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Abstract

We introduce a solution theory for time-varying linear differential-algebraic equations (DAEs)
E(t)ẋ = A(t)x which can be transformed into standard canonical form (SCF), i.e. the DAE is
decoupled into an ODE ż1 = J(t)z1 and a pure DAE N(t)ż2 = z2, where N is pointwise strictly
lower triangular. This class is a time-varying generalization of time-invariant DAEs where the cor-
responding matrix pencil is regular. It will be shown in which sense the SCF is a canonical form,
that it allows for a transition matrix similar to the one for ODEs, and how this can be exploited to
derive a variation of constants formula. Furthermore, we show in which sense the class of systems
transferable into SCF is equivalent to DAEs which are analytically solvable, and relate SCF to
the derivative array approach, differentiation index and strangeness index. Finally, an algorithm is
presented which determines the transformation matrices which put a DAE into SCF.

Keywords: Time-varying linear differential algebraic equations, standard canonical form, ana-
lytically solvable, generalized transition matrix

1 Introduction

We study time-varying linear differential-algebraic equations (DAEs) of the form

E(t)ẋ = A(t)x , (1.1)

where (E,A) ∈ C(I;Rn×n)2 for n ∈ N and – throughout the paper – I ⊆ R denotes an open interval.
For brevity, the tuple (E,A) is identified with the DAE (1.1). A function x : J → Rn is called solution
of (E,A) if, and only if, x is a continuously differentiable function on the open interval J ⊆ I and
solves (1.1) for all t ∈ J ; it is called global solution if, and only if, J = I.

If (S, T ) ∈ C(I; Gln(R)) × C1(I; Gln(R)), then it is well-known that x : J → Rn solves (1.1) if, and
only if, z(·) := T (·)−1x(·) solves

S(t)E(t)T (t)ż =
[
S(t)A(t)T (t)− S(t)E(t)Ṫ (t)

]
z .

Therefore, we recall the following equivalence relation.
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Definition 1.1 (Equivalence of DAEs [KM06, Def. 3.3]). The DAEs (E1, A1), (E2, A2) ∈ C(I;Rn×n)2

are called equivalent if, and only if, there exists (S, T ) ∈ C(I; Gln(R))× C1(I; Gln(R)) such that

E2 = SE1T , A2 = SA1T − SE1Ṫ ; we write (E1, A1)
S,T∼ (E2, A2) . (1.2)

�

That equivalence of DAEs is in fact an equivalence relation (see e.g. [KM06, Lem. 3.4]) follows eas-
ily by exploiting d

dt(T
−1) = −T−1Ṫ T−1; the latter follows from differentiation of the identity I = T−1T .

We now make precise the system class studied in the present paper: Time-varying DAEs transferable
into standard canonical form.

Definition 1.2 (Standard canonical form (SCF) [Cam83, CP83]). The DAE (E,A) ∈ C(I;Rn×n)2 is
called transferable into standard canonical form (SCF) if, and only if, there exist (S, T ) ∈ C(I; Gln(R))×
C1(I; Gln(R)) and n1, n2 ∈ N0 such that

(E, A)
S,T∼

([
In1 0
0 N

]
,

[
J 0
0 In2

])
, (1.3)

where N : I → Rn2×n2 is pointwise strictly lower triangular and J : I → Rn1×n1 ; a matrix N is called
pointwise strictly lower triangular if, and only if, all entries of N(t) on the diagonal and above are zero
for all t ∈ I. �

Systems transferable into SCF have been introduced by Campbell [Cam83] almost 30 years ago. In
the meantime, many other approaches to time-varying linear DAEs have been suggested: Campbell
and Petzold [CP83] consider analytically solvable systems (see Definition 4.1) and prove (see Theo-
rem 4.4) that any analytically solvable DAE with analytic coefficients is transferable into SCF; we
show in Theorem 4.4 the converse under weaker conditions, i.e. every system transferable into SCF
with Cn-coefficients is analytically solvable. Later, Campbell [Cam87] shows equivalence of analytically
solvable systems to a form [Cam87, (2.6)] and derives calculable necessary and sufficient criteria for
analytic solvability. However, the form [Cam87, (2.6)] has not been proved to be a normal form, it is in
general complex valued even if the given DAE (E,A) is real valued, and the two equations in [Cam87,
(2.6)] are not completely decoupled.
Other approaches are the differentiation index, which is based on deriving an “underlying” ODE of
the DAE such that any solution of the DAE also solves this ODE, and the derivative array approach
by Kunkel and Mehrmann [KM06, KM07], which is also based on deriving a reduced system such that
the solutions are in one-to-one correspondence and the differential and algebraic part contained in the
given DAE are separated. Both approaches are explained in Section 4 in more detail. However, the
respective reduced systems are not equivalent to the original DAE.
Rabier and Rheinboldt [RR96] consider DAEs with analytic coefficients and introduce a reduction
procedure for a subclass called regular [RR96, Def. 3.1]. This reduction procedure is, as differentiation
index and derivative array, based on deriving an ODE such that the solutions of the DAE can be
obtained from the solutions of this ODE. They call (E,A) completely regular if the reduction proce-
dure can be performed, and show that any analytically solvable (E,A) is completely regular. However,
there are completely regular systems which are not analytically solvable; systems with isolated singular
points can also be treated by this approach. Similar results – except for the existence and uniqueness
properties of solutions – are derived for sufficiently smooth coefficients provided a constant rank con-
dition [RR96, (7.1)] holds. However, the reduced system is also not equivalent to the original DAE.
März considers DAEs with properly stated leading term and defines certain sequences of matrix func-
tions, see for example [Mär02, (2.2)]. If these sequences terminate after finitely many steps and satisfy
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certain properties (see [Mär02, Def. 2.4]), then the DAE is called regular and the number of the step
is called tractability index. The approach derives a so called inherent regular ODE [Mär02, (3.4)];
however, the derived system is not equivalent to the original DAE. Furthermore, there are systems
with properly stated leading term which are not transferable into SCF and vice versa.

Recently, the approaches of derivative array, differentiation index and analytic solvability have been
proved to be equivalent in some sense, see Theorem 4.8. Since the class of systems transferable into
SCF is, in general, a subclass of all analytically solvable systems, this class has, to the authors best
knowledge, not been investigated over many years. However, this subclass may be very interesting
since it allows for:

- The SCF of the DAE (E,A) is (in some sense) a normal form within the equivalence class of systems

transferable into SCF with respect to the relation
S,T∼ .

- All system entries within an equivalence class
S,T∼ remain real valued.

- The required smoothness conditions are fairly weak: continuous or Cn, and the latter may be replaced
by Cν if the (differentiation) index ν known.

- Several new results are stated as generalizations of known ODE results; they are proved directly
without any derivative array.

- The transformation matrices leading to the SCF can be determined by an algorithm if the DAE has
analytic coefficients.

- The results are the basis for the subsequent results [BI10] on stability theory: explicit solutions to
Lyapunov equations and existence and uniqueness results. This is possible since the SCF approach
investigates an equivalence class as opposed to the approaches of derivative array, differentiation
index, tractability index and Rabier and Rheinboldt where the derived system is not equivalent to
the original system but only the solutions are in one-to-one correspondence.

The paper is organized as follows: In Section 2 we show in which sense the SCF is a canonical form, and
that transferability into SCF is, for time-invariant DAEs, equivalent to regularity of the corresponding
matrix pencil. In Section 3, the concept of SCF is used to define a unique generalized transition matrix
which has similar semi-group properties as the transition matrix for ODEs. Moreover, the generalized
transition matrix is exploited to derive a variation of constants formula for inhomogeneous DAEs.
In Section 4, transferability into SCF is shown to be “almost” equivalent to other concepts such as
analytic solvability, the derivative array approach and the differentiation index. Finally, in Section 5
we present an algorithm to determine the transformation matrices for the SCF.

Nomenclature

N, N0 the set of natural numbers, N0 = N ∪ {0}
kerA, imA the kernel, image, of the matrix A ∈ Rm×n, resp.

M∗ := M
>

, the Hermitian conjugate of M ∈ Cm×n

Gln(R) general linear group of degree n, i.e. set of all invertible n× n matrices over R
Ck(I;S) the set of k-times continuously differentiable functions f : I → S from an open

set I ⊆ R to a vector space S
dom f the domain of the function f

f |M the restriction of the function f on a set M⊆ dom f
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2 Standard canonical form (SCF)

We show that the SCF in (1.3) is unique in the sense that the dimensions of the ODE and the pure
DAE are unique, and that the ODE and the pure DAE are unique up to some equivalence as in (1.2).

Theorem 2.1 (Uniqueness of SCF). Let n1, n2, ñ1, ñ2 ∈ N0, J1 ∈ C(I;Rn1×n1), J2 ∈ C(I;Rñ1×ñ1)
and pointwise strictly lower triangular N1 ∈ C(I;Rn2×n2), N2 ∈ C(I;Rñ2×ñ2). If, for some S ∈
C(I; Gln(R)), T ∈ C1(I; Gln(R)),([

In1 0
0 N1

]
,

[
J1 0
0 In2

])
S,T∼

([
Iñ1 0
0 N2

]
,

[
J2 0
0 Iñ2

])
,

then

(i) n1 = ñ1, n2 = ñ2,

(ii) S =

[
S11 0
0 S22

]
, T =

[
T11 0
0 T22

]
, T11 = S−1

11 ,

(iii) (In1 , J1)
T−1
11 ,T11∼ (In1 , J2), (N1, In2)

S22,T22∼ (N2, In2). �

The proof of Theorem 2.1 requires a lemma on the solution of a pure DAE, i.e. n1 = 0 in (1.3).

Lemma 2.2 (Solutions of pure DAEs). Let N ∈ C(I;Rn×n) be pointwise strictly lower triangular.
Then x(·) = 0 is the unique global solution of the pure DAE N(t)ẋ = x, and every (local) solution
z : J → Rn of the pure DAE satisfies z(t) = 0 for all t ∈ J .

Proof: Considering N(t)ẋ = x row-wise and invoking that N is pointwise strictly lower triangular
immediately yields the assertion. Note that higher smoothness of N is not required.

Proof of Theorem 2.1:
Step 1 : Assume, without loss of generality, that n1 ≥ ñ1. In view of d

dt(T
−1) = −T−1Ṫ T−1 (which

follows from differentiation of I = T−1T ), we have T−1 ∈ C1(I; Gln(R)) and therefore we may write

T−1 =

[
T11 T12

T21 T22

]
, where T11 ∈ C1(I;Rn1×n1), T22 ∈ C1(I;Rn2×n2), T12, T21 appropriate.

We show that
∀ t ∈ I : T21(t) = 0 ∧ detT11(t) 6= 0 ∧ detT22(t) 6= 0.

Let (t0, x1) ∈ I × Rn1 . Then x : I → Rn, t 7→
[

ΦJ1
(t,t0)x1

0

]
, where ΦJ1(·, ·) denotes the transition

matrix of ż = J1(t)z, solves
[
In1 0

0 N1(t)

]
ẋ =

[
J1(t) 0

0 In2

]
x. Then y(·) := T (·)−1x(·) solves

[
Iñ1

0

0 N2(t)

]
ẏ =[

J2(t) 0
0 Iñ2

]
y, and it follows from Lemma 2.2 that y(·) = [y1(·)>, 0]> for some y1 ∈ C1(I;Rñ1). Hence[

T11(t0)x1

T21(t0)x1

]
= T (t0)−1x(t0) = y(t0) =

[
y1(t0)

0

]
. (2.1)

Since n2 ≤ ñ2 it follows that T21(t0)x1 = 0 and, since x1 ∈ Rn1 is arbitrary, we conclude T21(t0) = 0.
Thus detT11(t0) · detT22(t0) = detT (t0)−1, and invertibility of T (t0) yields invertibility of T11(t0) and
T22(t0).
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Step 2 : We prove (i). Assume that n1 > ñ1. Let α be the last row of T11(t0), α> ∈ Rn1 . Then (2.1)
and n1 > ñ1 yield αx1 = 0, and, since x1 is arbitrary, it follows that α = 0, which contradicts
detT11(t0) 6= 0.
Step 3 : We prove (ii) and (iii). Write

S−1 =

[
S11 S12

S21 S22

]
, where S11 ∈ C(I;Rn1×n1), S22 ∈ C(I;Rn2×n2), S12, S21 appropriate.

Then [
In1 0
0 N1

]
= S−1

[
In1 0
0 N2

]
T−1 =

[
S11T11 + S12N2T21, S11T12 + S12N2T22

S21T11 + S22N2T21, S21T12 + S22N2T22

]
, (2.2)

and[
J1 0
0 In2

]
=

[
S11J2T11 + S12T21 − S11Ṫ11 − S12N2Ṫ21, S11J2T12 + S12T22 − S11Ṫ12 − S12N2Ṫ22

S21J2T11 + S22T21 − S21Ṫ11 − S22N2Ṫ21, S21J2T12 + S22T22 − S21Ṫ12 − S22N2Ṫ22

]
. (2.3)

Step 1 and the equations in the first n1 columns in (2.2) yield

∀ t ∈ I : S11(t)−1 = T11(t) ∧ S21(t) = 0 ∧ detS22(t) 6= 0,

and therefore, by (2.2),
N1 = S22N2T22 (2.4)

and, by the lower right block in (2.3),

In2 = S22T22 − S22N2Ṫ22. (2.5)

Now suppose we have shown that T12 = S12 = 0. Then (ii) holds true and (2.4) together with (2.5)
shows the second claim in (iii). The upper left block in (2.3) yields J1 = S11J2T11 − S11Ṫ11, and
invoking S11 = T−1

11 , we find J1 = T−1
11 J2T11 − T−1

11 Ṫ11 which shows the first claim in (iii).
Step 4 : It remains to prove T12 = S12 = 0. It follows from (2.5) that S−1

22 = T22 − N2Ṫ22. Observe
that the upper right block in (2.3) yields 0 = S11(J2T12 − Ṫ12) + S12(T22 −N2Ṫ22) and thus

S12 = −S11(J2T12 − Ṫ12)S22. (2.6)

Next, the upper right block in (2.2) gives

T12 = −S−1
11 S12N2T22

(2.6)
= (J2T12 − Ṫ12)S22N2T22

(2.4)
= (J2T12 − Ṫ12)N1. (2.7)

Therefore

T12en2

(2.7)
= (J2T12 − Ṫ12)N1en2 = (J2T12 − Ṫ12)

[ 0
...
0

]
= 0 (2.8)

and so

T12en2−1
(2.7)
= (J2T12 − Ṫ12)N1en2−1 = (J2T12 − Ṫ12)[0, . . . , 0, ∗]> (2.8)

= 0.

Proceeding in this way gives T12 = 0 and, invoking (2.6), we find S12 = 0. This completes the proof of
the theorem.

In the following proposition we show that transferability into SCF is in fact, for time-invariant DAEs
(E,A) ∈ Rn×n × Rn×n, a generalization of regularity of the matrix pencil sE − A ∈ Rn×n[s], i.e.
0 6= det(sE −A) ∈ R[s].
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Proposition 2.3 (Time-invariant DAEs: SCF , regularity). For (E,A) ∈ (Rn×n)
2

we have

(E,A) is transferable into SCF ⇐⇒ (E,A) is regular.

Proof: “⇐”: This follows from the Weierstraß canonical form (see e.g. [Gan59, Thm. XII.3]).
“⇒”: If (E,A) is transferable into SCF by time-varying (S, T ) ∈ C(I; Gln(R)) × C1(I; Gln(R)) as
in (1.3) and sE − A is not regular, then the latter implies (see e.g. [KM06, Thm. 2.14]) that there
exists a nontrivial solution x(·) to the initial value problem (1.1), x(0) = 0. Now it follows from the
theory of ordinary differential equations and Lemma 2.2 that T (·)−1x(·) = 0; this contradicts the fact
that x(·) is non-trivial.

3 Transition matrix and variation of constants

In this section we exploit uniqueness of the SCF to introduce a generalized transition matrix for (E,A)
as a generalization of time-varying ordinary differential equations. This is used to characterize the set
of consistent initial values of (E,A) and to derive a variation of constants formula for inhomogeneous
DAEs.

Definition 3.1 (Consistent initial values [KM06, Def. 1.1]). The set of all pairs of consistent initial
values of (E,A) ∈ C(I;Rn×n)2 is denoted by

VE,A :=
{

(t0, x0) ∈ R× Rn
∣∣ ∃ (local) sln. x(·) of (1.1) : t0 ∈ domx(·), x(t0) = x0

}
and the linear subspace of initial values which are consistent at time t0 ∈ I is denoted by

VE,A(t0) :=
{
x0 ∈ Rn

∣∣ (t0, x0) ∈ VE,A
}
. �

Note that if x : J → Rn is a solution of (1.1), then x(t) ∈ VE,A(t) for all t ∈ J .

Now we are in a position to characterize, for DAEs transferable into SCF, the set of consistent initial
values and to derive a formula for the solution.

Proposition 3.2 (Solutions of homogeneous DAEs). Suppose that the DAE (E,A) ∈ C(I;Rn×n)2 is
transferable into SCF as in (1.3). Then

(i)

(t0, x0) ∈ VE,A ⇐⇒ x0 ∈ imT (t0)

[
In1

0

]
. (3.1)

(ii) Any solution of the initial value problem (1.1), x(t0) = x0, where (t0, x0) ∈ VE,A, extends uniquely
to a global solution x(·), and this solution satisfies

x(t) = U(t, t0)x0, U(t, t0) := T (t)

[
ΦJ(t, t0) 0

0 0

]
T (t0)−1, t ∈ I, (3.2)

where ΦJ(·, ·) denotes the transition matrix of ż = J(t)z.

Proof: Let throughout x(·) be given as in (3.2).
Step 1 : Simple calculations using (1.3) show that x(·) solves (1.1) for all t ∈ I.
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Step 2 : We show that x(t0) = x0 if, and only, x0 ∈ imT (t0)[In1 , 0]>. For [α>, β>]> := T (t0)−1x0,
where α ∈ Rn1 , β ∈ Rn2 , we have

x(t0) = T (t0)

[
In1 0
0 0

]
T (t0)−1x0 = T (t0)

[
In1 0
0 0

] [
α
β

]
= x0 − T (t0)

[
0
β

]
,

and hence x(t0) = x0 if, and only if, β = 0 or, equivalently, x0 ∈ imT (t0)[In1 , 0]>.
Step 3 : We show that every solution z : J → Rn of (1.1) such that z(t0) = x0, (t0, x0) ∈ V, fulfills
z = x |J . Clearly, (z − x) : J → Rn solves E(t) d

dt(z − x)(t) = A(t)(z − x)(t) for all t ∈ J . Then
[y>1 , y

>
2 ]> = y := T−1(z − x) solves ẏ1 = J(t)y1, N(t)ẏ2 = y2, and by Lemma 2.2 it follows that

y2(t) = 0 for all t ∈ J . An application of y(t0) = T (t0)−1(x0 − x(t0)) gives

0 =

[
0 0
0 In2

]
y(t0) =

[
0 0
0 In2

]
T (t0)−1

(
x0 − T (t0)

[
In1 0
0 0

]
T (t0)−1x0

)
=

[
0 0
0 In2

]
T (t0)−1x0 = T (t0)−1(x0 − x(t0)) = y(t0).

Hence y1(t) = 0 for all t ∈ J and therefore z = x |J . This completes the proof.

Next it is shown that the operator U(·, ·) defined in (3.2) is unique.

Proposition 3.3 (Uniqueness of U). Suppose (E,A) ∈ C(I;Rn×n)2 is transferable into SCF. Then
U(·, ·) defined in (3.2) is independent of the choice of (S, T ) in (1.3).

Proof: The assertion follows directly from Theorem 2.1 and [HP05, (3.3.26)].

Now Proposition 3.3 ensures that the following is well defined.

Definition 3.4 (Generalized transition matrix). Suppose (E,A) ∈ C(I;Rn×n)2 is transferable into SCF
as in (1.3) for some (S, T ) ∈ C(I; Gln(R)) × C1(I; Gln(R)). Then the generalized transition matrix
U(· , ·) of system (1.1) is defined by

U(t, s) := T (t)

[
ΦJ(t, s) 0

0 0

]
T (s)−1 , t, s ∈ I .

�

Semi-group properties of the generalized transition matrix hold similarly to those of the transition
matrix for ODEs:

Proposition 3.5 (Properties of U(· , ·)). Let (E,A) ∈ C(I;Rn×n)2 be transferable into SCF with
generalized transition matrix U(· , ·). Then we have, for all t, r, s ∈ I,

(i) E(t) d
dtU(t, s) = A(t)U(t, s), (ii) imU(t, s) = VE,A(t), (iii) U(t, r)U(r, s) = U(t, s),

(iv) U(t, t)2 = U(t, t), (v) ∀x ∈ VE,A(t) : U(t, t)x = x.

Proof: Property (i) is proved similar to Step 1 of the proof of Proposition 3.2. The proofs of Prop-
erties (ii) and (iii) follow easily from the definition of U(· , ·). Property (iv) follows from (iii) and to
see (v), let x ∈ V(t). Then (ii) gives x ∈ imU(t, t) and hence there exists y ∈ Rn such that U(t, t)y = x.

Therefore, U(t, t)x = U(t, t)2y
(iv)
= U(t, t)y = x. This completes the proof of the proposition.

The concept of generalized transition matrix sets us in a position to derive, similar to ODEs, a vector
space isomorphism between VE,A(t0) (this is Rn for ODEs) and the set of all global solutions of (1.1).
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Theorem 3.6 (Vector space isomorphism). If (E,A) ∈ C(I;Rn×n)2 is transferable into SCF and
t0 ∈ I, then the linear map

ϕ : VE,A(t0)→
{
x : I → Rn×n

∣∣ x(·) is a global solution of (1.1)
}
, x0 7→ U(·, t0)x0

is a vector space isomorphism.

Proof: Set
BE,A :=

{
x : I → Rn×n

∣∣ x(·) is a global solution of (1.1)
}
.

Since U(· , ·) is well-defined and Proposition 3.2 gives ∀x0 ∈ VE,A(t0) :
(
I 3 t 7→ U(t, t0)x0

)
∈ BE,A,

ϕ(·) is well-defined.
We show that ϕ(·) is surjective: Let x(·) ∈ BE,A. Then x(t0) ∈ VE,A(t0) and from Proposition 3.2 (ii)
it follows that ∀ t ∈ I : x(t) = U(t, t0)x(t0), and therefore ϕ(x(t0))(·) = x(·).
We show that ϕ(·) is injective: Let x1, x2 ∈ VE,A(t0) such that ϕ(x1)(·) = ϕ(x2)(·). Then

x1 Prop. 3.5 (v)
= U(t0, t0)x1 = ϕ(x1)(t0) = ϕ(x2)(t0) = U(t0, t0)x2 Prop. 3.5 (v)

= x2.

As an immediate consequence of Theorem 3.6 we record:

Corollary 3.7 (Constant dimension of VE,A(·)).
dimVE,A(·) is constant if (E,A) ∈ C(I;Rn×n)2 is transferable into SCF. �

Corollary 3.7 does, in general, not hold true for DAEs which are not transferable into SCF; this follows
from the following example.

Example 3.8. Consider the initial value problem

tẋ = (1− t)x, x(t0) = x0, t ∈ R , (3.3)

for (t0, x0) ∈ R2. In passing, note that t 7→ (E(t), A(t)) = (t, t− 1) is real analytic. For t0 6= 0, x0 ∈ R,
the unique global solution x(·) of (3.3) is

x : R→ R, t 7→ e−(t−t0) (t/t0)x0.

For t0 = x0 = 0 the problem (3.3) has infinitely many global solutions and every (local) solution
x : J → R can be uniquely extended to a global solution

xc : R→ R, t 7→ cte−t, where c = (eτ/τ)x(τ) for some τ ∈ J \ {0}.

The solutions xc(·) are the only global solutions of the initial value problem (3.3), t0 = x0 = 0.
Furthermore, any initial value problem (3.3), t0 = 0, x0 6= 0 does not have a solution. Therefore, we
have

VE,A(t) =

{
R , t 6= 0
{0} , t = 0 . �

We conclude this section with a variation of constants formula for inhomogeneous time-varying linear
differential-algebraic initial value problems

E(t)ẋ = A(t)x+ f(t) , x(t0) = x0 , (3.4)

where (t0, x0) ∈ R × Rn and f ∈ C(I;Rn). In general, it cannot be expected that a variation of
constants formula exists if a (generalized) transition matrix for the homogeneous system is present; we
come back to this point in Example 4.3.
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Theorem 3.9 (Solutions of inhomogeneous DAEs). Suppose that the DAE (E,A) ∈ Cn(I;Rn×n)2

is transferable into SCF by some (S, T ) ∈ Cn(I; Gln(R))2. Then the following statements hold for
f ∈ Cn2(I;Rn):

(i) The initial value problem (3.4) has a solution if, and only if,

x0 + T (t0)

[
0
In2

](n2−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

∈ imT (t0)

[
In1

0

]
. (3.5)

(ii) Any solution of (3.4) such that (3.5) holds can be uniquely extended to a global solution x(·), and
this solution satisfies, for the generalized transition matrix U(· , · ) of (E,A) and all t ∈ I,

x(t) = U(t, t0)x0 +

∫ t

t0
U(t, s)T (s)S(s)f(s) ds− T (t)

[
0
In2

] n2−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t) (3.6)

Proof: First note that since E,A, S, T are n-times continuously differentiable, we have
N ∈ Cn(I;Rn2×n2).
Step 1 : We have that, for any g ∈ Cn2(J ;Rn2), J ⊆ I,

∀ t ∈ J :
(
N(t) d

dt

)n2
g(t) = 0. (3.7)

This is due to
(
N(·) d

dt

)n2
= 0, which holds since N is pointwise strictly lower triangular.

Step 2 : x(·) as in (3.6) solves (3.4) for all t ∈ I. The appendant calculations are involved, but elemen-
tary. We leave the details to the reader and just note that (1.3), (3.6), (3.7) and Proposition 3.5 (i)
must be used.
Step 3 : We show that x(t0) = x0 for x(·) as in (3.6) if, and only, (3.5) holds. Set

η := T (t0)

[
0
In2

](n2−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

,

[
α
β

]
:= T (t0)−1

(
x0 + η

)
(3.8)

for α ∈ Rn1 , β ∈ Rn2 . Then

x(t0) = T (t0)

[
In1 0
0 0

]
T (t0)−1x0 − η = T (t0)

[
α
0

]
− η = x0 − T (t0)

[
0
β

]
,

and hence x(t0) = x0 if, and only if, β = 0 or, equivalently, (3.5) holds.
Step 4 : Let (t0, x0) ∈ I × Rn such that (3.4) has a solution. We show that every solution z :
J → Rn of (3.4), z(t0) = x0 fulfills z = x |J for x(·) as in (3.6). Clearly, (z − x) : J → Rn solves

E(t) d
dt(z−x)(t) = A(t)(z−x)(t) for all t ∈ J . Then Proposition 3.2 gives (z−x)(t0) ∈ imT (t0)[In1 , 0]>,

and since, by Step 2, x0 − x(t0) = T (t0)[0, β>]> ∈ imT (t0)[0, In2 ]>, we conclude

z(t0)− x(t0) ∈ imT (t0)

[
In1

0

]
∩ imT (t0)

[
0
In2

]
= {0}.

Therefore, a repeated application of Proposition 3.2 yields z = x |J . This concludes the proof.

A consequence of Theorem 3.9 is the following corollary which treats a characterization of consistent
initial values and a variation of constants analogue for pure DAEs.
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Corollary 3.10 (Solutions of inhomogeneous pure DAEs). Let N ∈ Cn(I;Rn×n) be pointwise strictly
lower triangular, f ∈ Cn(I;Rn) and (t0, x0) ∈ I × Rn. Then the initial value problem

N(t)ẋ = x+ f(t), x(t0) = x0, (3.9)

has a solution if, and only if,

−
n−1∑
k=0

(
N(·) d

dt

)k
f(·)

∣∣∣∣∣
t=t0

= x0. (3.10)

Any solution of (3.9) can be uniquely extended to a global solution x(·), and this solution satisfies

x(t) = −
n−1∑
k=0

(
N(t) d

dt

)k
f(t), t ∈ I. (3.11)

Proof: Put n1 = 0, n2 = n, and T = S = I in (3.5) and (3.6).

Remark 3.11 (Consistent initial values for inhomogeneous DAEs).

(i) Note that a consequence of Corollary 3.10 is that the only initial value consistent at time t0 ∈ I
of a pure homogeneous initial value problem (3.9), i.e. f = 0, is x0 = 0.

(ii) For η as in (3.8), condition (3.5) reads x0 + η ∈ VE,A(t0). Hence the set of initial values which
are consistent at time t0 of (3.4) is the affine subspace

−η + VE,A(t0) = −T (t0)

[
0
In2

](n2−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

+ VE,A(t0).

�

We conclude this section with a remark on the index of the system.

Remark 3.12 (Index). If (E,A) ∈ C(I;Rn×n)2 is transferable into SCF and has well-defined differ-
entiation index ν ∈ N0 (see Definition 4.6 and [KM06, Def. 3.37]), then

(
N(·) d

dt)
)ν

= 0 and hence the
smoothness n in Theorem 3.9 can be weakened to ν, to be precise: (E,A) ∈ Cν−1(I;Rn×n)2, (S, T ) ∈
Cν(I; Gln(R))2 and f ∈ Cν−1(I;Rn). Likewise, in Corollary 3.10 we may assume N ∈ Cν−1(I;Rn×n)
and f ∈ Cν−1(I;Rn). �

4 Analytic solvability, derivative array approach and differentiation
index

In this section we study the relationship of DAEs transferable into SCF to that of other subclasses of
time-varying DAEs. Such concepts as analytic solvability, the derivative array approach, differentiation
index and strangeness index will be investigated.

Definition 4.1 (Analytic solvability [CP83]). Let (E,A) ∈ C(I;Rn×n)2. Then the DAE (3.4) is called
analytically solvable if, and only if, we have, for all f ∈ Cn(I;Rn):

(i) ∃ solution to (3.4),

(ii) ∀ solutions y : J → Rn of (3.4) : ∃ global solution x(·) of (3.4) with x |J = y,

(iii) ∀ global solutions x1(·), x2(·) of (3.4) :
[
∃ t0 ∈ I : x1(t0) 6= x2(t0)

]
⇒ [∀ t ∈ I : x1(t) 6= x2(t)].
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Remark 4.2.

(a) Roughly speaking, system (3.4) is analytically solvable if, and only if, for any inhomogeneity
f ∈ Cn(I;Rn) there exist solutions to (3.4) and solutions, if they exist, can be extended to all of
I and are uniquely determined by their value at any t0 ∈ I.

(b) Conditions (i) and (ii) in Definition 4.1 do not imply (iii). This follows from Example 3.8 which
shows that an initial value problem (3.4) may have infinitely many global solutions and every local
solution can be uniquely extended to one of the global solutions (i.e. there do not exist further
solutions with finite escape time or other singular behavior). �

Example 4.3 (Analytic solvability
i.g.

6⇒ transferable into SCF). We work out the example

E(t)ẋ = −x+ f(t), t ∈ I = (−∞, 1) , (4.1)

where

E(t) := t3
[

sin(t−1)
cos(t−1)

]
[cos(t−1),− sin(t−1)], E(0) = 0,

provided by [CP83, Ex. 2] to show the following: (i) system (E,A) has C1-coefficients on I, (ii) it is
analytically solvable, (iii) it is not transferable into SCF, and (iv) a variation of constant formula does
not exist.
(i): This follows since E ∈ C1(I;R2×2). (ii): It is easily verified that

E2 ≡ 0, Ė(0) = 0 and E(t)Ė(t) = −tE(t) for all t ∈ I \ {0}.

This yields that, for any f ∈ C2(I;R2),

x : I → R2, t 7→ f(t) + (t− 1)−1E(t)ḟ(t)

is continuously differentiable and the unique global solution of (4.1). Furthermore, any local solution
of (4.1) can be uniquely extended to x(·), and therefore the system (4.1) is analytically solvable.
(iii): Assume that (4.1) is transferable into SCF by (S, T ) ∈ C(I;R2×2)×C1(I;R2×2). Since E(0) = 0,
equation (1.3) together with Theorem 2.1 yields that n1 = 0 and therefore, for all t ∈ I, S(t)E(t)T (t) =
N(t) = [ 0 0

∗ 0 ] and

∀ t ∈ I \ {0} : t3 sin(t−1)[cos(t−1),− sin(t−1)]
(
T12(t)
T22(t)

)
= (1, 0)S(t)−1 [ 0 0

∗ 0 ] ( 0
1 ) = 0 . (4.2)

This gives t3k (−1)T22(tk)
(4.2)
= 0 for tk := (2kπ + π/2)−1, k ∈ N, and so, by continuity of T (·), we may

conclude T22(0) = limk→∞ T22(tk) = 0. Applying (4.2) again, we have s3
k sin(π/4) cos(π/4)T12(sk)

(4.2)
=

0, where sk := (2kπ + π/4)−1, k ∈ N, and again by continuity of T (·), we may conclude that T12(0) =
limk→∞ T12(sk) = 0; this contradicts invertibility of T (0).
(iv): Let I = R in (4.1). Then the homogeneous system (f = 0) has the (generalized) transition
matrix U(t, s) = 0. However, a variation of constants formula does not exist, since e.g. for f(t) = t
the inhomogeneous equation has no global solution (there is a pole at t = 1). �
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We now show that transferability into SCF and analytic solvability are equivalent for real ana-
lytic (E,A).

Theorem 4.4 ((E,A) real analytic: SCF , analytic solvability). Suppose E,A : I → Rn×n are real
analytic. Then

(3.4) is analytically solvable ⇐⇒ (1.1) is transferable into SCF.

For “⇐”, it suffices to assume E,A ∈ Cn(I;Rn) and S, T ∈ Cn(I;Rn) so that (1.3) holds.
For “⇒”, real analyticity of E and A can, in general, not be dispensed.

Proof: “⇐” follows immediately from Theorem 3.9. Note that it is sufficient that E,A, S, T are
n-times continuously differentiable.
“⇒”: In [CP83, Thm. 2] it is shown that

(E,A)
S,T∼

([
In1 0
0 N

]
,

[
J 0
0 In2

])
for some real analytic S, T : I → Gln(R),

where N : I → Rn2×n2 is real analytic and pointwise strictly upper triangular and J : I → Rn1×n1 is
real analytic. Therefore,

(E,A)
S̃−1S,T T̃−1

∼
([
In1 0

0 Ñ

]
,

[
J 0
0 In2

])
for S̃ = T̃ =

In1 0

0

[
1

1

]
where Ñ : I → Rn2×n2 is real analytic and pointwise strictly lower triangular, and the claim is proved.
Example 4.3 shows that “⇒” does not hold in general, if (E,A) are not real analytic.

In the remainder of this section we compare the concept of SCF with that of the differentiation index
and the derivative array. We now allow for complex-valued E,A ∈ C∞(I;Cn×n) since this is treated
in the literature. To avoid technicalities, we assume that the functions involved are infinitely many
times differentiable.

We first state a technical definition on matrices.

Definition 4.5 (1-fullness [KM06, Def. 3.35]). Let k, `, n ∈ N and M ∈ C(I;Ckn×`n). Then M is
called smoothly 1-full w.r.t. n if, and only if,

∃ R ∈ C(I; Glkn(C)) : RM =

[
In 0
0 ∗

]
.

�

Definition 4.6 (Derivative array [KM06, (3.28)-(3.30)] and differentiation index [KM06, Def. 3.37]).
For E,A ∈ C∞(I;Cn×n), the derivative array is defined as the sequence of matrix functions M` ∈
C∞(I;C(`+1)n×(`+1)n), N` ∈ C∞(I;C(`+1)n×(`+1)n) given by

(M`)i,j =
(
i
j

)
E(i−j) −

(
i

j+1

)
A(i−j−1), i, j = 0, . . . , `,

(N`)i,j =

{
A(i) for i = 0, . . . , `, j = 0,

0 otherwise,

(4.3)

and the differentiation index of (E,A) is the smallest number ν ∈ N0 (if it exists) for which Mν is
smoothly 1-full w.r.t. n and has constant rank. �
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The notion of 1-fullness and derivative array go back to [Cam85] and [Cam87], resp.

If the differentiation index ν is well-defined for (E,A), then one may construct an underlying ODE of the
given DAE (3.4) as follows, cf. [KM06, p. 97-98]: By 1-fullness of Mν there exists R ∈ C(I; Gl(ν+1)n(C))
such that

RMν =

[
In 0
0 ∗

]
.

Define zj := x(j), gj := f (j) for j = 0, . . . , ν. Then

Mν(t)ż = Nν(t)z + g(t), t ∈ I,

and we obtain the ODE

ẋ = [In, 0]R(t)Mν(t) ż = [In, 0]R(t)Nν(t) [In, 0]>x+ [In, 0]R(t) g(t),

which is the so called underlying ordinary differential equation. Here x is the same variable as in (3.4)
and hence any solution of (3.4) is also a solution of this ODE. Therefore, solving the DAE can be
reduced to solving an ODE.

Next we introduce a hypothesis of a certain finite reduction procedure. This hypothesis guarantees that
the reduction procedure of the derivative array approach presented in [KM06, Sec. 3.2] can be carried
out and no consistency condition for the inhomogeneity or free solution components are present.

Hypothesis 4.7 ([KM06, Hypothesis 3.48]). There exist µ, a, d ∈ N0 such that (Mµ, Nµ) defined in
Definition 4.6 has the following properties:

(i) ∀ t ∈ I : rkMµ(t) = (µ + 1)n − a; choose Z2 ∈ C∞(I;C(µ+1)n×a) with pointwise maximal rank
and Z∗2Mµ = 0.

(ii) ∀ t ∈ I : rkA2(t) = a, where A2 := Z∗2Nµ[In, 0, . . . , 0]∗; choose T2 ∈ C∞(I;Cn×d), d = n − a,
with pointwise maximal rank and A2T2 = 0.

(iii) ∀ t ∈ I : rkE(t)T2(t) = d; choose Z1 ∈ C∞(I;Cn×d) with pointwise maximal rank and rkE1T2 =
d, E1 = Z∗1E. �

If Hypothesis 4.7 holds true, then [KM06, p. 109] have shown that a solution x of the DAE (3.4) is
also a solution of[

E1

0

]
ẋ =

[
A1

A2

]
x+ f̂(t), where E1 = Z∗1E, A1 = Z∗1A, A2 = Z∗2Nµ[In, 0, . . . , 0]∗ (4.4)

and f̂ is determined by f and its derivatives. The derived system (4.4) is a so called strangeness free
DAE (cf. [KM06, Def. 3.15 and p. 93].

The following theorem shows in particular that if (E,A) is real analytic, then transferability into SCF
is equivalent to Hypothesis 4.7 and to a well-defined differentiation index.

Theorem 4.8. Let E,A ∈ C∞(I;Cn×n) and consider system (3.4). Then the following conditions are
equivalent:

(i) (3.4) is analytically solvable.
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(ii) The differentiation index ν is well-defined for (E,A).

(iii) (E,A) satisfies Hypothesis 4.7.

Proof: The assumptions in [KM06, Thm. 3.39] are equivalent to analytic solvability of (3.4) (Note that
[KM06, Thm. 3.39] requires in addition that the solutions depend smoothly on the inhomogeneities
and the initial conditions, but this is not needed in the proof, see [Cam87, Thm. 2.1]). Then it follows
from [KM06, Thm. 3.45] that (i)⇒(ii) holds true. The conclusion (ii)⇒(iii) is identical to [KM06,
Thm. 3.50] and finally (iii)⇒(i) follows from [KM06, p. 111-112]. This completes the proof.

We finalize this section with a remark on the strangeness index as developed in [KM06, Sec. 3.1].

Remark 4.9. The existence of a well-defined strangeness index (see [KM06, Def. 3.15]) guarantees
the equivalence of (E,A) to an DAE in a certain canonical form presented in [KM06, Thm. 3.21]. It
turns out that there exist systems with a well-defined strangeness index which are not transferable
into SCF (see [KM06, Ex. 3.23]); there also exist systems which are transferable into SCF and have
no well-defined strangeness index (see [KM06, Ex. 3.54]). �

5 Computing SCF

In this section we present an algorithm in “quasi-MATLAB code” for computing the transformation
matrices as well as the SCF for real analytic DAEs (E,A); the algorithm also determines whether (E,A)
is transferable in SCF or not. This algorithm is indicated by some comments in [CP83]; here we make
it precise.

Algorithm 5.1 Function transfSCF

1: function [S, T,N, J ] = transfSCF(E,A)
2: reachedSCF := 0; % initial value for global variable
3: [S1, T1, N1, J1] := getSCF(E,A);
4: r := size(J);

5: S :=

Ir 0

0

[
1

1

]S1; T := T1

Ir 0

0

[
1

1

];

6: N :=

[
1

1

]
N1

[
1

1

]
; J := J1;

Proposition 5.4. Suppose E,A : I → Rn×n are real analytic. Then Algorithm 5.1 either terminates
after finitely many steps with “not transferable into SCF!” or returns real analytic transformation
matrices S, T : I → Gln(R), J : I → Rn1×n1 and N : I → Rn2×n2 such that N is pointwise strictly
lower triangular and

(E, A)
S,T∼

([
In1 0
0 N

]
,

[
J 0
0 In2

])
. (5.1)

Proof: We consider two cases.
Case 1 : Suppose (1.1) is transferable into SCF. Then, in view of Theorem 4.4, the DAE (3.4) is
analytically solvable. Therefore, the tests in lines 5 and 10 of Algorithm 5.3 will always fail for (E,A)
and every reduced pair (E1, A1) (cf. lines 2 and 4 of Algorithm 5.2), see the proof of [CP83, Thm. 2].
Note also that (E1, A1) is again analytically solvable. Hence the algorithm does not stop in line 6 or 11
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Algorithm 5.2 Function getSCF

1: function [S, T,N, J ] = getSCF(E,A)
2: [E1, E2, A1, A2, G, P,Q] := reduce(E,A);
3: if reachedSCF= 0 then
4: [S1, T1, N1, J1] := getSCF(E1, A1);
5: else if E ≡ 0 then
6: N1 := 0; J1 := ∅; S1 := T1 := I; % set M := ∅ if the matrix M is absent
7: else
8: N1 := ∅; J1 := E−1

1 A1; S1 := E−1
1 ; T1 := I;

9: end if
10: r1 := size(J1); r2 := size(N1); % the size of an empty matrix is 0

11:

[
Ẽ1

Ẽ2

]
:= S1E2 s.t. Ẽi has ri rows, i = 1, 2;

12:

[
Ã1

Ã2

]
:= S1A2 s.t. Ãi has ri rows, i = 1, 2;

13: S :=

Ir1 0 d
dtẼ1 + J1Ẽ1 − Ã1

0 Ir2 0
0 0 Isize(E)−r1−r2

Ir1 0 0

0 Ir2 −Ã2G
−1

0 0 G−1

[S1 0
0 Isize(E)−r1−r2

]
P ;

14: T := Q

[
T1 0
0 Isize(E)−r1−r2

]Ir1 0 −Ẽ1

0 Ir2 0
0 0 Isize(E)−r1−r2

;

15: J := J1; N :=

[
N1 Ẽ2

0 0

]
s.t. size(N) + size(J) = size(E);

Algorithm 5.3 Function reduce

1: function [E1, E2, A1, A2, G, P,Q] = reduce(E,A)
2: if E ≡ 0 or (∀ t ∈ I : detE(t) 6= 0) then
3: E1 := E; A1 := A; E2 := A2 := G := ∅; P := Q := I;
4: reachedSCF := 1;
5: else if not(∀ t ∈ I : detE(t) = 0) then
6: print “not transferable into SCF!” STOP
7: else
8: determine (minimal) r < n := size(E) s.t. rkE(t) ≤ r < n for all t ∈ I and P : I → Rn×n real

analytic and pointwise nonsingular s.t. PE =

[
Ê1 Ê2

0 0

]
, where Ê1(t) ∈ Rr×r;

9:

[
Â11 Â12

Â21 Â22

]
:= PA, where Â11(t) ∈ Rr×r;

10: if not(∀ t ∈ I : rk[Â21(t), Â22(t)] = n− r = max) then
11: print “not transferable into SCF!” STOP
12: else
13: choose real analytic, pointwise nonsingular Q : I → Rn×n s.t. [Â21, Â22]Q = [0(n−r)×r, G],

detG(t) 6= 0 ∀ t ∈ I;
14: [E1, E2] := [Ê1, Ê2]Q;
15: [A1, A2] := [Â11, Â12]Q− [Ê1, Ê2]Q̇;
16: end if
17: end if
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of Algorithm 5.3 with “not transferable into SCF!”, and therefore the reduction procedure continues
until the test in line 2 of Algorithm 5.3 succeeds at some point. Since the reduction procedure reduces
the dimension of (E,A) by at least 1 in each step, we must arrive at this point after at most n reduction
steps. Then the SCF for the pair at lowest level (absolutely reduced) is calculated in lines 6 and 8 of
Algorithm 5.2; and a simple calculation shows that the SCF of a DAE at a given level is calculated in
lines 10–15 of Algorithm 5.2 provided that the SCF for the reduced pair is given; see also the proof of
[CP83, Thm. 2]. Feasibility of lines 8 and 13 of Algorithm 5.3 is due to [SB70, Thm. 1] and also shown
in the proof of [CP83, Thm. 2]. Invertibility of G in line 13 of Algorithm 5.3 follows from

n− r = rk[Â21(t), Â22(t)] = rk[Â21(t), Â22(t)]Q = rkG.

So the algorithm stops and returns S, T and J,N of the SCF such that (5.1) holds. Since N constructed
by Algorithms 5.2 and 5.3 is strictly upper triangular, the transformation in lines 4–6 of Algorithm 5.1
finally assures that N is strictly lower triangular.
Case 2 : Suppose (1.1) is not transferable into SCF. Assume that the tests in lines 5 and 10 of
Algorithm 5.3 will always fail for (E,A) and every reduced pair (E1, A1). Then, in view of Case 1, the
algorithm stops and returns S, T and the matrices J,N of the SCF, N strictly lower triangular, such
that (5.1) holds. Hence (1.1) would be transferable into SCF, a contradiction. Therefore, one of the
tests must fail at some point and the algorithm stops with “not transferable into SCF!”.

Remark 5.5.

(i) Algorithm 5.3 shows constructively how to transform a system into SCF; it relates the effort of
algebraic transformations to that of an derivative array (cf. Section 4).

(ii) In practice, it is not easy to implement Algorithm 5.1 for the whole class of real analytic functions.
The main problem is to find P,Q such that the conditions in lines 8 and 13 of Algorithm 5.3 are
fulfilled. However, if (E,A) has polynomial entries, then there are efficient (actually, polynomial
time) algorithms which solve this problem; see [QV95, Sec. 5].

(iii) A numerically verifiable algorithm for testing analytic solvability is given in [Cam87]. Due to
Theorem 4.4, this algorithm also tests transferability into SCF for real analytic (E,A). However,
this algorithm does not compute the transformation matrices. �

Example 5.6. We illustrate Algorithm 5.1 by

E(t) =

 sin t cos t 0
0 0 0

− cos t sin t sin2 t 0

 , A(t) =

sin t− cos t cos t+ sin t 0
− cos t sin t 0
− sin2 t − sin t cos t t2 + 1

 , t ∈ R.

Note that E does not have constant rank. We show that (E,A) is transferable into SCF by applying
Algorithm 5.1:

→ transfSCF(E,A):

reachedSCF:= 0, [S1
1 , T

1
1 , N

1
1 , J

1
1 ] = getSCF(E,A)

→ getSCF(E,A) (first instance):

[E1
1 , E

1
2 , A

1
1, A

1
2, G

1, P 1, Q1] = reduce(E,A)

→ reduce(E,A):

conditions in lines 2 and 5 of Alg. 5.3 not fulfilled, go to lines 8 to 16

r := 2, P 1(t) :=
[

1 0 0
0 0 1
0 1 0

]
, Ê1(t) =

[
sin t cos t

− cos t sin t sin2 t

]
, Ê2(t) =

[
0
0

]
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[
Â11(t) Â12(t)

Â21(t) Â22(t)

]
= P 1(t)A(t) =

sin t− cos t cos t+ sin t 0
− sin2 t − sin t cos t t2 + 1
− cos t sin t 0


condition in line 10 of Alg. 5.3 not fulfilled, go to lines 13 to 15

Q1(t) :=

0 sin t − cos t
0 cos t sin t
1 0 0

, [Â21(t), Â22(t)]Q1(t) = [0, 0, 1] =: [0, 0, G1(t)]

[E1
1(t), E1

2(t)] =

[
0 1 0
0 0 sin t

]
[A1

1(t), A1
2(t)] =

[
0 1 0

t2 + 1 0 0

]
condition in line 3 of Alg. 5.2 fulfilled, go to line 4

[S2
1 , T

2
1 , N

2
1 , J

2
1 ] = getSCF(E1

1 , A
1
1)

getSCF(E1
1 , A

1
1) (second instance):

[E2
1 , E

2
2 , A

2
1, A

2
2, G

2, P 2, Q2] = reduce(E1
1 , A

1
1)

→ reduce(E1
1 , A

1
1):

conditions in lines 2 and 5 of Alg. 5.3 not fulfilled, go to lines 8 to 16

r := 1, P 2(t) := I2, [Ê1(t), Ê2(t)] = [0, 1][
Â11(t) Â12(t)

Â21(t) Â22(t)

]
= P 2A1

1(t) =

[
0 1

t2 + 1 0

]
condition in line 10 of Alg. 5.3 not fulfilled, go to lines 13 to 15

Q2(t) :=

[
0 1
1 0

]
, [Â21(t), Â22(t)]Q2(t) = [0, t2 + 1] =: [0, G2(t)]

[E2
1(t), E2

2(t)] = [1 0]

[A1
1(t), A1

2(t)] = [1 0]

condition in line 3 of Alg. 5.2 fulfilled, go to line 4

[S3
1 , T

3
1 , N

3
1 , J

3
1 ] = getSCF(E2

1 , A
2
1)

getSCF(E2
1 , A

2
1) (third instance):

[E3
1 , E

3
2 , A

3
1, A

3
2, G

3, P 3, Q3] = reduce(E2
1 , A

2
1)

→ reduce(E2
1 , A

2
1):

condition in line 2 of Alg. 5.3 fulfilled, go to lines 3 and 4

E3
1 = E2

1 , A3
1 = A2

1, E3
2 = A3

2 = G3 = ∅, P 3 = Q3 = I, reachedSCF= 1

conditions in line 3 and 5 of Alg. 5.2 not fulfilled, go to line 8

N4
1 = ∅, J4

1 = 1, S4
1 = 1, T 4

1 = 1

(third instance:) r1 = 1, r2 = 0 Ẽ1 = Ẽ2 = Ã− 1 = Ã2 = ∅
S3

1 = S4
1P

3 = 1, T 3
1 = Q3T 4

1 = 1, J3
1 = 1, N3

1 = ∅
(second instance:) r1 = 1, r2 = 0, Ẽ1 = 0, Ã1 = 0, Ẽ2 = Ã2 = ∅

S2
1(t) =

[
1 0
0 1

t2+1

]
, T 2

1 (t) =

[
0 1
1 0

]
, J2

1 = 1, N2
1 = 0

(first instance:) r1 = 1, r2 = 1, Ẽ1(t) = 0, Ẽ2(t) = sin t
t2+1

, Ã1(t) = Ã2(t) = 0
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S1
1(t) =

1 0 0
0 0 1

t2+1

0 1 0

, T 1
1 (t) =

sin t 0 − cos t
cos t 0 sin t

0 1 0

, J1
1 (t) = 1, N1

1 (t) =

[
0 sin t

t2+1

0 0

]
back in transfSCF: r = 1

S(t) =

1 0 0
0 1 0
0 0 1

t2+1

 , T (t) =

sin t − cos t 0
cot t sin t 0

0 0 1

 , N(t) =

[
0 0

sin t
t2+1

0

]
, J(t) = 1

�
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