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Abstract

We study exponential stability and its robustness for time-varying linear index-1 differential-
algebraic equations. The effect of perturbations in the leading coefficient matrix is investigated. An
appropriate class of allowable perturbations is introduced. Robustness of exponential stability with
respect to a certain class of perturbations is proved in terms of the Bohl exponent and perturbation
operator. Finally, a stability radius involving these perturbations is introduced and investigated. In
particular, a lower bound for the stability radius is derived. The results are presented by means of
illustrative examples.

Keywords: Time-varying linear differential-algebraic equations, exponential stability, robust-
ness, Bohl exponent, perturbation operator, stability radius

1 Introduction

Differential-algebraic equations (DAEs) are a combination of differential equations along with (implic-
itly hidden) algebraic constraints. They have been discovered as an appropriate tool for modeling
a vast variety of problems e.g. in mechanical multibody dynamics [17], electrical networks [38] and
chemical engineering [30], which often cannot be modeled by standard ordinary differential equations
(ODEs). These problems indeed have in common that the dynamics are algebraically constrained,
for instance by tracks, Kirchhoff laws or conservation laws. A nice example can be found in [27]:
A mobile manipulator is modeled as a linear time-varying differential-algebraic control problem. In
particular the power in application is responsible for DAEs being nowadays an established field in
applied mathematics and subject of various monographs and textbooks [8, 12, 31, 32]. In this work
we study questions related to the robustness of stability of linear time-varying DAEs: The concepts of
index-1 DAEs, exponential stability, Bohl exponent, perturbation operator and stability radius. Due
to the algebraic constraints in DAEs most of the classical concepts of the qualitative theory have to
be modified and the analysis gets more involved.
Although differential-algebraic control systems E(t)ẋ = A(t)x+B(t)u(t) are not considered explicitly,
the methods to obtain the robustness results are borrowed from systems theory: The perturbation
operator considered in Section 5 is essentially the input-output operator of a control system and it is
the main tool to investigate the stability radius in Section 6. The robustness results obtained in this
paper are important in order to deal with problems in adaptive control [1] and robust control [40].
We study exponential stability and its robustness for time-varying linear differential-algebraic equations
(DAEs) of the form

E(t)ẋ(t) = A(t)x(t), (1.1)

1



where (E,A) ∈ C(R+;R
n×n)2, n ∈ N. For brevity, we identify the tuple (E,A) with the DAE (1.1).

For the analysis it is also important to consider the inhomogeneous system

E(t)ẋ(t) = A(t)x(t) + f(t), (1.2)

where f ∈ C(R+;R
n).

In this work we concentrate on linear time-varying index-1 DAEs, which are, roughly speaking, those
DAEs which are decomposable into a differential and an algebraic part and no derivatives of the
algebraic variables appear in the decomposed system. The consideration of index-1 DAEsis relevant as
in a lot of applications the occurring DAEs are naturally of index-1. For instance, it is shown in [18]
that any passive electrical circuit containing nonlinear and possibly time-varying elements has index
less than or equal to two - and the index-2 case is exceptional. Furthermore, so called hybrid models of
electrical circuits are always index-1 [28, 39]. Therefore, our approach to index-1 DAEs has a wide area
of applications e.g. in electrical engineering, as linear DAEs (E,A) arise as linearizations of nonlinear
DAEs F (t, x, ẋ) = 0 along trajectories [10].
Among all the available index concepts for DAEs [8, 20, 21, 31, 35], the tractability index as introduced
in [34] turned out to be the most suitable for dealing with perturbations in the leading coefficient matrix
E of (1.1). This is because the way it allows for the decoupling of the DAE in a differential and an
algebraic part via certain projectors enables us to reuse the same projectors for the perturbed system
under some appropriate assumptions. This allows for a proper analysis of the perturbation problem.
Moreover, in this approach it is not necessary to carry out any state space transformations.
The present paper is concerned with perturbations in the leading coefficient matrix E. In perturbation
theory of DAEs it is usually assumed that the leading coefficient E is not perturbed at all, see e.g. [11,
15, 16, 19, 37]. Even in the time-invariant setting, only very few authors have investigated the effects
of perturbations in the leading coefficient, see [7, 9, 14]. For time-varying DAEs, the only work where
also perturbations in the leading coefficient are allowed is [33]. The main reason why perturbations in
the leading term are usually not considered in the DAE community is that even in the time-invariant
index-1 case exponential stability is very sensitive with respect to such perturbations, see [9]. Byers
and Nichols [9] gave the first systematic approach to this problem by introducing a class of “allowable
perturbations”. In the present article we will generalize their results to time-varying systems in a
certain sense, see Section 6. Bracke [7] also generalized the approach of [9] within the setting of
time-invariant DAEs to obtain a better treatment of higher index DAEs.
The paper is organized as follows: In Section 2 we briefly introduce the class of DAEs with tractability
index-1. The perturbation problem is outlined in Section 3 and the class of allowable perturbations
is defined. The notion of Bohl exponent for DAEs is recapitulated in Section 4 and it is shown in
Theorem 4.6 that the Bohl exponent is robust with respect to perturbations introduced in Section 3.
In Section 5 we introduce the perturbation operator for the DAE (1.1) and, after recapitulating some
of its properties, we show in Theorem 5.3 that its norm can be used to determine a bound ρ such
that, roughly speaking, exponential stability is preserved for any perturbation with norm less than ρ.
We also prove another robustness result which incorporates the norm of the perturbation operator in
Theorem 5.6. In Section 6 we introduce a stability radius for index-1 DAEs and prove essential proper-
ties. The main theorem of this section is Theorem 6.11 which provides a lower bound for the stability
radius. This lower bound then enables us to prove a statement about certain subsets of exponentially
stable index-1 DAEs being open in the respective supersets. Note that the results obtained in this
article are new even for time-invariant systems.

Nomenclature

N, N0, R+ the set of natural numbers N, N0 = N ∪ {0}, R+ = [0,∞)
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imA, kerA the image and kernel of the matrix A ∈ R
m×n, resp.

Gln(R) the set of all invertible n× n matrices over R

‖x‖ :=
√
x⊤x, the Euclidean norm of x ∈ R

n

‖A‖ := sup { ‖Ax‖ | ‖x‖ = 1 }, induced matrix norm of A ∈ R
n×m

Ck(I;S) the set of k-times continuously differentiable functions f : I → S from a set
I ⊆ R to a vector space S, k ∈ N0

B(I;S) the set of continuous and bounded functions f : I → S from a set I ⊆ R to a
vector space S

1M(t) :=

{
1, if t ∈ M,
0, otherwise,

for t ∈ R+ and M ⊆ R+

dom f the domain of the function f

‖f‖∞ := sup { ‖f(t)‖ | t ∈ dom f } the infinity norm of the function f

f |M the restriction of the function f on a set M ⊆ dom f

L2(I;S) the set of measurable and square integrable functions f : I → S from a set
I ⊆ R to a vector space S

‖f‖L2[t0,∞) :=
(∫∞

t0
‖f(t)‖2 dt

)1/2
the L2-norm of the function f ∈ L2([t0,∞);S), t0 ∈ R

2 Index-1 DAEs

In this section we briefly recall the concept of tractability index-1, and state some crucial results for
DAEs with this property. The results can be found in the relevant literature [32, 34], see also [2, 3, 11,
16, 20, 35]. For a discussion of the tractability index concept in relation to other index concepts, such
as the differentiation index [8] or the strangeness index [31], see [32, Secs. 2.10 & 3.10] and [36].

Definition 2.1 (Index-1 DAE). The DAE (E,A) ∈ C(R+;R
n×n)2 is called index-1 if, and only if,

there exists Q ∈ C1(R+;R
n×n) such that Q2 = Q, kerE = imQ and E+(EQ̇−A)Q ∈ C(R+;Gln(R)).

Note that by Definition 2.1 the set of index-1 DAEs includes all implicit ODEs, i.e., any system (1.2),
where E ∈ C(R+;Gln(R)), even though such systems are often referred to as index-0 in the literature.
In Lemma 2.4 we show that any index-1 DAE is decomposable into a differential and an algebraic part,
which then justifies this notion.
It is important to observe that the projector Q in Definition 2.1 can always be chosen to be bounded1:
If Q ∈ C1(R+;R

n×n) is not bounded, then its pointwise Moore-Penrose inverse Q+ ∈ C1(R+;R
n×n) is

well defined (cf. also [31, Thm. 3.9]) and we have that QQ+ ∈ C1(R+;R
n×n) and, for all t ∈ R+,

(
Q(t)Q+(t)

)2
= Q(t)Q+(t), imQ(t)Q+(t) = imQ(t) = kerE(t), ‖Q(t)Q+(t)‖ = 1.

Finally, a pointwise application of [20, Thm. A.13] yields that E+(E d
dt(QQ+)−A)QQ+ ∈ C(R+;Gln(R)).

In order to get a better understanding of the structure of index-1 DAEs we may now introduce, for
(E,A) ∈ C(R+;R

n×n)2, the following set of projector functions:

QE,A :=

{
Q ∈ C1(R+;R

n×n) ∩ B(R+;R
n×n)

∣∣∣∣
∀ t ∈ R+ : Q(t)2 = Q(t) ∧ kerE(t) = imQ(t),

E + (EQ̇−A)Q ∈ C(R+;Gln(R))

}
.

1I thank the Associate Editor who handled this paper for pointing this out.
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It is immediate that (E,A) ∈ C(R+;R
n×n)2 is index-1 if, and only if, QE,A 6= ∅. With any Q ∈ QE,A

and P := I −Q we may immediately rewrite (1.2) as

E d
dt(Px) = (A− EQ̇)x+ f. (2.1)

It can be shown that the solutions of (2.1) are independent of the choice of Q, thus the following set
of solutions is well defined.

Definition 2.2 (Solution space). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, f ∈ C(R+;R

n) and Q ∈ QE,A.
We call a function x : R+ → Rn a solution of (1.2) if, and only if,

x ∈ C1
E,A,f :=

{
x ∈ C(R+;R

n)
∣∣ (I −Q)x ∈ C1(R+;R

n) and x solves (2.1) for all t ∈ R+

}
.

Note that this solution concept does only incorporate global solutions and does not account for pos-
sible local solutions, which however must be expected for time-varying DAEs, see e.g. [4, 5]. This is
reasonable since it can be shown that any local solution can be uniquely extended to a global solution
for the class of index-1 DAEs.
The following proposition is important for later purposes and gives more insight into the set QE,A. Its
proof follows from a pointwise application of [20, Thm. A.13].

Proposition 2.3 (Index-1 and projectors on kerE). Let (E,A) ∈ C(R+;R
n×n)2. If QE,A 6= ∅, then

QE,A =
{
Q ∈ C1(R+;R

n×n) ∩ B(R+;R
n×n)

∣∣ ∀ t ∈ R+ : Q(t)2 = Q(t) ∧ kerE(t) = imQ(t)
}
.

The opposite implication of Proposition 2.3 does, in general, not hold true: Considering the simple
example E = A = 0 shows that it is possible that QE,A = ∅ but at the same time there are projectors
onto kerE, i.e., only the index-1 property guarantees that all these projectors are contained in QE,A.

Lemma 2.4 (Decomposition). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A and f ∈ C(R+;R

n).
Set

P := I −Q, Ā := A−EQ̇, G := E + (EQ̇−A)Q = E − ĀQ. (2.2)

Then, for x ∈ C(R+;R
n), we have x ∈ C1

E,A,f if, and only if, Px ∈ C1(R+;R
n) and x solves the

following system for all t ∈ R+:
{

d
dt(P (t)x(t)) = (Ṗ (t) + P (t)G(t)−1Ā(t))P (t)x(t) + P (t)G(t)−1f(t),

Q(t)x(t) = Q(t)G(t)−1Ā(t)P (t)x(t) +Q(t)G(t)−1f(t).
(2.3)

It can be seen from Lemma 2.4 that, roughly speaking, the solutions of the index-1 DAE (E,A) can be
calculated by solving an ODE for Px and then Qx (and therefore x) is given in terms of Px. Therefore,
all solutions of the DAE (1.2) are fully determined by the solutions of the ODE (first equation) in (2.3).
It is also important to note that no derivatives of the so called “algebraic variables” Qx are involved
in (2.3), which justifies the use of the notion “index-1”, cf. [34].
In order to define a transition matrix we need to consider initial value conditions of the form

E(t0)(x(t0)− x0) = 0 (2.4)

for t0 ∈ R+ and x0 ∈ R
n. It is crucial that an initial value problem (1.2), (2.4) can be considered for

arbitrary x0 ∈ R
n and that this problem has a unique solution.

Proposition 2.5 (Solution mapping). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A, P, Ā,G as

in (2.2) and f ∈ C(R+;R
n). Then, for every t0 ∈ R+, the map

ϕt0 : Rn → C1
E,A,f , x0 7→ x, where E(t0)(x(t0)− x0) = 0,

is well defined and surjective.
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Definition 2.6 (Transition matrix). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and ϕt0 be the solution

map given by Proposition 2.5 for (1.1). Then the transition matrix Φ(·, ·) : R+×R+ → R
n×n of (E,A)

is defined by
Φ(t, t0) :=

[(
ϕt0(e1)

)
(t), . . . ,

(
ϕt0(en)

)
(t)

]
, t, t0 ∈ R+,

where ei is the ith unit vector.

In general we have that Φ(·, t0) is continuous but not continuously differentiable, whilst P (·)Φ(·, t0)
is always continuously differentiable. For inhomogeneous problems (1.2), using the transition matrix
Φ(·, ·), a variation of constants formula can be derived.

Proposition 2.7 (Variation of constants). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A, P, Ā,G

as in (2.2) and f ∈ C(R+;R
n). Furthermore, let t0 ∈ R+, Φ(·, ·) be the transition matrix of (E,A) and

ϕt0 be as in Proposition 2.5. Then, for all x0 ∈ R
n,

∀ t ∈ R+ :
(
ϕt0(x

0)
)
(t) = Φ(t, t0)P (t0)x

0 +

∫ t

t0

Φ(t, s)P (s)G(s)−1f(s) ds +Q(t)G(t)−1f(t). (2.5)

3 The perturbation problem

In this section we introduce the class of allowable perturbations considered in this article. For given
(E,A) ∈ C(R+;R

n×n)2 and perturbation ∆E ∈ C(R+;R
n×n) we consider the perturbed system

(
E(t) + ∆E(t)

)
ẋ(t) = A(t)x(t), (3.1)

i.e., perturbations of the matrix-valued function E. Since exponential stability is very sensitive with
respect to arbitrary perturbations in the leading term [9], we do not allow for general perturbations
∆E ∈ C(R+;R

n×n), but restrict ourselves to the class of perturbations defined in the following.

Definition 3.1 (Allowable perturbations). Let (E,A) ∈ C(R+;R
n×n)2 be index-1. Then the set of

allowable perturbations (in the leading coefficient) is defined by

PE,A :=

{
∆E ∈ C(R+;R

n×n)

∣∣∣∣
∀ t ∈ R+ : kerE(t) = ker(E(t) + ∆E(t)),
and (E +∆E, A) is index-1

}
.

Remark 3.2 (Allowable perturbations). The matrix Q̇Q is nilpotent and the index of nilpotency is at
most 2 everywhere: As Q̇ = d

dtQ
2 = Q̇Q+QQ̇ we obtain QQ̇Q = 0 and hence (Q̇Q)2 = 0. Therefore,

I + Q̇Q is invertible everywhere with (I + Q̇Q)−1 = I − Q̇Q.

Remark 3.3 (Kernel assumption). The definition of the set PE,A may seem restrictive, in particular
the claim for the kernel of E to be preserved. But on the one hand, as shown later in this section,
perturbations of the algebraic part are still possible. On the other hand, in the perturbation theory of
DAEs it is usually assumed that the leading coefficient E is not perturbed at all, see e.g. [11, 15, 16,
19, 37]. Moreover, the condition on perturbations of the leading term to preserve some kernel is not
uncommon, as in [9], where time-invariant systems are considered, it is assumed that the left kernel
of E is preserved under the perturbation (see proof of [9, Lem. 3.2]). Furthermore, the singularly
perturbed systems considered in [22] to regularize index-2 DAEs belong to PE,A, provided they are
applied to index-1 systems.
As argued in [9], in practical applications the set of allowable perturbations is limited anyway, restricted
by the physical structure of the considered system. Therefore, as it is widely believed, if the algebraic
part of the DAE represents path constraints, then the zero blocks in E are structural and are not
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subject to disturbances or uncertainties. Perturbations which preserve the (physical) structure of an
index-1 DAE are exactly those which preserve the rank of E and the index-1 property of (E,A).
However, exponential stability is, in general, not robust with respect to perturbations in this class as
Example 4.5 shows. If we restrict ourselves to those perturbations which preserve the kernel of E, then
robustness of exponential stability can be shown, see Theorem 4.6.

Lemma 3.4 (Sufficient condition for preserved index). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈

QE,A, G as in (2.2) and ∆E ∈ C(R+;R
n×n). Then the following holds true:

(i) E −AQ ∈ C(R+;Gln(R)),

(ii)
∀ t ∈ R+ : kerE(t) = ker(E(t) + ∆E(t)),

∀ t ∈ R+ : ‖∆E(t)(E(t) −A(t)Q(t))−1‖ < 1

}
⇒ Q ∈ QE+∆E ,A ∧ ∆E ∈ PE,A.

Proof: (i): Since QQ̇Q = 0 we have (E −AQ)(I + Q̇Q) = E + (EQ̇−A)Q = G and hence, invoking
that I + Q̇Q is invertible by Remark 3.2,

(E −AQ)−1 = (I + Q̇Q)G−1. (3.2)

(ii): As ∆E preserves the kernel of E it is clear that Q is a bounded projector on ker(E+∆E). Hence,
it only remains to prove that E+∆E+((E+∆E)Q̇−A)Q = G+∆E(I+ Q̇Q) ∈ C(R+;Gln(R)). Since
G+∆E(I+Q̇Q) = (I+∆E(E−AQ)−1)G the invertibility immediately follows from the assumption.

Lemma 3.4 gives rise for the following definition of subsets of PE,A.

Definition 3.5. Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and Q ∈ QE,A. Then we define

PQ
E,A :=

{
∆E ∈ C(R+;R

n×n)

∣∣∣∣
∀ t ∈ R+ : kerE(t) = ker(E(t) + ∆E(t)) and
‖∆E(t)(E(t) −A(t)Q(t))−1‖ < 1

}
.

Note that, if E = 0, then I ∈ QE,A and we have PI
E,A = {0} = PE,A. In general, we have PQ

E,A ⊆ PE,A.

For perturbations in PQ
E,A we may also reformulate the perturbed system (3.1) in a form similar to (2.3).

Lemma 3.6 (Decomposition of perturbed system). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A,

P, Ā,G as in (2.2) and ∆E ∈ PQ
E,A. Then x ∈ C(R+;R

n) is a solution of (3.1) if, and only if,

Px ∈ C1(R+;R
n) and x solves the following system for all t ∈ R+:

{
d
dt(P (t)x(t)) = (Ṗ (t) + P (t)G(t)−1Ā(t))P (t)x(t) + P (t)G(t)−1∆(t)P (t)x(t),

Q(t)x(t) = Q(t)G(t)−1Ā(t)P (t)x(t) +Q(t)G(t)−1∆(t)P (t)x(t),
(3.3)

where
∆ := −(I + Λ)−1ΛA(I −QQ̇), Λ = ∆E(E −AQ)−1. (3.4)

Proof: Using Lemma 2.4 and the fact that Q ∈ QE+∆E ,A by Lemma 3.4, and defining Ã := Ā−∆EQ̇,
G̃ := E +∆E − ÃQ, it is immediate that x is a solution of (3.1) if, and only if, Px ∈ C1(R+;R

n) and
x solves {

d
dt(P (t)x(t)) = (Ṗ (t) + P (t)G̃(t)−1Ã(t))P (t)x(t),

Q(t)x(t) = Q(t)G̃(t)−1Ã(t)P (t)x(t).
(3.5)

Now observe that, by (3.2) we have ΛG = ∆E(I + Q̇Q), thus G̃ = G + ΛG and hence, under the
assumption that ‖Λ(t)‖ = ‖∆E(t)(E(t) − A(t)Q(t))−1‖ < 1 for all t ∈ R+, it is immediate that
G̃−1 = G−1(I + Λ)−1 = G−1

(
I − Λ(I + Λ)−1

)
. By some simple calculation we then obtain that
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G̃−1Ã = G−1Ā−G−1
(
(I+Λ)−1∆EQ̇+Λ(I+Λ)−1Ā

)
. Using that ∆EQ̇ = Λ(E−AQ)Q̇ and (I+Λ)−1Λ =

Λ − Λ(I + Λ)−1Λ = Λ(I + Λ)−1, we get G̃−1Ã = G−1Ā − G−1(I + Λ)−1Λ
(
(E − AQ)Q̇ + Ā

)
. Now

(E − AQ)Q̇ + Ā = (E − AQ)Q̇ + A − EQ̇ = A(I − QQ̇), thus G̃−1Ã = G−1Ā + G−1∆, which yields
that (3.5) is equivalent to (3.3).

In the subsequent sections we will also need the following lemma, the proof of which is straightforward.

Lemma 3.7 (Bound on ∆). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A and ∆E ∈ PQ

E,A. Then,
for ∆ as in (3.4) and all t ∈ R+, we have

‖∆(t)‖ ≤ ‖∆E(t)(E(t) −A(t)Q(t))−1A(t)(I −Q(t)Q̇(t))‖
1− ‖∆E(t)(E(t) −A(t)Q(t))−1‖ .

From (3.3) it can be seen that the perturbation does not only effect the differential part, but also the
algebraic part of the DAE. To make this more clear consider the following example which will serve as
a running example in the following.

Example 3.8. Consider the system (1.1) with constant E =
[
1 0 0
0 1 0
0 0 0

]
and A =

[−1 0 0
0 −1 0
0 0 1

]
. The solutions

of this system are given by x1(t) = c1e
−t, x2(t) = c2e

−t, x3(t) = 0 for c1, c2 ∈ R. Now let ∆E =
[
0 δ 0
0 δ 0
δ 0 0

]
,

δ ∈ R, and observe that kerE = ker(E+∆E) for all δ ∈ R. Furthermore, choosing Q = I −E ∈ QE,A,
we have that, for G as in (2.2),

G =
[
1 0 0
0 1 0
0 0 −1

]
and hence G+∆E(I + Q̇Q) =

[
1 δ 0
0 1+δ 0
δ 0 −1

]
,

which is invertible for all δ 6= −1. Hence ∆E ∈ PE,A for δ 6= −1. As it is easy to calculate that

‖∆E‖ =
√
2|δ|, we have ∆E ∈ PQ

E,A if, and only if, |δ| <
√
2/2. The perturbed system (3.1) reads,

after some rearrangement,

ẋ1 = −x1 + δ(1 + δ)−1x2, ẋ2 = −(1 + δ)−1x2, x3 = −δx1 + δ2(1 + δ)−1x2,

Therefore, the solutions are

x1(t) = (c1−c2)e
−t+c2e

−(1+δ)−1t, x2(t) = c2e
−(1+δ)−1t, x3(t) = −δ(c1−c2)e

−t−δc2(1+δ)−1e−(1+δ)−1t,

for c1, c2 ∈ R, and it is clear that both the differential and the algebraic part of the DAE have been
perturbed as all components of the solution have changed. Furthermore, we see that for δ > −1 the
perturbed system is exponentially stable (cf. Definition 4.3), whilst it is unstable for δ < −1. For
δ = −1 we have ∆E 6∈ PE,A, however the system is still exponentially stable as the equations read,
after some rearrangement, ẋ1 = −x1, x2 = 0, x3 = x1 - but this is beyond the scope of this approach
because the index of the system did change (it is index-2 tractable in the sense of [34] for δ = −1).

Remark 3.9. Note that, as shown in Example 3.8, the perturbations may change the algebraic equa-
tions, but not the algebraic structure of the system as it was pointed out in Remark 3.3.

4 Bohl exponent

The Bohl exponent, introduced by Piers Bohl [6], describes the uniform exponential growth of the solu-
tions of a system. For ODEs, the Bohl exponent has been successfully used to characterize exponential
stability and to derive robustness results, see e.g. [13, 23]. In this section we give the definition for the
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Bohl exponent as stated in [4] for general DAE systems and derive some formulae for it which hold in
the index-1 setting. We also state the equivalence between a negative Bohl exponent and exponential
stability and derive a robustness result, namely Theorem 4.6, for the Bohl exponent under the class
of perturbations introduced in Section 3. In particular, this shows that exponential stability is robust
under these perturbations.

Definition 4.1 (Bohl exponent). Let (E,A) ∈ C(R+;R
n×n)2 be index-1. The Bohl exponent of (E,A)

is defined as

kB(E,A) := inf
{

ρ ∈ R

∣∣∣ ∃Nρ > 0 ∀x ∈ C1
E,A,0 ∀ t ≥ s ≥ 0 : ‖x(t)‖ ≤ Nρe

ρ(t−s)‖x(s)‖
}
.

Note that we use the usual convention inf ∅ := +∞.

Lemma 4.2 (Representation of the Bohl exponent). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 with

transition matrix Φ(·, ·). Then we have

kB(E,A) = inf
{

ρ ∈ R

∣∣∣ ∃Nρ > 0 ∀ t ≥ s ≥ 0 : ‖Φ(t, s)‖ ≤ Nρe
ρ(t−s)

}

and kB(E,A) < ∞ if, and only if, sup0≤t−s≤1 ‖Φ(t, s)‖ < ∞. Furthermore, if kB(E,A) < ∞, then it
holds that

kB(E,A) = lim sup
s,t−s→∞

ln ‖Φ(t, s)‖
t− s

, where ln 0 := −∞.

Proof: The first statement is immediate from the definition of the Bohl exponent and the second is a
special case of [4, Prop. 3.7]. For the last statement see [11, Prop. 4.4]. Note that in the second and
last statement a Bohl exponent kB(E,A) = −∞ is explicitly allowed.

We stress that the equivalent condition for a Bohl exponent kB(E,A) < ∞ is also valid in the case
kB(E,A) = −∞. Moreover, the formula for the calculation of the Bohl exponent does also hold true
in this case. The Bohl exponent can become −∞ if all solutions of (1.1) vanish identically, hence
Φ(t, s) = 0 for all t, s ∈ R+. However, it is possible that the Bohl exponent is −∞ even in the ODE
case, as e.g. kB(1,−2t) = −∞. Compared to a Bohl exponent of +∞ it is of a more “good-natured”
kind, as a system with Bohl exponent −∞ is in particular exponentially stable (see Definition 4.3).
Therefore, we will usually consider the cases of finite Bohl exponent and Bohl exponent −∞ together,
i.e., the latter is not excluded when kB(E,A) < ∞ is required, if not stated otherwise.
Next we state the definition of exponential stability of DAEs (E,A). The definition for general DAEs
can be found e.g. in [4, 5]. Here we state the already simplified version derived from [4, Prop. 5.2].

Definition 4.3 (Exponential stability). A linear index-1 DAE (E,A) ∈ C(R+;R
n×n)2 with transition

matrix Φ(·, ·) is called exponentially stable if, and only if,

∃µ,M > 0 ∀ t ≥ t0 ≥ 0 : ‖Φ(t, t0)‖ ≤ Me−µ(t−t0). (4.1)

As shown in [4, Cor. 5.3] we have the following result.

Lemma 4.4 (Bohl exponent and exponential stability). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 with

transition matrix Φ(·, ·), let Q ∈ QE,A and suppose that kB(E,A) < ∞. Then the following statements
are equivalent:

(i) kB(E,A) < 0.

(ii) (E,A) is exponentially stable.
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(iii) ∀ p > 0 ∃ c > 0 ∀ t0 ∈ R+ :
∫∞
t0

‖Φ(t, t0)‖p dt ≤ c.

In the following we derive robustness results for exponential stability. That the assumption of pre-
served kernel of E can, in general, not be relaxed to preserved rank of E is shown by the following
counterexample.

Example 4.5. Consider the system (1.1) with

Eε,µ(t) =

[
1 εαµ(t)

εβµ(t) ε2αµ(t)βµ(t)

]
, A =

[
−1 0
0 1

]
,

where
αµ(t) = cos(µt), βµ(t) = sin(µt), µ, t ∈ R.

Then (E0,0, A) is exponentially stable. By choosing ε > 0 small enough it is possible to achieve that

for the perturbation term ∆ε,µ
E (t) =

[
0 εαµ(t)

εβµ(t) ε2αµ(t)βµ(t)

]
the norm ‖∆ε,µ

E ‖∞ gets as small as desired.

Furthermore,
∀ t, ε, µ ∈ R : rkEε,µ(t) = rkE0,0,

i.e., the rank of E0,0 is preserved under the perturbation ∆ε,µ
E . If 1 − ε2αµ(t)βµ(t) 6= 0 for all t ∈ R,

then the perturbed system is again index-1; this can be achieved by choosing 0 < ε < 1. However,
for any ε ∈ (0, 1) we may choose µ > 0 large enough so that the perturbed system (Eε,µ, A) is not
exponentially stable: To this end observe that (1.1) can be written as

ẋ1(t) =
ε2αµ(t)β̇µ(t)− 1

1− ε2αµ(t)βµ(t)
x1(t), x2(t) = −εβµ(t)x1(t).

The solution x1 of the first equation together with the initial condition x1(0) = x01, x
0
1 ∈ R, is given by

x1(t) = e
∫ t

0
ε2µ cos(µτ)2−1

1−ε2 sin(µτ) cos(µτ)
dτ

x01.

Now consider the sequence tk := 2kπ
µ , k ∈ N0, and calculate that x1(tk) = e

2kπ(ε2µ−2)

µ
√

4−ε4 x01 for k ∈ N0.
We may conclude that for any ε ∈ (0, 1) we may choose µ > 0 large enough so that x1(tk) → ∞ for
k → ∞. Therefore, exponential stability of (E0,0, A) is not robust with respect to perturbations which
preserve the rank of E0,0 and the index-1 property of (E0,0, A).

In view of Lemma 4.4, the next result shows robustness result of exponential stability.

Theorem 4.6 (Robustness of Bohl exponent). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A and

suppose that kB(E,A) > −∞. Further let P and G be as in (2.2). Then for any ε > 0 there exists
δ > 0 such that for all ∆E ∈ PQ

E,A which satisfy, for ∆ as in (3.4), the condition

lim sup
t,s→∞

1

s

∫ t+s

t
‖P (τ)G(τ)−1∆(τ)P (τ)‖ dτ < δ (4.2)

it holds that
kB(E +∆E, A) ≤ kB(E,A) + ε.

Proof: Since ∆E ∈ PQ
E,A we may apply Lemma 3.6 and obtain the reformulated perturbed sys-

tem (3.3). This system can be interpreted as a system where A has been perturbed to A + ∆P and
hence can be treated within the framework of [11]. The assertion of the theorem can then be inferred
from [11, Thm. 5.2] by observing that Assumptions A1 and A3∗ of [11, Thm. 5.2] can be relaxed to
assuming boundedness of Q if the perturbation has the form F = ∆P . The latter follows from the
observation that in the proof of [11, Thm. 5.2] the reformulation carried out in the third equation is
not necessary and it suffices to choose h(t) = ‖P (t)G(t)−1∆(t)P (t)‖.
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In the case of bounded perturbations the statement of Theorem 4.6 can, under some further assump-
tions, be simplified.

Corollary 4.7 (Robustness of Bohl exponent). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A and

suppose that kB(E,A) > −∞. Further let P , G be as in (2.2) and suppose that G−1, P (E − AQ)−1

and P (E − AQ)−1A(P − Q̇P ) are bounded. Then for any ε > 0 there exists δ > 0 such that for all
∆E ∈ C(R+;R

n×n) which satisfy kerE(t) = ker(E(t) + ∆E(t)), t ∈ R+, and ‖∆E‖∞ < δ it holds that

kB(E +∆E, A) ≤ kB(E,A) + ε.

Proof: First observe that by choosing δ sufficiently small we may assure ∆E ∈ PQ
E,A and ‖∆E‖∞‖P (E−

AQ)−1‖∞ < 1. Furthermore, for ∆ as in (3.4), ∆P is bounded, as from Lemma 3.7

‖∆P‖∞ ≤ ‖P (E −AQ)−1A(P − Q̇P )‖∞‖∆E‖∞
1− ‖P (E −AQ)−1‖∞‖∆E‖∞

, (4.3)

where it was used that ∆E = ∆EP and (I −QQ̇)P = (I − Q̇+ Q̇Q)P = P − Q̇P . It follows that

lim sup
t,s→∞

1

s

∫ t+s

t
‖P (τ)G(τ)−1∆(τ)P (τ)‖ dτ ≤ ‖PG−1‖∞‖∆P‖∞.

Now ‖∆E‖∞ can be chosen sufficiently small so that Theorem 4.6 can be applied.

In Theorem 4.6 the case kB(E,A) = −∞ is excluded. Together with the case kB(E,A) = +∞, this
is treated in the following proposition, which provides a condition under which the Bohl exponent is
invariant.

Proposition 4.8 (Equal Bohl exponents). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and Q ∈ QE,A.

Further let P and G be as in (2.2). If ∆E ∈ PQ
E,A and ∆ as in (3.4) satisfies

lim sup
t,s→∞

1

s

∫ t+s

t
‖P (τ)G(τ)−1∆(τ)P (τ)‖ dτ = 0, (4.4)

then kB(E +∆E, A) = kB(E,A). This means in particular, if

lim
t→∞

‖P (τ)G(τ)−1∆(t)P (t)‖ = 0 or

∫ ∞

0
‖P (τ)G(τ)−1∆(τ)P (τ)‖ dτ < ∞,

then kB(E +∆E, A) = kB(E,A).

Proof: Let P , Ā, G be as in (2.2). If kB(E,A) = −∞, then it is easy to observe that choosing sequences
µk → −∞ and δk ց 0 in the proof of Theorem 4.6 shows that kB(E + ∆E, A) = −∞. Suppose now
kB(E,A) 6= −∞. Observe that Theorem 4.6 implies kB(E+∆E, A) ≤ kB(E,A). We now show that it
may be applied to (E+∆E, A) with perturbation −∆E as well. To this end, note that, by Lemma 3.4,
Q ∈ QE+∆E ,A and −∆E ∈ PQ

E+∆E ,A. It remains to prove that G̃ := E+∆E +((E+∆E)Q̇−A)Q and

∆̃ := −(I + Λ̃)−1Λ̃A(I − QQ̇), where Λ = −∆E(E +∆E − AQ)−1, satisfy (4.4) as well. This follows
from observing that E +∆E −AQ is invertible everywhere and calculating G̃−1∆̃ = −G−1∆.

Remark 4.9 (Invariance of Bohl exponent ±∞). Note that condition (4.4) is a very strong condition
on the perturbation in order for the Bohl exponent of ±∞ to be preserved. The invariance of Bohl
exponent ±∞ under an appropriate large class of perturbations is an open problem. If we assume

∃ f ∈ C1(R+;R) s.t. lim
t→∞

ḟ(t) = ∞ ∃M > 0 ∀ t ≥ s ≥ 0 : ‖Φ(t, s)‖ ≤ Me−(f(t)−f(s)), (4.5)
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it is straightforward to prove (using the mean value theorem) the following:
Let (E,A) ∈ C(R+;R

n×n)2 be index-1 and Q ∈ QE,A. Further let P and G be as in (2.2). If (4.5)

holds, ∆E ∈ PQ
E,A and ∆ as in (3.4) satisfies (4.4) with “< ∞” instead of “= 0”, then kB(E+∆E, A) =

kB(E,A) = −∞.
The author conjectures that Condition (4.5) is equivalent to kB(E,A) = −∞, however it is only clear
that (4.5) implies kB(E,A) = −∞.

We close this section by illustrating the main result by means of our running example.

Example 4.10 (Example 3.8 revisited). It can be immediately seen from the representation of the
solutions in Example 3.8 that

kB(E,A) = −1 and kB(E +∆E, A) = max
{
−1,−(1 + δ)−1

}

for all δ 6= −1. Therefore, given ε > 0 we have that for all δ ∈ R which satisfy

ε < 1 : δ ∈
(
−1, ε(1 − ε−1

)
, ε = 1 : δ ∈ (−1,∞), ε > 1 : δ ∈

(
−∞, ε(1 − ε−1

]
∪ (−1,∞),

the Bohl exponents satisfy
kB(E +∆E, A) ≤ kB(E,A) + ε.

5 Perturbation operator

In this section we investigate robustness of exponential stability (1.1) in terms of the perturbation
operator. As a system (E,A) is exponentially stable if, and only if, its Bohl exponent is negative by
Lemma 4.4, Theorem 4.6 states in particular that exponential stability of index-1 DAEs is robust with
respect to perturbations in PQ

E,A for any Q ∈ QE,A. However, Theorem 4.6 does only state that the
perturbation has to be sufficiently small in order to preserve exponential stability. In this section we
provide a calculable upper bound on the perturbation such that exponential stability is preserved by
using the perturbation operator. In [23] it was shown that the perturbation operator is an appropriate
tool for investigating perturbations and robustness for ODEs, see also [11, 16] for index-1 DAEs.
Motivated by the variation of constants formula (2.5) the perturbation operator is defined as follows.

Definition 5.1 (Perturbation operator). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and exponentially

stable and let Q ∈ QE,A. Further let Φ(·, ·) be the transition matrix of (E,A), let P and G be as
in (2.2) and suppose that G−1 is bounded. Then the perturbation operator of (E,A) is defined by
Lt0 : L2([t0,∞);Rn) → L2([t0,∞);Rn),

(Lt0f)(t) =

∫ t

t0

Φ(t, s)P (s)G(s)−1f(s) ds +Q(t)G(t)−1f(t).

Lemma 5.2 (Properties of the perturbation operator). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and

exponentially stable such that (4.1) holds. Let Q ∈ QE,A, Φ(·, ·) be the transition matrix of (E,A) and
let P and G be as in (2.2) and suppose that G−1 is bounded. Then we have:

(i) For any t0 ∈ R+: Lt0 is independent of the choice of Q and well defined, i.e., Lt0(f) ∈
L2([t0,∞);Rn) for all f ∈ L2([t0,∞);Rn).

(ii) For all t0 ∈ R+ the operator Lt0 is bounded by

‖Lt0‖ ≤ M

µ

∥∥∥PG−1
∣∣
[t0,∞)

∥∥∥
∞

+
∥∥∥QG−1

∣∣
[t0,∞)

∥∥∥
∞
.
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(iii) t0 7→ ‖Lt0‖ is monotonically nonincreasing on R+, i.e., ‖Lt0‖ ≥ ‖Lt1‖ for all 0 ≤ t0 ≤ t1.

Proof: See [11, 16].

As mentioned before, the perturbation operator is motivated by the variation of constants formula (2.5),
but since an introduction of a solution theory for (1.1) involving L2-inhomogeneities and therefore
Sobolev spaces for the solutions would be very technical and not provide any more insight, we restricted
ourselves to the class of continuous solutions as introduced in Definition 2.2. Nevertheless, Lemma 5.2
shows that the perturbation operator is well defined.
We show now that robustness of exponential stability can be related to the inverse norm of the per-
turbation operator. In fact, we prove that the latter provides a calculable bound on the perturbation
such that exponential stability is preserved. This result is a DAE-version of [23, Cor. 4.3] and to this
end we also introduce the notation

ℓ(E,A) := lim
t0→∞

‖Lt0‖−1 Lem. 5.2
= sup

t0≥0
‖Lt0‖−1

for an index-1 (E,A) ∈ C(R+;R
n×n)2. Note that ℓ(E,A) = ∞ is explicitly allowed. The next theorem

states that if the perturbation term ∆ as in (3.4) is sufficiently small, then exponential stability is
preserved.

Theorem 5.3 (Exponential stability and perturbation operator). Let (E,A) ∈ C(R+;R
n×n)2 be index-

1 and exponentially stable and let Q ∈ QE,A. Let P and G be as in (2.2) and suppose that G−1 is

bounded. Furthermore, let ∆E ∈ PQ
E,A and suppose that for ∆ as in (3.4) the matrix ∆P is bounded.

If

lim
t0→∞

∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

<

{
min

{
ℓ(E,A), ‖QG−1‖−1

∞
}
, if Q 6= 0,

ℓ(E,A), if Q = 0,

then the perturbed system (3.1) is exponentially stable.

Proof: Case 1: Q 6= 0. First note that t0 7→
∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

is monotonically decreasing on R+

and hence the limit always exists since ∆P is bounded. Then, the assumption and the fact that
t0 7→ ‖Lt0‖−1 is monotonically nondecreasing imply that there exists t̂ ∈ R+ such that

∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

< min
{
‖Lt0‖−1, ‖QG−1‖−1

∞
}
, t0 ≥ t̂. (5.1)

By exponential stability of (E,A) we have (4.1), where Φ(·, ·) is the transition matrix of (E,A). In
order to show that (3.1) is exponentially stable we will show in Step 1 that kB(E +∆E, A) < ∞ using
Lemma 4.2 and then in Step 2, using Lemma 4.4, that kB(E +∆E , A) < 0. This means to show that
there exist c1, c2 > 0 such that for the transition matrix Φ̃(·, ·) of (E +∆E, A) it holds that

sup
0≤t−t0≤1

‖Φ̃(t, t0)‖ ≤ c1 and ∀ t0 ∈ R+ :

∫ ∞

t0

‖Φ̃(t, t0)‖2 dt ≤ c2.

Fix s ≥ t̂ and let Ā be as in (2.2). Then Φ̃(·, ·) satisfies (3.3) as a matrix equation, i.e., for all t ≥ s,
{

d
dt(P (t)Φ̃(t, s)) = (Ṗ (t) + P (t)G(t)−1Ā(t))P (t)Φ̃(t, s) + P (t)G(t)−1∆(t)P (t)Φ̃(t, s),

Q(t)Φ̃(t, s) = Q(t)G(t)−1Ā(t)P (t)Φ̃(t, s) +Q(t)G(t)−1∆(t)P (t)Φ̃(t, s).
(5.2)

By P (s)Φ̃(s, s)x0 = P (s)x0 for x0 ∈ R
n, we find that the variation of constants formula (2.5) yields

Φ̃(t, s)x0 = Φ(t, s)P (s)x0+

∫ t

s
Φ(t, τ)P (τ)G(τ)−1∆(τ)P (τ)Φ̃(τ, s)x0 dτ +Q(t)G(t)−1∆(t)P (t)Φ̃(t, s)x0.

(5.3)
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Step 1 : We show that sup0≤t−t0≤1 ‖Φ̃(t, t0)‖ ≤ c1. Let t0 ≥ t̂ and observe that by (5.1)

∥∥∥(QG−1∆P )
∣∣
[t0,∞)

∥∥∥
∞

≤ ‖QG−1‖∞
∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

< 1.

Therefore,

eµt‖Φ̃(t, t0)x0‖ ≤
(
1− ‖QG−1‖∞

∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

)−1
Meµt0‖P (t0)x

0‖

+ ‖PG−1‖∞
∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

∫ t

t0

Meµτ‖Φ̃(τ, t0)x0‖ dτ

for all x0 ∈ R
n and an application of Gronwall’s inequality (see e.g. [26, Lem. 2.1.18]) yields

‖Φ̃(t, t0)x0‖ ≤ κ1‖P (t0)‖e−µ(t−t0)‖x0‖eκ2(t−t0),

where κ1 =
(
1− ‖QG−1‖∞

∥∥∥∆P |[t̂,∞)

∥∥∥
∞

)−1
M and κ2 = ‖PG−1‖∞ ‖∆P‖∞M . This implies that

‖Φ̃(t, t0)x0‖ ≤ c1‖x0‖, c1 = κ1‖P‖∞eκ2 , t ∈ [t0, t0 + 1],

and c1 is independent of t0 ≥ t̂. It remains to prove that supt∈[t0,t0+1] ‖Φ̃(t, t0)‖ ≤ c̃1 for all 0 ≤ t0 ≤ t̂

and some c̃1 > 0. However, this is clear since the mapping t0 7→ supt∈[t0,t0+1] ‖Φ̃(t, t0)‖ is uniformly

continuous on [0, t̂].
Step 2 : We show that

∫∞
t0

‖Φ̃(t, t0)‖2 dt ≤ c2 for all t0 ∈ R+. To this end, consider, for t̂ ≤ s ≤ T , the
operator

Ms,T : Rn → L2([t̂,∞);Rn), x0 7→ xs,T (·) := 1[s,T )(·)Φ̃(·, s)x0.
Let, for x0 ∈ R

n, x0,s,T (·) := 1[s,T )(·)Φ(·, s)P (s)x0 and define the operator

Ls,T : L2([s,∞);Rn) → L2([s,∞);Rn), f 7→ 1[s,T )Ls(f).

Then we have
xs,T (t) = x0,s,T (t) + Ls,T (∆Pxs,T )(t), t ≥ s. (5.4)

Note that x0,s,T |[s,∞) , xs,T |[s,∞) ∈ L2([s,∞);Rn). By (5.1) we find that the operator

J : L2([s,∞);Rn) → L2([s,∞);Rn), f 7→ x0,s,T |[s,∞) + Ls,T (∆Pf)

is a contraction and hence the Banach fixed-point theorem yields that xs,T is the unique solution
of (5.4) and

‖xs,T ‖L2[s,∞) ≤ ‖(I − Ls,T∆P )−1‖ · ‖x0,s,T ‖L2[s,∞) ≤
(
1− ‖Ls,T‖

∥∥∥(∆P )|[s,∞)

∥∥∥
∞

)−1

︸ ︷︷ ︸
=:κs,T

‖x0,s,T‖L2[s,∞),

and by exponential stability of (E,A),

‖xs,T‖L2[t̂,∞) = ‖xs,T ‖L2[s,∞) ≤
κs,TM√

2µ

√
1− e−2µ(T−s)‖x0‖.

Now, we have ‖Ls,T‖ ≤ ‖Ls‖ ≤ ‖Lt̂‖ and
∥∥∥(∆P )|[s,∞)

∥∥∥
∞

≤
∥∥∥(∆P )|[t̂,∞)

∥∥∥
∞
, thus

κs,T ≤
(
1− ‖Lt̂‖

∥∥∥∆P |[t̂,∞)

∥∥∥
∞

)−1
, t̂ ≤ s ≤ T.
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Therefore, we find that for all x0 ∈ R
n

sup
{

‖Ms,Tx
0‖L2[t̂,∞)

∣∣∣ (s, T ) ∈ R
2 and t̂ ≤ s ≤ T

}
< ∞,

and hence the uniform boundedness principle yields existence of K > 0 such that ‖Ms,T ‖L2[t̂,∞) ≤ K

for all t̂ ≤ s ≤ T . This implies that, for all x0 ∈ R
n and s ≥ t̂, we have

∫ ∞

s
‖Φ̃(t, s)x0‖2 dt = lim

T→∞

∫ T

s
‖(Ms,Tx

0)(t)‖2 dt ≤ K2‖x0‖2,

thus
∫∞
s ‖Φ̃(t, s)‖2 dt ≤ K2 and K is independent of s. Since we had fixed s ≥ t̂ it remains to prove

the assertion for t0 ≤ t̂. The latter follows from

∫ ∞

t0

‖Φ̃(t, t0)‖2 dt ≤
∫ t̂

0
‖Φ̃(t, 0)‖2 dt sup

t0[0,t̂]

‖Φ̃(0, t0)‖2 +
∫ ∞

t̂
‖Φ̃(t, t̂)‖2 dt sup

t0∈[0,t̂]
‖Φ̃(t̂, t0)‖2 < ∞,

which holds by continuity of Φ̃(·, ·).
Case 2 : Q = 0. The proof of this case is established along similar lines.

The boundedness of G−1 and ∆P in Theorem 5.3 is guaranteed if Q̇, (E − AQ)−1, A and ∆E are
bounded and ‖∆E(E−AQ)−1‖∞ < 1. Note also that the case kB(E,A) = −∞ is explicitly allowed in
Theorem 5.3.
The following corollary gives a bound directly on the perturbation ∆E such that exponential stability
is preserved for all perturbations within the so defined set.

Corollary 5.4. Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and exponentially stable and let Q ∈ QE,A. Let

P and G be as in (2.2) and suppose that G−1, P (E−AQ)−1 and P (E−AQ)−1A(P −Q̇P ) are bounded.
Furthermore, let ∆E ∈ PQ

E,A be bounded and suppose that ∆E 6= 0, which readily implies P 6= 0. Set

κ1 := ‖P (E −AQ)−1A(P − Q̇P )‖∞ ≥ 0 and κ2 := ‖P (E −AQ)−1‖∞ > 0. If

lim
t0→∞

∥∥∥∆E|[t0,∞)

∥∥∥
∞

<





min{ℓ(E,A),‖QG−1‖−1
∞ }

κ1+κ2 min{ℓ(E,A),‖QG−1‖−1
∞ } , if Q 6= 0,

ℓ(E,A)
‖E−1A‖∞+‖E−1‖∞ℓ(E,A) , if Q = 0 ∧ ℓ(E,A) < ∞,

‖E−1‖−1
∞ , if Q = 0 ∧ ℓ(E,A) = ∞,

then the perturbed system (3.1) is exponentially stable.

Proof: Case 1 : Q 6= 0. First note that by assumption
∥∥∥∆E|[t0,∞)

∥∥∥
∞

< κ−1
2 = ‖P (E −AQ)−1‖−1

∞ for

t0 large enough. Furthermore, Lemma 3.7 yields (cf. also (4.3)), for ∆ as in (3.4) and t0 large enough,

∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

≤
‖P (E −AQ)−1A(P − Q̇P )‖∞

∥∥∥∆E |[t0,∞)

∥∥∥
∞

1− ‖P (E −AQ)−1‖∞
∥∥∥∆E|[t0,∞)

∥∥∥
∞

,

thus the statement follows from Theorem 5.3.
Case 2 : Q = 0. In this case, observe that G = E and P = I, thus the proof is similar to Case 1.
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Remark 5.5 (Sharp perturbation bound). Consider the perturbed ODE

(1 + δ)ẋ(t) = −x(t) ⇐⇒ ẋ(t) = − 1

1 + δ
x(t) =

(
−1 +

δ

1 + δ

)
x(t),

which is exponentially stable for |δ| < 1. After the reformulation of the multiplicative perturbation on
the right hand side as an additive perturbation of A we obtain the perturbation term δ

1+δ , the absolute
value of which must be bounded by 1. However, this reduces the range of possible perturbation values
to |δ| < 1/2. Therefore, the drawback of the reformulated perturbed system (3.3) is that, in general,
it does not yield sharp perturbation bounds.

The next theorem is a version of [23, Prop. 4.5] and [11, Thm. 5.8] for perturbations of the leading
coefficient E of an index-1 DAE (E,A). It is a further robustness result under perturbations within
the class PQ

E,A, as it shows, for perturbations which converge to zero, that the norm of the difference
of the two perturbation operators corresponding to the nominal system and the perturbed system gets
arbitrary small for sufficiently large t0.

Theorem 5.6 (Perturbation operator under perturbations). Let (E,A) ∈ C(R+;R
n×n)2 be index-

1 and exponentially stable and let Q ∈ QE,A. Let P and G be as in (2.2) and suppose that G−1,

P (E − AQ)−1 and P (E − AQ)−1A(P − Q̇P ) are bounded. Furthermore, let ∆E ∈ PQ
E,A be such that

‖∆E(E −AQ)−1‖∞ < 1. If
lim
t→∞

‖∆E(t)‖ = 0,

then for the perturbation operator Lt0 of (E,A) and the perturbation operator L̃t0 of the perturbed
system (E +∆E, A) it holds

lim
t0→∞

‖Lt0 − L̃t0‖ = 0.

In particular
ℓ(E,A) = ℓ(E +∆E, A).

Proof: Except for slight modifications the proof follows the lines of the proof of [11, Thm. 5.8] applied
to the reformulated perturbed system (3.3) with perturbation term F = ∆P and h = ‖∆P‖. It is
only necessary to observe that by [11, Lem. 4.3] and kB(E,A) < ∞ the matrix QG−1Ā is bounded
and that limt→∞ ‖∆E(t)‖ = 0 implies, using the assumptions of the theorem and Lemma 3.7, that
limt→∞ ‖∆(t)P (t)‖ = 0.

We illustrate some of the results by means of our running example.

Example 5.7 (Examples 3.8 and 4.10 revisited). First we calculate ℓ(E,A) for the system (E,A) and
projector Q given in Example 3.8. Simple calculations yield that the transition matrix of (E,A) is
given by Φ(t, s) = diag (e−(t−s), e−(t−s), 1) for t, s ∈ R+, and the perturbation operator by

(Lt0f)(t) =

(∫ t

t0

e−(t−s)f1(s) ds ,

∫ t

t0

e−(t−s)f2(s) ds ,−f3(t)

)
, f ∈ L2([t0,∞);R3), t ≥ t0.

We may now calculate that, for any t0 ∈ R+ and f ∈ L2([t0,∞);R3),

‖Lt0f‖2L2[t0,∞) =

∫ ∞

0

(∫ t

0
e−(t−s)f1(s + t0) ds

)2

dt +

∫ ∞

0

(∫ t

0
e−(t−s)f2(s+ t0) ds

)2

dt

+

∫ ∞

t0

f3(t)
2 dt

≤
(∫ ∞

0
e−t dt

)2

(‖f1‖2L2[t0,∞) + ‖f2‖2L2[t0,∞)) + ‖f3‖2L2[t0,∞) = ‖f‖2L2[t0,∞),
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which gives ‖Lt0‖ ≤ 1. On the other hand, for f =
(
t 7→ (0, 0, e−(t−t0))

)
∈ L2([t0,∞);R3) we obtain

‖Lt0f‖2L2[t0,∞) = ‖f‖2L2[t0,∞) = 1/2,

thus it holds ‖Lt0‖ = 1 for all t0 ∈ R+ and hence ℓ(E,A) = 1. For the constants in Corollary 5.4
we find that κ1 = 1, κ2 = 1 and min{ℓ(E,A), ‖QG−1‖−1

∞ } = 1 as it can easily be calculated. Now
Corollary 5.4 states that, for the perturbations ∆E in Example 3.8, if ‖∆E‖ < 1

2 , then the perturbed

system (E +∆E , A) is exponentially stable. As ‖∆E‖ =
√
2|δ| this is satisfied if

|δ| <
√
2/4.

Indeed, as seen in Example 3.8, the perturbed system is exponentially stable for all δ > −1 so the
above statement is true, but not very sharp; however, a sharp bound could not have been expected in
view of Remark 5.5.

6 Stability radius

In Theorem 5.3 and Corollary 5.4 we have derived a bound on the perturbation such that exponential
stability is preserved. This rises the question for the distance to instability of an index-1 DAE (E,A).
For ODEs this question has been successfully treated by Hinrichsen and Pritchard, who introduced
the stability radius as an appropriate measure for robustness [24, 25]. Roughly speaking, the stability
radius is the largest bound ρ such that exponential stability and the “algebraic structure” (which is
important for DAEs) of the nominal system is preserved for all perturbations of norm less than ρ. After
the investigation by Hinrichsen and Pritchard [24, 25] for time-invariant ODEs, the stability radius
was generalized to time-varying ODEs, see e.g. [23, 29]. For time-invariant DAEs a stability radius
has been defined and investigated in [7, 9, 15, 37], the most general version (in the sense that the set
of allowable perturbations is large) is given in [7], and for time-varying DAEs in [11, 16]. In contrast
to the definition of the stability radius for time-varying DAEs given in [11, 16], we define the stability
radius by also allowing for perturbations in the leading coefficient matrix E.
For time-invariant DAEs the first stability radius was introduced by Byers and Nichols [9] who also
introduced a set of allowable perturbations, that is perturbations which preserve regularity and the
so called nilpotent part of the matrix pencil sE − A. As shown in the proof of [9, Lem. 3.2], the
assumption of preserved nilpotent part is, provided that the perturbation preserves the index-1 prop-
erty, equivalent to a common left kernel of the leading coefficient matrices of the perturbed and the
nominal matrix pencil. Therefore, it differs from our approach as we require the right kernel of E to
be preserved. In this sense, our definition of the stability radius can be viewed as both a generalization
of the definition given in [9] to time-varying systems and as a generalization of the definition given
in [11, 16] to a larger set of allowable perturbations with respect to the leading coefficient.
Compared to [9], where the Frobenius norm ‖[∆E ,∆A]‖F is considered, and [7], where the norm of

the block matrix
∥∥∥
[
∆E 0
0 ∆A

]∥∥∥ is used, we use the infinity norm of the time-varying perturbation pair

‖[∆E ,∆A]‖∞ as a measure of the distance to the nominal DAE.

Let (E,A) ∈ C(R+;R
n×n)2. We introduce the following sets:

K(E,A) :=
{
[∆E,∆A] ∈ B(R+;R

n×2n)
∣∣ ∀ t ∈ R+ : kerE(t) = ker(E(t) + ∆E(t))

}
,

I :=
{
(E,A) ∈ C(R+;R

n×n)2
∣∣ (E,A) is index-1

}
,

S :=
{
(E,A) ∈ C(R+;R

n×n)2
∣∣ (E,A) is exponentially stable

}
.

K(E,A) is the set of allowable perturbations.
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Definition 6.1 (Stability radius). Let (E,A) ∈ C(R+;R
n×n)2. Then the stability radius r(E,A) ∈

[0,∞] of (E,A) is defined as

r(E,A) :=

inf
{
‖[∆E,∆A]‖∞

∣∣ [∆E,∆A] ∈ K(E,A) ∧
(
(E +∆E , A+∆A) 6∈ I ∨ (E +∆E , A+∆A) 6∈ S

) }
.

Remark 6.2 (Stability radius).

(i) It is immediate that for exponentially stable index-1 (E,A) ∈ C(R+;R
n×n)2 and any perturbation

[∆E ,∆A] ∈ K(E,A) with ‖[∆E ,∆A]‖∞ < r(E,A) the perturbed system (E+∆E, A+∆A), which
corresponds to the equation

(
E(t) + ∆E(t)

)
ẋ(t) =

(
A(t) + ∆A(t)

)
x(t), (6.1)

is exponentially stable and index-1.

(ii) r(E,A) is the measure of the distance to the nearest allowable system that is not exponentially
stable. Note that the infimum is taken over the set K(E,A). If we had taken a larger set, or all of
B(R+;R

n×2n), the infimum would in most cases be zero. This is due to the fact that arbitrarily
small perturbations in E can cause the system to become unstable if no further structure of the
perturbations is claimed. This is true even in the time-invariant case, see e.g. [9]. Nevertheless,
it is still possible that there are exponentially stable systems with stability radius zero, because
arbitrary small perturbations can also change the structure of the system, i.e., destroy the index-
1 property; this is illustrated in Example 6.3. However, as shown in Lemma 6.4, under some
boundedness assumption this cannot happen anymore.

(iii) Note that for time-invariant DAEs the definition of stability radius given in [7] is more general
than ours in the sense that the set of allowable perturbations is larger, as it is only required
that the index and the degree of the characteristic polynomial are preserved. However, for time-
varying DAEs we have no notion like the characteristic polynomial. Concerning the higher index
case see the following item.

(iv) It may be possible to define sets of allowable perturbations and the stability radius for higher
index DAEs in the following way: If (E,A) is index-µ tractable in the sense of [34], then assume
that the perturbation ∆E is such that in the chain of matrix functions [34, (2.23)] the kernel of Ai

(in the notation of [34]) is preserved for i = 0, . . . , µ−1; note that A0 = E. This might be a proper
generalization of the set K(E,A). The set I might be generalized in a straightforward manner to
the set of all index-µ systems (E,A). Then it is also an interesting question in what way the so
generalized stability radius is related to the one defined in [9] in the case of time-invariant DAEs.

(v) For time-varying ODEs (I,A), the stability radius r(I,A) is, in general, much smaller than the
stability radius r(A) defined in [23]. In fact, it may even be that r(A) = ∞ and r(I,A) < ∞:
Consider the system ẋ(t) = −tx(t). It is easy to see that for any bounded perturbation ∆ ∈
B(R+;R) the system ẋ(t) = (−t+∆(t))x(t) is still exponentially stable, thus r(−t) = ∞. On the
other hand, let [∆E,∆A] ∈ K(1,−t), that is 1 + ∆E(t) 6= 0 for all t ∈ R+. Hence the perturbed
system (6.1) can be rewritten as

ẋ(t) =
−t+∆A(t)

1 + ∆E(t)
x(t)

and by choosing ∆A ≡ 0 and, for any ε > 0, ∆E ≡ −1− ε, the perturbed system gets unstable,
as it reads ẋ = t

ε x. Thus r(1,−t) ≤ ‖[−1 − ε, 0]‖ = 1 + ε and as ε > 0 was arbitrary we get
r(1,−t) ≤ 1 < ∞ = r(−t).
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Example 6.3. Consider system (1.1) with E = 0 and A(t) = 1
t+1 . Now let ∆E ≡ 0 and ∆A ≡ −δ for

any δ > 0. Then [∆E ,∆A] ∈ K(E,A). However, there exists some t > 0 such that A(t) + ∆A(t) =
1

t+1 − δ = 0 and hence (E +∆E , A+∆A) 6∈ I. This means r(E,A) ≤ ‖[0,−δ]‖ = δ for all δ > 0, i.e.,
r(E,A) = 0. However, the nominal system (E,A) is exponentially stable, as any solution x satisfies
x(t) = 0 for all t ∈ R+. This shows that r(E,A) = 0 and (E,A) ∈ S, but the vanishing stability radius
is only due to the structural index-1 property getting weaker and weaker for increasing time t, which
may be compensated by appropriate boundedness conditions, see Lemma 6.4.

As stressed in the preceding example, for an index-1 DAE (E,A) the properties r(E,A) = 0 and
(E,A) ∈ S are not equivalent. If however, some boundedness assumptions are satisfied, then this
equivalence becomes valid. This and other properties of the stability radius are derived in the following.
Note that the stability radius does not have any invariance properties, as we consider an unstructured
stability radius. As shown in [23], the unstructured stability radius is not invariant with respect to
Bohl transformations (see also [4] for the latter).

Lemma 6.4 (Properties of the stability radius).

(i) If Q ∈ C1(R+;R
n×n) is such that Q and Q̇ are bounded and (E,A) ∈ B(R+;R

n×n)2 is such that
Q ∈ QE,A and (E −AQ)−1 is bounded, then it holds that

r(E,A) = 0 ⇐⇒ (E,A) 6∈ S.

(ii) For all (E,A) ∈ C(R+;R
n×n)2 and all α ≥ 0 we have r(α(E,A)) = r(αE,αA) = α r(E,A).

(iii) Let V(t) ⊆ R
n be a time-varying subspace of Rn with constant dimension, and define

KV :=
{
[E,A] ∈ B(R+;R

n×2n)
∣∣ (E,A) is index-1 and kerE(t) = V(t) for all t ∈ R+

}
.

Then the map KV ∋ [E,A] 7→ r(E,A) is continuous.

Proof: (i): “⇐” is clear. To show “⇒” we use the result of Theorem 6.11 which will be proved
later. So assume that r(E,A) = 0 and (E,A) ∈ S. Observe that, for G as in (2.2), we have G−1 =
(I − Q̇Q)(I + Q̇Q)G−1 and hence the boundedness of (E − AQ)−1, Q and Q̇ implies, invoking (3.2),
boundedness of G−1. This guarantees ℓ(E,A) ∈ (0,∞]. Together with boundedness of E and A it
also follows that κ1 and κ2 as in Theorem 6.11 are finite. Now Theorem 6.11 implies r(E,A) > 0, a
contradiction.
(ii): Follows directly from the definition of the stability radius.
(iii): Let ε > 0 and [E1, A1] ∈ KV . Choose δ = ε and [E2, A2] ∈ KV such that ‖[E1 − E2, A1 −
A2]‖∞ < δ. Since [E1, A1] is bounded we have r(E1, A1) < ∞, because [−E1,−A1] ∈ K(E1, A1) but
(E1 − E1, A1 − A− 1) = (0, 0) 6∈ I, thus r(E1, A1) ≤ ‖[E1, A1]‖∞. Let [∆E ,∆A] ∈ K(E1, A1) be such
that (E1 +∆E, A1 +∆A) 6∈ I or (E1 +∆E , A1 +∆A) 6∈ S, that is r(E1, A1) ≤ ‖[∆E ,∆A]‖∞. Since

(E1 +∆E, A1 +∆A) = (E2 + (E1 −E2) + ∆E , A2 + (A1 −A2) + ∆A),

it follows r(E2, A2) ≤ ‖[E1 − E2, A1 − A2]‖∞ + ‖[∆E ,∆A]‖∞. Now taking the infimum over all such
[∆E,∆A] we obtain that r(E2, A2) ≤ ‖[E1 − E2, A1 − A2]‖∞ + r(E1, A1), thus having |r(E2, A2) −
r(E1, A1)| < δ = ε. This proves continuity.

Note that in Lemma 6.4 (iii) we consider the set of bounded functions to get a proper notion of distance
between two pairs of matrix functions. Moreover, as can be deduced from the proof, boundedness is
essential in order to get a finite stability radius, which is in turn crucial for continuity. Furthermore,
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the constant dimension of V is not restrictive since if (E,A) is index-1, then E has constant rank, and
hence the kernel is of constant dimension. Therefore, it is shown that the stability radius is continuous
on every set of bounded pairs of index-1 matrix functions where the leading coefficients share a common
kernel. In fact, this is no longer true on sets where the kernel may change, as the following example
illustrates.

Example 6.5. Let ε ≥ 0 and consider the system (1.1) with E = ε and A = −1. First we consider
the case ε > 0. Let [∆E ,∆A] ∈ K(ε,−1). Note that ε + ∆E(t) must be always invertible in order to
preserve the kernel and hence (6.1) can be rewritten as

ẋ(t) =
−1 +∆A(t)

ε+∆E(t)
x(t).

Now, for any γ > 0, ∆E ≡ −ε − γ and ∆A ≡ 0 are allowable perturbations and make the system
unstable, as it reads ẋ = 1

γx. Hence, r(ε,−1) ≤ ‖[−ε−γ, 0]‖ = ε+γ for all γ > 0, thus 0 ≤ r(ε,−1) ≤ ε.
In particular this gives

lim
ε→0

r(ε,−1) = 0.

Now, for ε = 0 and any [∆E,∆A] ∈ K(0,−1) the system (6.1) reads 0 = (−1 +∆A(t))x. First observe
that [∆E ,∆A] ≡ [0, 1] ∈ K(0,−1) and the resulting perturbed system reads 0 = 0 which is not index-1
anymore and has any function as a solution. Therefore, it is in particular not exponentially stable,
which gives r(0,−1) ≤ 1. On the other hand, for any ∆A with ‖∆A‖∞ < 1 the perturbed system stays
exponentially stable, so we obtain r(0,−1) = 1. Finally we may conclude

lim
ε→0

r(ε,−1) = 0 6= 1 = r(0,−1).

In the following we derive a lower bound for the stability radius. In order to do this we further
investigate the perturbation structure. Similar to Section 3 we introduce the following.

Definition 6.6 (Pairs of perturbations). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and Q ∈ QE,A. Then

P̂Q
E,A :=





[∆E ,∆A] ∈ C(R+;R
n×2n)

∣∣∣∣∣∣∣

∀ t ∈ R+ : kerE(t) = ker
(
E(t) + ∆E(t)

)
and

∥∥∥∥[∆E(t),∆A(t)]

[
P (t)(E(t) −A(t)Q(t))−1

−Q(t)(E(t) −A(t)Q(t))−1

]∥∥∥∥ < 1





.

It is crucial that perturbations in P̂Q
E,A preserve the index-1 property of the nominal system. This is

stated in the next lemma.

Lemma 6.7 (Condition for preserved index). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and Q ∈ QE,A.

Then we have
[∆E ,∆A] ∈ P̂Q

E,A =⇒ Q ∈ QE+∆E ,A+∆A
.

Proof: As we only have to show that E+∆E +((E+∆E)Q̇− (A+∆A))Q = G+[∆E ,∆A]
[
I+Q̇Q
−Q

]
is

invertible everywhere, the statement follows immediately from the assumptions and the observations

∆E(I + Q̇Q)G−1 (3.2)
= ∆EP (E −AQ)−1 and QG−1 = Q(I + Q̇Q)G−1 = Q(E −AQ)−1.

We may also reformulate the perturbed system (6.1) in a decomposition as in (3.3).

Lemma 6.8 (Decomposition of perturbed system). Let (E,A) ∈ C(R+;R
n×n)2 be index-1, Q ∈ QE,A,

P , Ā, G as in (2.2) and [∆E ,∆A] ∈ P̂Q
E,A. Then x ∈ C(R+;R

n) is a solution of (6.1) if, and only if,

Px ∈ C1(R+;R
n) and x solves (3.3) with

∆ := (I + Λ)−1(∆A − ΛA)(I −QQ̇), Λ = [∆E,∆A]

[
P (E −AQ)−1

−Q(E −AQ)−1

]
. (6.2)
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Proof: The proof is a straightforward modification of the proof of Lemma 3.6. It is only important

to use that [∆E ,∆A]
[
−Q̇
I

]
= −ΛG(I − Q̇Q)Q̇+∆A(I −QQ̇).

In fact, with the new ∆ in (6.2), it easy to generalize all of the results of Sections 4 and 5 to pertur-
bations [∆E,∆A] in E and A. We state this in the following theorem.

Theorem 6.9 (Results for perturbations in E and A). The statements of Theorem 4.6, Corollary 4.7,
Proposition 4.8, Theorem 5.3, Corollary 5.4 and Theorem 5.6 remain the same for perturbations in E
and A, that is they are true if the following substitutions are applied where possible:

• ∆E ∈ PQ
E,A 7→ [∆E ,∆A] ∈ P̂Q

E,A,

• ∆E ∈ C(R+;R
n×n) 7→ (∆E ,∆A) ∈ C(R+;R

n×n)2,

• ∆ as in (3.4) 7→ ∆ as in (6.2),

• kB(E +∆E, A) 7→ kB(E +∆E, A+∆A),

• ‖∆E‖∞ 7→ ‖[∆E ,∆A]‖∞,

• perturbed system (3.1) 7→ perturbed system (6.1),

•
∥∥∥∆E|[t0,∞)

∥∥∥
∞

7→
∥∥∥ [∆E,∆A]|[t0,∞)

∥∥∥
∞
,

• limt→∞ ‖∆E(t)‖ = 0 7→ limt→∞ ‖[∆E(t),∆A(t)]‖ = 0,

• perturbed system (E +∆E, A) 7→ perturbed system (E +∆E, A+∆A),

• ‖∆E(E −AQ)−1‖∞ < 1 7→
∥∥∥∥[∆E,∆A]

[
P (E −AQ)−1

−Q(E −AQ)−1

]∥∥∥∥
∞

< 1,

• ℓ(E +∆E, A) 7→ ℓ(E +∆E , A+∆A).

Furthermore, in Corollary 4.7, Corollary 5.4, and Theorem 5.6 the assumption of boundedness of
(I−QG−1A)(P −Q̇P ) has to be added and in Corollary 5.4 the constants κ1 and κ2 have to substituted
with the ones defined in Theorem 6.11 and in the second case ‖E−1A‖∞ has to be substituted with∥∥[−E−1A

I

]∥∥
∞.

Proof: Except for slight but obvious modifications the proofs of the results need not to be changed
if it is remembered that ∆ is another matrix. At some instances Lemma 6.7 must be used instead of
Lemma 3.4. Furthermore, in Corollary 4.7 equation (4.3) has to be changed to the inequality presented
in Step 2 of the proof of Theorem 6.11 and in Corollary 5.4 the inequality in Case 1 has to be changed
in the same manner.

Nevertheless, we separately state the following generalized version of Theorem 5.3 which is important
in due course.

Proposition 6.10 (Exponential stability and perturbation operator anew). Let (E,A) ∈ C(R+;R
n×n)2

be index-1 and exponentially stable and let Q ∈ QE,A. Let P and G be as in (2.2) and suppose that

G−1 is bounded. Furthermore, let [∆E ,∆A] ∈ P̂Q
E,A and suppose that for ∆ as in (6.2) the matrix ∆P

is bounded. If

lim
t0→∞

∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

<

{
min

{
ℓ(E,A), ‖QG−1‖−1

∞
}
, if Q 6= 0,

ℓ(E,A), if Q = 0,

then the perturbed system (6.1) is exponentially stable.
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The main theorem of this section essentially relies on the preceding proposition. It gives a lower bound
for the stability radius in terms of the norm of the perturbation operator, more precisly the number
ℓ(E,A) introduced in Section 5.

Theorem 6.11 (Lower bound for the stability radius). Let (E,A) ∈ C(R+;R
n×n)2 be index-1 and

exponentially stable and let Q ∈ QE,A. Let P and G be as in (2.2) and suppose that G−1 is bounded.

Suppose further that κ1 :=
∥∥∥
[

−P (E−AQ)−1A(P−Q̇P )

(I−Q(E−AQ)−1A)(P−Q̇P )

]∥∥∥
∞

< ∞ and κ2 :=
∥∥∥
[

P (E−AQ)−1

−Q(E−AQ)−1

]∥∥∥
∞

< ∞,

i.e., the corresponding matrices are bounded. Then κ2 > 0 and

r(E,A) ≥





min{ℓ(E,A),‖QG−1‖−1
∞ }

κ1+κ2 min{ℓ(E,A),‖QG−1‖−1
∞ } , if Q 6= 0,

ℓ(E,A)
κ1+κ2ℓ(E,A) , if Q = 0 ∧ ℓ(E,A) < ∞,

1
κ2
, if Q = 0 ∧ ℓ(E,A) = ∞.

Proof: If P 6= 0, then κ2 > 0 is obvious. If P = 0, then Q = I and hence κ2 > 0 as well.
Case 1 : Q 6= 0. We show that for any [∆E,∆A] ∈ K(E,A) with ‖[∆E ,∆A]‖∞ < α

κ1+κ2α
, where

α := min
{
ℓ(E,A), ‖QG−1‖−1

∞
}
< ∞, we have (E +∆E , A+∆A) ∈ I and (E +∆E, A+∆A) ∈ S.

Step 1 : We show (E+∆E, A+∆A) ∈ I. To this end observe that it follows from the assumption that
κ2‖[∆E ,∆A]‖∞ < κ2α

κ1+κ2α
≤ 1 and hence

‖[∆E ,∆A]‖∞ <

∥∥∥∥
[
P (E −AQ)−1

−Q(E −AQ)−1

]∥∥∥∥
−1

∞
,

which yields [∆E,∆A] ∈ P̂Q
E,A, thus, invoking Lemma 6.7, (E +∆E , A+∆A) is index-1.

Step 2 : We show (E +∆E , A+∆A) ∈ S. By Step 1 we have [∆E,∆A] ∈ P̂Q
E,A. Further invoking that,

for ∆ and Λ as in (6.2),

∆P = (I + Λ)−1(∆A − ΛA)(I −QQ̇)P = (I + Λ)−1[∆E ,∆A]

[
−P (E −AQ)−1A(P − Q̇P )

(I −Q(E −AQ)−1A)(P − Q̇P )

]
,

we obtain ∥∥∥(∆P )|[t0,∞)

∥∥∥
∞

≤ κ1 ‖[∆E,∆A]‖∞
1− κ2 ‖[∆E ,∆A]‖∞

< α

for all t0 ∈ R+, hence we may apply Proposition 6.10 to conclude exponential stability.
Case 2 : Q = 0 and ℓ(E,A) < ∞. With α := ℓ(E,A) the proof is similar to Case 1.
Case 3 : Q = 0 and ℓ(E,A) = ∞. We may observe that, as in Case 1, ‖[∆E ,∆A]‖∞ < κ−1

2 implies
(E +∆E, A+∆A) ∈ I. Then (E +∆E, A+∆A) ∈ S follows immediately from Proposition 6.10.

Note that in Theorem 6.11 the boundedness of G−1 is still important in order to guarantee that
ℓ(E,A) ∈ (0,∞] exists.

Remark 6.12 (Special cases). We consider Theorem 6.11 for two special cases.
Case 1 : E = I. In this case we have Q = 0, thus P = I and hence κ1 =

∥∥[−A
I

]∥∥
∞ and κ2 = 1.

Suppose that ℓ(I,A) < ∞. Then we obtain from Theorem 6.11 that

ℓ(I,A)

1 + ‖A‖∞ + ℓ(I,A)
≤ ℓ(I,A)

κ1 + ℓ(I,A)
≤ r(I,A).

Note that this does not coincide with any bounds known for the stability radius of an ODE, as still
perturbations of the identity and therefore multiplicative perturbations of A are possible. More precisly,
A may be perturbed to (I +∆E)

−1(A+∆A).
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If we considered only perturbations in A, then in κ1 and κ2 we neglect the first rows (because these
correspond to ∆E) and thus obtain κ1 = 1 and κ2 = 0, i.e., ℓ(I,A) ≤ r(I,A), which is just the bound
obtained in [23, Prop. 4.1] for ODEs.
Case 2 : E = 0. In the case of a purely algebraic equation we have Q = I. This gives κ1 = 0 and, as
A must be invertible everywhere, κ2 = ‖A−1‖∞. Now Theorem 6.11 gives

‖A−1‖−1
∞ ≤ r(0, A).

This bound is sharp: Any allowable perturbation [∆E ,∆A] with ‖[∆E ,∆A]‖∞ < ‖A−1‖−1
∞ has ∆E = 0

and the perturbed system (6.1) reads 0 = (A(t) + ∆A(t))x, or, equivalently, 0 = (I +A(t)−1∆A(t))x.
Then

‖A(t)−1∆A(t)‖ ≤ ‖∆A‖∞‖A−1‖∞ < 1

for all t ∈ R+ and the resulting invertibility of I +A(t)−1∆A(t) yields that the perturbed system (6.1)
is exponentially stable (as it only has the trivial solution). Therefore, r(I,A) = ‖A−1‖−1

∞ .
In fact, ‖A−1‖−1

∞ also coincides with the stability radius as defined in [11, 16], see [16, Sec. 5.2], which
is reasonable as in this case no perturbations of E are involved.

An important consequence of Theorem 6.11 is that, roughly speaking, the set of all exponentially stable
index-1 DAEs where the E matrices share the same kernel is open in the respective superset where
exponential stability is not required.

Corollary 6.13 (Set of stable DAEs is open). Let Q ∈ C1(R+;R
n×n) be such that Q and Q̇ are bounded

and Q(t)2 = Q(t) for all t ∈ R+. Define

KQ :=
{
[E,A] ∈ B(R+;R

n×2n)
∣∣ ∀ t ∈ R+ : kerE(t) = imQ(t)

}
,

SQ :=
{
[E,A] ∈ B(R+;R

n×2n)
∣∣ Q ∈ QE,A ∧ (E,A) ∈ S ∧ (E −AQ)−1 is bounded

}
.

Then SQ is open in KQ.

Proof: Observe that clearly SQ ⊆ KQ and let [E,A] ∈ SQ. Since, for G as in (2.2), G−1 = (I −
Q̇Q)(I + Q̇Q)G−1 the boundedness of (E − AQ)−1, Q and Q̇ implies, invoking (3.2), boundedness of
G−1. Together with boundedness of E and A it then follows that κ1 and κ2 as in Theorem 6.11 are
finite. Set

ε :=
α

κ1 + κ2α
, where α :=

{
min

{
ℓ(E,A), ‖QG−1‖−1

∞
}
, if Q 6= 0,

ℓ(E,A), if Q = 0 ∧ ℓ(E,A) < ∞.

If Q = 0 and ℓ(E,A) = ∞, set ε = κ−1
2 . If now [Ẽ, Ã] ∈ KQ with ‖[E− Ẽ, A− Ã]‖∞ < ε, then it follows

that [∆E,∆A] := [Ẽ −E, Ã−A] ∈ K(E,A) and hence, applying Theorem 6.11, we may conclude that
(Ẽ, Ã) ∈ I ∩ S. It remains to prove Q ∈ QẼ,Ã and boundedness of (Ẽ − ÃQ)−1.

To this end observe that (Ẽ, Ã) ∈ I ∩KQ and Proposition 2.3 imply that Q ∈ QẼ,Ã. We also calculate
that

(Ẽ − ÃQ)−1 =
(
(E −AQ) + (∆E −∆AQ)

)−1
= (E −AQ)−1

(
I + (∆E −∆AQ)(E −AQ)−1

)−1

and since

∥∥(∆E −∆AQ)(E −AQ)−1
∥∥
∞ =

∥∥∥∥[∆E ,∆A]

[
P (E −AQ)−1

−Q(E −AQ)−1

]∥∥∥∥
∞

≤ ‖[∆E ,∆A]‖∞κ2 < εκ2 ≤ 1

we find

‖(Ẽ − ÃQ)−1‖∞ ≤ ‖(E −AQ)−1‖∞
1− ‖(∆E −∆AQ)(E −AQ)−1‖∞

< ∞.
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[6] Piers Bohl. Über Differentialgleichungen. J. für Reine und Angewandte Mathematik, 144:284–313, 1913.

[7] Martin Bracke. On stability radii of parametrized, linear differential-algebraic systems. PhD Thesis, Fach-
bereich Mathematik, Universität Kaiserslautern, Kaiserslautern, Germany, 2000.

[8] Kathryn E. Brenan, Stephen L. Campbell, and Linda R. Petzold. Numerical Solution of Initial-Value
Problems in Differential-Algebraic Equations. North-Holland, Amsterdam, 1989.

[9] Ralph Byers and Nancy K. Nichols. On the stability radius of a generalized state-space system. Lin. Alg.
Appl., 188–189:113–134, 1993.

[10] Stephen L. Campbell. Linearization of DAEs along trajectories. Z. Angew. Math. Phys., 46:70–84, 1995.

[11] Chuan-Jen Chyan, Nguyen Huu Du, and Vu Hoang Linh. On data-dependence of exponential stability and
stability radii for linear time-varying differential-algebraic systems. J. Diff. Eqns., 245:2078–2102, 2008.

[12] Liyi Dai. Singular Control Systems. Number 118 in Lecture Notes in Control and Information Sciences.
Springer-Verlag, Berlin, 1989.
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