a “funnel pre-compensator”
has been developed in [37], [38] for systems with relative degree
r ∈ {2,3}, and was successfully applied to multibody systems in [17].
Utilizing the funnel pre-compensator, the resulting control scheme
is feasible for any measurement noise n ∈ W r,∞(R≥0,Rp) and its
influence on the tracking error can be quantified by the estimate
‖e(t)‖ < φ(t)−1 + ‖n(t)‖ for t > 0. For details see [37, Rem. 2.3]
and [38, Rem. IV.2].

D. Discussion of controller weight matrix

We discuss possible choices for the bounded controller weight
matrix K ∈ C∞(R,Rm×p) satisfying (20). We distinguish the two
cases rkBL(t) = p and rkBL(t) = q > p. In practical applications,
it is frequently the case that some actuators are used to perform

similar control tasks or they can be divided into p groups of actuators
with the same physical characteristics, where p is the number of
outputs, see e.g. [1]. Due to this redundancy it may be assumed (and
actually is quite probable) that in each group at least one actuator
remains (partially) functional, i.e., does not experience a total fault.
This means that we are in the case rkBL(t) = p. An interesting and
relevant example is mentioned in [1, p. 103].

If there are q groups of actuators and p outputs with q > p, then
the system typically has an unnecessary high redundancy. When it
is still possible to guarantee that at least one actuator without total
fault remains in each group, then complete groups of actuators may
be switched off so that q = p is achieved.

1) The case rkBL(t) = p: Under the assumptions (P1)–(P3) it
follows from Theorem II.5 that in the case q = p we have N = 0,
so the second condition in (20) is satisfied for any choice of K.
In order to satisfy the first condition in (20), a possible choice is
K(t) = Γ> and the requirement that there exists α > 0 such that
Γ
(
L(t)+ L(t)>

)
Γ> ≥ αIp for all t ∈ R. This condition means that

we have at least p linearly independent actuators, the reliability of
which does not converge to zero. In other words, in each group of
actuators at least one remains functional, see the discussion above.
Clearly, for this specific choice of K we have to assume that the
high frequency gain matrix Γ of (1) is known; apart from that, no
knowledge of the system parameters is required.

2) The case rkBL(t) = q > p: Under the assumptions (P1)–(P3)
it follows from Theorem II.5 and Remark II.7 that in the case q > p
there exists K such that ΓL(t)K(t) is invertible and N(t)K(t) = 0
for all t ∈ R if, and only if, condition (11) is satisfied. In this case,
K(t) as in (12) is a feasible choice which satisfies ΓL(t)K(t) = Ip
and hence (20) holds true. However, this requires knowledge of the
system parameters and of the reliability matrix function L from (P1).

IV. SIMULATION

We illustrate the fault tolerant funnel controller (15), (18) by
applying it to the model of the Boeing 737 aircraft from Ex-
ample II.8. As reference trajectories we choose yref,1(t) = 2sin t,
yref,2(t) = cos t, the initial value is x(0) = 0, and the funnel functions
are φ0(t) = (5e−t +0.1)−1 and φ1(t) =

( 5
2 e−0.5 t +0.1

)−1, hence (19)
is satisfied. Obviously, the initial errors lie within the respective
funnel boundaries, i.e., (22) is satisfied. The controller weight matrix
is chosen as K(t) = Γ>. For the simulation, we assume that the
actuator dr2 has a slowly decreasing efficiency to 50% of the original
capability on the time interval [0,6] and at t = 6 another fault occurs
so that we have an actuator saturation by 1 (which means an effective
saturation by 0.5 due to the 50% reduction of efficiency). Using the
smooth error function erf and the complementary error function erfc
(note that all derivatives of erf and erfc are bounded), which are
implemented in MATLAB, this behavior can be modelled by

l2(t) = 1
4 erfc(t −3)+ 1

4 erfc
(
100(t −6)

)
,

f2(t,u2) =
1
4
(
1+ erf

(
100(t −6)

))
· sat1(u2),

where sat1(v) = sgn(v) for |v| ≥ 1 and sat1(v) = v for |v| < 1. We
further assume that the actuator da2 has a sudden total fault at t = 7,
which can be modelled by l4(t) = 1

2 erfc
(
20(t−7)

)
and f4(t,u4) = 0.

After the faults, the effective input actions are u1(t) = dr1(t), u2(t) =
l2(t)dr2(t)+ f2

(
t,dr2(t)

)
, u3(t) = da1(t) and u4(t) = l4(t)da2(t).

Since the actuators dr1 and da1 are assumed to experience no faults,
condition (20) is clearly satisfied. It further follows from Example II.8
that (P1)–(P4) are satisfied. Therefore, fault tolerant funnel control is
feasible by Theorem III.1. The simulation of the controller (15), (18)
applied to the model of the Boeing 737 aircraft from Example II.8
over the time interval [0,10] has been performed in MATLAB (solver:
ode45, rel. tol.: 10−14, abs. tol.: 10−10) and is depicted in Fig. 2.
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The decreasing efficiency of u2 can clearly be seen as well as that it
is saturated by 0.5 on the interval [6,10]; the saturation is active on
the interval [7,9]. Furthermore, it can be seen that at t = 7, u4 has a
total fault and hence u3 needs to increase in order to compensate for
this. The tracking performance is not affected at all by these faults;
the tracking errors evolve within the prescribed performance funnels.
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Fig. 2a: Funnel and tracking errors
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Fig. 2b: Input functions

Fig. 2: Simulation of the controller (15), (18) for the Boeing 737
aircraft.
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