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Funnel control for nonlinear systems with higher relative degree
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We consider tracking control for nonlinear multi-input, multi-output systems which have arbitrary strict relative degree and
input-to-state stable internal dynamics. For a given reference signal, our aim is to design a controller which achieves that the
tracking error evolves within a prespecified performance funnel around the reference signal. To this end, we introduce a new
controller which involves the first r−1 derivatives of the tracking error, where r is the strict relative degree of the system.
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1 Introduction

We consider the following class of nonlinear systems described by functional differential equations of the form

y(r)(t) = f
(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
+Γ

(
d(t),T (y, ẏ, . . . ,y(r−1))(t)

)
u(t)

y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm),
(1.1)

where h > 0 is the “memory” of the system, r ∈ N is the strict relative degree, and

(P1): the “disturbance” satisfies d ∈ L ∞(R≥0 → Rp), p ∈ N;

(P2): f ∈ C (Rp ×Rq → Rm), q ∈ N;

(P3): the “high-frequency gain matrix function” Γ ∈ C (Rp ×Rq →Rm×m) satisfies that Γ+Γ⊤ is pointwise positive definite1;

(P4): T : C ([−h,∞)→ Rrm)→ L ∞
loc(R≥0 → Rq) is an operator with the following properties:

a) T maps bounded trajectories to bounded trajectories, i.e, for all c1 > 0, there exists c2 > 0 such that for all ζ ∈
C ([−h,∞)→ Rrm),

sup
t∈[−h,∞)

∥ζ (t)∥ ≤ c1 ⇒ sup
t∈[0,∞)

∥T (ζ )(t)∥ ≤ c2,

b) T is causal, i.e, for all t ≥ 0 and all ζ ,ξ ∈ C ([−h,∞)→ Rrm),

ζ |[−h,t) = ξ |[−h,t) ⇒ T (ζ )=T (ξ ) for almost all ζ ∈ [0, t).

c) T is locally Lipschitz continuous in the following sense: for all t ≥ 0 there exist τ,δ ,c > 0 such that for all ζ ,∆ζ ∈
C ([−h,∞)→ Rrm) with ∆ζ |[−h,t) = 0 and ∥∆ζ |[t,t+τ]∥∞ < δ we have∥∥(T (ζ +∆ζ )−T (ζ )) |[t,t+τ]

∥∥
∞ ≤ c∥∆ζ |[t,t+τ]∥∞.

The functions u : R≥0 → Rm and y : [−h,∞) → Rm are called input and output of the system (1.1), resp. Systems similar
to (1.1) have been studied e.g. in [11, 14, 15, 17]. In the aforementioned references it is shown that the class of systems (1.1)
encompasses linear and nonlinear systems with strict relative degree and input-to-state stable internal dynamics (zero dynamics
in the linear case) and the operator T allows for infinite-dimensional linear systems, systems with hysteretic effects or nonlinear
delay elements, and combinations thereof. Note that the operator T is usually the solution operator of the differential equation
describing the internal dynamics of the system and its property (P4a) thus amounts to the input-to-state stability of the internal
dynamics.

One important subclass of systems (1.1) are minimum-phase linear time-invariant systems

ẋ(t) = Ax(t)+Bu(t), y(t) =Cx(t), x(0) = x0 ∈ Rn, (1.2)

∗Corresponding author: email timo.reis@math.uni-hamburg.de
1Note that, analogously, pointwise negative definite Γ+Γ⊤ may be considered by just changing the sign of the input u.
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where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rm×n, which have strict relative degree r ∈ N and positive definite high-frequency gain
matrix, i.e, CB = CAB = . . . = CAr−2B = 0 and Γ := CAr−1B ∈ Rm×m is positive definite. The minimum-phase assumption
(equivalently, asymptotic stability of the zero dynamics, cf. [4, 9]) is characterized by the condition

∀λ ∈ C with Reλ ≥ 0 : det
[

λ In −A B
C 0

]
̸= 0.

It is known that systems of this type can be transformed into Byrnes-Isidori normal form, see [15], and are hence included
in the class (1.1). For the corresponding normal form for nonlinear systems see [19] and also the recent paper [5], where a
generalization is discussed.

The control objective is to design an output error feedback u(t) = F(t,e(t), ė(t), . . . ,e(r−1)(t)), where e(t) = y(t)− yref(t)
for some reference trajectory yref ∈ W r,∞(R≥0 → Rm), such that in the closed-loop system the tracking error e(t) evolves
within a prescribed performance funnel, i.e., φ(t)∥e(t)∥< 1 for all t ≥ 0, where φ belongs to

Φr :=
{

φ ∈ C r(R≥0 → R)
∣∣∣∣ φ, φ̇, . . . ,φ(r) are bounded, φ(τ)> 0 for all τ > 0,

and liminfτ→∞ φ(τ)> 0

}
.

Furthermore, the signals u,e, ė, . . . ,e(r−1) should remain bounded.

λ

b
(0,e(0))

φ(t)−1

t

Fig. 1: Error evolution in a funnel with boundary φ(t)−1

The funnel boundary is given by φ(·)−1, see Fig. 1. It is
explicitly allowed that φ(0) = 0, which means that no re-
striction on the initial value is imposed as φ(0)∥e(0)∥ < 1.
An important property of the class Φr is that the boundary
of each performance funnel is bounded away from zero, i.e.,
because of boundedness of φ there exists λ > 0 such that
1/φ(t)≥ λ for all t > 0.

A longstanding open problem in high-gain adaptive control is the treatment of systems with relative degree larger than
one, see [13, 16, 20]. We follow the framework of Funnel Control which was developed in [14] for systems with relative
degree one, see also the survey [16] and the references therein. The funnel controller is an adaptive controller of high-
gain type and thus inherently robust. The funnel controller has been successfully applied e.g. in control of industrial servo-
systems [12] and voltage and current control of electrical circuits [3]. Funnel control is not restricted to systems of ordinary
differential equations, but can also be used for infinite-dimensional systems (see e.g. [18, 21]) and systems of differential-
algebraic equations (see e.g. [1, 2]).

We present a simple funnel controller for systems with arbitrary known relative degree r and (in a suitable sense) input-to-
state stable internal dynamics. The controller is based on a simple recursion law and involves the first r−1 derivatives of the
tracking error. The present paper mainly serves as a summary of the journal paper [7], where all proofs can be found.

2 Funnel control

We introduce the following funnel controller for systems of the class (1.1):

e0(t) = e(t) = y(t)− yref(t), u(t) =−kr−1(t)er−1(t),

e1(t) = ė0(t)+ k0(t)e0(t), ki(t) = (1−φi(t)2∥ei(t)∥2)−1, i = 0, . . . ,r−1,

e2(t) = ė1(t)+ k1(t)e1(t),

...

er−1(t) = ėr−2(t)+ kr−2(t)er−2(t),

(2.1)

where the reference signal and funnel functions satisfy:

yref ∈ W r,∞(R≥0 → Rm), φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1. (2.2)

By a solution of (1.1), (2.1) on [−h,ω) we will mean a function y ∈ C r−1([−h,ω)→ Rm), ω ∈ (0,∞], with y|[−h,0] = y0

such that y(r−1)|[0,ω) is absolutely continuous and satisfies the differential equation in (1.1) with u defined in (2.1) for almost
all t ∈ [0,ω); y is called maximal, if it has no right extension that is also a solution. Existence of solutions of functional
differential equations has been investigated in [14] for instance.
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Remark 2.1 We stress that while the derivatives ė0, . . . , ėr−2 appear in (2.1), they only serve as short-hand notations and
may be resolved in terms of the tracking error, the funnel functions and the derivatives of these. For the case r = 2 this reads

u(t) =−k1(t)(ė(t)+ k0(t)e(t)), k0(t) =
(
1−φ2

0 (t)∥e(t)∥2)−1
,

k1(t) =
(
1−φ2

1 (t)∥ė(t)+ k0(t)e(t)∥2)−1
.

We show that the funnel controller (2.1) is feasible.

Theorem 2.2 Consider a system (1.1) with strict relative degree r ∈ N and properties (P1)-(P4). Let yref and φ0, . . . ,φr−1
be as in (2.2) and y|[−h,0] = y0 ∈ W r−1,∞([−h,0]→ Rm) an initial value such that e0, . . . ,er−1 as defined in (2.1) satisfy

φi(0)∥ei(0)∥< 1 for i = 0, . . . ,r−1. (2.3)

Then the application of the funnel controller (2.1) to (1.1) yields an initial-value problem, which has a solution, and every
maximal solution y : [−h,ω)→ Rm, ω ∈ (0,∞], has the following properties:

(i) The solution is global (i.e., ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions k0, . . . ,kr−1 : R≥0 → R and y, . . . ,y(r−1) : R≥0 → Rm are bounded.

(iii) The functions e0, . . . ,er−1 : R≥0 → Rm evolve in their respective performance funnels and are uniformly bounded away
from the funnel boundaries in the following sense:

∀ i = 0, . . . ,r−1 ∃εi > 0 ∀ t > 0 : ∥ei(t)∥ ≤ φi(t)−1 − εi.

We stress that a drawback of our approach, which still needs to be resolved, is that the derivatives of the output must be
available for the controller. However, this is not satisfied in several applications, and it may even be hard to obtain suitable
estimates of the output derivatives. A first approach to treat this problem using a “funnel pre-compensator” has been developed
in [6, 8] for systems with relative degree r = 2 or r = 3.

3 Simulations
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Fig. 2: Planar rigid revolute joint robotic manipulator.

To illustrate the funnel controller (2.1) for a nonlinear multi-
input, multi-output system we consider an example of a robotic
manipulator from [10], see also [12, Ch. 13], as depicted in
Fig. 2. The robotic manipulator is planar, rigid, with revolute
joints and has two degrees of freedom.
The two joints are actuated by u1 and u2 (in Nm). We assume
that the links are massless, have lengths l1 and l2 (in m), resp.,
and point masses m1 and m2 (in kg) are attached to their ends.
The two outputs are the joint angles y1 and y2 (in rad) and the
equations of motion are given by

M(y(t))ÿ(t)+C(y(t), ẏ(t))ẏ(t)+G(y(t)) = u(t) (3.1)

with initial value (y(0), ẏ(0)) =
(

0rad2,0(rad/s)2
)

, inertia matrix M : R2 → R2×2, (y1,y2) 7→ M(y1,y2), centrifugal and

Coriolis force matrix C : R2 ×R2 → R2×2, (y1,y2,v1,v2) 7→ C(y1,y2,v1,v2) and gravity vector G : R2 → R2, (y1,y2) 7→
G(y1,y2) with

M(y1,y2) :=
[

m1l2
1 +m2(l2

1 + l2
2 +2l1l2 cos(y2)) m2(l2

2 + l1l2 cos(y2))
m2(l2

2 + l1l2 cos(y2)) m2l2
2

]
,

C(y1,y2,v1,v2) :=
[
−2m2l1l2 sin(y2)v1 −m2l1l2 sin(y2)v2
−m2l1l2 sin(y2)v1 0

]
,

G(y1,y2) := g
(

m1l1 cos(y1)+m2(l1 cos(y1)+ l2 cos(y1 + y2))
m2l2 cos(y1 + y2)

)
,

where g = 9.81m/s2 is the acceleration of gravity. If we multiply system (3.1) with the pointwise positive definite matrix
M(y(t))−1, we see that the resulting system belongs to the class (1.1) with r = m = 2.
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For the simulation, we choose the parameters m1 =m2 = 1kg, l1 = l2 = 1m and the reference trajectories yref,1(t) = sin t rad
and yref,2(t) = sin2t rad. For the controller (2.1) we choose the funnel functions

φ0(t) = (e−2t +0.1)−1, φ1(t) = (3e−2t +0.1)−1.

The initial errors lie within the respective funnel boundaries, i.e., conditions (2.3) are satisfied, thus Theorem 2.2 yields that
funnel control is feasible.
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Fig. 3: Funnel and tracking error
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Fig. 4: Input components

The simulation of the funnel controller (2.1) applied to (3.1) over the time interval 0−10s has been performed in MATLAB
(solver: ode45, rel. tol: 10−14, abs. tol: 10−10) and is depicted in Fig. 3 (tracking error) and Fig. 4 (input components).

References
[1] T. Berger, A. Ilchmann, and T. Reis, Zero dynamics and funnel control of linear differential-algebraic systems, Math. Control Signals

Syst. 24(3), 219–263 (2012).
[2] T. Berger, A. Ilchmann, and T. Reis, Normal forms, high-gain, and funnel control for linear differential-algebraic systems, in: Control

and Optimization with Differential-Algebraic Constraints, edited by L. T. Biegler, S. L. Campbell, and V. Mehrmann, Advances in
Design and Control Vol. 23 (SIAM, Philadelphia, 2012), pp. 127–164.

[3] T. Berger and T. Reis, Zero dynamics and funnel control for linear electrical circuits, J. Franklin Inst. 351(11), 5099–5132 (2014).
[4] T. Berger, Zero dynamics and funnel control of general linear differential-algebraic systems, ESAIM Control Optim. Calc. Var. 22(2),

371–403 (2016).
[5] T. Berger, The zero dynamics form for nonlinear differential-algebraic systems, IEEE Trans. Autom. Control 62(8), 4131–4137

(2017).
[6] T. Berger and T. Reis, The funnel pre-compensator, Submitted for publication, 2017.
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