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1 Introduction

We consider linear constant coefficient DAEs of the form
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JEX(t) = Ax(t) + Bu(t)
y(t) =Cx(t),

whereE,A ¢ R™", B ¢ R‘*™ C e RP*", The set of these systems is denoted by
2 nmp and we write[E,A,B,C] € 3, nmp. In the present paper, we put special
emphasis on the non-regular case, i.e., we do not assumegha is regular,
which would mean that = n and defsE — A) € R[g] \ {0}.

The functionsu: R — R™ andy : R — RP are calledinput and output of the
system, resp. A trajectoiix,u,y) : R — R" x R™ x RP is said to be aolution of (1)
if, and only if, it belongs to théehavior of (1):

1)

By = { (X, U,y) € L (R;R" x R™x RP)

EX € #jgr (R;R) and(x,u,y)
solves (1) fora.a. € R '

Recall that any functiom € 7> (R; R’) is in particular continuous.
Particular emphasis is placed on thero dynamics of (1). These are, for

[E,A,B,C] € 2/ nmp, defined by

Z7a) = { (xuy) € B ]y"ﬁ'o 3

By linearity of (1), 2% is a real vector space.
The zero dynamics of (1) are calladtonomousif, and only fif,

YWy, W € 2Py V1 C R openinterval : wi|, 2wyl = wy Ewy;
andasymptotically stable if, and only if,
V(xuy) e Z%q): tIi%rr‘less-su[gm) [[(x,u)|] = 0.

Note that the above definitions are within the spirit of thehavioral ap-
proach [20] and take into account that the zero dynami€®/(,) are a linear be-
havior. In this framework the definition for autonomy of a geal behavior is given
in [20, Sec. 3.2] and the definition of asymptotic stabilityj20, Def. 7.2.1].

(Asymptotically stable) zero dynamics are the vector spddbose trajectories
of the system which are, loosely speaking, not visible atahgput (and tend to
Zero).

In the present paper, we show for the class of right-invierilystems with au-
tonomous zero dynamics, that asymptotic stability of the ziynamics is equiva-
lent to the three conditions: stabilizability in the belwrai sense, detectability in
the behavioral sense and the condition that all transnmigsoos are in the open left
complex half-plane. Furthermore, we show that we can aehiey a compatible
control in the behavioral sense, that the Lyapunov expoaogtite interconnected
system equals the Lyapunov exponent of the zero dynami&edtion 2 we collect
some basic control theoretic concepts such as transmissios, right-invertibility,
stabilizability in the behavioral sense and detectabilitthe behavioral sense, and
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give algebraic characterizations of them. The first mainltex the present paper,
namely Theorem 3.1, is then stated and proved in Section 3@méd consequences
for regular systems are derived. In Section 4 we introdueetncepts of compati-
ble control (in the behavioral sense) and Lyapunov expofoem@AE systems and
prove the second main result, namely Theorem 4.4,

For the application of compatible control it is necessasy the states and inputs
of the DAE system are fixed a priori by the designer in ordestalgish the control
law. This is different from other approaches based on thaedietal setting, see [12],
where only the free variables in the system are viewed agsnthis may require
a reinterpretation of states as inputs and of inputs assstist¢he present paper we
will assume that such a reinterpretation of variables hasdl been done or is not
feasible, and the given DAE system is fix.

2 Some control theoretic concepts

In this section we recall the concepts used in the presemrpap control theoretic
way and give useful algebraic characterizations. Theseegn include transmis-
sion zeros, right-invertibility, stabilizability in theghavioral sense and detectability
in the behavioral sense. We start with characterizatiormaitdhomous and asymp-
totically stable zero dynamics, which have been introduceEction 1.

Lemma 2.1 (Autonomous and stable zero dynamickgt [E,A,B,C| € Z/nmp.
Then we have the following equivalences:

sE-A-B

—Cc 0 } =n+m
AE—A-B

—C o}:”““‘

() Z2q)areautonomous < rkpg [
(i) Z2q)are asymptotically stable <> VA € C, : rkc [

Proof. (i) follows from [4, Prop. 4.1.5] and (ii) from [4, Lem. 4.3.9 a

Note that the above cited results from [4] have been firstntepdn [5]; in the
following, this holds true for all results cited from [4].

The autonomy of the zero dynamics allows for a decomposgfahe system,
provided thaiC has full row rank. The main result of the present paper (see Se
tion 3) is based on this decomposition.

Lemma 2.2 (System decomposition)Let [E,A,B,C] € %, nm With autonomous
zero dynamicsand rkC = p. Then thereexist S€ Gl,/(R) and T € Gly(R) such that

o= lon [l [on 2

where
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k 0 0 QA2 0 0
s 0 By Eos A Az Az O = Im S
E=loEx N|"AT 0 01, B |0 C=010, )
0 E42 Es43 0 A2 0 0
k=dimZ 2, (4)

and N € R®*™ nz = n—k— p, is nilpotent with NV = 0 and NV"1 £ 0, v € N,
E22, A2z € R™P and all other matrices are of appropriate sizes.

Proof. This result can be found in [4, Thm. 4.2.7]. a

An important characterization of asymptotically stableozéynamics is the fol-
lowing, which is from [4, Cor. 4.2.11].

Lemma 2.3(Stable zero dynamics).et [E,A,B,C| € 5y n m p With autonomous zero
dynamicsand rkC = p. Then, using the notation from Lemma 2.2, the zero dynamics
Z 2y are asymptotically stableif, and only if, a(Q) C C_.

Next, in order to define transmission zeros, we introduceSimith-McMillan
form of a rational matrix function.

Definition 2.4 (Smith-McMillan form [16, Sec. 6.5.2])Let G(s) € R(s)™P with
rkr(s) G(s) =r. Then there exid) (s) € GIm(R[g]), V(s) € Glp(R[g]) such that

U(s)G(s)V(s) = diag (1211((?5)) N Zr((z)) ,0<mr)x(p,)) ,

wheregi(s), i (s) € R[g] are monic, coprime and satiséy(s)|&+1(S), Yi+1(S)|¢i(9)
fori=1,...,r—1. The numbeg, € Cis calledzero of G(s) if, and only if, & (sp) =0
andpole of G(s) if, and only if, 1 () = 0.

In the following we give the definition of transmission zerfos the system
[E,A,B,C]. Infact, there are many different possibilities to defim@mgmission zeros
of control systems, even in the ODE case, see [13]; and tleegatrequivalent. We
follow the definition given by Rosenbrock [21]: FtA,B,C| € Znnmp, the trans-
mission zeros are the zeros of the transfer fund@ih — A) ~B. This definition has
been generalized to regular DAE systems with transfer fan€(sE — A)~1Bin [7,
Def. 5.3]. In the present framework, we do not require regiylaf sE — Aand so a
transfer function does in general not exist. However, itdsgible to give a general-
ization of the inverse transfer function if the zero dynasr€[E, A,B,C] € X/ nmp
are autonomous: Lét(s) be a left inverse of £ A ~B] overR(s) (which exists by
Lemma 2.1) and define

0

H(s) := —[0,Im|L(s) [Ip

} € R(9)™P. (5)

It can be shown thatl (s) is independent of the choice of the left invets®s) [4,
Lem. 4.3.2] and i6E — A is regular andn= p, thenH(s) = (C(sE —A)*lB)*l 4,



6 Thomas Berger

Rem. 4.3.3], i.e.H(s) is indeed the inverse of the transfer function in case ofregu
larity. The fact that the zeros ¢f(s)~! are the poles ofi(s) and vice versa moti-
vates the following definition.

Definition 2.5 (Transmission zeros)Let [E,A,B,C| € X, mp With autonomous
zero dynamics. LeL(s) be a left inverse of £ " 2] overR(s) and letH(s) be
given as in (5). Thers, € C is calledtransmission zero of [E, A, B,C] if, and only if,
S is a poleH(s).

Now we recall the definition of right-invertibility of a syt from [22, Sec. 8.2].
Definition 2.6 (Right-invertibility). [E,A,B,C] € %, nm is calledright-invertible
if, and only if,

Vy € €7 (R;RP) 3(x U) € Loo(R;R") x Loo(R;R™) 1 (x,U,Y) € By.

Right-invertibility may be characterized for systems watltonomous zero dy-
namics in terms of the form (3).

Lemma 2.7(Right-invertibility and system decompositior)et [E,A,B,C| € 3/ nmp
with autonomous zero dynamics. Then, using the notation from Lemma 2.2,

rkC=p, E42=0, A;2=0 and

E,A B,C|isright-invertible <«— .
[ T ] ¢ {E43NJE32=OfOI'j:O,...,V—l.
Proof. A proof can be found in [4, Prop. 4.2.12]. a

We are now in a position to characterize the transmissionszierterms of the
form (3).

Corollary 2.8 (Transmission zeros in decompositioht [E,A,B,C] € >, m be
right-invertible and have autonomous zero dynamics. Let L(s) be a left inverse of
[EA 2] over R(s) and let H(s) be given asin (5). Then, using the notation from
Lemma 2.2,

H(S) = $E22 — Az — Aoa(Slk — Q) A1z — SEaa(sN — Iny) Eaz
and p € C isatransmission zero of [E, A, B,C] if, and only if, 5p isa pole of
Aoi(Slk— Q) tAg.

Proof. The representation dfl(s) follows from [4, Lem. 4.3.2] and the charac-
terization of transmission zeros is then immediate siite — Ays — SZE23(SN —
1)~1E3, is a polynomial ad\ is nilpotent and hence

(N—=1)t=—1—sN—... - INV"L (6)

O
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In the remainder of this section we introduce and charamtdtie concepts of
stabilizability and detectability in the behavioral sen&ehavioral) stabilizability
for systemsE,A,B,C| € 3, nmp is well-investigated, see e.g. the survey [8]. De-
tectability has been first defined and characterized forleegystems in [2]. For
general DAE systems, a definition and characterization eafobnd in [14]; see
also the equivalent definition in [20, Sec. 5.3.2]. The fadfinition is given within
the behavioral framework, however it is yet too restricfimeour purposes and it is
not dual to the respective stabilizability concept. We ingefollowing concepts of
behavioral stabilizability and detectability.

Definition 2.9 (Stabilizability and detectability)[E,A,B,C] € X, nm is called
(i) stabilizablein the behavioral senseif, and only if,

V (%, U,y) € By 3 (Xo, Uo, Yo) € By :
(V< 0: (x(1),u(t)) = (Xo(t), Uo(t)) A lim ess-sup. || (xo, Uo)[| = O.

(ii) detectablein the behavioral senseif, and only if,

V(x,0,0) € B(1) 3(x0,0,0) € By :
(Vt <0: x(t) =xo(t)) A tlmess-su[gw) |I%ol| = O.

In order to derive duality of the above concepts it is usefddnsider, foE,A €
RN the DAE
JEX(t) = AX(1) W

without inputs and outputs. The behavior of (7) is given by

11/l
e xe i) | S TER anox |

solves (7) fora.a& € R

Definition 2.10(Stabilizability [8, Def. 5.1]) LetE,Ac R*". Then[E,A] is called
stabilizable in the behavioral sense if, and only if,

Vxe By Ix € Bry: (VE<O0: x(t) =xo(t)) A tIi%rr‘less-su[p’m) |I%ol| = O.

We are now in a position to derive a duality result.

Lemma 2.11(Duality). Let [E,A,B,C] € %/ nmp. Thenthefollowing statements are
equivalent:
() [E,A,B,C]isstabilizablein the behavioral sense.

(i) [[E,O],[A,B]] isstahilizable in the behavioral sense.
(i) HEOT} , [gi” is stabilizable in the behavioral sense.
(iv) [ET,AT,CT BT]isdetectablein the behavioral sense.
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Proof. It follows from the definition that (8=(ii) and (iii)<(iv). By [8, Cor. 5.2],
(ii) is equivalent to

YA e CJF . I'k(c[/\E—A,—B] = rkR(s>[sE—A,—B].

Since ranks are invariant under matrix transpose, we findiihé equivalent to

T _ AT T _ AT
VA E@Jr: rk(c |:AE A :| :rkR(s> |:SE A :|,

-BT -BT
which, again by [8, Cor. 5.2], is equivalent to (iv). This coletes the proof. O

In view of Lemma 2.11 and [8, Cor. 5.2] we may infer the follogi

Corollary 2.12 (Characterization of stabilizability and detectability) et
[E,A,B,C] € 2/ nmp- Then the following holds true.

() [E,A,B,C]isstabilizablein the behavioral senseif, and only if,
VA €C, : tke[AE— A —B] = rkp(s[sE — A, —B].

(i) [E,A,B,C] isdetectablein the behavioral senseif, and only if,
— AE-A sE—A
VA eCy: rkc[ c } :rkR@[ e ]

3 Stable zero dynamics

In this section we state and prove one of the main resultseoptesent paper and
derive some consequences for regular systems.

Theorem 3.1(Characterization of stable zero dynamickgt [E,A,B,C] € 3/ nmp
be right-invertible and have autonomous zero dynamics. Then the zero dynamics
Z 91y are asymptotically stableif, and only if, the following three conditions hold:

() [E,A,B,C]isstabilizablein the behavioral sense,
(ii) [E,A,B,C] isdetectablein the behavioral sense,
(i) [E,A,B,C] hasno transmission zerosin C..

Proof. Since right-invertibility of[E, A, B,C] implies, by Lemma 2.7, that &= p,
the assumptions of Lemma 2.2 are satisfied and we may assamevithout loss
of generality[E, A, B,C] is in the form (3).

=: Step 1: We show (i). Let

I 0 0 0
0 | 0 0
Te)=| o ’ 0 € Glnym(R[g)

—Ao1 SExo — Azp SEp3 —Im
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and observe that, sinég;, = A4, =0 by Lemma 2.7,

Sk—Q—-A 0 O
0 0 0 Iy
0 Es2 N—lIp, 0
0 0 B3 O

[SE —A, _B]Tl(s) =

Then, with
Ik (Slk—Q)*A2 0 0
0 | 0 O
TZ(S) = O 8 |n O S (.;Irprm(IR(S))7
3
0 0 0 —Im
and
Ik 0 0 O
0 | 0 O
T3(S) = 0 —S(SN _ Fn3)71E32 |n3 0 € G|n+m(R[S])a
0 0 0 —Im

where we note that it follows from (6) th@(s) is a polynomial, we obtain

&-Q 0 0 O
0 0 0 Inm
0 0 sN—Ip 0]
0 X(S) sEsz3 O

[SE — A, —B]Tl(S)Tz(S)T3(S) =

whereX (s) = —s?E43(sN — In;) “1E32 = 0 by Lemma 2.7 and (6). Finally,

I, 0 0 0
0l 0 0

0 0 —sE43(SN —1In,) "t —Imm

yields

Si(s)[sE — A, —BJTi(s)T2(5) Ta(s) =

and hence rkg)[sE — A,—B] = k+ng+m=n+m-p, sinceny =n—k—p by
Lemma 2.2. Now lef € C, and observe that, by Lemma 2Bl — Q is invert-
ible. Hence, the matrice®;(A),T»(A),Ts(A) and S;(A) exist and are invertible.
Thus, using the same transformations as above for fixedC, now, we find that
rkc[AE — A, —B] = n+m— p. This proves (i).

Sep 2: We show (ii). Similar to Step 1 it can be shown that
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AE-A|_ . [E-A]_
_C =T R(s) _C =nN.

Sep 3: We show (iii). By Corollary 2.8, the transmission zerosBfA, B,C] are
the poles of

VA E@Jr: rk@{

F (S) = A21(S|k — Q)ilAlg.

Every pole ofF (s) is also an eigenvalue @. In view of Lemma 2.3, we have that
0(Q) C C_ and so (iii) follows.

<: By Lemma 2.3, we have to show thatife g(Q), thenA € C_. LetA €
o(Q). We distinguish two cases:

Case 1: A is a pole ofF(s). Then, by Corollary 2.8) is a transmission zero of
[E,A,B,C] and by (iii) we obtaim € C_.

Case 2: A is nota pole of (s). Then [7, Lem. 8.3] applied tiy, Q, A2, A21] and
A yields that

(@) rke[Alx—Q,A1) <k or (b) rke[Alk—Q",AJ] <k.
If (a) holds, then there existg € CK\ {0} such that
Vi [Alk—Q,Arz = 0.
Letvy € C=M+(P-M pe arbitrary and define
Vg = —AV; Eg3(AN —In,) L.
Now observe that

AM—Q  —Ap 0 0
—Ao1 AE—Axp ABExs Iy
0 AEsz AN—Ip, O

0 0 AEsz O

(v{,0,v3,v4) =(0,w',0,0),

where

wh = —VIA12+ AV;E32 = _AZVI Esq3(AN— |n3)71E32 =0
by Lemma 2.7 and (6). This implies that := ker[AE — A,—B]" C C' has dimen-
sion dim#” > (¢ —n) + (p—m) + 1. Therefore,

rkc[AE—A,—B] <{—dim# <n+m-p-1
=TKg(s)[SE — A, —B] — 1 <rkg(g[sE—A,—B], (8)

where rl ) [SE — A, —B] = n+m— p has been proved in Step 1 6&". Hence, (8)
together with (i) implies thak € C_.

If (b) holds, then there existg € CK\ {0} such thatv] [Alx — Q,A};] = 0.
Therefore,
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A—=Q  —Ap 0
—Ax1 AEx—Ax AEp;s %l
0 AEs2 AN—1In| [ 0] =0
0 0 AEs | \O
0 Iy
and thus A
E—-A sE—-A
rkc[ _c }<n_rkR(s){ _c }, (9)

where rig s [SEjCA] = n has been proved in Step 2 of*". Hence, (9) together
with (ii) implies thatA € C_. This completes the proof of the theorem. a

Remark 3.2. It might be surprising that in Step 1 and Step 2 it is calcalaibet

(10)

rkp(s)[SE—A,—Bl=n+m—p and rk {SE_A] —n.

—-C
Because of duality reasons it could be expected that theanksrsatisfy

sE —

rkg(s)[SE — A, —B] = min{n+m—p,/} and rk s [ C

A} =min{{+ p—mn}.

Since itis assumed that the zero dynamics are autonomditits that the system
dEX(t) = AX(t) +Bu(t), Cx(t)=0

is autonomous and hence no free variables are present. vesaien + mvariables
and/ + p equations, it is necessary that m< ¢+ p. This impliesn+m—p < ¢
andn < /+ p—m, and hence (10).

For regular systems with invertible transfer function weyroaaracterize asymp-
totic stability of the zero dynamics by Hautus criteria foatslizability and de-
tectability and the absence of zeros of the transfer funétighe closed right com-
plex half-plane (recall Definition 2.4 for the definition okzaro of a rational matrix
function).

Corollary 3.3 (Regular systems)Let [E, A B,C] € Znnmm be such that sE — Ais

regular and G(s) := C(sE — A) 1B isinvertible over R(s). Then the zero dynamics

Z 91y are asymptotically stableif, and only if, the following three conditions hold:

(i) VA €Cy: rkc[A\E—A,—B]=n,

AE—-A]
-C -

(iii) G(s) hasnozerosinC,.

(i) YA eC, : rk@{

Proof. SinceG(s) € GIm(R(s)) it follows from Lemma 2.1 that¥ %,y are au-
tonomous. Furthermore, &= m and hence we may infer from [4, Rem. 4.2.13]
that[E, A, B,C] is right-invertible. Now, we may apply Theorem 3.1 to dedtica
Z 91y are asymptotically stable if, and only if,
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(a) [E,A,B,C] is stabilizable in the behavioral sense,
(b) [E,A,B,C]is detectable in the behavioral sense,
(c) [E,A,B,C] has no transmission zeros@h, .

Since regularity ofE — A gives that rk ¢ [SE — A, —B] = rkg(s) [ *] =n, we find
that (ix=(a) and (ii}=(b). (iii) < (c) follows from the fact that by [4, Rem. 4.3.3] we
haveH (s) = G(s)~* for H(s) as in (5) and that transmission zero$®fA, B,C] are,
by definition, exactly the poles ¢ (s). O

4 Stabilization

In this section we consider stabilizing control for DAE sysis. More precisely, we
introduce the concepts of Lyapunov exponent and compatti&ol and show that
for right-invertible systems with autonomous zero dynasnitics possible to assign,
via a compatible control, the Lyapunov exponent of the sydtea value specified
by the zero dynamics.

The usual concept of feedback is the additional applicaifahe relatioru(t) =
Fx(t) to the systerq;’—t Ex(t) = Ax(t) + Bu(t); for instance, high-gain feedback has
been successfully applied to DAEs in [6] in order to achigabiization. Feedback
can therefore be seen as an additional algebraic constinaintan be resolved for
the input. Control in the behavioral sense, or control viariconnection [24], gen-
eralizes this approach by also allowing further algebraliatrons in which the state
not necessarily uniquely determines the input (see als8¢8, 5.3]). That is, for
given (or to be determined = [Ky,Ky] € R™" x R™Mand[E,A,B,C] € Z/nmp
we consider

Ex e # (R;RY) and,

fora.at € R,

JEX(t) = AX(t) +Bu(t)
0 = Kyx(t) + Kyu(t)

%FE,A,B] = (XU) € Lo (R;R" x R™)

We callK thecontrol matrix, since it induces the control lalx + K,u 20, Note
that, in principle, one could make the extreme chdfce- I,,,m to end up with
a behavior

B 4 C { (x,U) € ZL (R;R" x RM ‘ (x,u) 250 }
which is obviously asymptotically stable. This, howevemnot suitable from a prac-
tical point of view. If we assume that the controller is sWwiégd on at a certain time
t € R, then this causes a jump from a solution trajectory of theioal system
[E,A,B] onto a solution within the interconnected beha\&%’A‘B] (the trivial so-
lution in this case) at timé. Hence, jumps occur iEx. To avoid this, we use the
concept of compatible control.
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Definition 4.1 (Compatible control [8, Def. 5.2])Let [E,A,B,C| € 3/ nmp. The
control matrixK = [Ky, Ky] € R¥" x R9*™M s calledcompatible for [E,A,B,C] if,
and only if,

Ve {X°eR" |3(x.uy) € By : Ex(0)=EX }
F(xu) € Blg ap - EX(0) = EX".

We construct a compatible control which not only resultsnnagymptotically
stable interconnected system, but also the Lyapunov expofthe interconnected
system is prescribed by the zero dynamics of the nominaésysin order to get
a most general definition of the Lyapunov exponent, we usdfiaitien similar to
the Bohl exponent in [3, Def. 3.4], not requiring a fundana¢sblution matrix as
in [18].

Definition 4.2 (Lyapunov exponent)Let E, A € R*". The Lyapunov exponent of
[E,A] is defined as

k. (E,A) = inf{ HER

IMy >0Vxe By foraat >s:
X <Mt x(s)]

Note that we use the convention infd+-c.

The (minimal) exponential decay rate of the (asymptotycatable) zero dy-
namics of a system can be determined by the Lyapunov expaiehe DAE

[[58].[88]]-
Lemma 4.3 (Lyapunov exponent and stable zero dynamidsgt [E,A,B,C] €

2 n.m p With autonomous zero dynamics and rkC = p. Then, using the notation from
Lemma 2.2 and k asin (4), we have

k(Z2q) = inf{ peR
)= {“ [w(t) | < Mye©9)w(s)|

)

B {max{Re)\ IAea(Q)}, ifk>0

My >0Vwe ZZ foraat>s: }

—oo, if k=0.

Proof. The first equality follows from the fact that the trajectsria 2% ;) can
be identified with those in the behavi®(7) of the DAE system corresponding to
([55].[28])- _ _ .

The second equality can be seen by using the decompositjorsifie the
Lyapunov exponent is invariant under transformation of $gstem (see e.g. [3,
Prop. 3.17]) we may assume that, without loss of generaktyd, B,C] is in the
form 3). Now observe thaix, u,y) € Z 71y, wherex = (x1,Y,X3), if, and only if,

y220,%3 220 andx € #0H (R;RY), u e L1 (R;R™) satisfy
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d. ae. a.e.
X =Qxy, u="—Axx.

This equivalence of solution trajectories yields the agser a

Note that it follows from Lemmas 2.3 and 4.3 that asymptotab#ity of the
zero dynamics implies exponential stability of the zeroatyits, i.e., any trajectory
tends to zero exponentially.

We are now in a position to prove the main result of this sectichich states that
for right-invertible systems with autonomous zero dynamntieere exists a compat-
ible control such that the Lyapunov exponent of the intenemted system is equal
to the Lyapunov exponent of the zero dynamics of the nomiysdesn; in particular,
this shows that asymptotic stability of the zero dynamigglies that the system can
be asymptotically stabilized in the sense that every smiudif the interconnected
system tends to zero.

Theorem 4.4 (Compatible and stabilizing control)Let [E,A,B,C] € >/ nmp be
right-invertiblewith autonomous zero dynamics. If dim 2°% (1) > 0, then there exists
a compatible control matrix K = [Ky, Ky] € R¥" x R¥™ for [E, A, B,C] such that

(IR e

If dim 2’91y = 0, then for all u € R there exists a compatible control matrix K =
[Kx, Ky] € RI*" x R*M for [E, A, B,C] such that

(9148 =

Proof. Since the Lyapunov exponent is invariant under transfaonaif the sys-
tem (see e.g. [3, Prop. 3.17]) we may, similar to the proofteédrem 3.1, assume
that, without loss of generalityE,A,B,C] is in the form (3). Then, with similar
transformations as in Step 1 of the proof of Theorem 3.1 rtleashown that

AExn—Ax ABEx Im SEoo—Axx sEp3 I
VA eC: I’k(c /\E32 )\N—|n3 0 :rkR(s) sEsp SN—|n3 0 ,
0 AEsz O 0 sEsz3 O

and hence, by [8, Cor. 4.3], the system

eAse = |[ER][55].[5].1n0]
s My Dy = 5 n ,1 01, R

o Ea3 00 0 P
is controllable in the behavioral sense as in [8, Def. 2.1].

We will now mimic the proof of [8, Thm. 5.4] without repeatiradl of its ar-
guments: It follows from the above controllability in theHawioral sense and [8,
Cor. 3.4] that in the feedback form [8, (3.10)][&, A, B] we haven; = 0. Therefore,
for any givenu € R ande > 0, itis possible to chood&; andKy in the proof of [8,
Thm. 5.4] such that the resulting control matkx= [K1,K,] € R9* (7K x RI*M g
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compatible for[E, A, B,C] and satisfies

(EIED e e

We show that
K = [Kx | Ku] = [K2Ao1, Kq | Ko] € RP¥K 5 RIX(MK) 5 A<M

is compatible fofE, A, B,C] and satisfies (11) or (12), resp.
Sep 1: We show compatibility. Let

e { X eR" |3 (xuy) € Bgy: Ex(0)=Ex’ }

and partition® = (6€)T,(68)T) " with X0 € R, xd € R" X, Then there exist; ¢
Vi (RRY), % € ZLR;R"X) and u € LL(R;R™) such that Ex; €
Vg (R;R"K) and
9 = Qxa + [Arz, O)xe,
A1

dE 4.E. A 5
&EXZ = 0 | xg+ Axp+ Bu, (14)

Therefore,

X € { X5 € R" | 3(x2,u,Cx0) € B a5 ¢ Ex2(0) = Ex) },

Where%[E’A)é)C] denotes the behavior of (1) correspondingto the syﬁetﬁ é,é],
and by compatibility ofKy,Ko] for [E,A,B,C] there existgx,,V) € %%ElAKé]] such
that

4Ex, EAxp + By,

(15)
02 KXo + Kov,
andEx,(0) = Ex3. Define

t
x1(t) i= thx‘f+/ eR=9[A1,,0)x() ds, teR,
0

which is well-defined sincex € .,iﬁcl,C(R;R”*k), and letu := v— Ay1x;. Then
(x1,X2,u) solves (14) and satisfies

KoAz21X1 + Kixo + Kou aie'KzAﬂXl + KXo 4+ KoV — KoA1xg aie.o7
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which proves thalK,A»1, K1, Ky] is compatible folE, A, B,C].
Sep 2: We show that (12) is satisfied in case thkat O for k as in (4). This
follows from (13) since

(598 - (5 ) -

with arbitraryu € R ande > 0.
Sep 3: We show that (11) is satisfied in case that 0. Denote

=k (2 9w) “=*max{ ReA |A € 0(Q) }
and letp > 0 be arbitrary. Then there exigt§, > 0 such that, for alt > 0, ||[€?|| <
Mpe(NJFP)t_
Sep 3a: We show " in (11). Since, for any solutiom; € %olél(R;Rk) of %xl =
Qx1 we have
((XI,O)T, —A21X1,0) S %FE,A,B]’

(59 [eR]) =

Sep 3b: We show ‘<" in (11). Let (x,u) € %FEAB] and writex = (XI,X;)T with

x1 € # =2 (R R¥) andx, € 4L (R; R ). Then we have

it follows that

xq ZQxq + [Ar2, OJxe,

a.

~ A21 ~ ~
4Ex | 0 | xa+Ax+Bu,

]

0
0 KoA21X1 + Kix2 + Kou.

Observe thatxy,w := u+ Az1x1) solves (15) and hence, by (13) farand some
€ > 0, there existd/; > 0 such that

X2(S)

w(s) /||’

) e
()] < €29 IX1(8)|+/SI|8Q(”)| 12,0l H<)\j\3((;))>H &

< MpeHHPI=S) 1 ()|
(29)

fora.at >s:

Therefore,

t
+MiM,eHHPIE=S) 1A, O] - ‘ / e (e+p)(t-1) gr
S

<1/e
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for almost allt,s € R with t > s. This implies that

(2]

and sincep > 0 is arbitrary the claim is shown. a

Remark 4.5 (Construction of the contral)The construction of the contrél in the
proof of Theorem 4.4 relies on the construction used in [8nTh.4]. Here we make
it precise. We have split up the procedure into several steps

(i) The first step is to transform the given systéfA,B,C] € 5/ nmp into the
form (3). The first transformation which has to be appliedrihes to achieve this
is stated in [4, Thm. 4.1.7] and uses the maxilfi&alA, B)-invariant subspace
included in ke€C. This subspace can be obtained easily via a subspacedterati
as described in [4, Lem. 4.1.2]. The second transformatibithwhas to be
applied is stated in [4, Thm. 4.2.7]. Denote the resultingesy by

ool Lol e o] L8]

(i) Next we have to consider the subsystem

eABS)=|[BF].[Fa].[5].10]

0 Egs 00

and transform it into a feedback form. To this end we intradie following
notation: Forj € N, we define the matrices

N = F\\lo] eRIX, K= []O\\lo] L= [O\J e RU-D7J,

Further, Iete,m € RJ be theith canonical unit vector, and, for some multi-index
a=(ay,...,q) € N, we define

Ny =diag(Ng,,...,Ng ) € R0
Ko =diag(Ka,,...,Kgq ) € RUD>lal
Ly =diag(La,,...,Lq ) € RUGIFD>al,
E :diag(eL‘,’ll],...,eL‘,’l']) c Rlalx!

Then it was shown in [19] that a given system can, via Stadeespnput-space
and feedback transformation, be put into a feedback caabfuom. Here we
use the feedback form from [8, Thm. 3.3], which is not canahiincelE, A, B
is controllable in the behavioral sense as in [8, Def. 2. H]rkfB = m, there exist
Se Gl «(R), T € Glp k(R),V € GIm(R), F € R™ (K such that
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= ~=[T 0
where
lgg 0 0 0 0] [Ny 0 0 0 0] [Eq O
0Kz 0 0 O OLg 0 00O 00
[EAABj=||0 OL) 0 O0f,|0 OK/ O O},|0E||,
0 0 0KJ O 0 00LJO 00
0 0 0 0Nk 0 0 0 0l 00

for some multi-indices, 8,y, 9, K.

Let u € R be arbitrary. We construct a compatible control in the baraV
sense for[E,A, I§] such that the interconnected system has Lyapunov exponent
smaller or equal tqu. Let F1, € RH@*1a] pe such that

max{ ReA | A € 0(Ng +EgF11) } < u.
This can be achieved as follows: Fpe 1,...,L(a), consider vectors
aj = —[aja;1,-..,aj0 € R™.

Then, for
Fll = diag(a17 cee 1a'L(G)) € RL(G)X‘(X"

the matrixNy + EqF11 is diagonally composed of companion matrices, whence,
for
pi(s) =% +ajq, 18" T+ .. +ajo e R[Y

the characteristic polynomial &f, + E4F11 is given by
L(a)
det(slg) — (Na + EaF11)) = H p;(s).
j=1

Hence, choosing the coefficierts, j =1,...,L(a),i=0,..., a; such that the
roots of the polynomialgi(s), ..., P (a)(S) € R[g are all smaller or equal ta
yields the assertion.

Now we find that
lig1 O N E
k la| a a <
L({O 0}’[F11—'L<a>D -

Furthermore, by the same reasoning as above, for
aj = [ajp,2,---,8j0,1] e RVP
with the property that the roots of the polynomials

pi(s) = +ajp 1 1+ .. +ajpeR[s
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are all smaller or equal tg for j = 1,...,L(a), the choice

(5] e =

Therefore, the control matrix

leads to

Fi1 0 0001

s s 0 -
K:[Kl,Kz]:[o K.000 O‘” JGRQX(” k) % XM

whereq = L(a) + L(B), establishes that

(B 28]

Since the differential variables can be arbitrarily irlizad in any of the pre-
viously discussed subsystems, the constructed coktrekalso compatible for
[E,AB. X I

(iv) We show thatK leads to a compatible contrl for [E, A, B] such that the in-
terconnected system has Lyapunov exponent smaller or ¢gual Observe
that

s'o|[€-AB|[ T* o0]_[ <£-A B
0 Ig| | Ki Ko| [VIFTIVL 7 [Ki+ KV T Kyt

and hence, by invariance of the Lyapunov exponent undesfowamation of the
system (see e.g. [3, Prop. 3.17]), we find that for

(K1, Ko] == [K1+ KoV IFTE KoV 7Y € R (K)o gaxm

(AR =

(V) If k=dimZ %21y =0, then we can choogec R as we like and obtain

(59 bR 2 (59 (2.8 =

If k > 0, then we can chooge < k_(Z Z(1)) and obtain, with

we have

[Ky|Ku] = [KaAo1, Kq | Ka] € RI¥K x RIX(1K) 5 gaxm,

that
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This is shown in the proof of Theorem 4.4.
(vi) The desired compatible contrklfor [E, A, B,C] is now given by

K = [KxQ 1Ky

Note that the practical computation of the decompositiar{§ iand (ii) is in general
not numerically stable. This can be achieved by using odhagtransformations
and condensed forms as in [11]. It seems that with some éfffleform (3) in (i) can
also be obtained with orthogonal transformations, butrieisds to be investigated
in detail. Instead of the feedback form from [8, Thm. 3.3]iing condensed form
from [11] could be used. However, in the present work we dofootis on the
numerical aspect.

Remark 4.6 (Implementation of the contral)As explained in the beginning of this
section, the control law

cannot necessarily be solved fdt). This raises the question for the implementation
of the controller. There are basically two perspectivesis tegard:

(i) In order to implement the controller it is necessary thltfree variables of
the open-loop systerﬁfEx(t) = AX(t) + Bu(t) can be manipulated. The free
variables of the system can be identified via the quasi-Kekaeform [9, 10] of
the pencils[E, 0] — [A, B]; each underdetermined bloeKs — Lg in the quasi-
Kronecker form yields one free variable, i.e., there lafB) free variables in
the system. The set of free variables may consist of inpuabkes as well as
state variables and not necessarily all input variable$raesvariables. For the
implementation of the control, the free variables are geats controls and the
control law can be solved for the free variables. A similapmach has been
discussed in [12].

(i) For an alternative approach, where we do not wish totegpret variables, we
use the fact that (cf. also Remark 4.5 (iii)) the control laan de rewritten in

the form 0

K1 Ir O] fui(t)) _

[Kz] X(t)+ [o o lw)) =2
where a suitable input space transformation has been pegtbrThen we may
solve the first row fowuy (t) and implement this control. It only remains to im-
plement the algebraic conditidx(t) = 0. In practice, this relation can be
implemented by integrating appropriate components (sscaapers or resis-
tors) into the given plant. In particular, it is not necegdar (actively) manip-

ulate specific state variables, only the implementationnodigebraic relation
between some of the state variables is necessary.

Theorem 4.4 shows that right-invertible syste#sA, B,C| € 2 n m p With asymp-
totically stable zero dynamics can be stabilized by a coiblgatontrol so that any
solution of the interconnected system tends to zero. It Iskmewn [15, Rem. 6.1.3]
that any linear ODE system with asymptotically stable zgnoagnics (ando = m)
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is stabilizable bystate feedback, i.e., the compatible control is of the form= Fx.
While there is a lot of literature on the state feedback $izattion of linear DAEs,
seee.g.[8,17,23,25],it seems that the stabilizationlproffior systems with asymp-
totically stable zero dynamics has not been investigatedape regular DAE sys-
tems we obtain the following result.

Proposition 4.7 (Regular systems and state feedback)
If SE — A e R[§™"in Theorem4.4 is regular, then the compatible control K can be
chosen as a state feedback in each case, i.e., K = [Ky, —Im] € R™" x RM™<M,

Proof. We use the procedure presented in Remark 4.5 and modify @naé $n-
stances.

(i) Consider the systerfE,A, B,é] from Remark 4.5 (ii) and observe that, using
the same argument as in [8, Rem. 5.3 (i)], we obtdi®) = 0 andL () =L(y).
(i) For any multi-indexn € N! let

F, = diag(el™,...,eM) e I,

A straightforward calculation yields that there exists anmetation matrixP €
RE%E, & = |B| 4 |y| — L(y), such that

Kg O L 0 -
0 L) |EFS K ¢
whereN e R¢*¢ s nilpotent.

(i) Changing the control matriX in Remark 4.5 (iii) to

Fii 0 000l 4 O

o mx (n—k) mxm
K—[KLKZ]—[O FBTOOO 0 —|L<v>]ER T

where it is worth noting that(a) 4+ L(y) = m, and invoking the observation
in (ii), we obtain the same result for the Lyapunov exponant the control
can be equivalently expressed as a state feedback

u; = F11X1, Up = FBTXQ.
SinceK, = —Im We can writelKy, Kz] in Remark 4.5 (iv) as
[Ky,Ko] = VKy — FT 1 — I

and, furthermore, we hau€, = —In, in Remark 4.5 (vi). Therefore, the com-
patible controK is a state feedback. a

Acknowledgements | am indebted to Achim lichmann (Ilmenau University of Teology) for
several constructive discussions.
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