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Funnel control for a moving water tank
Thomas Berger, Marc Puche and Felix L. Schwenninger

Abstract—We study tracking control for a moving water tank system
modelled by the (linearized) Saint-Venant equations. The output is given
by the position of the tank and the control input is the force acting on it.
For a given reference signal, the objective is to achieve that the tracking
error evolves within a prespecified performance funnel. Exploiting recent
results in funnel control it suffices to show that the operator associated
with the internal dynamics of the system is causal, locally Lipschitz
continuous and maps bounded functions to bounded functions.

Index Terms—Shallow water equations, Saint-Venant equations, slosh-
ing, well-posed systems, adaptive control, funnel control.

I. INTRODUCTION

When a liquid-filled containment is subject to movement, the
motion of the fluid may have a significant effect on the dynamics of
the overall system and is known as sloshing. The latter phenomenon
can be understood as internal dynamics of the system and it is of great
importance in a range of applications such as aeronautics and control
of containers and vehicles, and has been studied in engineering for
a long time, see e.g. [1]–[6].

The standard model for the one-dimensional movement of a fluid is
given by the Saint-Venant equations, which is a system of nonlinear
hyperbolic partial differential equations (PDEs). Models of a moving
water tank involving these equations without friction have been
studied in various articles. The first approach appears in [7] where a
flat output for the linearized model is constructed. Several additional
control problems related to this model are studied in [8] and it
is proved that the linearization is steady-state controllable. Even
more so, the seminal work [9] shows that the (nonlinear) model is
locally controllable around any steady state. Different stabilization
approaches by state and output feedback using Lyapunov functions
are studied in [10]. In [11] observers are designed to estimate the
horizontal currents by exploiting the symmetries in the Saint-Venant
equations. Convergence of the estimates to the actual states is studied
for the linearized model. In [1] a port-Hamiltonian formulation of
the system is provided as a mixed finite-infinite dimensional port-
Hamiltonian system. For a recent numerical treatment of a truck with
a fluid basin see [12].

In the present paper we consider output trajectory tracking for
moving water tank systems by funnel control. The concept of funnel
control was developed in [13], see also the survey [14]. The funnel
controller is an adaptive controller of high-gain type and proved
its potential for tracking problems in various applications, such as
temperature control of chemical reactor models [15], control of indus-
trial servo-systems [16] and underactuated multibody systems [17],
voltage and current control of electrical circuits [18], control of peak
inspiratory pressure [19] and adaptive cruise control [20]. We like
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to emphasize that the funnel controller is a model-free feedback
controller, i.e., it does not require specific system parameters for
feasibility. This makes it a suitable choice for the application to
the water tank system, for which we assume that it contains a non-
vanishing friction term as modeled in the Saint-Venant equations e.g.
in [21], but the exact shape of this term is unknown and not available
to the controller.

It is our aim to show that the funnel controller introduced in [22]
is feasible for these systems. While a very large class of functional
differential equations with higher relative degree is considered in [22]
and funnel control is shown to work for those systems (cf. also
Section II), it is not clear exactly which systems containing PDEs are
encompassed by this class. It is our main result that the linearized
model of the moving water tank, where the above mentioned effect
of sloshing appears, belongs to the aforementioned system class.

A. Nomenclature

Throughout this article, we use the following notation: N denotes
the natural numbers, N0 = N ∪ {0}, and R≥0 = [0,∞). We write
Cω = { λ ∈ C | Reλ > ω } for ω ∈ R and C+ = C0. With
Lp(I;Kn) we denote the Lebesgue space of all measurable and
pth power integrable functions f : I → Kn, I ⊆ R an interval,
where p ∈ [1,∞) and K is either R or C; L∞(I;Kn) denotes the
Lebesgue space of all measurable and essentially bounded functions
f : I → Kn. We write ‖ · ‖∞ for ‖ · ‖L∞(R≥0;Kn). By L∞

loc(I;Kn)
we denote the set of measurable and locally essentially bounded
functions f : I → Kn, by W k,p(I;Kn), k ∈ N0, the Sobolev
space of k-times weakly differentiable functions f : I → Kn

such that f, ḟ , . . . , f (k) ∈ Lp(I;Kn), and by Ck(I;Kn) the set
of k-times continuously differentiable functions f : I → Kn,
k ∈ N0 ∪ {∞} where C(I;Kn) := C0(I;Kn). We further use the
abbreviation Hk(I;Kn) := W k,2(I;Kn). For ω ∈ R we use the
notation L2

ω(R≥0;K) :=
{
eω·f(·)

∣∣ f ∈ L2(R≥0;K)
}

with norm
‖eω·f‖L2

ω
= ‖f‖L2(R≥0;K). By L(X ;Y), where X ,Y are Hilbert

spaces, we denote the set of all bounded linear operators A : X → Y .

B. Mathematical Model

In the present paper we study the horizontal movement of a water
tank as depicted in Fig. 1, where we neglect the wheels’ inertia and
friction between the wheels and the ground. We assume that there

u(t)

y(t)

gh(t, ζ)

ζ0 1

v(t, ζ)

Fig. 1: Horizontal movement of a water tank.

is an external force acting on the water tank, which we denote by
u(t) as this will be the control input of the resulting system, cf. also
Section I-C. The measurement output is the horizontal position y(t)
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of the water tank, and the mass of the empty tank is denoted by mT .
The dynamics of the water under gravity g are described by the Saint-
Venant equations (first derived in [23]; also called one-dimensional
shallow water equations)

∂th+ ∂ζ(hv) = 0,

∂tv + ∂ζ

(
v2

2
+ gh

)
+ hS

( v
h

)
= −ÿ

(1)

with boundary conditions v(t, 0) = v(t, 1) = 0. Here h : R≥0 ×
[0, 1] → R denotes the height profile and v : R≥0 × [0, 1] → R the
(relative) horizontal velocity profile, where the length of the container
is normalized to 1. The friction term S : R → R is typically modeled
by a high velocity coefficient of the form CSv

2/h2 and a viscous
drag of the form CDv/h for some positive constants CS , CD . In the
present paper, we do not specify S, but we do assume that S(0) = 0
and S′(0) > 0. The condition S(0) = 0 means that, whenever the
velocity is zero, then there is no friction. The condition S′(0) >
0 means that the viscous drag does not vanish; this is the case in
most real-world non-ideal situations, but sometimes neglected in the
literature, see e.g. [21, Sec. 1.4].

For a derivation of the Saint-Venant equations (1) of a moving
water tank we refer to [1], [8], see also the references therein. The
friction term in the model is the general version of that used in [21,
Sec. 1.4]. Let us emphasize that in our framework the input is the
force acting on the water tank, which can be manipulated using an
engine for instance. In contrast to this, in [8], [9] the acceleration
of the tank is used as input, but this can usually not be influenced
directly. Note that — in the presence of sloshing — the applied force
does not equal the product of the tanks’s mass and acceleration. We
also stress that, if the acceleration is used as input, then the input-
output relation is given by the simple double integrator ÿ = u, and
the Saint-Venant equations (1) do not affect this relation.

As shown in [7], [8], the linearization of the Saint-Venant equations
is relevant in the context of control since it provides a model which
is much simpler to solve (both analytically and numerically) and it
can be an insightful approximation for motion planning purposes.
Therefore, we restrict ourselves to the linearization of (1). In order
to derive the linearization we first consider the general operator
differential equation

∂tx(t)− F
(
x(t)

)
= f(t), (2)

where F : D(F ) ⊆ X → Y , f : R≥0 → Y , X,Y are suitable
Hilbert spaces and D(F ) is the domain of the operator F . We call a
point x∗ ∈ D(F ) a steady-state of (2), if F (x∗) = 0. If F is Fréchet
differentiable in x∗ with Fréchet derivative A := Dx∗F : X → Y ,
then the linearization of (2) around the steady-state x∗ is given by

∂tx(t)−Ax(t) = f(t).

In the case of the Saint-Venant equations (1) we have X =
H1([0, 1];R2), Y = L2([0, 1];R2), f(t) =

(
0

−ÿ(t)

)
and the operator

F (x1, x2) = −

(
∂ζ(x1x2)

∂ζ
(
1
2
x22 + gx1

)
+ x1S

(
x2
x1

))
with

D(F ) =

{
(x1, x2) ∈ X

∣∣∣∣ x2(0) = x2(1) = 0,
∀ ζ ∈ [0, 1] : x1(ζ) > 0

}
.

A steady-state x∗ = (H,V ) ∈ D(F ) is a solution of the boundary-
value problem

∂ζ(HV ) = 0,

V ∂ζV + g∂ζH +HS

(
V

H

)
= 0, V (0) = V (1) = 0.

Since S(0) = 0 and H(ζ) > 0 for all ζ ∈ [0, 1], we may infer
that V ≡ 0 and H ≡ h0 > 0. A straightforward computation
yields that F is Fréchet differentiable in x∗ = (h0, 0) ∈ D(F )
with bounded Fréchet derivative A := Dx∗F : X → Y given by

Az = −
(
h0∂ζz2, g∂ζz1 + S′(0)z2

)⊤
, z ∈ X.

Note that A : X → Y is bounded, but A : (X, ‖·‖Y ) ⊆ Y → Y will
be unbounded since a weaker norm is used. Define µ := 1

2
S′(0),

P1 :=

[
0 −1
−1 0

]
, H :=

[
g 0
0 h0

]
, P0 :=

[
0 0
0 2

]
, b :=

(
0
−1

)
.

Then the linearization of the Saint-Venant equations (1) is given by

∂tz = Az + bÿ = P1∂ζ(Hz)− µP0z + bÿ (3)

with boundary conditions z2(t, 0) = z2(t, 1) = 0. Note that by
the first equation in (3) (conservation of mass) and the boundary
conditions we have

∂t

∫ 1

0

z1(t, ζ) dζ = −h0

(
z2(t, 1)− z2(t, 0)

)
= 0,

hence
∫ 1

0
z1(t, ζ) dζ = const. Furthermore, if (z1, z2) is a solution

of (3), then also (z1, z2) + (c, 0) is a solution of (3) for all c ∈
R. Hence, without loss of generality we may restrict ourselves to
solutions which satisfy

∫ 1

0
z1(t, ζ) dζ = 0 for all t ≥ 0. This justifies

to choose

X̂ =

{
(f1, f2) ∈ L2([0, 1];R2)

∣∣∣∣ ∫ 1

0

f1(ζ) dζ = 0

}
(4)

as new state space and to consider the operator A : D(A) ⊆ X̂ → Y ,

D(A) =

{
(z1, z2) ∈ X̂

∣∣∣∣ z1, z2 ∈ H1([0, 1];R),
z2(0) = z2(1) = 0

}
. (5)

Note that for any z ∈ D(A) we have
∫ 1

0
∂ζz2(ζ) dζ = 0, hence

Az ∈ X̂ . Therefore, A : D(A) ⊆ X̂ → X̂ and we like to
stress that A may be unbounded. From now on, with some abuse
of notation, we write X instead of X̂ .

In order to complete the model, we introduce the momentum

p(t) := mT ẏ(t) +

∫ 1

0

(
z1(t, ζ) + h0

)(
z2(t, ζ) + ẏ(t)

)
dζ ,

and consider the balance law ṗ(t) = u(t). Using (3) we calculate

ṗ(t) = mT ÿ(t)−
g

2

(
z1(t, 1)

2−z1(t, 0)2
)
−h0g

(
z1(t, 1)−z1(t, 0)

)
− 2µ

∫ 1

0

(
z1(t, ζ) + h0

)
z2(t, ζ) dζ .

Altogether the model that we consider in the present paper is
described by the following nonlinear equations,

∂tz = P1∂ζ(Hz)− µP0z + bÿ,

ÿ(t) =
g

2mT
(z1(t, 1)− z1(t, 0))

(
2h0 + z1(t, 1) + z1(t, 0)

)
+
2µh0

mT

∫ 1

0

z2(t, ζ) dζ +
2µ

mT

∫ 1

0

z1(t, ζ)z2(t, ζ) dζ +
u(t)

mT
,

0 = z2(t, 0) = z2(t, 1)
(6)

on the state space X , with input u, state z and output y.

C. Control objective

The objective is to design an output error feedback u(t) =
F
(
t, e(t), ė(t)

)
, where yref ∈ W 2,∞(R≥0;R) is a reference signal,

which applied to (6) results in a closed-loop system where the
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tracking error e(t) = y(t) − yref(t) evolves within a prescribed
performance funnel

Fφ := { (t, e) ∈ R≥0 × R | φ(t)|e| < 1 } ,

which is determined by a function φ belonging to

Φ:=

 φ ∈ C1(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇ are bounded,
φ(τ) > 0 for all τ > 0,
and lim infτ→∞ φ(τ) > 0

 .

Furthermore, all signals u, e, ė should remain bounded.
The funnel boundary is given by the reciprocal of φ, see Fig. 2.

The case φ(0) = 0 is explicitly allowed and puts no restriction on the
initial value since φ(0)|e(0)| < 1; in this case the funnel boundary
1/φ has a pole at t = 0.

λ

b

(0, e(0))
φ(t)−1

t

Fig. 2: Error evolution in a funnel Fφ with boundary φ(t)−1.

Note that boundedness of φ implies that there exists λ > 0 such
that 1/φ(t) ≥ λ for all t > 0. The funnel boundary is not necessarily
monotonically decreasing and there are situations, like in the presence
of periodic disturbances, where widening the funnel over some later
time interval might be beneficial.

It was shown in [22] that for φ0, φ1 ∈ Φ, the funnel controller

u(t) = −k1(t)
(
ė(t) + k0(t)e(t)

)
,

k0(t) =
1

1− φ0(t)2‖e(t)‖2
,

k1(t) =
1

1− φ1(t)2‖ė(t) + k0(t)e(t)‖2
,

(7)

achieves the above control objective for a large class of nonlinear
systems with relative degree two. In the present paper we extend this
result and show feasibility of (7) for the model described by (6).

D. Organization of the present paper

In Section II we recall a recent result in funnel control from [22].
We show that in order to achieve the control objective formulated
in Section I-C it suffices to show that a certain operator is causal,
locally Lipschitz continuous and maps bounded functions to bounded
functions. To this end, in Section III we consider the linearized Saint-
Venant equations in the framework of well-posed systems and show,
in particular, that the corresponding impulse response is a measure
with bounded total variation. In Section IV we exploit this result to
show that the operator associated with the internal dynamics of (6) is
well-defined and has the properties mentioned above. The application
of the funnel controller to the moving water tank system is illustrated
in Section V.

II. FUNNEL CONTROL

In this section we formulate how the funnel controller (7) described
in Subsection I-C achieves the control objective for system (6) — this

is the main result of this article. The initial conditions for (6) are(
z1(0, ·), z2(0, ·)

)
=
(
h̃0(·), v0(·)

)
∈ D(A),(

y(0), ẏ(0)
)
=
(
y0, y1

)
∈ R2,

(8)

since the initial value for z needs to belong to the domain of the
operator Aµ in (6). In [22] the controller (7) is shown to be feasible
for a large class of nonlinear systems of the form

ÿ(t) = f
(
d(t),S(y, ẏ)(t)

)
+ Γu(t)(

y(0), ẏ(0)
)
=
(
y0, y1

)
∈ R2 (9)

where
(N1) the disturbance satisfies d ∈ L∞(R≥0;Rp), p ∈ N;
(N2) f ∈ C(Rp × Rq;R), q ∈ N,
(N3) the high-frequency gain satisfies Γ > 0, and
(N4) S : C(R≥0;R2) → L∞

loc(R≥0;Rq) satisfies the properties:
a) S maps bounded trajectories to bounded trajectories, i.e.,

for all c1 > 0, there exists c2 > 0 such that for all ζ ∈
C(R≥0;R2) ∩ L∞(R≥0;R2), S(ζ) ∈ L∞(R≥0;Rq) and

‖ζ‖∞ ≤ c1 =⇒ ‖S(ζ)‖∞ ≤ c2,

b) S is causal, i.e, for all t ≥ 0 and all ζ, ξ ∈ C(R≥0;R2),

ζ|[0,t) = ξ|[0,t) =⇒ S(ζ)|[0,t)
a.e.
= S(ξ)|[0,t).

c) S is locally Lipschitz continuous in the following sense:
for all t ≥ 0 and ξ ∈ C([0, t];R2) there exist τ, δ, c > 0
such that, for all ζ1, ζ2 ∈ C(R≥0;R2) with ζi|[0,t] = ξ and
‖ζi(s) − ξ(t)‖ < δ for all s ∈ [t, t + τ ] and i = 1, 2, we
have∥∥(S(ζ1)− S(ζ2)) |[t,t+τ ]

∥∥
∞ ≤ c

∥∥(ζ1 − ζ2)|[t,t+τ ]

∥∥
∞ .

In [13], [25]–[27] it is shown that the class of systems (9)
encompasses linear and nonlinear systems with strict relative degree
two and input-to-state stable internal dynamics. The operator S allows
for infinite-dimensional (linear) systems, systems with hysteretic
effects or (when a slightly more general version of (9) with a memory
component is considered) nonlinear delay elements, and combinations
thereof. The linear infinite-dimensional systems that are considered
in [13], [27] are in a special Byrnes-Isidori form that is discussed in
detail in [28]. While the internal dynamics in these systems is allowed
to correspond to a strongly continuous semigroup, all other operators
are assumed to be bounded. In contrast to this, the equation (6) that
we consider here is nonlinear and involves unbounded operators.

In [22], the existence of solutions of the initial value problem
resulting from the application of the funnel controller (7) to a
system (9) is investigated. By a solution of (7), (9) on [0, ω) we mean
a function y ∈ C1([0, ω);R), ω ∈ (0,∞], such that ẏ is weakly
differentiable and satisfies (9) with u defined in (7) for almost all
t ∈ [0, ω); y is called maximal, if it has no right extension that
is also a solution. Existence of solutions of functional differential
equations has been investigated in [13] for instance.

The following result is from [22]. Note that in [22] a slightly
stronger version of condition (N4) c) is used. However, the existence
part of the proof there relies on a result from [26] where the version
from the present paper is used.

Theorem II.1. Consider a system (9) with properties (N1)–(N4). Let
yref ∈ W 2,∞(R≥0;R), φ0, φ1 ∈ Φ and (y0, y1) ∈ R2 be initial
conditions such that

φ0(0)|y0 − yref(0)| < 1

and φ1(0)|y1 − ẏref(0) + k0(0)
(
y0 − yref(0)

)
| < 1.

Then the funnel controller (7) applied to (9) yields an initial-value
problem which has a solution, and every solution can be extended
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to a maximal solution y : [0, ω) → R, ω ∈ (0,∞], which has the
following properties:

(i) The solution is global (i.e., ω = ∞).
(ii) The input u : R≥0 → R, the gain functions k0, k1 : R≥0 → R

and y, ẏ : R≥0 → R are bounded.
(iii) The tracking error e = y−yref is uniformly bounded away from

the funnel boundary in the following sense:

∃ ε > 0 ∀ t > 0 : |e(t)| ≤ φ0(t)
−1 − ε. (10)

To show feasibility of the funnel controller (7) for (6), (8), we will
show that (6), (8) belongs to the class of systems (9). Then feasibility
is a consequence of the above Theorem II.1.

By the change of variables x(t) = z(t) − bη(t) where we use
η(t) := ẏ(t)− ẏ(0), System (6) can be rewritten as

ÿ(t) = S(y, ẏ)(t) + u(t)

mT
, (11)

where S : C(R≥0;R2) → L∞
loc(R≥0;R) is given by

S(y1, y2) := T (y2 − y2(0)) (12)

for the operator T : C0(R≥0;R) → L∞
loc(R≥0;R), where

C0(R≥0;R) = { f ∈ C(R≥0;R) | f(0) = 0 }, defined by

T (η)(t) =
g

2mT
(x1(t, 1)− x1(t, 0))

(
2h0 + x1(t, 1) + x1(t, 0)

)
+

2µh0

mT

∫ 1

0

x2(t, ζ) dζ +
2µ

mT

∫ 1

0

x1(t, ζ)x2(t, ζ) dζ

− 2µh0

mT
η(t), (13)

ẋ(t) = P1∂ζ
(
H(x(t) + bη(t))

)
− µP0(x(t) + bη(t)), (14)

x(0) = x0 = (h̃0, v0).

Note that T depends on x = x(t, ζ) which in turn is given through η
and x0 as the solution of the linear PDE (14) that is a one-dimensional
wave equation. We like to point out that the operator S essentially
models the internal dynamics of system (6).

Theorem II.2. For µ > 0 the system consisting of (6), (8) belongs
to the class of systems (9), where the operator S is given by (12).
Thus, the assertions of Theorem II.1 hold for the considered system.

Proof. First observe that for equation (11) conditions (N1)–(N3)
are obviously satisfied, so it remains to show the properties of the
operator S as required in (N4). By Proposition IV.1 the operator T
given by (13), (14) is well-defined, locally Lipschitz continuous and
maps bounded functions to bounded functions. As it is easy to see
that S is causal it thus follows that it satisfies (N4).

Remark II.3. In the case µ = 0 the statement of Theorem II.2 is
false in general, since the operator S does not satisfy condition a)
in (N4). To be more precise we need to consider the later results
derived in Sections III and IV: If µ = 0, then h = L−1(H) derived
in Lemma III.2 does not have bounded total variation, which, upon
inspecting the proof of Proposition IV.1, reveals that, for example,
T (sin)(·) is unbounded.

The remainder of the paper deals with proving Proposition IV.1.

III. LINEARIZED MODEL – ABSTRACT FRAMEWORK

In this section we gather preliminary results concerning the oper-
ator associated with the linearized Saint-Venant equations (3). This
includes admissibility of the involved unbounded control and evalu-
ation operators and the transfer functions of the linear subsystems.
Finally we show that the impulse response of these transfer functions
defines measures with bounded total variation.

We consider the complexification of the state space from (4),

X =

{
(f1, f2) ∈ L2([0, 1];C2)

∣∣∣∣ ∫ 1

0

f1(ζ) dζ = 0

}
,

and the linear operators Aµ : D(Aµ) ⊆ X → X given by

Aµz := P1∂ζ(Hz)− µP0z (15)

with domain D(Aµ) = D(A) as the complexification of (5).
Clearly, the solution of the linear, one-dimensional damped wave

equation ż = Aµz with z(0) = z0 can be derived by a Fourier
ansatz. More general, the solution theory for linear PDEs can be
discussed using semigroup theory. Let us recall a few basics from
semigroup theory and admissible operators in the context of linear
systems, which can all be found e.g. in [29]. A semigroup (T (t))t≥0

on X is a L(X;X)-valued map satisfying T (0) = IX and T (t +
s) = T (t)T (s), s, t ≥ 0, where IX denotes the identity operator.
Furthermore, we assume that semigroups are strongly continuous,
i.e., t 7→ T (t)x is continuous for every x ∈ X . Semigroups are
characterized by their generator A, which is a possibly unbounded
operator on X . For any semigroup there exist constants M ≥ 1 and
ω ∈ R such that ‖T (t)‖ ≤Meωt for all t ≥ 0. The infimum over all
ω such that this inequality is valid for some M is called the growth
bound ωA and T is exponentially stable, if ωA < 0. If ‖T (t)‖ ≤ 1
for all t ≥ 0, then T is called contraction semigroup. For β in
the resolvent set ρ(A) of the generator A, we denote by X−1 the
completion of X with respect to the norm ‖ · ‖X−1 = ‖(βI−A)−1 ·
‖X . Note that X−1 is independent of the choice of β and that (βI−A)
uniquely extends to an surjective isometry (βI−A−1) ∈ L(X ;X−1).
The semigroup (T (t))t≥0 in X has a unique extension to a semigroup
(T−1(t))t≥0 in X−1, which is generated by A−1.

The notion of admissible operators appears naturally in infinite-
dimensional linear systems theory with unbounded control and obser-
vation operators, as present in boundary control. Let U ,Y be Hilbert
spaces, A as above and p ∈ [1,∞]. We call B ∈ L(U ;X−1) an
Lp-admissible control operator (for (T (t))t≥0), if for all t ≥ 0 and
all u ∈ Lp([0, t];U) we have

Φtu :=

∫ t

0

T−1(t− s)Bu(s) ds ∈ X ,

which implies that the operator Φt ∈ B(Lp([0, t];U),X ). An oper-
ator C ∈ L(D(A);Y) is called Lp-admissible observation operator
(for (T (t))t≥0), if for some (and hence all) t ≥ 0 the mapping

Ψt : D(A) → Lp([0, t];Y), x 7→ CT (·)x

can be extended to a bounded operator from X to Lp([0, t];Y),
again denoted by Ψt. We call B or C infinite-time Lp-admissible,
if supt>0 ‖Φt‖ < ∞ or supt>0 ‖Ψt‖ < ∞, respectively. Both
admissibility notions are combined in the stronger concept of well-
posedness: Let (A, B,C) represent a system where A is the generator
of a semigroup, B is an L2-admissible control operator and C is an
L2-admissible observation operator in the sense described above. If
there exists a function G : Cω → L(U ;Y), ω > ωA, which satisfies

G(s)−G(t) = C((sI −A)−1 − (tI −A)−1)B (16)

for all s, t ∈ Cω and G is proper, i.e., sups∈Cω
‖G(s)‖ < ∞,

then we say that (A, B,C) is well-posed. Note that G is uniquely
determined up to a constant and that well-posedness can be defined
in different, but equivalent ways, see [30], [31]. If limRe s→∞ G(s)v
exists for any v ∈ U , then (A, B,C) is called regular.

In order to prove Theorem II.2 we study the PDE (14) in combi-
nation with two observation operators which appear in the definition
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of the operator T in (13), that is we investigate the input-output
behaviour of the linear systems

ẋ = Aµx+Aµbη,

vi = Cix :=
1

2
(x1(1) + (−1)ix1(0))

(Σi)

for i = 1, 2, where Ci : D(A) → C. Whereas it will be essential to
show that the associated input-output map η 7→ vi is bounded with
respect to L∞-norms, we first restrict ourselves to the classical case
of boundedness with respect to L2-norms. In Proposition III.1 (iv)
below we show that (Σi) is regular and well-posed. This then implies
by definition, cf. [30], [31], that the input-output map

Fi :W
1,∞
0 (R≥0;C) ∩ L2

ω(R≥0;C) → L2
ω(R≥0;C),

η 7→
(
t 7→ Ci

∫ t

0

(Tµ)−1(t− s)Bη(s) ds

)
,

(17)

where W 1,∞
0 (R≥0;C) =

{
f ∈W 1,∞(R≥0;C)

∣∣ f(0) = 0
}

, is
well-defined for all ω > ωAµ and can be continuously extended to
L2

ω(R≥0;C). Here, we identify Ci with a suitable extension, see [30,
Sec. 5] for details. Therefore, the transfer function of (Σi) can be
defined by representing Fi in terms of the Laplace transform, that is

L(vi)(s) = L(Fiη)(s) = Hi(s)L(η)(s), (18)

where Hi : Cω → C, i = 1, 2.
As the proof of the following result rests on a standard routine,

details are omitted. For an explicit derivation we refer to [32].

Proposition III.1. Let c :=
√
gh0, µ ≥ 0, b =

(
0
−1

)
and Aµ be

defined by (15). Then the following assertions hold for all i = 1, 2.
(i) Aµ generates a contraction semigroup (Tµ(t))t≥0 with growth

bound ωAµ = −µ + Re
√
µ2 − π2c2 and the spectrum of Aµ

consists of the eigenvalues θ±n = −µ± iϕn, where

ϕn =
√
σ2
n − µ2, σn = nπc, n ∈ N. (19)

(ii) B = Aµb ∈ L(C;X−1) is Lp-admissible for all p ∈ [2,∞];
(iii) Ci ∈ L(D(A);C) is L2-admissible;
(iv) (Aµ, B,Ci) is well-posed and regular and for ω > ωAµ the

transfer functions Hi : Cω → C are given by

H(λ) := H1(λ) = −

√
4h0

g

λ

λ+ 2µ
tanh

(√
λ(λ+ 2µ)

2c

)
(20)

and H2(λ) = 0, for all λ ∈ Cω .
If µ > 0, then B, C1, C2 are even infinite-time admissible.

Proof. Assertion (i) follows from a standard argument which can e.g.
be found in [24]. To show (ii) and (iii) first note that Tµ(t) is in fact
boundedly invertible for any t ≥ 0 and that Aµ and B = Aµb are
bounded perturbations of A0 and A0b, resp. To show L2-admissibility
of B,C1, C2, it thus suffices to consider µ = 0 and to show that

sup
Reλ=1

‖(λI −A0)
−1B‖X <∞, (21)

sup
Reλ=1

‖Ci(λI −A0)
−1‖L(X;C) <∞, i = 1, 2, (22)

see [29, Rem. 2.11.3, Thm. 5.2.2 and Cor. 5.2.4]. Consider

xµ,λ := (λI −Aµ)
−1B = −b+ λ(λI −Aµ)

−1b = −b+ λzµ,λ,

where zµ,λ(ζ) can be computed to be

h0

θ

(
cosh

(
θ
c2

)
−1

sinh
(

θ
c2

)
[

cosh
(
θζ
c2

)
−λg

θ
sinh

(
θζ
c2

)]+ [ − sinh
(
θζ
c2

)
λg
θ

(
cosh

(
θζ
c2

)
− 1
)]) ,

with θ = c
√
λ(λ+ 2µ). Thus, (21) holds as supReλ=1 ‖λx0,λ‖X <

∞. Similarly, (22) can be checked. Thus, B,C1, C2 are L2-
admissible control/observation operators for (Tµ(t))t≥0 and hence

B is also Lp-admissible for all p ∈ [2,∞] by the nesting property of
Lp spaces on compact intervals. To show (iv) we construct functions
Gi : Cω → C which satisfy

Gi(λ1)−Gi(λ2) = Ci((λ1I −Aµ)
−1 − (λ2I −Aµ)

−1)B

= Ci(xµ,λ1 − xµ,λ2)

for all λ1, λ2 ∈ Cω . Using the explicit formula for xµ,λ from above
gives that Gi can be chosen as Hi defined in the statement of the
proposition. Since Hi is proper and limReλ→∞ Hi(λ) exists, the
system (Aµ, B,Ci) is well-posed and regular. This also implies (18),
which shows that Hi is the transfer function of the system.
For µ > 0, (Tµ(t))t≥0 is exponentially stable, whence admissibility
implies infinite-time admissibility, cf. [33, Lem. 2.9].

In the next step we obtain a series representation for H(λ) and
its inverse Laplace transform, which is shown to be a measure of
bounded total variation on R≥0. The latter set is denoted by M(R≥0)
and the total variation by ‖f‖M(R≥0) for f ∈ M(R≥0); we refer to
the textbook [34] for more details.

Lemma III.2. Let µ > 0, ω > ωAµ and σn = nπc as in (19). The
transfer function H : Cω → C defined in (20) can be represented as

H(λ) = −8h0

∑
n∈N

Hn(λ) = −8h0

∑
n∈2N0+1

λ

λ2 + 2µλ+ σ2
n

,

with inverse Laplace transform h = L−1(H) ∈ M(R≥0). Moreover,

h = hL1 +
1

4c
hδ,

where hL1(t) := e−µt(t2f2(t) + tf1(t) + f0(t)), t ≥ 0, and

hδ := δ0 − 2e−µ/cδ1/c

+ 2
∑
k∈N

(
e−2kµ/cδ2k/c − e−(2k+1)µ/cδ(2k+1)/c

)
,

for some f0, f1, f2 ∈ L∞(R≥0;R), and δt denotes the Dirac delta
distribution at t ∈ R.

Proof. Let us first show the series representation of H. Recall that

tanh(z) = 8z

∞∑
k=1

1

π2(2k − 1)2 + 4z2
, z /∈ iπ(1 + 2Z).

Using this in (20) gives the desired formula for H. Next we study
the inverse Laplace transform of H; in particular, Hn(λ) = 0 for
n ∈ 2N0. It is easy to see that H is also continuous on C+ and
that the series converges locally uniformly along the imaginary axis.
Thus, the partial sums converge to α 7→ H(iα) in the distributional
sense when considered as tempered distributions on iR. By continuity
of the Fourier transform F(·), this gives that the series

−8h0

∑
n∈N

F−1(Hn(i·)) = −8h0

∑
n∈N

L−1(Hn)

converges to h = F−1(H(i·)) = L−1(H) in the distributional
sense1. It remains to study L−1(Hn) and the limit of the corre-
sponding sum. By well-known rules for the Laplace transform we
have L−1(Hn)(t) = e−µtgn(t) for t ≥ 0, where

gn(t) = cos(ϕnt)− µϕ−1
n sin(ϕnt), n ∈ 2N0 + 1.

The idea of the proof is to use Fourier series that are related to the
frequencies σn in contrast to the ‘perturbed’ harmonics sinϕn and

1Here we identify functions on R≥0 with their trivial extension to R and
use the relation between Fourier and Laplace transform.
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cosϕn. We write

gn(t) = [cos(ϕnt)− cos(σnt)] +
µ

ϕn
[sin(σnt)− sin(ϕnt)]

+ cos(σnt) +
µ

ϕn
sin(σnt).

By the mean value theorem there exist αn, βn ∈ [ϕn, σn] and ωn ∈
[αn, σn] such that

cos(ϕnt)− cos(σnt) = t(σn − ϕn) sin(αnt) =
µ2t sin(αnt)

σn + ϕn
,

sin(αnt) = t(αn − σn) cos(ωnt) + sin(σnt),

sin(σnt)− sin(ϕnt) = t(σn − ϕn) cos(βnt) =
µ2t cos(βnt)

σn + ϕn
,

where we used the identity σ2
n − ϕ2

n = µ2 from (19). Hence,

gn(t) = t2
µ2(αn − σn)

σn + ϕn
cos(ωnt) +

µ3t

ϕn(σn + ϕn)
cos(βnt)

+ cos(σnt) +

[
t(σn − ϕn) +

µ

ϕn

]
sin(σnt)

The coefficient sequences of the first two terms in the sum,

an := µ2αn − σn

σn + ϕn
, bn :=

µ3

ϕn(σn + ϕn)
,

are absolutely summable sequences since

0 > an > µ2 ϕn − σn

σn + ϕn
=

−µ4

(σn + ϕn)2
.

Let us further rewrite the coefficient of the last term, recalling that
σ2
n−ϕ2

n = µ2 implies that 1
σn+ϕn

− 1
2σn

= µ2

2σn(σn+ϕn)2
, and hence

t(σn − ϕn) =
µ2t

σn + ϕn
=

µ4t

2σn(σn + ϕn)2
+
µ2t

2σn
,

µ

ϕn
=

µ

ϕn
+

µ

σn
− µ

σn
=

µ

σn
+

µ3

σnϕn(σn + ϕn)
.

Thus, with cn = µ4

2σn(σn+ϕn)2
and dn = µ3

σnϕn(σn+ϕn)
, which define

absolutely summable sequences, we have

gn(t) = t2an cos(ωnt) + tbn cos(βnt) + [tcn + dn] sin(σnt)

+ cos(σnt) + (µt+ 2)
µ

2σn
sin(σnt).

Consider the last two terms of the sum: As σn = nπc, we have by
basics on Fourier series that 4c

∑
n∈2N0+1

1
σn

sin(σnt) converges to

H0(t) =

{
1, t ∈ [2k/c, (2k + 1)/c), k ∈ N0

−1, t ∈ [(2k + 1)/c, (2k + 2)/c), k ∈ N0

for almost all t ≥ 0. Therefore, for almost all t ≥ 0 we have∑
n∈2N0+1

µ

2σn
sin(σnt) =

µ

8c
H0(t).

Since the coefficients µ
σn

are square summable, the series even
converges in L2 on any bounded interval and thus particularly in
the distributional sense on R≥0.
Finally, by well-known facts on the Fourier series of delta distribu-
tions, 4c

∑
n∈2N0+1 cos(σn·) converges to the 2

c
-periodic extension

of (δ0 − 2δ 1
c
+ δ 2

c
) in the distributional sense as we have

lim
N→∞

〈
4c

N∑
n=1
n odd

cos(σn·), ψ

〉
= lim

N→∞

∫ 2
c

0

4c

N∑
n=1
n odd

cos(σns)ψ(s) ds

= 〈δ0 − 2δ1/c + δ2/c, ψ〉

for any function ψ ∈ C∞([0, 2
c
];R). Altogether, and as multiplying

with e−µt preserves the distributional convergence, this yields that

∑
n∈2N0+1

L−1(Hn)(·) =
∑

n∈2N0+1

e−µ·gn(·) = hL1(·) + 1

4c
hδ

with hL1 , hδ as in the assertion and where the functions

f2(t) :=
∑

n∈2N0+1

an cos(ωnt)

f1(t) :=
µ2

8c
H0(t) +

∑
n∈2N0+1

bn cos(βnt) + cn sin(σnt),

f0(t) :=
µ

4c
H0(t) +

∑
n∈N

dn sin(σnt), t ≥ 0,

are bounded since an, bn, cn, dn are absolutely summable sequences.
By this representation, hL1 ∈ L1(R≥0;R) and can thus be identified
with an element in M(R≥0), while obviously hδ ∈ M(R≥0) as the
total variation ‖hδ‖M(R≥0) = 1 + 2

∑
k∈N e

−µk/c is finite.

IV. THE OPERATOR T
In this section we show that the nonlinear operator T given

by (13), (14) is well-defined and maps bounded functions to bounded
functions. To this end, we calculate the different parts of the opera-
tor T using the mild solution x of the PDE (14).

Proposition IV.1. Let x0 ∈ D(A) as defined in (5). Then the
operator T given by (13), (14) is well-defined from W 1,∞

0 (R≥0;R)
to L∞(R≥0;R) and there exist k1, k2, k3, k4 > 0 such that for every
η ∈W 1,∞

0 (R≥0) we have

‖T (η)‖∞ ≤ k1(‖x0‖X + ‖Aµx0‖X + ‖η‖∞)

+ k2(‖x0‖X + ‖η‖∞)2 + k3(‖x0‖2X + ‖Aµx0‖2X)

+ k4‖Aµx0‖X‖η‖∞.

Moreover, T can be extended to an operator defined from C0(R≥0;R)
to L∞

loc(R≥0;R), which is locally Lipschitz in the sense of condition
(N4) c) and the estimate extends to η ∈ C0(R≥0;R)∩L∞(R≥0;R).

Proof. Recall that the (mild) solution to the PDE (14) is given by

x(t) = Tµ(t)x0 +

∫ t

0

(Tµ)−1(t− s)Aµbη(s) ds , t ≥ 0. (23)

By Proposition III.1 (ii), Aµb ∈ L(C;X−1) is infinite-time L∞-
admissible, hence x ∈ C(R≥0;X) and there exists k̃ > 0 such that

‖x(t)‖X ≤ k̃(‖x0‖X + ‖η‖L∞([0,t];R))

for all t ≥ 0, any x0 ∈ X and η ∈ C0(R≥0;R). Since x0(·) and η(·)
are real-valued we have that x, as a function in time and space, is
real-valued as well. Let Ci denote the operators from (Σi) and define

M : X → R, x 7→ 2µh0

mT

∫ 1

0

x2(ζ) dζ ,

N : X → R, x 7→ 2µ

mT

∫ 1

0

x1(ζ)x2(ζ) dζ .

Then T defined in (13) can be written as T = T1 + T2, where, for
η ∈ C0(R≥0;R),

T1(η)(t) =
g

2mT

(
C1(x(t))

)(
2h0 + C2(x(t))

)
T2(η)(t) = M(x(t)) +N (x(t))− 2µh0

mT
η(t), t ≥ 0,

and x is given by (23). While it is obvious that T2 is well-defined
on C0(R≥0;R), this is not yet clear for T1.

In order to estimate ‖T (η)‖∞, we first study the operator T2. From
the definition of M and N we readily get for x ∈ X that

|M(x)| ≤ 2µh0

mT
‖x‖X and |N (x)| ≤ µ

mT
‖x‖2X .
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Hence, for η ∈ C0(R≥0;R) ∩ L∞(R≥0;R) we obtain

‖T2(η)‖∞ ≤ 2µh0

mT
k̃(‖x0‖X + ‖η‖∞)

+
µ

mT
k̃2(‖x0‖X + ‖η‖∞)2.

In the remainder of the proof we consider T1. Let η ∈
W 1,∞

0 (R≥0;R) ∩ L2(R≥0;R) in the following. First note that
C2(x(·)) only depends on x0 and is hence constant as a function of η.
By Proposition III.1 (iv) we have that g2(λ) = 0, which implies that
C2(x(·)) = C2Tµ(·)x0, which is well-defined since x0 ∈ D(Aµ)
and moreover bounded, i.e.,

|C2(x(t))| ≤ ‖C2‖L(D(A);R)‖Tµ(t)Aµx0‖X
≤ ‖C2‖L(D(A);R)M‖Aµx0‖X

with M = supt≥0 ‖Tµ(t)‖. Analogously, C1Tµ(·)x0 is bounded by
‖C1‖L(D(A);R)M‖Aµx0‖X . Using the input-output map F1 defined
in (17) we may infer from the variation of constants formula that

C1(x(·)) = C1Tµ(·)x0 + F1(η)(·).

It remains to investigate whether the real-valued extension of F1

to L2, which we again denote by F1, that is the map

F1 :W 1,∞
0 (R≥0;R) ∩ L2(R≥0;R) → L2(R≥0;R),

η 7→
(
t 7→ C1

∫ t

0

(Tµ)−1(t− s)Bη(s) ds

)
,

is bounded in the L∞-norms. By Proposition III.1 (iv), the transfer
function H is an element of H∞(C+) and thus

L(F1(η))(λ) = H(λ) · L(η)(λ), λ ∈ C+.

Hence, there exists a tempered distribution h = L−1(H) such that

F1(η) = h ∗ η (24)

for Schwartz-class functions η with support in R≥0 — here and in
the following we extend functions defined on R≥0 to R by zero. By
Lemma III.2, h can be identified with a Radon measure on R≥0 with
bounded total variation ‖h‖M(R≥0). Hence, by a variant of Young’s
integral inequality, F1(η) ∈ L∞(R≥0;R) and

‖F1(η)‖∞ ≤ ‖h‖M(R≥0) ‖η‖∞ (25)

for all Schwartz functions η supported in R≥0; we refer to [34, Sec.
2.5.4] for details on convolution operators with h ∈ M(R≥0). Thus,
F1 (and hence also T1 and T ) can, in the form (24), be extended to
C0(R≥0;R) and we find that for η ∈ C0(R≥0;R) ∩ L∞(R≥0;R)

‖T1(η)‖∞ ≤ g
2mT

(‖C1T (·)x0‖∞ + ‖h‖M(R≥0) ‖η‖∞)

· (2h0 + ‖C2T (·)x0‖∞)

≤ k3‖Aµx0‖2X + k4(‖Aµx0‖X + 1)‖η‖∞
+ k5‖Aµx0‖X

for some k3, k4, k5 > 0. Finally, it remains to show that T satisfies
condition (N4) c). To this end, first observe that T (η) − N (x),
where x is as in (23), is linear in η and hence trivially locally
Lipschitz. To show (N4) c) for N (x) fix t ≥ 0 and ξ ∈ C([0, t];R)
as well as ηi ∈ C0(R≥0;R) with ηi|[0,t] = ξ and |ηi(s)− ξ(t)| < 1
for all s ∈ [t, t+ 1] and i = 1, 2. Let xi denote the mild solution as
in (23) corresponding to η = ηi for i = 1, 2. Then we have

x11(s)x
1
2(s)− x21(s)x

2
2(s)

=
(
x11(s)− x21(s)

)
x22(s) + x11(s)

(
x12(s)− x22(s)

)

−2

−1

0

1

2

y
(m

)

y
yref

−2
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0
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2

ẏ
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1 )

ẏ
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t (s)
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(m
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Fig. 3: Output y and reference signal yref and corresponding first and
second derivatives.

for s ∈ [t, t+ 1] and hence

|N (x1)(s)−N (x2)(s)|

≤ µ

mT
‖x1(s)− x2(s)‖X

(
‖x1(s)‖X + ‖x2(s)‖X

)
≤ µ

mT
k̃2‖η1 − η2‖∞

(
2‖x0‖X + ‖η1|[0,t+1]‖∞ + ‖η2|[0,t+1]‖∞

)
.

Clearly, ‖ηi|[0,t+1]‖∞ ≤ ‖ξ‖∞ +1 and thus the assertion is true for
τ = δ = 1 and c = 2µ

mT
k̃2 (‖x0‖X + ‖ξ‖∞ + 1) . .

V. SIMULATIONS

In this section we illustrate the application of the funnel con-
troller (7) to the system (6). In the following we present the
numerical method used to simulate the corresponding closed-loop
system. Using the change of variables z(ζ, t) = Q

(
η1(ζ,t)
η2(ζ,t)

)
with

Q :=
[

1 1
g
c

− g
c

]
in (6) enables us to solve the PDE corresponding

to η1 with an implicit finite difference method and the PDE corre-
sponding to η2 with an explicit finite difference method, respectively.
For the simulation we have used the parameters mT = 1kg,
h0 = 0.5m, g = 9.8ms−2, µ = 0.1s−1 and the reference
signal yref(t) = tanh2(ωt) with ω = 2π

√
h0/g. The initial

values (8) are chosen as h̃0(ζ), v0(ζ)) = (0m, 0.1 sin2(4πζ)ms−1)
and (y0, y1) = (0m, 0ms−1). For the controller (7) we chose the
funnel functions φ0(t) = φ1(t) = 100 tanh(ωt). Clearly, the initial
errors lie within the funnel boundaries as required in Theorem II.1.
For the finite differences we have used a grid in t with M = 4000
points for the interval [0, 2τ ] with τ = f−1, and a grid in ζ with
N = bML/(4cτ)c points. Furthermore, we have used a tolerance
of 10−6. The method has been implemented in Python and the
simulation results are shown in Figs. 3 and 4.

It can be seen that even in the presence of sloshing effects a
prescribed performance of the tracking error can be achieved with
the funnel controller (7), while at the same time the generated input
is bounded and shows an acceptable performance. We like to stress
that the sloshing effects are theoretically substantiated by the part hδ
of the inverse Laplace transform of the transfer function derived in
Lemma III.2. An inspection of the proof of Proposition IV.1 reveals
that hδ ∗ η explicitly appears in ÿ; the resulting decaying impulses
can be seen in Fig. 3.

VI. CONCLUSION

In the present paper we have shown that the funnel controller (7)
is feasible for the moving water tank system (6) which rests on
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Fig. 4: Performance funnel with tracking error e and input u.

the linearized Saint-Venant equations. We stress that System (6) is
nonlinear and that the operators involved are unbounded. Even in the
linearized case the motion of the fluid affects the dynamics of the
overall system which leads to the effect of sloshing. Nevertheless,
the funnel controller is able to handle these effects as shown in
Theorems II.1 and II.2 and in the simulations in Section V.

We also like to point out that the controller (7) requires that the
derivative of the output is available for control. This may not be true
in practice, and it may even be hard to obtain suitable estimates of
the output derivative. This drawback may be resolved by combining
the controller (7) with a funnel pre-compensator as developed in [35],
[36], which results in a pure output feedback.

Several extensions of the moving water tank system (6) may be
considered in future research, such as a slope at the bottom of the
tank, the interconnection of the tank with a truck as in [12] and, of
course, the general nonlinear Saint-Venant equations (1) as well as
the two-dimensional case.
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