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ZERO DYNAMICS AND FUNNEL CONTROL OF GENERAL

LINEAR DIFFERENTIAL-ALGEBRAIC SYSTEMS ∗

Thomas Berger1

Abstract. We study linear differential-algebraic multi-input multi-output systems which are not nec-
essarily regular and investigate the zero dynamics and tracking control. We introduce and characterize
the concept of autonomous zero dynamics as an important system theoretic tool for the analysis of
differential-algebraic systems. We use the autonomous zero dynamics and (E,A,B)-invariant subspaces
to derive the so called zero dynamics form - which decouples the zero dynamics of the system - and
exploit it for the characterization of system invertibility and asymptotic stability of the zero dynamics.
A refinement of the zero dynamics form is then used to show that the funnel controller (that is a static
nonlinear output error feedback) achieves - for a special class of right-invertible systems with asymp-
totically stable zero dynamics - tracking of a reference signal by the output signal within a pre-specified
performance funnel. It is shown that the results can be applied to a class of passive electrical networks.
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1. Introduction

Differential-algebraic equations (DAEs) are a combination of differential equations along with algebraic con-
straints. They have been discovered as an appropriate tool for modeling many problems e.g. in mechanical
multibody dynamics [19], electrical networks [39], and chemical engineering [30]. These problems indeed have in
common that the dynamics are algebraically constrained, for instance by tracks, Kirchhoff laws, or conservation
laws. As a result of the power in application, DAEs are nowadays an established field in applied mathematics
and subject of various monographs and textbooks, see e.g. [16,31,32]. In the present work, we consider questions
related to the zero dynamics, system inversion, and closed-loop control of linear constant coefficient DAEs with
special emphasis on the non-regular case. The concepts of (E,A,B)-invariance, autonomous and asymptoti-
cally stable zero dynamics, left- and right-invertibility are considered for the DAE case. We further show that
the “funnel controller” (developed in [26] for minimum-phase ordinary differential equation systems with strict
relative degree one) achieves, for all right-invertible DAE systems with asymptotically stable zero dynamics
which satisfy a certain relative degree assumption, tracking of a reference signal by the output signal within a
pre-specified performance funnel. We stress that knowledge of specific system parameters is not required for
feasibility of funnel control.

Keywords and phrases: Differential-algebraic systems, zero dynamics, invariant subspaces, system inversion, funnel control,
relative degree
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We consider linear constant coefficient DAEs of the form

d
dtEx(t) = Ax(t) +Bu(t)

y(t) = Cx(t) ,
(1.1)

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n. The set of these systems is denoted by Σl,n,m,p and we write
[E,A,B,C] ∈ Σl,n,m,p. In the present paper, we put special emphasis on the non-regular case, i.e., we do not
assume that sE −A is regular, that is l = n and det(sE −A) ∈ R[s] \ {0}. Note that non-regular DAE systems
actually appear in several “real world” applications, see e.g. [18].

The functions u : R → Rm and y : R → Rp are called input and output of the system, resp. A trajectory
(x, u, y) : R → Rn ×Rm ×Rp is said to be a solution of (1.1) if, and only if, it belongs to the behavior of (1.1):

B(1.1) :=

{
(x, u, y) ∈ L1

loc(R;R
n × Rm × Rp)

∣∣∣∣
Ex ∈ W1,1

loc (R;R
l) and (x, u, y)

solves (1.1) for almost all t ∈ R

}
.

Recall that any function z ∈ W1,1
loc (R;R

l) is in particular continuous. More smoothness of u and y is required
for some results such as funnel control in Section 5.

In the present paper, we provide, in particular, a unified framework for two important classes of differential-
algebraic systems which have been investigated in earlier work [7, 8]. These two classes encompass regular
systems [E,A,B,C] ∈ Σn,n,m,m for which the transfer function is defined by

G(s) = C(sE −A)−1B ∈ R(s)m×m.

The notions of properness and strict relative degree are required in the following.

Definition 1.1 (Properness and strict relative degree). A rational matrix function G(s) ∈ R(s)p×m is called
proper if lims→∞ G(s) = D for some D ∈ Rp×m.

We say that a square matrix function G(s) ∈ R(s)m×m has strict relative degree ρ if

ρ = sr degG(s) := sup
{
k ∈ Z

∣∣∣ lim
s→∞

sk G(s) ∈ Glm(R)
}
∈ Z.

Note that by [8, Prop. 1.2] any transfer function with nonnegative strict relative degree has a proper inverse
over R(s), but the converse is false in general.

In the earlier work [7,8] the following two system classes have been considered: The class of regular systems
with proper inverse transfer function has been investigated in [8]; the class of regular systems with strict
relative degree one has been investigated in [7]. These two classes are distinct and have been treated by
different approaches in [7,8]. In the present paper, we consider the more general class Σ of DAE systems which
in particular contains the aforementioned two classes of systems: Σ contains all right-invertible systems (see
Def. 4.1) with autonomous zero dynamics (see Def. 3.1), which satisfy a certain relative degree assumption
(see (5.3)).

The main difference between the class Σ and the classes considered in [7, 8] is that the pencil sE −A is not
necessarily regular and hence a transfer function G(s) does not exist in general. Therefore, a new approach is
required since the work in [7, 8] is based on the existence of a transfer function. Within the framework of the
class Σ introduced in the present paper it is possible to obtain a generalization of the inverse transfer function,
see Remark A.4. We also show that the class Σ includes all regular systems with a vector relative degree which
is componentwise smaller or equal to 1, see Appendix B. This in particular encompasses systems with a “mixed
relative degree”, i.e., a vector relative degree with possibly different components. Remark 5.5 also shows that a
class of passive electrical networks is encompassed: systems with invertible and positive real transfer function
are included in Σ. We use the class Σ to show that funnel control is feasible for a much larger class of systems
than considered in [26] for ODEs and in [7, 8] for DAEs.
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The paper is organized as follows: In Section 2 we collect some preliminary results on matrix pencils, in
particular the quasi-Kronecker form. In Section 3 we recall the crucial concept of (autonomous) zero dynamics
and derive characterizations of autonomous zero dynamics in terms of a rank condition and the maximal
(E,A,B)-invariant subspace included in kerC. The latter also allows to derive the so called zero dynamics
form in Theorem 3.6 - one of the main results of the paper - which decouples the zero dynamics of the system.
Asymptotic stability of zero dynamics is defined and characterized as well in Section 3. The zero dynamics
form is then refined in Section 4 and exploited for the characterization of system invertibility. The refinement
of the zero dynamics form is also used to show feasibility of the funnel controller in Section 5, which is proved
to work for the class Σ (where additionally asymptotically stable zero dynamics are required) in Theorem 5.3
- the second main result of the present paper. In Section 6 we illustrate Theorem 5.3 by a simulation of the
funnel controller for a system (1.1). Finally, in Appendix A some results on polynomial matrices and the zero
dynamics form are derived, which are crucial for the proof of Theorem 5.3, and in Appendix B systems with a
vector relative degree are related to the findings of the paper.

We close the introduction with the nomenclature used in the present paper.

Nomenclature

N, N0, Z set of natural numbers, N0 = N ∪ {0}, set of all integers, resp.

ℓ(α), |α| length ℓ(α) = l and absolute value |α| =∑l
i=1 αi of a multi-index α = (α1, . . . , αl) ∈ Nl

R≥0 = [0,∞)

C+, C− the open set of complex numbers with positive, negative real part, resp.

Gln(R) the set of invertible real n× n matrices

R[s] the ring of polynomials with coefficients in R

R(s) the quotient field of R[s]

Rn×m the set of n×m matrices with entries in a ring R

σ(A) the spectrum of a matrix A ∈ Rn×n

‖x‖ =
√
x⊤x, the Euclidean norm of x ∈ Rn

‖A‖ = max { ‖Ax‖ | x ∈ Rm, ‖x‖ = 1 }, induced matrix norm of A ∈ Rn×m

A−1S = { x ∈ Rm | Ax ∈ S }, the pre-image of the set S ⊆ Rn under A ∈ Rn×m

L1
loc(I;R

n) the set of locally Lebesgue integrable functions f : I → Rn, where
∫
K
‖f(t)‖ dt < ∞

for all compact K ⊆ I and I ⊆ R is an interval

ḟ (f (i)) the (ith) weak derivative of f ∈ L1
loc(I;R

n), i ∈ N0, see [1, Chap. 1]

Wk,1
loc (I;R

n) =
{
f ∈ L1

loc(I;R
n)
∣∣ f (i) ∈ L1

loc(I;R
n) for i = 0, . . . , k

}
, k ∈ N0 ∪ {∞}

L∞(I;Rn) the set of essentially bounded functions f : I → Rn, see [1, Chap. 2]

ess-supJ ‖f‖ the essential supremum of the measurable function f : I → Rn over J ⊆ I

Ck(I;Rn) the set of k-times continuously differentiable functions f : I → Rn, k ∈ N0 ∪ {∞}

Bk(I;Rn) =
{
f ∈ Ck(I;Rn)

∣∣∣ di

dti f ∈ L∞(I;Rn) for i = 0, . . . , k
}
, k ∈ N0 ∪ {∞}

f |J the restriction of the function f : I → Rn to J ⊆ I
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2. Preliminaries

For convenience we call the extended matrix pencil
[
sE−A −B
−C 0

]
the system pencil of [E,A,B,C] ∈ Σl,n,m,p.

In Section 3 we will derive a so called “zero dynamics form” of [E,A,B,C] within the equivalence class defined
by:

Definition 2.1 (System equivalence). Two systems [Ei, Ai, Bi, Ci] ∈ Σl,n,m,p, i = 1, 2, are called system

equivalent if

∃S ∈ Gll(R), T ∈ Gln(R) :

[
S 0
0 Ip

] [
sE1 −A1 B1

C1 0

] [
T 0
0 Im

]
=

[
sE2 −A2 B2

C2 0

]
;

we write

[E1 , A1 , B1 , C1 ]
S,T∼ [E2 , A2 , B2 , C2 ] .

The notion of system equivalence goes back to Rosenbrock [40], see also the survey [12] and the references
therein.

We introduce the following notation: For k ∈ N, we define the matrices

Nk =

[
0
1

1 0

]
∈ Rk×k, Kk =

[
1 0

1 0

]
, Lk =

[
0 1

0 1

]
∈ R(k−1)×k.

For some multi-index α = (α1, . . . , αl) ∈ Nl, we define

Nα=diag (Nα1
, . . . , Nαl

) ∈ R|α|×|α|, Kα=diag (Kα1
, . . . ,Kαl

), Lα=diag (Lα1
, . . . , Lαl

) ∈ R(|α|−l)×|α|. (2.1)

We use the quasi-Kronecker form [14, 15], which is a version of the Kronecker canonical form [21] where all
involved matrices are real-valued.

Proposition 2.2 (Quasi-Kronecker form). For any matrix pencil sÊ − Â ∈ R[s]l̂×n̂ there exist S ∈ Gl
l̂
(R),

T ∈ Gln̂(R), As ∈ Rns×ns , and α ∈ Nnα , β ∈ Nnγ , γ ∈ Nnγ such that

S(sÊ − Â)T =




sIns
−As 0 0 0
0 sNα − I|α| 0 0
0 0 sKβ − Lβ 0
0 0 0 sK⊤

γ − L⊤
γ


 . (2.2)

The multi-indices α, β, γ are unique up to a permutation of their respective entries. Further, the matrix As is

unique up to similarity.

For a discussion of the blocks in (2.2) and their solution behavior we refer to the survey [45], see also the
textbooks [31, 32].

Since each block in sKβ − Lβ (sK⊤
γ − L⊤

γ ) causes a single drop of the column (row) rank of sE − A, resp.,
we have

ℓ(β) = n̂− rkR(s)(sÊ − Â), ℓ(γ) = l̂ − rkR(s)(sÊ − Â). (2.3)

For later use we collect the following lemma.

Lemma 2.3 (Full column rank and quasi-Kronecker form). Let sÊ − Â ∈ R[s]l̂×n̂ and consider any quasi-

Kronecker form (2.2) of sÊ − Â. Then ℓ(β) = 0 if, and only if, rkR[s] sÊ − Â = n̂.

Proof: The assertion is immediate from (2.3) and rkR[s] sÊ − Â = rkR(s) sÊ − Â. �
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3. Zero dynamics

In this section we recall the crucial concept of zero dynamics for DAE systems (1.1), which has been introduced
by Byrnes and Isidori [17], as well as the notion of autonomous zero dynamics, which seem to have their first
appearance in [48]. We derive several important characterizations of autonomous zero dynamics and, as the
main result of this section, the so called zero dynamics form in Theorem 3.6.

Definition 3.1 (Zero dynamics). The zero dynamics of system (1.1) are defined as the set of trajectories

ZD(1.1) :=
{
(x, u, y) ∈ B(1.1)

∣∣∣ y a.e.
= 0

}
.

The zero dynamics ZD(1.1) are called autonomous if

∀w ∈ ZD(1.1) ∀ I ⊆ R open interval : w|I
a.e.
= 0 =⇒ w

a.e.
= 0 . (3.1)

The definition of autonomous zero dynamics is a special case of the definition of autonomy, as it has been
introduced in [36, Sec. 3.2] for general behaviors. In order to characterize (autonomous) zero dynamics we
introduce the well-known concept of (E,A,B)-invariance, see [3, 4, 33, 35].

Definition 3.2 ((E,A,B)-invariance). Let (E,A,B) ∈ Rl×n ×Rl×n ×Rl×m and V ⊆ Rn be a linear subspace.
Then V is called (E,A,B)-invariant if

AV ⊆ EV + imB . (3.2)

For a system [E,A,B,C] ∈ Σl,n,m,p, we denote the maximal (E,A,B)-invariant subspace included in kerC
(with respect to subspace inclusion) with max(E,A,B; kerC). This space can be derived from a sequence of
subspaces which terminates after finitely many steps.

Lemma 3.3 (Subspace sequences leading to max(E,A,B; kerC)). Let [E,A,B,C] ∈ Σl,n,m,p and define V0 :=
kerC and

∀ i ∈ N : Vi := A−1(EVi−1 + imB) ∩ kerC.

Then the sequence (Vi) is nested, terminates and satisfies

∃ k∗ ∈ N ∀ j ∈ N : V0 ) V1 ) · · · ) Vk∗ = Vk∗+j = A−1(EVk∗ + imB) ∩ kerC. (3.3)

Furthermore,

Vk∗ = max(E,A,B; kerC) (3.4)

and, if (x, u, y) ∈ ZD(1.1), then x(t) ∈ Vk∗ for almost all t ∈ R.

Proof: It is easy to see that (3.3) holds true and (3.4) follows from [35, Lem. 2.1]. For the last statement let
(x, u, y) ∈ ZD(1.1). Then we have

Ax(t) = d
dtEx(t)−Bu(t) and x(t) ∈ kerC

for almost all t ∈ R. Since, for any subspace S ⊆ Rn, if x(t) ∈ S for almost all t ∈ R, then d
dtEx(t) ∈ ES for

almost all t ∈ R, we conclude

x(t) ∈ A−1({ d
dtEx(t)} + imB) ∩ kerC ⊆ V1 for almost all t ∈ R.

Inductively, we obtain x(t) ∈ Vk∗ for almost all t ∈ R. �

The following result is a general version of [8, Prop. 4.3], which follows immediately from Lemma 3.3.
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Proposition 3.4 (Characterization of zero dynamics). Let [E,A,B,C] ∈ Σl,n,m,p. If (x, u, y) ∈ B(1.1), then

(x, u, y) ∈ ZD(1.1) ⇐⇒
[
x(t) ∈ max(E,A,B; ker C) for almost all t ∈ R

]
.

Next, we state some characterizations of autonomous zero dynamics in terms of a pencil rank condition
(exploiting the quasi-Kronecker form) and some conditions involving the largest (E,A,B)-invariant subspace
included in kerC.

Proposition 3.5 (Characterization of autonomous zero dynamics). Let [E,A,B,C] ∈ Σl,n,m,p. Then the

following three statements are equivalent:

(i) ZD(1.1) is autonomous.

(ii) rkR[s]
[
sE−A −B
−C 0

]
= n+m.

(iii) (A1) rkB = m,

(A2) kerE ∩max(E,A,B; ker C) = {0},
(A3) imB ∩ Emax(E,A,B; ker C) = {0} .

Proof: In view of Proposition 2.2, there exist S ∈ Gll+p(R), T ∈ Gln+m(R) such that (using the matrices
defined in (2.1))

S

[
sE −A −B
−C 0

]
T =




sIns
−As 0 0 0
0 sNα − I|α| 0 0
0 0 sKβ − Lβ 0
0 0 0 sK⊤

γ − L⊤
γ


 (3.5)

(i)⇒(ii): Suppose that (ii) does not hold. Then Lemma 2.3 yields ℓ(β) > 0. Therefore, we find z ∈
C∞(R,R|β|) \ {0} and I ⊆ R open interval such that z|I = 0 and ( d

dtKβ − Lβ)z = 0. This implies that

[
d
dtE −A −B
−C 0

]
T (0, 0, z⊤, 0)⊤ = 0,

which contradicts autonomous zero dynamics.
(ii)⇒(i): By (ii) and Lemma 2.3 it follows that ℓ(β) = 0 in (3.5). Let w ∈ ZD(1.1) and I ⊆ R be an open

interval such that w|I
a.e.
= 0. Then, with (v⊤1 , v⊤2 , v

⊤
3 )

⊤ = T−1w, we have

S−1




d
dtIns

−As 0 0
0 d

dtNα − I|α| 0
0 0 d

dtK
⊤
γ − L⊤

γ





v1
v2
v3


 a.e.

=

[
d
dtE −A −B
−C 0

]
w

a.e.
= 0,

and thus ( d
dtIns

−As)v1
a.e.
= 0, ( d

dtNα − I|α|)v2
a.e.
= 0, and ( d

dtK
⊤
γ − L⊤

γ )v3
a.e.
= 0. Then, successively solving each

block in ( d
dtNα − I|α|)v2

a.e.
= 0 and ( d

dtK
⊤
γ − L⊤

γ )v3
a.e.
= 0 gives v2

a.e.
= 0 and v3

a.e.
= 0. Since v1|I

a.e.
= 0 it follows

that v1
a.e.
= 0. So we may conclude that w

a.e.
= 0, by which the zero dynamics are autonomous.

(i)⇒(iii): Let V ∈ Rn×k with full column rank such that imV = max(E,A,B; ker C). By definition of
max(E,A,B; ker C) there exist N ∈ Rk×k,M ∈ Rm×k such that AV = EV N + BM and CV = 0. Therefore,
we have (

s

[
E 0
0 0

]
−
[
A B
C 0

])[
V 0

−M −Im

]
=

[
EV (sIk −N) B

0 0

]
.

6



By (ii) we find s0 ∈ C such that
[
s0E−A −B
−C 0

]
has full column rank and s0Ik − N is invertible. We show that

[EV,B] has full column rank. Let x ∈ Rk, u ∈ Rm be such that EV x+Bu = 0. Then

[
s0E −A −B

−C 0

] [
V 0

−M −Im

](
(s0Ik −N)−1x

u

)
=

[
EV (s0Ik −N) B

0 0

](
(s0Ik −N)−1x

u

)
= 0,

thus

[
V 0

−M −Im

](
(s0Ik −N)−1x

u

)
= 0 and full column rank of V gives x = 0 and u = 0. Now rk[EV,B] =

k +m clearly implies (A1)–(A3).

(iii)⇒(i): Let (x, u, y) ∈ ZD(1.1) and I ⊆ R an open interval such that (x, u)|I
a.e.
= 0. Choose W ∈ Rn×(n−k)

such that [V,W ] ∈ Gln(R). Applying the coordinate transformation (z⊤1 , z
⊤
2 )⊤ = [V,W ]−1x and observing that,

by Proposition 3.4, x(t) ∈ imV for almost all t ∈ R, it follows Wz2(t) = x(t) − V z1(t) ∈ imW ∩ im V = {0}
for almost all t ∈ R and hence z2

a.e.
= 0. By (A1)–(A3) we have that rk[EV,B] = k + m, thus there exists

S ∈ Gll(R) such that

S[EV,B] = S



Ik 0
0 Im
0 0


 , S[EW,AV ] =



E1 A1

E2 A2

E3 A3


 .

Then Ex ∈ W1,1
loc (R;R

l) implies that w := z1 + E1z2 ∈ W1,1
loc (R;R

k) and we have w
a.e.
= z1. Furthermore,

Aiz1
a.e.
= Aiw, i = 1, 2, 3, and since

[
E2

E3

]
z2 ∈ W1,1

loc (R;R
n−k) we find d

dt

[
E2

E3

]
z2

a.e.
= 0. Then we obtain

d
dtEx(t)

a.e.
= Ax(t) +Bu(t) ⇐⇒ d

dtS(EV z1(t) + EWz2(t)) − SBu(t)
a.e.
= SA(V z1(t) +Wz2(t))

a.e.
= SAV z1(t)

⇐⇒




d
dtw(t)
u(t)
0


 a.e.

=




d
dtw(t)

d
dtE2z2(t) + u(t)

d
dtE3z2(t)


 a.e.

=



A1w(t)
A2w(t)
A3w(t)


 .

hence w|I
a.e.
= z1|I and V z1|I

a.e.
= x|I

a.e.
= 0 together with rkV = k give w = 0 and therefore (x, u)

a.e.
= 0. �

The characterization in Proposition 3.5 was observed for ODE systems (I, A,B,C) ∈ Σn,n,m,m by Ilchmann

and Wirth (personal communication, July 4, 2012). The following zero dynamics form for systems with
autonomous zero dynamics in Theorem 3.6 was derived for ODE systems (I, A,B,C) by Isidori [28, Rem. 6.1.3];
however, in [28] it is not clear that the assumptions (A1), (A3) are equivalent to autonomous zero dynamics
(note that (A2) is superfluous for ODEs). A zero dynamics form for time-varying ODE systems has been derived
in [11] and it seems that a zero dynamics form for time-varying DAEs can be obtained from a combination of
the results in [11] with the following theorem.

Theorem 3.6 (Zero dynamics form). Consider [E,A,B,C] ∈ Σl,n,m,p and suppose that the zero dynamics

ZD(1.1) are autonomous. Let V ∈ Rn×k be such that imV = max(E,A,B; ker C) and rkV = k. Then there

exist W ∈ Rn×(n−k) and S ∈ Gll(R) such that [V,W ] ∈ Gln(R) and

[E,A,B,C]
S, [V,W ]∼ [Ẽ, Ã, B̃, C̃], (3.6)

where

Ẽ =



Ik E2

0 E4

0 E6


 , Ã =



A1 A2

A3 A4

0 A6


 , B̃ =




0
Im
0


 , C̃ = [0, C2] (3.7)

such that

max

([
E4

E6

]
,

[
A4

A6

]
,

[
Im
0

]
, C2

)
= {0}, (3.8)
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and A1 ∈ Rk×k, E2 ∈ Rk×(n−k), A2 ∈ Rk×(n−k), A3 ∈ Rm×k E4 ∈ Rm×(n−k), A4 ∈ Rm×(n−k), E6 ∈
R(l−k−m)×(n−k), A6 ∈ R(l−k−m)×(n−k), C2 ∈ Rp×(n−k).

For uniqueness we have: If [E,A,B,C], [Ê, Â, B̂, Ĉ] ∈ Σl,n,m,p are in the form (3.7) such that (3.8) holds,

and

[E,A,B,C]
S,T∼ [Ê, Â, B̂, Ĉ] for some S ∈ Gll(R), T ∈ Gln(R), (3.9)

then

S =



S1 0 S3

0 Im S6

0 0 S9


 , T =

[
S−1
1 T2

0 T4

]
,

where S1 ∈ Glk(R), S9 ∈ Gll−k−m(R), T4 ∈ Gln−k(R) and S3, S6, T2 are of appropriate sizes. In particular the

dimensions of the matrices in (3.7) are unique and A1 is unique up to similarity, i.e., σ(A1) is unique.

Proof: Step 1 : We prove (3.6) and (3.7). By Proposition 3.5, autonomous zero dynamics are equivalent to the
conditions (A1)–(A3). These conditions imply that k + m ≤ l. Then we may find W ∈ Rn×(n−k) such that
[V,W ] ∈ Gln(R). Considering the transformed system

(
E[V,W ], A[V,W ], B, C[V,W ]

)
, we find that CV = 0,

since imV ⊆ kerC. Further observe that EV has full column rank by (A2) and, since B has full column
rank by (A1) and imEV ∩ imB = {0} by (A3), we obtain that [EV,B] has full column rank. Hence, we find

S ∈ Gll(R) such that S [EV,B] =
[
Ik 0
0 Im
0 0

]
. Therefore,

[E,A,B,C]
S, [V,W ]∼

(
SE[V,W ], SA[V,W ], SB,C[V,W ]

)
=





Ik E2

0 E4

0 E6


 ,



A1 A2

A3 A4

A5 A6


 ,




0
Im
0


 , [0, C2]


 .

By (E,A,B)-invariance of imV , there exist N ∈ Rk×k, M ∈ Rm×k such that AV = EV N +BM , thus

S−1



A1

A3

A5


 = AV = EV N +BM = S−1



Ik
0
0


N + S−1




0
Im
0


M,

which gives A5 = 0.
Step 2 : We show (3.8). Let (E,A,B,C) :=

([
E4

E6

]
,
[
A4

A6

]
,
[
Im
0

]
, C2

)
and q ∈ N0, Z ∈ R(n−k)×q, X ∈ Rq×q,

Y ∈ Rm×q be such that AZ = EZX + BY and CZ = 0. We show that V := im[V,WZ] is (E,A,B)-invariant
and included in kerC.

Step 2a: We show (E,A,B)-invariance of V . Since AV = EV A1 +BA3, this follows from

A[V,WZ] =


EV A1 +BA3, S

−1



A2

A4

A6


Z


 =


EV A1 +BA3, S

−1




A2Z
E4ZX + Y

E6ZX






=


EV A1 +BA3, S

−1





E2

E4

E6


ZX +



A2Z − E2ZX

0
0


+ B̃Y






= [EV A1 +BA3, EWZX + EV (A2Z − E2ZX) +BY ]

= E[V,WZ]

[
A1 A2Z − E2ZX
0 X

]
+B[A3, Y ].

Step 2b: We show that V is included in kerC. This is immediate from C[V,WZ] = [0, C2Z] = 0.
Now, since imV is the largest (E,A,B)-invariant subspace included in kerC, if follows that im[V,WZ] ⊆ imV

and hence, since imV ∩ imW = {0} and W has full column rank, Z = 0. This implies (3.8).
8



Step 3 : We show the uniqueness property. First note that

max(SET, SAT, SB; kerCT ) = T−1max(E,A,B; kerC),

and hence
dimmax(SET, SAT, SB; kerCT ) = dimmax(E,A,B; kerC).

Therefore, the block structures of [E,A,B,C] and [Ê, Â, B̂, Ĉ] coincide. Now, we now show that

max(E,A,B; kerC) = max(SET, SAT, SB; kerCT ) = im

[
Ik
0

]
. (3.10)

First, we consider max(E,A,B; kerC). Since

A

[
Ik
0

]
=



A1

A3

0


 = E

[
Ik
0

]
A1 +BA3 ∧ C

[
Ik
0

]
= 0,

we find that im
[
Ik
0

]
is (E,A,B)-invariant and included in kerC. In order to show maximality, let V =

[
V1

V2

]
∈

Rn×q, N ∈ Rq×q, M ∈ Rm×q be such that AV = EV N +BM and CV = 0. In particular, this implies that

[
A4

A6

]
V2 =

[
E4

E6

]
V2N +

[
Im
0

]
[M,A3V1] ∧ C2V2 = 0,

and hence (3.8) implies that V2 = 0, thus imV ⊆ im
[
Ik
0

]
. Since [SET, SAT, SB,CT ] has the same block

structure as [E,A,B,C], we have proved (3.10).
From (3.10) we obtain

im

[
Ik
0

]
= max(SET, SAT, SB; kerCT ) = T−1max(E,A,B; kerC) = imT−1

[
Ik
0

]
,

by which T takes the form T =
[
T1 T2

0 T4

]
, T1 ∈ Glk(R), T4 ∈ Gln−k(R). Moreover,




0
Im
0


 = B̂ = SB = S




0
Im
0


 , and hence S =



S1 0 S3

S4 Im S6

S7 0 S9


 .

Now, 

Ik
0
0


 = Ê

[
Ik
0

]
= SET

[
Ik
0

]
=



S1T1

S4T1

S7T1


 ,

by which T1 = S−1
1 , S4 = 0 and S7 = 0. This completes the proof of the theorem. �

Remark 3.7 (Zero dynamics form). The name “zero dynamics form” for the form (3.7) may be justified since
the zero dynamics are decoupled in this form. If (x, u, y) ∈ ZD(1.1), then, applying the coordinate transformation

(z⊤1 , z⊤2 )
⊤ = [V,W ]−1x from Theorem 3.6, gives x = V z1+Wz2 and from Proposition 3.4 we obtain x(t) ∈ imV

for almost all t ∈ R. Then imV ∩ imW = {0} gives z2
a.e.
= 0 and w := z1 + E2z2 ∈ W1,1

loc (R;R
k) (which satisfies

w
a.e.
= z1) and u solve

d
dtw

a.e.
= A1w, 0

a.e.
= A3w + u.

Therefore, w as the solution of an ODE characterizes the “dynamics” within the zero dynamics (almost every-
where) and z2 and u are given by algebraic equations depending on w.
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The next result is important for a further refinement of the zero dynamics form in Theorem 4.3.

Proposition 3.8 (Invariant subspace, trivial zero dynamics and system pencil). Let [E,A,B,C] ∈ Σl,n,m,p.

Then the following statements are equivalent:

(i) rkB = m and max(E,A,B; kerC) = {0},
(ii) ZD(1.1) ⊆

{
w ∈ L1

loc(R;R
n × Rm × Rm)

∣∣∣ w a.e.

= 0
}
,

(iii)
[
sE−A −B
−C 0

]
is left invertible over R[s].

Proof: (i)⇒(ii): Let (x, u, y) ∈ ZD(1.1) and observe that by max(E,A,B; kerC) = {0} and Proposition 3.4 we

have x
a.e.
= 0. Then rkB = m implies u

a.e.
= 0 and (ii) is shown.

(ii)⇒(iii): This can be concluded from [36, Thm. 3.6.2].
(iii)⇒(i): Clearly, (iii) implies rkB = m. In order to show max(E,A,B; kerC) = {0} we prove that for all

k ∈ N, V ∈ Rn×k, N ∈ Rk×k and M ∈ Rm×k the implication

(
AV = EV N +BM ∧ CV = 0

)
=⇒ V = 0

holds. If the left hand side holds true, then we have

[
sE −A −B
−C 0

] [
V

−M

]
=

[
EV
0

]
(sIk −N) ∈ R[s](l+p)×k.

By existence of a left inverse L(s) ∈ R[s](n+m)×(l+p) of
[
sE−A −B
−C 0

]
we find that

[
V

−M

]
= L(s)

[
EV
0

]
(sIk −N) =

[
L1(s)EV (sIk −N)
L2(s)EV (sIk −N)

]

with L1(s) =
∑q

i=0 s
iLi

1 ∈ R[s]n×l and L2(s) ∈ R[s]m×l. Comparison of coefficients of the first equation gives

V = −L0
1EV N, L0

1EV = L1
1EV N, L1

1EV = L2
1EV N, . . . , Lq−1

1 EV = Lq
1EV N, Lq

1EV = 0,

and backward solution yields V = 0, which concludes the proof of the proposition. �

Remark 3.9 (Zero dynamics and system pencil/Kronecker form). We stress the difference in the characteriza-
tion of autonomous and trivial zero dynamics in terms of the system pencil as they arise from Propositions 3.5
and 3.8: The zero dynamics are autonomous if, and only if, the system pencil has full column rank over R[s];
they are trivial if, and only if, the system pencil is left invertible over R[s].

Using the quasi-Kronecker form, it follows that the zero dynamics ZD(1.1) are

(i) autonomous if, and only if, in a quasi-Kronecker form (3.5) of the system pencil no underdetermined
blocks are present, i.e., ℓ(β) = 0. The dynamics within the zero dynamics are then characterized by
the ODE ż = Asz.

(ii) trivial if, and only if, in a quasi-Kronecker form (3.5) of the system pencil no underdetermined blocks
and no ODE blocks are present, i.e., ℓ(β) = 0 and ns = 0. The remaining nilpotent and overdetermined
blocks then have trivial solutions only.

In the remainder of this section we consider asymptotically stable zero dynamics.

Definition 3.10 (Asymptotically stable zero dynamics). For [E,A,B,C] ∈ Σl,n,m,p, the zero dynamics ZD(1.1)

are called asymptotically stable if

∀ (x, u, y) ∈ ZD(1.1) : lim
t→∞

ess-sup[t,∞) ‖(x, u)‖ = 0.
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Lemma 3.11 (Characterization of asymptotically stable zero dynamics). For [E,A,B,C] ∈ Σl,n,m,p

ZD(1.1) are asymptotically stable ⇐⇒ ∀λ ∈ C+ : rkC
[
λE−A −B
−C 0

]
= n+m.

Proof of Lemma 3.11: ⇒: This is straightforward.
⇐: The rank condition implies that the system pencil must have full column rank over R[s]. Therefore, by

Lemma 2.3, in a quasi-Kronecker form (3.5) of the system pencil it holds that ℓ(β) = 0. It is also immediate
that σ(As) ⊆ C−. The asymptotic stability of ZD(1.1) then follows from a consideration of the solutions to
each block in (3.5). �

It can be shown [6] that systems with asymptotically stable zero dynamics can be stabilized by a control in
the behavioral sense, provided they are right-invertible. This concept is introduced, in the framework of system
inversion, in the next section.

4. System inversion

In this section we investigate the properties of left-invertibility, right-invertibility, and invertibility of DAE
systems. In order to treat these problems we derive a refinement of the zero dynamics form from Theorem 3.6.

In the following we give the definition of left- and right-invertibility of a system, which are from [46, Sec. 8.2]
- generalized to the DAE case. A detailed analysis of left- and right-invertibility of ODE systems can also be
found in [38,41]. For DAE systems, invertibility properties have been investigated by Geerts [22]. In contrast
to [22], we do not use the distributional solution framework for the definition of left- and right-invertibility and
mainly investigate the system decomposition in Theorem 4.3 and its properties.

Definition 4.1 (System invertibility). [E,A,B,C] ∈ Σl,n,m,p is called

(i) left-invertible if

∀ (x, u, y) ∈ B(1.1) :
[
y

a.e.
= 0 ∧ Ex(0) = 0

]
=⇒ u

a.e.
= 0. (4.1)

(ii) right-invertible if

∀ y ∈ C∞(R;Rp) ∃ (x, u) ∈ L1
loc(R;R

n × Rm) : (x, u, y) ∈ B(1.1).

(iii) invertible if [E,A,B,C] is left-invertible and right-invertible.

We show that a DAE system with autonomous zero dynamics is left-invertible, but the converse if false in
general.

Lemma 4.2 (Autonomous zero dynamics imply left-invertibility). Let [E,A,B,C] ∈ Σl,n,m,p. Then

ZD(1.1) is autonomous
=⇒
⇐=6 [E,A,B,C] is left-invertible.

Proof: =⇒: We show that (4.1) is satisfied. To this end let (x, u, y) ∈ B(1.1) with y
a.e.
= 0 and Ex(0) = 0.

Hence, (x, u, y) ∈ ZD(1.1) and applying the coordinate transformation (z⊤1 , z
⊤
2 )

⊤ = [V,W ]−1x from Theorem 3.6

yields V z1(t) + Wz2(t) = x(t)
Prop. 3.4

∈ imV for almost all t ∈ R. Therefore, z2
a.e.
= 0 and we have that

w := z1 + E2z2 ∈ W1,1
loc (R;R

k) satisfies w
a.e.
= z1 and d

dtw
a.e.
= A1w. Since Ex(0) = 0 we obtain from (3.7) that

w(0) = 0, and hence it follows that w = 0 and thus z1
a.e.
= 0 and u

a.e.
= −A3z1

a.e.
= 0.

⇐=6 : That the converse does, in general, not hold true can be observed from the system [E,A,B,C] with

E =

[
1 0 0
0 0 1

]
, A =

[
0 1 0
0 0 1

]
, B =

[
0
1

]
, C = [0, 0, 1]. �
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If sE − A is regular, then equivalence holds in the statement of Lemma 4.2, see Proposition 4.8. Note
also that in [22, Def. 4.10] the concept of “left invertibility in the strong sense” is introduced, which means
that if x(0) = 0 and y = 0, then u = 0 and Ex = 0; however, it should be noted that in [22] distributional
solutions are considered. Using the algebraic characterization in Proposition 3.5 and [22, Cor. 4.15] it can then
be concluded that autonomous zero dynamics are equivalent to “left invertibility in the strong sense”, provided
that [E⊤, A⊤, C⊤] has full row rank.

In the following we investigate right-invertibility for systems with autonomous zero dynamics. In order for
[E,A,B,C] ∈ Σl,n,m,p to be right invertible it is necessary that C has full row rank (i.e., imC = Rp). This
additional assumption leads to the following form for [E,A,B,C] specializing the form (3.7).

Theorem 4.3 (System inversion form). Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics and rkC =
p. Then there exist S ∈ Gll(R) and T ∈ Gln(R) such that

[E,A,B,C]
S,T∼ [Ê, Â, B̂, Ĉ], (4.2)

where

Ê =




Ik 0 0
0 E22 E23

0 E32 N
0 E42 E43


 , Â =




Q A12 0
A21 A22 0
0 0 In3

0 A42 0


 , B̂ =




0
Im
0
0


 , Ĉ = [0, Ip, 0], (4.3)

k = dimmax(E,A,B; kerC) and N ∈ Rn3×n3 , n3 = n− k − p, is nilpotent with Nν = 0 and Nν−1 6= 0, ν ∈ N,

E22, A22 ∈ Rm×p and all other matrices are of appropriate sizes.

Proof: By Theorem 3.6 system [E,A,B,C] is equivalent to [Ẽ, Ã, B̃, C̃] in (3.7). Since C and therefore C2 has

full row rank, there exists T̃ ∈ Gln−k(R) such that C2T̃ = [Ip, 0]. Hence,

[Ẽ, Ã, B̃, C̃]
I,

[
I 0
0 T̃

]

∼




Ik Ẽ12 Ẽ13

0 Ẽ22 Ẽ23

0 Ẽ32 Ẽ33


 ,



Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

0 Ã32 Ã33


 ,




0
Im
0


 , [0, Ip, 0]


 .

Now, since

max

([
Ẽ22 Ẽ23

Ẽ32 Ẽ33

]
,

[
Ã22 Ã23

Ã32 Ã33

]
,

[
Im
0

]
; ker [Ip, 0]

)
= {0} and rk

[
Im
0

]
= m

by Theorem 3.6, we may infer from Proposition 3.8 that there exists X(s) ∈ R[s](n+m−k)×(l+p−k) such that



X11(s) X12(s) X13(s)
X21(s) X22(s) X23(s)
X31(s) X32(s) X33(s)





sẼ22 − Ã22 sẼ23 − Ã23 Im
sẼ32 − Ã32 sẼ33 − Ã33 0

Ip 0 0


 =



Ip 0 0
0 In−k−p 0
0 0 Im


 .

Obviously, X21(s) = 0 and hence X22(s)(sẼ33 − Ã33) = In−k−p, i.e., sẼ33 − Ã33 is left invertible over R[s].

This implies that in a QKF (2.2) of sẼ33 − Ã33 it holds ns = 0 and ℓ(β) = 0. By a permutation of the

rows in the block sK⊤
γ − L⊤

γ we may achieve that there exists Ŝ ∈ Gll−k−m(R), T̂ ∈ Gln−k−p(R) such that

Ŝ(sẼ33 − Ã33)T̂ =
[

sN−In3

sÊ43−Â43

]
, where N is nilpotent. Hence,

[Ẽ, Ã, B̃, C̃]

[
I 0

0
[
I 0
0 Ŝ

]
]

,

[
I 0

0 T̃ ·
[
I 0
0 T̂

]
]

∼






Ik Ẽ12 Ẽ13

0 Ẽ22 Ẽ23

0 Ê32 N

0 Ê42 Ê43


 ,




Ã11 Ã12 Ã13

Ã21 Ã22 Ã23

0 Â32 In3

0 Â42 Â43


 ,




0
Im
0
0


 , [0, Ip, 0]


 .
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Applying additional elementary row and column operations we obtain that

[E,A,B,C]
S,T∼ [E,A,B,C]

for some S ∈ Gll(R) and T ∈ Gln(R), where

E =




Ik 0 E13

0 E22 E23

0 E32 N
0 E42 E43


 , A =




Q A12 0
A21 A22 0
0 0 In3

0 A42 0


 , B =




0
Im
0
0


 , C = [0, Ip, 0].

It only remains to show that by an additional transformation we can obtain that E13 = 0. To this end consider

Š :=




I 0 QL 0
0 I A21L 0
0 0 I 0
0 0 0 I


 , Ť :=



I −QLE32 −L
0 I 0
0 0 I


 , L :=

ν−1∑

i=0

QiE13N
i,

and observe that ŠB = B = B̂, CŤ = C = Ĉ and ŠEŤ , ŠAŤ have the same block structure as Ê, Â and N is
nilpotent. �

The form derived in Theorem 4.3 is a generalization of the zero dynamics form derived in [8, Thm. 2.3] for
system [E,A,B,C] ∈ Σn,n,m,m with regular sE − A and proper inverse transfer function. Uniqueness of the
entries in the form (4.3) may be analyzed similar to the last statement in Theorem 3.6.

Remark 4.4 (DAE of system inversion form). Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics and
rkC = p. The behavior of the DAE (1.1) may be interpreted, in terms of the form (4.2), (4.3) in Theorem 4.3,

as follows: (x, u, y) ∈ B[E,A,B,C]∩
(
W1,1

loc (R;R
n)×L1

loc(R;R
m)×Wν+1,1

loc (R;Rp)
)
if, and only if, (Tx, u, y) solves

ẋ1 = Qx1 +A12y

0 = −E22ẏ −
∑ν−1

k=0 E23N
kE32y

(k+2) +A21x1 +A22y + u

x3 =
∑ν−1

k=0 N
kE32y

(k+1)

0 = −E42ẏ −
∑ν−1

k=0 E43N
kE32y

(k+2) +A42y,

(4.4)

where Tx = (x⊤
1 , y

⊤, x⊤
3 )

⊤ ∈ W1,1
loc (R;R

k+p+n3 ); see also Figure 1.

The next corollary follows directly from Theorem 4.3 and the form (4.3).

Corollary 4.5 (Asymptotically stable zero dynamics). Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dy-

namics and rkC = p. Then, using the notation from Theorem 4.3, the zero dynamics ZD(1.1) are asymptotically

stable if, and only if, σ(Q) ⊆ C−.

The equations in (4.4) can be viewed as a realization of the inverse system of [E,A,B,C] in the behavioral
sense, i.e., where inputs and outputs have been interchanged. The second equation in (4.4) can be solved
explicitly for u – the output of the inverse system which is again a DAE. In contrast to classical approaches of
system inversion for ODEs [42, 43], this does not involve the inversion of an input-output mapping, but can be
treated solely within the behavioral framework.

For ODE systems (E = I), the Byrnes-Isidori form derived in [27], see also [28, Sec. 5.1], is a special case of
the form (4.4). Note also that in this case the form (4.4) does not simplify in general. If additionally m = p,
then the last equation in (4.4) vanishes. But in general this equation is present and is one reason for [E,A,B,C]
not being right-invertible in general. Necessary and sufficient conditions for the latter are derived next.
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−A21+

∫
+ A12

Q

d
dtE32

d
dtN

+

d
dtN

++

d
dtN

+

d
dtE23

d
dtE22 −A22

u x1 ẋ1 y

x3

Figure 1. System [E,A,B,C] ∈ Σl,n,m,p in form (4.3)

Proposition 4.6 (System invertibility). Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics. Then, in

terms of the form (4.3) from Theorem 4.3,

[E,A,B,C] is invertible ⇐⇒ rkC = p,E42 = 0, A42 = 0 and E43N
jE32 = 0 for j = 0, . . . , ν − 1.

Proof: By Lemma 4.2 [E,A,B,C] is left-invertible, so it remains to show the equivalence for right-invertibility.
⇒: It is is clear that rkC = p, otherwise we might choose any constant y ≡ y0 with y0 6∈ imC, which cannot

be attained by the output of the system. Now, by Theorem 4.3 we may assume, without loss of generality, that
the system is in the form (4.3). Assume that A42 6= 0. Hence, there exists y0 ∈ Rp such that A42y

0 6= 0. Then,
for y ≡ y0 and all x ∈ L1

loc(R;R
n), u ∈ L1

loc(R;R
m) it holds that (x, u, y) 6∈ B(1.1) (since the last equation in (4.4)

is not satisfied), which contradicts right-invertibility. Therefore, we have A42 = 0. Repeating the argument
for E42 and E43N

jE32 with y(t) = ty0 and y(t) = tj+2y0, resp., yields that E42 = 0 and E43N
jE32 = 0,

j = 0, . . . , ν − 1.
⇐: This is immediate from (4.4) since y ∈ C∞(R;Rp). �

Remark 4.7. Let [E,A,B,C] ∈ Σl,n,m,p with autonomous zero dynamics. If l = n, p = m and rkC = m, then
[E,A,B,C] is invertible. This can be seen using the form (4.3) from Theorem 4.3.

In the remainder of this section we restrict ourselves to regular systems and relate the invertibility properties
to the transfer function of the system.

Proposition 4.8 (Invertibility for regular systems). Let [E,A,B,C] ∈ Σn,n,m,p be such that sE −A is regular

and let G(s) = C(sE −A)−1B ∈ R(s)p×m be its transfer function. Then we have the following statements:

(i) ZD(1.1) is autonomous ⇐⇒ [E,A,B,C] is left-invertible ⇐⇒ rkR[s] G(s) = m.

(ii) [E,A,B,C] is right-invertible ⇐⇒ rkR[s] G(s) = p.

Proof: The proof of (ii) and of the equivalence between autonomous zero dynamics and rkR[s] G(s) = m can be
found in [5, Prop. 5.3.1]. In view of Lemma 4.2 it remains to show that left-invertibility implies rkR[s] G(s) = m.
Since sE −A is regular, by [10, Thm. 2.6] there exist S, T ∈ Gln(R) such that

S(sE −A)T =

[
sIn1

− J 0
0 sN − In2

]
, where N ∈ Rn2×n2 is nilpotent and J ∈ Rn1×n1 .
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Let SB =
[
B1

B2

]
and CT = [C1, C2]. Let (x, u, y) ∈ B(1.1) be such that y = Cx

a.e.
= 0 and Ex(0) = 0. Then

T−1x = ( x1

x2
) satisfies

d
dtx1(t) = Jx1(t) +B1u(t),

d
dtNx2(t) = x2(t) + B2u(t).

Invoking [10, Prop. 2.20] we find that the solution of these equations with x1(0) and u ∈ Cn2−1(R;Rm) are given
by

x1(t) =

∫ t

0

eJ(t−s)B1u(s) ds , x2(t) = −
n2−1∑

k=0

NkB2u
(k)(t), t ∈ R.

Since Cx
a.e.
= 0 it follows that

∀ t ∈ R :

∫ t

0

C1e
J(t−s)B1u(s) ds −

n2−1∑

k=0

C2N
kB2u

(k)(t) = 0. (4.5)

By left-invertibility of [E,A,B,C] we have that for all u ∈ Cn2−1(R;Rm) equation (4.5) can only be true if
u = 0. Using Laplace transform this implies that

P (s) := C1(sIn1
− J)−1B1 −

n2−1∑

k=0

C2N
kB2s

k

has full column rank over R[s]. By [8, (1.7)] we find that P (s) = C(sE−A)−1B = G(s) and hence rkR[s] G(s) =
m. �

5. Funnel control

In this section we consider funnel control for systems [E,A,B,C] ∈ Σl,n,m,m with the same number of inputs
and outputs.

Drawbacks of classical output feedback controllers, such as constant or adaptive high-gain control, are dis-
cussed in [24] for ODE systems. These drawbacks typically comprise that the input is very sensitive to output
perturbations, tracking would require an internal model and, most importantly, transient behavior is not taken
into account. To overcome these drawbacks, the concept of “funnel control” is introduced (see [24] and the
references therein): For any function ϕ belonging to

Φµ :=
{
ϕ ∈ Cµ(R≥0;R) ∩ B1(R≥0;R)

∣∣ ϕ(0) = 0, ϕ(s) > 0 for all s > 0 and lim inf
s→∞

ϕ(s) > 0
}
,

for µ ∈ N, we associate the performance funnel

Fϕ :=
{
(t, e) ∈ R≥0 × Rm

∣∣ ϕ(t)‖e‖ < 1
}
, (5.1)

see Figure 2. The control objective is feedback control so that the tracking error e(·) = y(·) − yref(·), where
yref(·) is the reference signal, evolves within Fϕ and all variables are bounded. More specific, the transient
behavior is supposed to satisfy

∀ t > 0 : ‖e(t)‖ < 1/ϕ(t),

and, moreover, if ϕ is chosen so that ϕ(t) ≥ 1/λ for all t sufficiently large, then the tracking error remains
smaller than λ.

By choosing ϕ(0) = 0 we ensure that the width of the funnel is infinity at t = 0, see Figure 2. In the following
we only treat “infinite” funnels for technical reasons, since if the funnel is finite, that is ϕ(0) > 0, then we need
to assume that the initial error is within the funnel boundaries at t = 0, i.e., ϕ(0)‖Cx0 − yref(0)‖ < 1, and this
assumption suffices.
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λ
0 t

−λ

b(0, e(0))

ϕ(t)−1

e(t)

Figure 2. Error evolution in a funnel Fϕ with boundary ϕ(t)−1 which has a pole at t = 0.

As indicated in Figure 2, we do not assume that the funnel boundary decreases monotonically. Certainly, in
most situations it is convenient to choose a monotone funnel, however there are situations where widening the
funnel at some later time might be beneficial, e.g., when it is known that the reference signal varies strongly.

To ensure error evolution within the funnel, we introduce, for k̂ > 0, the funnel controller :

u(t) = −k(t) e(t), where e(t) = y(t)− yref(t)

k(t) =
k̂

1− ϕ(t)2‖e(t)‖2 .
(5.2)

If we assume asymptotically stable zero dynamics, we see intuitively that, in order to maintain the error evolu-
tion within the funnel, high gain values may only be required if the norm ‖e(t)‖ of the error is close to the funnel
boundary ϕ(t)−1: k(·) increases if necessary to exploit the high-gain property of the system and decreases if
a high gain is not necessary. This intuition underpins the choice of the gain k(t) in (5.2), where the constant

k̂ > 0 is only of technical importance, see Remark 5.1. The control design (5.2) has two advantages: k(·) is
non-monotone and (5.2) is a static time-varying proportional output feedback of striking simplicity. We also
stress that the system parameters need not be known.

In the following we show that funnel control for systems (1.1) is feasible under some appropriate assumptions.
In [8] it is shown that funnel control works for DAE systems with regular pencil sE−A, proper inverse transfer
function and asymptotically stable zero dynamics. In [7] it is then shown that funnel control is also feasible
if the assumption of proper inverse transfer function is replaced by the existence of a positive strict relative
degree, however a filter has to be incorporated in the feedback in this case. What we have presented in the
present paper so far is a unified framework for the two distinct cases “proper inverse transfer function” and
“positive strict relative degree one” and, furthermore, we do not need to assume that sE−A is regular. In fact,
we only need the following assumptions for funnel control being feasible for a system [E,A,B,C] ∈ Σl,n,m,m:

• [E,A,B,C] has asymptotically stable zero dynamics,
• [E,A,B,C] is right-invertible,
• the matrix

Γ = − lim
s→∞

s−1[0, Im]L(s)

[
0
Im

]
∈ Rm×m (5.3)

exists and satisfies Γ = Γ⊤ ≥ 0, where L(s) denotes a left inverse of
[
sE−A −B
−C 0

]
over R(s),
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• k̂ in (5.2) satisfies

k̂ >

∥∥∥∥ lim
s→∞

(
[0, Im]L(s)

[
0
Im

]
+ sΓ

)∥∥∥∥ . (5.4)

Note that the left inverse L(s) exists by Proposition 3.5 and the autonomous zero dynamics of [E,A,B,C]; by
Lemma A.1, Γ is independent of the choice of L(s). Furthermore, for single-input, single-output systems with

transfer function g(s) = p(s)
q(s) ∈ R(s)\{0}, the existence of Γ in (5.3) is equivalent to deg q(s)−deg p(s) ≤ 1, i.e.,

g(s) has strict relative degree smaller or equal to one. Furthermore, any regular systems with a vector relative
degree which is componentwise smaller or equal to 1 satisfies existence of Γ, see Appendix B. Therefore, the
existence of Γ can be viewed as “some relative degree one condition”.

The condition (5.4) on k̂ seems undesirable, since at first glance it is not known how large k̂ must be chosen;
this is just the drawback of high-gain control that we seek to avoid by the introduction of funnel control.
However, condition (5.4) turns out to be structural, since −[0, Im]L(s)[0, Im]⊤ is a generalization of the inverse
transfer function (cf. Remark A.4) and we only need a bound for the norm of the constant coefficient in its
Laurent series. In several important cases it is indeed possible to calculate the bound explicitly, see Remark 5.1.

Another interpretation of condition (5.4) is that it simply guarantees that the subsystem of the closed-loop
system that describes the input-output behavior (i.e., the algebraic variables are omitted) is index-1, cf. [9].

Remark 5.1 (Initial gain). The condition (5.4) is specific for DAEs and already appears in [7, 8], but not in
the ODE case, see [26]. A careful inspection of the proof of Theorem 5.3 shows that we have to ensure that

the matrix Â22 − k(t)Im is invertible for all t ≥ 0, and in order to avoid singularities we choose, as a simple

condition, the “minimal value” k̂ of k(·) to be larger than ‖A22‖ ≥ ‖Â22‖. In most cases the lower bound for k̂
in (5.4) can be calculated easily. We perform the calculation for some classes of ODEs: Consider the system

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t) ,
(5.5)

where A ∈ Rn×n, B, C⊤ ∈ Rn×m, D ∈ Rm×m. System (5.5) can be rewritten in the form (1.1) as

d
dt

[
In 0
0 0

](
x(t)
w(t)

)
=

[
A 0
0 −Im

](
x(t)
w(t)

)
+

[
B
D

]
u(t)

y(t) = [C, I]

(
x(t)
w(t)

)
.

Observe that s
[
In 0
0 0

]
−
[
A 0
0 −Im

]
is regular, and hence applying Remark A.4 gives

Γ = lim
s→∞

s−1

(
[C, I]

[
sI −A 0

0 I

]−1 [
B
D

])−1

= lim
s→∞

s−1
(
C(sI −A)−1B +D

)−1
.

Assume now that D ∈ Glm(R), i.e., the system has strict relative degree 0. Then

Γ = lim
s→∞

s−1D−1
∞∑

k=0

(
−D−1C(sI −A)−1B

)k
= 0,

and

lim
s→∞

(
[0, Im]L(s)

[
0
Im

]
+ sΓ

)
= − lim

s→∞
D−1

∞∑

k=0

(
−D−1C(sI −A)−1B

)k
= −D−1.
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Therefore, (5.4) reads k̂ > ‖D−1‖. If D = 0 and CB ∈ Glm(R), i.e., the system has strict relative degree 1,

then similar calculations lead to Γ =
(
CB

)−1
and (5.4) simply reads k̂ > 0; the latter is a general condition

compared to the choice k̂ = 1 in [26].
For single-input, single-output systems the above conditions can also be motivated by just looking at the

output equation y = cx+ du, c⊤ ∈ Rn, d ∈ R. If a feedback u = −ky, k > 0 is applied, then (1+ dk)y = cx and
in order to solve this equation for y it is sufficient that either k > 0 (no further condition) if d = 0, or k > |d−1|
if d 6= 0.

Before we state our main result, we need to define consistency of the initial value of the closed-loop system and
solutions of the latter. Compared to the previous sections, here we require more smoothness of the trajectories.

Definition 5.2 (Consistent initial value). Let [E,A,B,C] ∈ Σl,n,m,m, ϕ ∈ Φ1 and yref ∈ B1(R≥0;R
m). An

initial value x0 ∈ Rn is called consistent for the closed-loop system (1.1), (5.2), if there exists a solution of the
initial value problem (1.1), (5.2), x(0) = x0, i.e., a function x ∈ C1([0, ω);Rn) for some ω ∈ (0,∞], such that
x(0) = x0 and x satisfies (1.1), (5.2) for all t ∈ [0, ω).

Note that, in practice, consistency of the initial state of the “unknown” system should be satisfied as far as
the DAE [E,A,B,C] is the correct model.

We are now in a position to state the main result of this section.

Theorem 5.3 (Funnel control). Let [E,A,B,C] ∈ Σl,n,m,m be right-invertible and have asymptotically stable

zero dynamics. Suppose that, for a left inverse L(s) of
[
sE−A −B
−C 0

]
over R(s), the matrix Γ in (5.3) exists and

satisfies Γ = Γ⊤ ≥ 0. Let k̂ > 0 be such that (5.4) is satisfied and let, for ν ∈ N as in Theorem 4.3, ϕ ∈ Φν+1

define a performance funnel Fϕ.

Then, for any reference signal yref ∈ Bν+2(R≥0;R
m), any consistent initial value x0 ∈ Rn, the application

of the funnel controller (5.2) to (1.1) yields a closed-loop initial-value problem that has a solution and every

solution can be extended to a global solution. Furthermore, for every global solution x(·),
(i) x(·) is bounded and the corresponding tracking error e(·) = Cx(·)− yref(·) evolves uniformly within the

performance funnel Fϕ; more precisely,

∃ ε > 0 ∀ t > 0 : ‖e(t)‖ ≤ ϕ(t)−1 − ε . (5.6)

(ii) the corresponding gain function k(·) given by (5.2) is bounded:

∀ t0 > 0 : sup
t≥t0

|k(t)| ≤ |k̂|
1− (1 − ελt0)

2
,

where λt0 := inft≥t0 ϕ(t) > 0 for all t0 > 0.

Proof: Note that Γ is well-defined by Lemma A.1. We proceed in several steps.
Step 1 : By Lemma A.3, the closed-loop system (1.1), (5.2) is, without loss of generality, in the form

ẋ1(t) = Qx1(t) +A12 e(t) +A12 yref(t)

Γ ė(t) = (A22 − k(t)Im) e(t) +A22 yref(t)− Γ ẏref(t) + Ψ̃(x0
1, e)(t)

x3(t) =
∑ν−1

k=0 N
kE32 e

(k+1)(t) +
∑ν−1

k=0 N
kE32 y

(k+1)
ref (t)

k(t) = k̂
1−ϕ(t)2‖e(t)‖2 ,

(5.7)

where x0
1 = [Ik, 0, 0]T

−1x0 and

Ψ̃(x0
1, e)(t) = Ψ(x0

1, e)(t) + Ψ(x0
1, yref)(t)−A21e

Qtx0
1, t ≥ 0.
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Note that, as [0, Im]L(s)[0, Im]⊤ = X45(s) for the representation in (A.2),

k̂ >
∥∥∥ lim
s→∞

(
[0, Im]L(s)[0, Im]⊤ + sΓ

)∥∥∥ = ‖A22‖.

By consistency of the initial value x0 there exists a local solution (x1, e, x3, k) ∈ C1([0, ρ);Rn+1) of (5.7) for
some ρ > 0 and initial data

(x1, e, x3, k)(0) =
(
T−1x0 − (0, yref(0), 0)

⊤, k̂
)
,

where the differentiability follows since yref ∈ Bν+2(R≥0;R
m) and ϕ ∈ Cν+1(R≥0;R). It is clear that (t, e(t))

belongs to the set Fϕ for all t ∈ [0, ρ). Even more so, we have that

∀ t ∈ [0, ρ) : (t, x1(t), e(t), x3(t), k(t)) ∈ D̃ :=
{
(t, x1, e, x3, k) ∈ R≥0 × Rn+1

∣∣ ϕ(t)‖e‖ < 1
}
.

We will now, for the time being, ignore the first and third equation in (5.7) and construct an integral-differential
equation from the second and fourth equation, which is solved by (e, k). To this end, observe that by Γ = Γ⊤ ≥ 0,
there exists an orthogonal matrix V ∈ Glm(R) and a diagonal matrix D ∈ Rm1×m1 with only positive entries
for some 0 ≤ m1 ≤ m, such that Γ = V ⊤ [D 0

0 0 ]V .
In order to decouple the second equation in (5.7) into an ODE and an algebraic equation, we introduce

the new variables e1(·) = [Im1
, 0]V e(·) and e2(·) = [0, Im−m1

]V e(·). Rewriting (5.7) and invoking ‖e(t)‖2 =
‖V e(t)‖2 = ‖e1(t)‖2 + ‖e2(t)‖2, this leads to the system

ė1(t) = [D−1, 0](V A22V
⊤ − k(t)Im)

(
e1(t)
e2(t)

)
+ [D−1, 0]V Θ1(e1, e2)(t)

0 = [0, Im−m1
]V A22V

⊤

(
e1(t)
e2(t)

)
− k(t)e2(t) + [0, Im−m1

]V Θ1(e1, e2)(t)

k(t) = k̂
1−ϕ(t)2(‖e1(t)‖2+‖e2(t)‖2) ,

(5.8)

on R≥0 where

Θ1 : Cν(R≥0;R
m1)× Cν(R≥0;R

m−m1) → Cν+1(R≥0;R
m),

(e1, e2) 7→
(
t 7→ A22 yref(t)− Γ ẏref(t) + Ψ̃(x0

1, V
⊤(e⊤1 , e

⊤
2 )

⊤)(t)
)
.

Introduce the set

D :=
{
(t, k, e1, e2) ∈ R≥0 × [k̂,∞)× Rm1 × Rm−m1

∣∣∣ ϕ(t)2(‖e1‖2 + ‖e2‖2) < 1
}

and define

f1 : D × Rm → Rm1 , (t, k, e1, e2, ξ) 7→ [D−1, 0](V A22V
⊤ − kIm)

(
e1
e2

)
+ [D−1, 0]V ξ.

By differentiation of the second equation in (5.8), and using

Â22 = [0, Im−m1
]V A22V

⊤

[
0

Im−m1

]
, Â21 = [0, Im−m1

]V A22V
⊤

[
Im1

0

]
,

we get
0 = Â21ė1(t) + Â22ė2(t)− k̇(t)e2(t)− k(t)ė2(t) + [0, Im−m1

]V d
dtΘ1(e1, e2)(t). (5.9)
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Observe that the derivative of k is given by

k̇(t) = 2k̂
(
1− ϕ(t)2(‖e1(t)‖2 + ‖e2(t)‖2)

)−2

×
(
ϕ(t)ϕ̇(t)(‖e1(t)‖2 + ‖e2(t)‖2) + ϕ(t)2(e1(t)

⊤ė1(t) + e2(t)
⊤ė2(t))

)
. (5.10)

Now let

M : D → Glm−m1
(R), (t, k, e1, e2) 7→

(
Â22 − k

(
Im−m1

+ 2ϕ(t)2
(
1− ϕ(t)2(‖e1‖2 + ‖e2‖2)

)−2
e2e

⊤
2

))
,

Θ2 : Cν(R≥0;R
m1)× Cν(R≥0;R

m−m1) → Cν(R≥0;R
m),

(e1, e2) 7→
(
t 7→ A22 ẏref(t)− Γ ÿref(t) +

d
dtΨ(x0

1, yref)(t) +

∫ t

0

A21QeQ(t−τ)A12 V
⊤

(
e1(τ)
e2(τ)

)
dτ

)

and

f2 : D × Rm1 × Rm → R(m−m1), (t, k, e1, e2, ẽ1, ξ) 7→
2k̂
(
1− ϕ(t)2(‖e1‖2 + ‖e2‖2)

)−2 (
ϕ(t)ϕ̇(t)(‖e1‖2 + ‖e2‖2) + ϕ(t)2(e⊤1 ẽ1)

)
e2

−Â21ẽ1 − [0, Im−m1
]V
(
A21A12V

⊤(e⊤1 , e
⊤
2 )

⊤ + ξ
)
.

We show that M is well-defined. To this end let

G : D → R(m−m1)×(m−m1), (t, k, e1, e2) 7→ 2ϕ(t)2
(
1− ϕ(t)2(‖e1‖2 + ‖e2‖2)

)−2
e2e

⊤
2

and observe thatG is symmetric and positive semi-definite everywhere, hence there exist V̂ : D → R(m−m1)×(m−m1),
V̂ orthogonal everywhere, and D̂ : D → R(m−m1)×(m−m1), D̂ a diagonal matrix with nonnegative entries every-
where, such that G = V̂ −1D̂V̂ . Therefore, (I +G)−1 = V̂ −1(I + D̂)−1V̂ and (I + D̂)−1 is diagonal with entries
in (0, 1] everywhere, which implies that ‖(I +G)−1‖ ≤ 1. Then, for all (t, k, e1, e2) ∈ D, we obtain

‖k−1(I +G(t, k, e1, e2))
−1Â22‖ ≤ k̂‖Â22‖ ≤ k̂‖A22‖ < 1.

and hence k−1(I +G(t, e1, e2))
−1Â22 − I is invertible, which gives invertibility of

M(t, k, e1, e2) = Â22 − k(I +G(t, k, e1, e2)).

Now, inserting k̇ from (5.10) into (5.9) and rearranging according to ė2 gives

M
(
t, k(t), e1(t), e2(t)

)
ė2(t) = f2

(
t, k(t), e1(t), ė1(t), e2(t),Θ2(e1, e2)(t)

)
.

With

f̃2 : D × Rm × Rm → R(m−m1), (t, k, e1, e2, ξ1, ξ2) 7→ M(t, k, e1, e2)
−1f2(t, k, e1, e2, f1(t, k, e1, e2, ξ1), ξ2),

and

f3 : D × Rm × Rm → R, (t, k, e1, e2, ξ1, ξ2) 7→ 2k̂
(
1− ϕ(t)2(‖e1‖2 + ‖e2‖2)

)−2

×
(
ϕ(t)ϕ̇(t)(‖e1‖2 + ‖e2‖2) + ϕ(t)2(e⊤1 f1(t, k, e1, e2, ξ1) + e⊤2 f̃2(t, k, e1, e2, ξ1, ξ2))

)
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we get the system

ė1(t) = f1(t, k(t), e1(t), e2(t),Θ1(e1, e2)(t))

ė2(t) = f̃2(t, k(t), e1(t), e2(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t))

k̇(t) = f3(t, k(t), e1(t), e2(t),Θ1(e1, e2)(t),Θ2(e1, e2)(t)).

(5.11)

(k, e1, e2) ∈ C1([0, ρ);Rm+1) obtained from (e, k) is a local solution of (5.11) with

(k, e1, e2)(0) =
(
k̂, V ([0, Im, 0]T−1x0 − yref(0))

)
=: η (5.12)

and

∀ t ∈ [0, ρ) : (t, k(t), e1(t), e2(t)) ∈ D.

Step 2 : We show that the local solution (x1, e, x3, k) can be extended to a maximal solution, the graph of

which leaves every compact subset of D̃.
With z = (k, e⊤1 , e

⊤
2 )

⊤ and appropriate F : D × R2m → Rm+1, we may write (5.11), (5.12) in the form

ż(t) = F (t, z(t), (Tz)(t)), z(0) = η, (5.13)

where Tz = (Θ1(e1, e2)
⊤,Θ2(e1, e2)

⊤)⊤ and T : C(R≥0;R
m+1) → C(R≥0;R

2m) is an operator with the properties
as in [25, Def. 2.1] (note that in [25] only operators with domain C(R≥0;R) are considered, but the generalization
to domain C(R≥0;R

q) is straightforward). It is immediate that T satisfies properties (i)–(iii) in [25, Def. 2.1];
(iv) follows from the fact that σ(Q) ⊆ C− by the asymptotically stable zero dynamics (cf. also (A.5)) and
yref ∈ Bν+2(R≥0;R

m).
Furthermore, for µ := max{1, ν} and the functions defined in Step 1, we find that f1 and f2 are µ-times

continuously differentiable (since ϕ ∈ Cν+1(R≥0;R)). Furthermore, M is µ-times continuously differentiable

and invertible on D, hence M−1 is µ-times continuously differentiable as well. Finally, this gives that f̃2 and f3
are µ-times continuously differentiable and hence we have F ∈ Cµ(D × R2m;Rm+1).

Let z̃ = (k, e⊤1 , e
⊤
2 )

⊤ ∈ C1([0, ρ);Rm+1) be the local solution of (5.11) obtained at the end of Step 1. Then
z̃ solves (5.13). Observe that, since F is µ-times continuously differentiable and T is essentially an integral-
operator, i.e., it increments the degree of differentiability, we have z̃ ∈ Cµ+1([0, ρ);Rm+1). Then [25, Thm. B.1]1

is applicable to the system (5.13) and we may conclude that

(a) there exists a solution of (5.13), i.e., a function z ∈ C([0, ρ);Rm+1) for some ρ ∈ (0,∞] such that z is locally
absolutely continuous, z(0) = η, (t, z(t)) ∈ D for all t ∈ [0, ρ) and (5.13) holds for almost all t ∈ [0, ρ),

(b) every solution can be extended to a maximal solution z ∈ C([0, ω);Rm+1), i.e., z has no proper right
extension that is also a solution,

(c) if z ∈ C([0, ρ);Rm+1) is a maximal solution, then the closure of graph z is not a compact subset of D.

Property (c) follows since F is locally essentially bounded, as it is at least continuously differentiable. Clearly
z̃ is a solution (in the context of (a)) of (5.13), hence by (b) it can be extended to a maximal solution ẑ ∈
C([0, ω);Rm+1). Similar to z̃, ẑ is (µ+ 1)-times continuously differentiable.

We show that the extended solution ẑ leads to an extended solution of (5.7). Clearly, ẑ is a solution of (5.11).
Integrating the equations for k and e2 in (5.11) and invoking consistency of the initial values gives that (k, e1, e2)
also solve the problem (5.8) and this leads to a maximal solution (x1, e, x3, k) ∈ C1([0, ω);Rn+1), ω ∈ (0,∞],
of (5.7) (extension of the original local solution (x1, e, x3, k) - for brevity we use the same notation) with

graph (x1, e, x3, k) ⊆ D̃. Furthermore, by (c) we have

the closure of graph (x1, e, x3, k) is not a compact subset of D̃. (5.14)

1In [25] a domain D ⊆ R≥0 × R is considered, but the generalization to the higher dimensional case is only a technicality.
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Step 3 : We show that k is bounded. Seeking a contradiction, assume that k(t) → ∞ for t → ω. Using
e1(·) = [Im1

, 0]V e(·) and e2(·) = [0, Im−m1
]V e(·), we obtain from (5.8) that

‖e2(t)‖ ≤ ‖
(
Â22 − k(t)Im−m1

)−1‖
(
‖Â21e1(t)‖ + ‖[0, Im−m1

]VΘ1(e1, e2)(t)‖
)
.

Observing that, since ‖Â22‖ ≤ ‖A22‖ < k̂,

‖
(
Â22 − k(t)Im−m1

)−1‖ = k(t)−1‖
(
Im−m1

− k(t)−1Â22

)−1‖ ≤ k(t)−1 1

1− k(t)−1‖Â22‖
≤ k(t)−1 k̂

k̂ − ‖Â22‖
,

and invoking boundedness of e1 (since e evolves within the funnel) and boundedness of Θ1(e1, e2) (since yref ∈
Bν+2(R≥0;R

m) and (A.5) holds) we obtain

‖e2(t)‖ ≤ k(t)−1 k̂

k̂ − ‖Â22‖

(
‖Â21e1‖∞ + ‖[0, Im−m1

]VΘ1(e1, e2)‖∞
)
−→
t→ω

0. (5.15)

Now, if m1 = 0 then e = e2 and we have limt→ω ‖e(t)‖ = 0, which implies, by boundedness of ϕ,

limt→ω ϕ(t)2‖e(t)‖2 = 0, hence limt→ω k(t) = k̂, a contradiction. Hence, in the following we assume that
m1 > 0.

Let δ ∈ (0, ω) be arbitrary but fix and λ := inft∈(0,ω) ϕ(t)
−1 > 0. Since ϕ̇ is bounded and lim inft→∞ ϕ(t) > 0

we find that d
dt ϕ|[δ,∞) (·)−1 is bounded and hence there exists a Lipschitz bound L > 0 of ϕ|[δ,∞) (·)−1.

Furthermore, let Â11 := [Im1
, 0]V A22V

⊤[Im1
, 0]⊤, Â12 := [Im1

, 0]V A22V
⊤[0, Im−m1

]⊤ and

α := ‖D−1Â11‖‖e1‖∞ + ‖[D−1, 0]VΘ1(e1, e2)‖∞,

β := 2

λk̂
‖D−1Â12‖,

γ := k̂

k̂−‖Â22‖

(
‖Â21e1‖∞ + ‖[0, Im−m1

]VΘ1(e1, e2)‖∞
)
,

κ := λ2k̂
4 σmax(Γ)

> 0,

where σmax(Γ) denotes the largest eigenvalue of the positive semi-definite matrix Γ and σmax(Γ) > 0 since
m1 > 0. Choose ε > 0 small enough so that

ε ≤ min

{
λ

2
, min
t∈[0,δ]

(ϕ(t)−1 − ‖e1(t)‖)
}

and

L ≤ −α− βγε+
κ

ε
. (5.16)

We show that

∀ t ∈ (0, ω) : ϕ(t)−1 − ‖e1(t)‖ ≥ ε. (5.17)

By definition of ε this holds on (0, δ]. Seeking a contradiction suppose that

∃ t1 ∈ [δ, ω) : ϕ(t1)
−1 − ‖e1(t1)‖ < ε.

Then for

t0 := max
{
t ∈ [δ, t1)

∣∣ ϕ(t)−1 − ‖e1(t)‖ = ε
}
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we have for all t ∈ [t0, t1] that

ϕ(t)−1 − ‖e1(t)‖ ≤ ε and ‖e1(t)‖ ≥ ϕ(t)−1 − ε ≥ λ− ε ≥ λ

2

and

k(t) =
k̂

1− ϕ(t)2‖e(t)‖2 ≥ k̂

1− ϕ(t)2‖e1(t)‖2
=

k̂

(1− ϕ(t)‖e1(t)‖)(1 + ϕ(t)‖e1(t)‖
≥ k̂

2εϕ(t)
≥ λk̂

2ε
.

Now we have, for all t ∈ [t0, t1],

1

2
d
dt‖e1(t)‖

2 = e1(t)
⊤ė1(t)

= e1(t)
⊤
(
D−1(Â11 − k(t)Im1

)e1(t) +D−1Â12e2(t) + [D−1, 0]V Θ1(e1, e2)(t)
)

≤ α‖e1(t)‖ + ‖D−1Â12‖‖e2(t)‖‖e1(t)‖ −
λk̂

2ε
e1(t)

⊤D−1e1(t)
⊤

≤ α‖e1(t)‖ + ‖D−1Â12‖‖e2(t)‖‖e1(t)‖ −
λk̂

2ε σmax(Γ)
‖e1(t)‖2.

Moreover, from the inequality in (5.15) we obtain that, for all t ∈ [t0, t1],

‖e2(t)‖ ≤ k(t)−1γ ≤ 2

λk̂
γε.

This yields that

1

2
d
dt‖e1(t)‖

2 ≤
(
α+ βγε− κ

ε

)
‖e1(t)‖

(5.16)

≤ −L‖e1(t)‖.

Therefore, using 1
2

d
dt‖e1(t)‖2 = ‖e1(t)‖ d

dt‖e1(t)‖, we find that

‖e1(t1)‖ − ‖e1(t0)‖ =

∫ t1

t0

1

2
‖e1(t)‖−1 d

dt‖e1(t)‖
2 dt

≤ −L(t1 − t0) ≤ −|ϕ(t1)−1 − ϕ(t0)
−1| ≤ ϕ(t1)

−1 − ϕ(t0)
−1,

and hence

ε = ϕ(t0)
−1 − ‖e1(t0)‖ ≤ ϕ(t1)

−1 − ‖e1(t1)‖ < ε,

a contradiction.
Therefore, (5.17) holds and by (5.15) there exists t̃ ∈ [0, ω) such that ‖e2(t)‖ ≤ ε for all t ∈ [t̃, ω). Then,

invoking ε ≤ λ
2 , we obtain for all t ∈ [t̃, ω)

‖e(t)‖2 = ‖e1(t)‖2 + ‖e2(t)‖2 ≤ (ϕ(t)−1 − ε)2 + ε2 ≤ ϕ(t)−2 − 2ελ+ 2ε2 ≤ ϕ(t)−2 − 2ε2.

This implies boundedness of k, a contradiction.
Step 4 : We show that x1 and x3 are bounded. To this end, observe that z = (k, e⊤1 , e

⊤
2 )

⊤ solves (5.13) and,
by Step 3, z is bounded. Using (A.5) and yref ∈ Bν+2(R≥0;R

m) we find that Tz is bounded as well. This

implies, since F is continuously differentiable, that ż is bounded. Then again, we obtain that d
dt (Tz) is bounded
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and differentiating (5.13) gives boundedness of z̈. Iteratively, we have that

∀ j = 0, . . . , ν + 1 :
(
∃ c0, . . . , cj > 0 ∀ t ∈ [0, ω) : ‖z(t)‖ ≤ c0, . . . , ‖z(j)(t)‖ ≤ cj

)

=⇒
(
∃C > 0 ∀ t ∈ [0, ω) : ‖(Tz)(j)(t)‖ ≤ C

)

and successive differentiation of (5.13) finally yields that z, ż, . . . , z(ν+1) are bounded. This gives boundedness
of e, ė, . . . , e(ν+1). Then, from the first and third equation in (5.7) and the fact that σ(Q) ⊆ C− and
yref ∈ Bν+2(R≥0;R

m), it is immediate that x1 and x3 are bounded.
Step 5 : We show that ω = ∞. First note that by Step 3 and Step 4 we have that (x1, e, x3, k) : [0, ω) → Rn+1

is bounded. Further noting that boundedness of k is equivalent to (5.6) (for t ∈ [0, ω)), the assumption ω < ∞
implies existence of a compact subset K ⊆ D̃ such that graph (x1, e, x3, k) ⊆ K. This contradicts (5.14).

Step 6 : It remains to show (ii). This follows from

∀ t > 0 : k(t) = k̂ + k(t)ϕ(t)2‖e(t)‖2
(5.6)

≤ k̂ + k(t)ϕ(t)2(ϕ(t)−1 − ε)2 = k̂ + k(t)(1− ϕ(t)ε)2. �

Remark 5.4.

(i) Note that ν in Theorem 5.3 is in general not known explicitly. However, we have, by Theorem 4.3, the
estimate ν ≤ n3 = n − k −m, where k = dimmax(E,A,B; kerC). Hence, choosing ϕ and yref to be
(n−m+ 2)-times continuously differentiable will always suffice.

(ii) Theorem 5.3 specifies [8, Rem. 6.4 (i)]: It is shown that, compared [8, Thm. 6.2], regularity is not
needed and the assumptions of [8, Thm. 6.2] can be relaxed, while funnel control is still feasible.

(iii) The problem of finding a solution of (5.13) with the properties (a)–(c) as in the proof of Theorem 5.3
is not solved just by the consistency of the initial value, i.e., existence of a local solution, since it is not
clear that this solution can be extended to a maximal solution which leaves every compact subset of
D. Solvability for any other initial value (for (5.13)) is required for this.

Remark 5.5 (Passive electrical networks). The findings of the present paper, in particular the application of
the funnel controller, can also be applied to a class of passive electrical networks. A common way of modeling
electrical networks is the modified nodal analysis (MNA), see e.g. [20, 23, 47]. This modeling procedure results
in a description of the circuit by a system of the form (1.1), where the inputs and outputs are appropriately
chosen and the matrices E,A,B,C have specific properties, see also [37]. Omitting the details of this procedure
and the circuit theoretic background, we are only interested in the resulting system (1.1) and its properties.

From [37] we have that, in a MNA model of a passive electrical circuit,

sE −A is regular,

G(s) := C(sE −A)−1B has no poles in C+,

∀λ ∈ C+ : G(λ) +G(λ)
⊤ ≥ 0.





(5.18)

The second and third property in (5.18) state that G(s) is positive real. Note that in a MNA model we have
even more structure than stated in (5.18), such as C = B⊤ and a special block structure of E,A,B,C. However,
Condition (5.18) is sufficient for our purposes.

We consider the class of systems which satisfy (5.18) and

G(s) is invertible over R(s). (5.19)

Property (5.19) implies (following the lines of the proof of Proposition B.3) that the zero dynamics are au-
tonomous and [E,A,B,C] is right-invertible. Since G(s) is positive real and invertible over R(s), we may
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infer that G(s)−1 is positive real as well. Then, by [2, p. 216] (see also [37, Prop. 7]) we obtain that
G(s)−1 = Gp(s) + sM , where Gp(s) ∈ R(s)m×m is proper and M ∈ Rm×m satisfies M = M⊤ ≥ 0. As in
Remark A.4 we may now conclude that [0, Im]L(s)[0, Im]⊤ = −G(s)−1 and hence we obtain existence of

Γ = lim
s→∞

s−1G(s)−1 = M.

Therefore, [E,A,B,C] satisfies the assumptions of Lemma A.3. If furthermore asymptotically stable zero
dynamics are assumed, then by Theorem 5.3 the funnel controller works for the class of systems satisfying (5.18)
and (5.19). A larger class of circuits without the requirement (5.19) has been investigated in [13].

6. Simulations

For purposes of illustration we consider an example of a differential-algebraic system (1.1) and apply the
funnel controller (5.2). The simulation of the funnel controller for a mechanical system with springs, masses
and dampers which has a proper inverse transfer function is performed in [8, Sec. 7.1]. In [8, Sec. 7.1] an
academic example of a system with singular matrix pencil sE −A is considered and it is shown that the funnel
controller works for this system, however a proof was not included. This was the reason for the conjecture
in [8, Rem. 6.4] that the funnel controller works for a much larger class than systems with proper inverse
transfer function. It is now clear that funnel control is feasible for this example since it satisfies the assumptions
of Theorem 5.3. The simulation of the funnel controller for a differential-algebraic system with strict relative
degree one can be found in [7, Sec. 6]. For all of the aforementioned systems, feasibility of funnel control has
been proved in Theorem 5.3.

Due to the above reasons, and in order to point out the peculiarities, in the present section we only state an
academic example which has neither proper inverse transfer function nor strict relative degree one, but satisfies
the assumptions of Theorem 5.3. Consider system (1.1) with

[E,A,B,C] :=





1 0 0
0 1 −1
0 −1 1


 ,



−1 1 −2
3 1 1
0 0 1


 ,



0 0
1 0
0 1


 ,

[
0 1 0
0 0 1

]
 . (6.1)

It is immediate that [E,A,B,C] is right-invertible and in the form (4.3), has asymptotically stable zero
dynamics, and the matrix

Γ =

[
1 −1
−1 1

]

satisfies (5.3) and Γ = Γ⊤ ≥ 0. We set

k̂ := 2 >
√
2 =

∥∥∥∥
[
1 1
0 1

]∥∥∥∥ = ‖A22‖ =
∥∥∥ lim
s→∞

([0, Im]L(s)[0, Im]⊤ + sΓ)
∥∥∥ , (6.2)

where L(s) is an inverse of the system pencil, see also Step 1 in the proof of Theorem 5.3 for the latter equalities.
The (consistent) initial value for the closed-loop system (6.1), (5.2) is chosen as

x0 = (−4, 3,−2)⊤. (6.3)

As reference signal yref : R≥0 → R2, we take the first and second component of the (chaotic) solution of the
following initial-value problem for the Lorenz system

ξ̇1(t) = 10 (ξ2(t)− ξ1(t)), ξ1(0) = 5

ξ̇2(t) = 28 ξ1(t)− ξ1(t) ξ3(t)− ξ2(t), ξ2(0) = 5

ξ̇3(t) = ξ1(t) ξ2(t)− 8
3 tξ3(t), ξ3(0) = 5 .

(6.4)
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It is well known that the unique global solution of (6.4) is bounded with bounded derivative on the positive
real axis, see for example [44, App. C]. The solution of (6.4) is depicted in Fig. 3.
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Figure 3. Components ξi(·) of the Lorenz system (6.4)

The funnel Fϕ is determined by the function

ϕ : R≥0 → R≥0, t 7→ 0.5 te−t + 2 arctan t . (6.5)

Note that this prescribes an exponentially (exponent 1) decaying funnel in the transient phase [0, T ], where
T ≈ 3, and a tracking accuracy quantified by λ = 1/π thereafter, see Fig. 4d.

The simulation has been performed in MATLAB (solver: ode15s, relative tolerance: 10−14, absolute tolerance:
10−5). In Figure 4 the simulation, over the time interval [0, 10], of the funnel controller (5.2) with funnel
boundary specified in (6.5) and reference signal yref(·) = (ξ1(·), ξ2(·))⊤ given in (6.4), applied to system (6.1)
with initial data (6.2), (6.3) is depicted. Fig. 4a shows the output components y1(·) and y2(·) tracking the rather
“vivid” reference signal yref(·) within the funnel shown in Fig. 4d. Note that an action of the input components
u1(·) and u2(·) in Fig. 4c and the gain function k(·) in Fig. 4b is required only if the error ‖e(t)‖ is close to the
funnel boundary ϕ(t)−1. It can be seen that initially the error is very close to the funnel boundary and hence
the gain rises sharply. Then, at approximately t = 0.2, the distance between error and funnel boundary gets
larger and the gain drops accordingly. After t = 2, the error gets close to the funnel boundary again which
causes the gain to rise again. This in particular shows that the gain function k(·) is non-monotone.

Appendix A. Polynomial matrices

The purpose of this section is, essentially, to derive a simplification of the form (4.3) under the condition
that for a left inverse L(s) of

[
sE−A −B
−C 0

]
the matrix

Γ = − lim
s→∞

s−1[0, Im]L(s)

[
0
Ip

]
∈ Rm×p (A.1)

exists. This simplified form then provides an operator differential-algebraic equation which is used in the proof
of Theorem 5.3 to show feasibility of funnel control.

In the following we parameterize all left inverses of the system pencil for right-invertible systems with au-
tonomous zero dynamics; this is important to read off some properties of the block matrices in the form (4.3).
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Fig. a: Solution components y1 and y2
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Fig. b: Gain k
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Fig. c: Input components u1 and u2
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Fig. d: Norm of error ‖e(·)‖ and fun-
nel boundary ϕ(·)−1

Figure 4. Simulation of the funnel controller (5.2) with funnel boundary specified in (6.5)
and reference signal yref(·) = (ξ1(·), ξ2(·))⊤ given in (6.4) applied to system (6.1) with initial
data (6.2), (6.3).

Furthermore, it is shown that the lower right block in any left inverse is well-defined and therefore Γ in (A.1) is
well-defined, provided it exists. The existence of a left inverse of the system pencil over R(s) is clear, since by
Proposition 3.5 autonomous zero dynamics lead to a full column rank of the system pencil over R[s].

Lemma A.1 (Left inverse of system pencil). Let [E,A,B,C] ∈ Σl,n,m,p be right-invertible and have autonomous

zero dynamics. Then L(s) ∈ R(s)(n+m)×(l+p) is a left inverse of
[
sE−A −B
−C 0

]
if, and only if, using the notation

from Theorem 4.3,

L(s) =

[
T 0
0 Im

]



(sIk −Q)−1 0 0 X14(s) X15(s)
0 0 0 X24(s) Ip
0 0 (sN − In3

)−1 X34(s) X35(s)
X41(s) Im X43(s) X44(s) X45(s)



[
S 0
0 Ip

]
, (A.2)
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where [X14(s)
⊤, X24(s)

⊤, X34(s)
⊤, X44(s)

⊤]⊤ ∈ R(s)(n+m)×(l+p−n−m) and

X15(s) = (sI −Q)−1A12, X35(s) = −s(sN − I)−1E32,

X41(s) = A21(sI −Q)−1, X43(s) = −sE23(sN − I)−1,

X45(s) = −(sE22 −A22) +A21(sI −Q)−1A12 + s2E23(sN − I)−1E32,

and L(s) is partitioned according to the block structure of (4.3).
If L1(s), L2(s) ∈ R(s)(n+m)×(l+p) are two left inverse matrices of

[
sE−A −B
−C 0

]
, then

[0, Im]L1(s)

[
0
Ip

]
= [0, Im]L2(s)

[
0
Ip

]
.

Furthermore, if Γ in (A.1) exists, then it is well-defined.

Proof: By Proposition 4.6 we have rkC = p and hence the assumptions of Theorem 4.3 are satisfied. The
statements can then be verified by a simple calculation. �

Now we investigate the consequences of the assumption of existence of Γ in (A.1).

Lemma A.2 (Consequences of existence of Γ). Let [E,A,B,C] ∈ Σl,n,m,p be right-invertible and have au-

tonomous zero dynamics. Suppose that, for a left inverse L(s) of
[
sE−A −B
−C 0

]
over R(s), the matrix Γ in (A.1)

exists. Then, using the notation from Theorem 4.3, we have

∀ k = 0, . . . , ν − 1 : E23N
kE32 = 0. (A.3)

and, furthermore, Γ = E22.

Proof: The left inverse L(s) is given in (A.2) and Γ is independent of the choice of L(s) by Lemma A.1. By
existence of Γ the matrix s−1[0, Im]L(s)[0, Ip]

⊤ is proper, which implies that

s−1X45(s) = −(E22 − s−1A22) + s−1A21(sI −Q)−1A12 + sE23(sN − I)−1E32

is proper. Hence, sE23(sN − I)−1E32 =
∑ν−1

k=0 E23N
kE32s

k+1 has to be proper. This yields (A.3) and the last
statement is then an immediate consequence of Γ = − lims→∞ s−1X45(s) = E22. �

The final result of this section, the simplification of the form (4.3), relies on partially solving the equa-
tions (4.4) using the condition (A.3) derived in Lemma A.2.

Lemma A.3 (Behavior and underlying equations). Let [E,A,B,C] ∈ Σl,n,m,p be right-invertible and have

autonomous zero dynamics. Suppose that, for a left inverse L(s) of
[
sE−A −B
−C 0

]
over R(s), the matrix Γ in (A.1)

exists. Then, using the notation from Theorem 4.3, for any (x, u, y) ∈ B(1.1) ∩
(
C1(R;Rn) × C0(R;Rm) ×

Cν+1(R;Rp)
)
and Tx = (x⊤

1 , y
⊤, x⊤

3 )
⊤ ∈ C1(R;Rk+p+n3), (Tx, u, y) solves

ẋ1(t) = Qx1(t) +A12 y(t)

Γ ẏ(t) = A22y(t) + Ψ(x1(0), y)(t) + u(t)

x3(t) =
∑ν−1

k=0 N
kE32 y

(k+1)(t),

0 = 0,

(A.4)
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where

Ψ : Rk × Cν(R;Rm) → Cν+1(R;Rm), (x0
1, y) 7→

(
t 7→ A21e

Qtx0
1 +

∫ t

0

A21e
Q(t−τ)A12 y(τ) dτ

)
.

Ψ is linear in each argument and, if σ(Q) ⊆ C−, then Ψ has the property

Ψ
(
Rk × (L∞(R;Rp) ∩ Cν(R;Rp))

)
⊆ L∞(R;Rm) ∩ Cν+1(R;Rm). (A.5)

Proof: The assumptions of Theorem 4.3 are satisfied and, invoking Lemma A.2, it is clear that the respective
first and third equations in (4.4) and (A.4) coincide. By Proposition 4.6 and right-invertibility of [E,A,B,C],
the fourth equation in (4.4) reads 0 = 0. Therefore, it remains to show that under the additional assumption
of existence of Γ, the second equation in (A.4) follows from (4.4). To this end, observe that by Lemma A.2,
namely (A.3), the second equation in (4.4) reads

E22ẏ(t) = A22y(t) +A21x1(t) + u(t). (A.6)

Insertion of the solution of the first equation in (4.4) into (A.6) then yields the assertion.
Statement (A.5) about Ψ is obvious from the representation of Ψ and the fact that if σ(Q) ⊆ C−, then there

exist µ,M > 0 such that

∀ t ≥ 0 : ‖eQt‖ ≤ Me−µt. �

Remark A.4 (Regular systems). Let [E,A,B,C] ∈ Σn,n,m,m be such that sE − A is regular. If L(s) is a left
inverse of the system pencil, then we have

[
In (sE −A)−1B
0 Im

]
= L(s)

[
sE −A −B
−C 0

] [
In (sE −A)−1B
0 Im

]

= L(s)

[
sE −A 0
−C −C(sE −A)−1B

]
,

and therefore C(sE −A)−1B is invertible over R(s), and

H(s) := −[0, Im]L(s)

[
0
Im

]
=
(
C(sE −A)−1B

)−1
,

i.e., H(s) is exactly the inverse transfer function of the system [E,A,B,C]. Note that, if sE−A is not regular,
then the transfer function C(sE − A)−1B does not exist, but H(s) may still be defined in terms of the left
inverse L(s). Therefore, H(s) can be viewed as a generalization of the inverse of the transfer function.

Appendix B. Relative degree

In this section we give the definition of vector relative degree for transfer functions of regular systems
[E,A,B,C] ∈ Σn,n,m,p and relate this property to the findings of the paper.

Definition B.1 (Vector relative degree). We say that G(s) ∈ R(s)p×m has vector relative degree (ρ1, . . . , ρp) ∈
Z1×p, if the limit

D := lim
s→∞

diag (sρ1 , . . . , sρp)G(s) ∈ Rp×m

exists and satisfies rkD = p.

Remark B.2 (Vector relative degree).
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(i) It is an easy calculation that if G(s) ∈ R(s)p×m has a vector relative degree, then the vector relative
degree is unique. However, a vector relative degree does not necessarily exist, even if G(s) is (strictly)
proper; see Example B.4.

(ii) If G(s) ∈ R(s)m×m has vector relative degree (ρ1, . . . , ρm) ∈ Z1×m, then ρ = ρ1 = . . . = ρm if, and
only if, G(s) has strict relative degree ρ.

(iii) Isidori [28, Sec. 5.1] introduced a local version of vector relative degree for nonlinear systems. Def-
inition B.1 coincides with Isidori’s definition if strictly proper transfer functions are considered. In
this sense, Definition B.1 is a generalization to arbitrary rational transfer functions. For linear ODE
systems a global version of the vector relative degree has been stated in [34]. It is straightforward to
show that [In, A,B,C] ∈ Σn,n,m,m has vector relative degree (ρ1, . . . , ρp) in the sense of [34, Def. 2.1]
if, and only if, C(sI −A)−1B has vector relative degree (ρ1, . . . , ρp).

In the following we show that a regular system with transfer function which has componentwise vector relative
degree smaller or equal to one, is included in the class of systems investigated in this paper, i.e., in particular
satisfies the assumptions of Lemma A.3. If furthermore asymptotically stable zero dynamics and Γ = Γ⊤ ≥ 0
are assumed, then by Theorem 5.3 funnel control is feasible for this class of systems.

Proposition B.3 (Vector relative degree ≤ 1 implies existence of Γ). Let [E,A,B,C] ∈ Σn,n,m,m be such

that sE − A is regular and G(s) := C(sE − A)−1B has vector relative degree (ρ1, . . . , ρm) with ρi ≤ 1 for all

i = 1, . . . ,m. Then

(i) ZD(1.1) are autonomous,

(ii) [E,A,B,C] is right-invertible,

(iii)

[
sE −A −B
−C 0

]
has inverse L(s) over R(s) and the matrix Γ in (5.3) exists and satisfies

∀ j = 1, . . . ,m : Γej =





(
lim
s→∞

diag (sρ1 , . . . , sρp)G(s)
)−1

ej , if ρj = 1,

0, if ρj < 1.

(B.1)

Proof: Step 1 : We show that G(s) is invertible over R(s). To this end, let F (s) := diag (sρ1 , . . . , sρp)G(s).
Since

D := lim
s→∞

F (s) = lim
s→∞

diag (sρ1 , . . . , sρp)G(s) ∈ Glm(R)

exists, Gsp(s) := F (s)−D ∈ R(s)m×m is strictly proper, i.e., lims→∞ Gsp(s) = 0. Since D is invertible, F (s) is
invertible as well, as by the Sherman-Morrison-Woodbury formula

F (s)−1 = D−1 −D−1Gsp(s)(I +D−1Gsp(s))
−1D−1 ∈ R(s)m×m. (B.2)

It is then immediate that G(s) has inverse G(s)−1 = F (s)−1 diag (sρ1 , . . . , sρp) over R(s).
Step 2 : We show (i). Using invertibility of G(s) we calculate

[
(sE −A)−1 0

−G(s)−1C(sE −A)−1 −G(s)−1

] [
sE −A −B
−C 0

] [
In (sE −A)−1B
0 Im

]

=

[
(sE −A)−1 0

−G(s)−1C(sE −A)−1 −G(s)−1

] [
sE −A 0
−C −G(s)

]
= In+m,

which gives invertibility of the system pencil and thus the zero dynamics are autonomous by Proposition 3.5.
Step 3 : We show (ii). It is clear that rkC = m, since otherwise there exists x ∈ Rn \ {0} such that

x⊤C = 0 and hence x⊤G(s) = 0, which contradicts invertibility of G(s). Therefore, we find that [E,A,B,C] is
right-invertible by virtue of Remark 4.7.
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Step 4 : We show (iii). As in Remark A.4 we may conclude that [0, Im]L(s)[0, Im]⊤ = −G(s)−1 and

s−1G(s)−1 =
(
diag (sρ1 , . . . , sρp)G(s)

)−1
diag (sρ1−1, . . . , sρp−1)

(B.2)
=
(
D−1 −D−1Gsp(s)(I +D−1Gsp(s))

−1D−1
)
diag (sρ1−1, . . . , sρp−1).

Hence, using ρi ≤ 1 for i = 1, . . . ,m, we obtain existence of

Γ = lim
s→∞

s−1G(s)−1 ∈ Rm×m,

where Γej = D−1ej if ρj = 1 and Γej = 0 if ρj < 1, for all j = 1, . . . ,m. �

We illustrate the vector relative degree and Proposition B.3 by means of an example.

Example B.4. Consider system (1.1) with

E =

[
1 0
0 0

]
, A =

[
1 2
0 3

]
, B = C = I2.

It can be seen that sE −A is regular and

G(s) = C(sE −A)−1B =

[
s− 1 −2
0 −3

]−1

=

[ 1
s−1 − 2

3(s−1)

0 − 1
3

]
.

We calculate

D := lim
s→∞

diag (s, 1)G(s) =

[
1 − 2

3
0 − 1

3

]
∈ Gl2(R),

and hence G(s) has vector relative degree (1, 0). Proposition B.3 then implies that ZD(1.1) are autonomous,
[E,A,B,C] is right-invertible, and Γ in (5.3) exists. In fact, it is easy to see that the zero dynamics are
asymptotically stable and

Γ = lim
s→∞

s−1G(s)−1 =

[
1 0
0 0

]

satisfies (B.1): Γe1 = D−1e1 =
[
1 −2
0 −3

]
e1 and Γe2 = 0. Since Γ = Γ⊤ ≥ 0, the assumptions of Theorem 5.3 are

satisfied.
We like to stress that, compared to the above, the regular system (6.1) from Section 6 does not have a vector

relative degree: while its transfer function G(s) is proper, the limit

lim
s→∞

G(s) = −1

3

[
1 1
1 1

]

does not have full row rank. Nevertheless, as shown in Section 6, funnel control is feasible.

Remark B.5 (High-frequency gain matrix). For systems [E,A,B,C] ∈ Σn,n,m,m with regular sE − A and
strict relative degree ρ ∈ N the matrix

lim
s→∞

sρC(sE −A)−1B

is called the high-frequency gain matrix, see [7]. If ρ = 1, then by Proposition B.3, Γ in (5.3) exists and we

have, from the proof of Proposition B.3, Γ =
(
lims→∞ sC(sE −A)−1B

)−1
, i.e., Γ is exactly the inverse of the

high-frequency gain matrix. Since, furthermore, Γ is also defined when no high-frequency gain matrix exists,
we may view the definition of Γ an appropriate generalization of the high-frequency gain matrix to DAEs which
do not have a strict relative degree. In particular, if C(sE −A)−1B has proper inverse, then Γ = 0.
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