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Abstract

We introduce the funnel observer as a novel and simple adaptive observer of “high-gain type”. We show that this observer is feasible
for a large class of nonlinear systems described by functional differential equations which have a known strict relative degree, the
internal dynamics map bounded signals to bounded signals, and the operators involved are sufficiently smooth. Apart from that the
funnel observer does not need specific knowledge of the system parameters, and we show that it guarantees prescribed transient
behavior of the observation error. We compare the funnel observer to existing (adaptive) high-gain observers and illustrate it by
a simulation of a bioreactor model. As an application in feedback control, a cascade of funnel observers is exploited to obtain
an artificial output with explicitly known derivatives which tracks the system output with prescribed transient behavior. In some

important cases the interconnection of the system with the observer cascade is shown to have stable internal dynamics.
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Nomenclature:

R>o =1[0,°0)

C_ ={Ae€C|ReA <0}

Gl,(R) the group of invertible matrices in R"*"

o(A) the spectrum of A € R"*"

> (I—R")  the set of locally essentially bounded func-

tions f: I—R", I C R an interval

ZL=(I—R")  the set of essentially bounded functions f :
I —R" with norm

£ |o = ess supy¢/||f ()]

Wk (I—R") the set of k-times weakly differentiable
functions f : I —R" such that f,...,f® e
L2(I—=R")

EK(I—TR") the set of k-times continuously differen-
tiable functions f : I —R"

C(I—R") =¢°(I—-R")

fly restriction of the function f: I —R"toJ C [

1. Introduction

In the present paper we propose a novel and simple adaptive
observer of “high-gain type”, the funnel observer. The high-
gain parameter is determined adaptively online such that the
observer output error satisfies a prescribed transient behavior.

High-gain observers have been developed around 30 years
ago in the works [7, 22, 24, 28], see also [1] and the recent
survey [21]. Choosing the observer gain k large enough, the
observer error can be made arbitrarily small, see e.g. [29]. The
advantage of high-gain observers is that they can be used to es-
timate the system states without knowing the exact parameters
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(in contrast to observer synthesis, see e.g. [5, 6] and the ref-
erences therein); only some structural assumptions, such as a
known relative degree, are necessary. Furthermore, they are ro-
bust with respect to input noise. The drawback is that in most
cases it is not known a priori how large k must be chosen and ap-
propriate values must be identified by offline simulations. If k
is chosen unnecessarily large, the sensitivity to measurement
noise increases dramatically.

In order to resolve these problems, the constant high-gain
parameter k has been replaced by an adaptation scheme in [3].
The gain k(¢) is determined by a differential equation depend-
ing on the observation error. This leads to a monotonically in-
creasing k(r) as long as the observation error lies outside a pre-
defined A-strip [—A, 4], and it stops increasing as soon as the
error enters the strip. The advantage of this observer is that k(r)
is adapted online to the actual needed value, which also leads to
lower high-gain parameters in general. However, k() is mono-
tonically non-decreasing and hence susceptible to unwarranted
increase due to perturbations to the system. Furthermore, while
convergence of the observation error to the A-strip is guaran-
teed, its transient behavior cannot be influenced.

Another high-gain observer with gain adaptation law is pro-
posed in [25]. Compared to [3] it resolves the drawback of
monotonically non-decreasing gain, however a certain condi-
tion on the system is necessary which either requires exact
knowledge of the high-gain parameter of the system or bound-
edness of the input u(r). Furthermore, the adaptation law in [25]
is not able to influence the transient behavior of the observation
error, but only its mean value.

To resolve the above mentioned issues we introduce the fol-
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lowing funnel observer:

21(1) = 22(0) + (q1 + pik(r)) (y(2) — 21 (1)),
(1) = z3(1) + (g2 + p2k(1)) (y(2) — 21 (1)),

bt () = 2(0) + (dre1 + Pt k() O — 21 (1)), | P

2r(t) = Tu(t) + (- + prk(1)) (0(1) — 21(1)),

1
K = O —a @

where the design parameters p; > 0, ¢; > 0, T" € R and the
function ¢ : R>o — R are explained in detail in Section 3.
We like to emphasize that:

e The proposed adaptation scheme for (¢) is simple, non-
dynamic, and non-monotone,

e it guarantees prescribed transient behavior of the obser-
vation error, and

e has typical advantages of high-gain observers like no spe-
cific knowledge of system parameters required and excel-
lent robustness properties.

To illustrate the observer (1) we consider, as a prototype,
the following minimum-phase linear time-invariant system

X(t) = Ax(t) + Bu(t), @
y(t) = Cx(t)
with strict relative degree r € N, i.e., A € R, B € R™™ and
C € R™" with the properties:

(A1) rk¢ [/UCTA I(ﬂ =n+mforall A € C withRed > 0;

(A2) CB=CAB=...=CA"2B=0and CA""'B € Gl,,(R).

Condition (A1) characterizes the minimum-phase assumption
and condition (A2) the strict relative degree.

We will show in Theorem 4.1 that for any solution (x,u,y)
of the system (2) such that y, ..., y(”l) are bounded, the funnel
observer (1) has an absolutely continuous and bounded solution
(z1,...,2) such that k is bounded and

Fe>0Vr>0: |[y(r)—zi(1)]| < @(t) ' —e. 3)

We stress that condition (3) means prescribed transient be-
havior of the observation error e; (t) := y(¢) — z; (¢) in the sense
that it is pointwise below a given funnel function 1/, see Fig-
ure 1. To achieve this, the observer gain will be increased when-
ever ||e;(¢)|| approaches the funnel boundary. High values of
the gain function lead to a faster decay of the observation error.

The funnel observer is not limited to linear systems (2). We
show that the funnel observer (1) is feasible for a large class
of nonlinear systems described by functional differential equa-
tions which satisfy that

ler (@)

Figure 1: Observation error and funnel function

(i) the system has known strict relative degree r,

(i1) the internal dynamics map bounded signals to bounded
signals,

(iii) the operators involved are sufficiently smooth to guaran-
tee local maximal existence of solutions.

We exploit the funnel observer for feedback control. While
a drawback of (1) is that the transient behavior of the deriva-
tives of e cannot be influenced, the derivative of z; is known
explicitly. We show that an application of a cascade of funnel
observers yields

e an estimate z for the output y with prescribed transient
behavior and

r—1)

o the derivatives z,. ..,z are known explicitly.

Furthermore, we investigate the internal dynamics of the inter-
connection of the system with the observer cascade. We show
that for a special class of systems with stable internal dynamics,
this interconnection has again stable internal dynamics. How-
ever, this result is limited to systems with relative degree two or
three; for higher relative degree it remains an open problem.

The present paper is organized as follows: In Section 2 we
specify the considered system class and discuss several impor-
tant subclasses. The funnel observer is introduced in Section 3
and feasibility is proved in Section 4. A simulation of the funnel
observer for a bioreactor model is provided in Section 5 and the
results are compared to the simulation in [3]. Applications in
feedback control are discussed in Section 6. Some conclusions
are given in Section 7.

2. System Class

In the present paper we consider a large class of nonlin-
ear systems described by functional differential equations of the
form

Y1) = Fd(@), TG, "))
(@), Ty ) @O))ulr), @)
y‘[—h,O] :yO € Wr_hoo([*hao} - Rm)v

where i > 0 is the “memory” of the system, r € N is the strict
relative degree, and



d € Z7(R>0 — RP?), p € N, is a disturbance;

fECRP xRT—R™),qgeN;
'€ ¢'(R? x R? — Gl,,(R)) is the high-frequency gain

matrix function;

T:€(|~h,00) 5 R") — £

loc
with the following properties:

(R>p — RY) is an operator

a) T maps bounded trajectories to bounded trajectories,
i.e., for all ¢; > 0 there exists ¢, > 0 such that for all
§ e b ([—h,o0) > R™):

sup [[E(0)| <er = sup [T(E)()] <2
tG[—h,OO) tG[O,m)

b) T is causal, i.e., for all + > 0 and all {,& €

E([—h,00) = R™)":

C‘ [—hit)

c) T is “locally Lipschitz” continuous in the following
sense: for all r > O there exist 7, 8,c¢ > 0 such that for
all §,AL € €([—h,e0) = R™)" with Al|_, ; =0and
| AL} 14 lleo < 6 we have

=&lny = Tl = Ty

| (rc+a0)-

T<C)) ’[l,t+r]

e for every bounded § € €'([—

. < AC|[t,I+1:] -
h,e0) — R™)" the map
Y Rog = Gl (R), £ — T(d(0), 7)) ()

is continuously differentiable and % y is bounded.

The functions u : R>g — R™ and y : [—h,0) — R™ are
called input and output of the system (4), respectively. For fixed
u€ L (Rog — R™) we cally € €1 ([—h,w) — R™) a solu-
tion of (4) on [—h, @), @ € (0,00], if y[;_j, o = =y and y(—1) l0,0)
is absolutely continuous and satlsﬁes the differential equation
in (4) for almost all ¢ € [0,w); y is called maximal, if it has
no right extension that is also a solution. Existence of maxi-
mal solutions of (4) for every y° € #7~1=([~h,0] — R™) and

every u € Z» (R>9 — R™) is guaranteed by [14, Thm. 5]; if

¥,9, ...,y are bounded, then @ = oo.

We stress that in (4) we consider systems with the same
number of inputs and outputs. A generalization to u : R>¢ — R*
with i < m is possible, provided we require for I € €' (R” x
R? — R™*#) that I'(d,w) has full column rank for all d € R”
and all w € R?. Then we may use the pseudoinverse of I instead
of the inverse in the subsequent considerations.

In the case of relative degree one, i.e., r = 1, systems sim-
ilar to (4) are well studied, see [13, 14, 17, 23]. For relative
degree two systems see [10], and for higher relative degree
see [16]. In the aforementioned references it is shown that the
class of systems (4) encompasses linear and nonlinear systems
with existing strict relative degree and exponentially stable in-
ternal dynamics (zero dynamics in the linear case) and the oper-
ator T allows for infinite-dimensional linear systems, systems

with hysteretic effects or nonlinear delay elements, input-to-
state stable systems, and combinations thereof. Compared to
these works we have added the condition of boundedness of
as in (5) which ensures an input-independent formulation of the
observer error dynamics.

Important subclasses of the systems (4) are linear sys-
tems (2) with (Al) and (A2) and infinite-dimensional linear
systems (2), where for some real Hilbert space X, the linear
operator A : D(A) C X — X is the generator of a strongly con-
tinuous semigroup, and B : R™ — X, C : X — R" are linear and
bounded. In this case, we further need to assume:

e The zero dynamics of (2) are exponentially stable, that
is, there exist M,® > 0 such that for all solutions of
X = Ax+ Bu with Cx = 0 we have ||x(¢)||x + ||u(t)]] <
M||x(0)||xe" " for all > 0;

e imB C D(A”), imC* C D((A*)"), CB = CAB = ...
CA"™ 2B =0and CA""'B € Gl,,(R).

We note that, in the finite-dimensional case, exponential sta-
bility of the zero dynamics is equivalent to the system being
minimum-phase. It was shown in [18] that this class allows
the transformation into a Byrnes-Isidori form, and it can then
be shown that it belongs to the class (4) by a straightforward
argument.

We have a closer look at nonlinear systems: Consider the
nonlinear input-affine system

x(t) = f (x(1)) + g (x(t))u(t),
y(t) = h(x(r))

with f € ¥(R" - R"), g € €(R" - R"™") and h € €(R" —
R™).  We assume that there exists a global diffeomor-
phism y : R" — R” such that the coordinate transforma-
tion [x; (1) ",...,.x-(t) ", n(t)"]" = x(x(¢)) transforms (6) into
input-normalized Byrnes-Isidori form (see e.g. [19]):

(6)

x1(1) = x2(1),

Xr-1(2) :x,(t)7
X (1) = g1(£(2), (1)) + 2(£(1),n (¢))u(t),
n(t) = g3(£(1),n (1)),
y(t) =x1(t),

with £(t) = [x1(t)",...,x.(1)T]", where g € €(R" — R™),
g3 € C'(R" - R"™) and g, € €' (R" — Gl,,(R)); the lat-
ter means that the system has (global) strict relative degree r.
We assume that

dga()”!

Txrgz(') =0. @)

For fixed £ € ¢ (R>p — R™) and n° € R""™ we denote the
unique maximal solution of the initial value problem

N(1) = g3(£@),n()), n(0)=n



by n(-;n°%%) : [0,®) — R*"™ @ € (0,c]. Similar to [14] we
assume that there exists k¥ € ¥(R>9 — R>0) and ¢ > 0 such
that for all £ € ¥(R>o — R™) and all 7 € [0, ) we have

In(En® 9] <c (1 T max K<||)e<s>||>) . ®

s€[0,1]

this condition in particular implies @ = o=. Condition (8) on
the internal dynamics of (6) resembles Sontag’s [27] input-to-
state stability, but in fact it is weaker. To show that systems (6)
satisfying the above properties belong to the class (4) we set

(@)
= (y(t)T,...

and calculate that

YO = g1 (TG, Y ) (0) + 82 (T (., ) (1)) ult),

which is of the form (4) with f = g and I' = g,. The opera-
tor T is parameterized by n° and obviously causal and locally
Lipschitz. Condition (8) implies the required bounded-input,
bounded-output property of T, cf. also [14]. To show that yr as
in (5) is bounded we calculate

T(y,...
YO ey, )T

4r(x
§
(5" O AT

(37 6T (&1 (T(D) +&2(T (@) ) 3(T(@) ) !

and hence
-1
() = agz%(w))%m)
@ %(T(ﬁ)))}—i—...-i- %L')A(T(f))y(””
X1 Xr—1
2g2()”! 2g2()”!

o (T(®)&1(T(®)) + ~on (T(%)) g3(T (%)),

which proves the desired condition.

In the aforementioned classes of systems which can be
transformed into a functional differential equation (4), the op-
erator T is basically the solution operator of a differential equa-
tion. We can further consider systems which are of the form (4)
with T being of some more involved nature: For instance, T
may encompass time delays as well as hysteresis. For a detailed
explanation of these classes we refer to [14].

Remark 2.1. It is possible to incorporate a more involved de-
pendence on the input and its derivatives in the system class (4)
by adding a term

$(d0). T3, )W ). ) ©)

to the right-hand side of the differential equation in (4), where
g € €(RP x RI x REFIM 5 R™) and u € £ (Rsg — R™)
is k-times weakly differentiable. If u is fix and there exist § €

FREDm 5 RI) and G € €(R? x RY x R/ — R™), where g
is bounded, such that

g(d(0), Ty, ...y "N (@),u(@),...,uP (1))
= G(d(1), T3, ") 1), & (o). ¥ (1)),

then g(u(t),...,u™(t)) can be rewritten as a bounded “dis-

turbance” d(r) and hence the system is again of type (4). If
u,...,u® are bounded, then this is always possible.

3. Observer Design

In this section we consider the funnel observer (1) as a
new adaptive high-gain observer. Following the methodology
of funnel control, see [14, 12] and the references therein, it
is our aim that the funnel observer (1) achieves that the error
e] =y —z1 evolves within a prescribed performance funnel

Fo={(t,e1) ERsoxR" | @(t)|ler|| <1}, (10)

which is determined by a function ¢ belonging to

¢, ¢ are bounded,
&:={ pc €' (R0 — R)| @(s) >0forall s >0,
and liminfy_,c, @(s) >0

Note that the funnel boundary is given by the reciprocal of ¢,
see Figure 2. The case ¢(0) = 0 is explicitly allowed and puts
no restriction on the initial value since ¢(0)|le;(0)|| < 1; in this
case the funnel boundary 1/¢ has a pole att = 0.

Figure 2: Error evolution in a funnel %, with boundary ¢(t)~! for# > 0.

An important property of the funnel class @ is that each
performance funnel .%, with ¢ € ® is bounded away from
zero, i.e., due to boundedness of ¢ there exists A > 0 such that
1/@(z) > A for all t+ > 0. The funnel boundary is not neces-
sarily monotonically decreasing, while in most situations it is
convenient to choose a monotone funnel. However, there are
situations where widening the funnel over some later time in-
terval might be beneficial, e.g., when the output signal changes
strongly or the system is perturbed by some calibration so that
a large observation error would enforce a large observer gain.

The objective is robust estimation of the output y of the sys-
tem (4) and its derivatives y, ..., ))(”]> so that the observation



error ¢; = y — z1 evolves within the funnel ﬂq, and all variables
are bounded. To achieve this objective we consider the funnel
observer (1) for system (4) with initial conditions
#w(0)=eR™, i=1,...,r, (11)
where ¢ € &, T € R™™ and ¢; > 0, p; >0 foralli=1,...,r
The functions z; : R>o = R™,i=1,...,r, are the observer states

and k : R>¢ — [1,e0) is the observer gain. The constants ¢; > 0
are such that the matrix

—q1 1

A — c Rrxr
—qr-1 1
—4qr 0

is Hurwitz, i.e., 6(A) C C_. The constants p; depend on the
choice of the g, in the following way: Let Q = Q" > 0 and

P Pp 1% (r—1) (r=1)x(r—1)
P= , PHLeER,PreR , P eR
l:Psz P22:| 11 12 22
be such that
A"TP+PA+Q0=0, P=P" >0.

The matrix P depends only on the choice of the constants g; and
the matrix Q. The constants p; must then satisty

Py _PIZPZEIPI—;
P1 0 1
=P = ( ) ) (12)
. _P22 Pl—;
pr 0

This condition guarantees that P defines a quadratic Lyapunov
function for the observer error dynamics.

The funnel observer (1) is different in its structure when
compared to the high-gain observers in [29, 3], where the gain
enters with power k' into the equation for z;. Furthermore, the
constants g; are not present in [29, 3], but we show that they are
important to ensure boundedness of the error dynamics even
when k(t) is small.

Although the observer (1) is a nonlinear and time-varying
system, it is simple in its structure and its dimension depends
only on the relative degree r of the system (4). Apart from
the relative degree, no knowledge of the system (4) is required
for the construction of the funnel observer (1); it only uses
the input signal u(¢) and the output signal y(r), see Figure 3.
The bounded-input, bounded-output property of the operator T
in (4) can be exploited for an inherent high-gain property of the
system (4) and hence to maintain error evolution within the fun-
nel: by the design of the observer (1), the gain k(¢) increases
if the norm of the error ||y(¢) — z1(¢)|| approaches the funnel
boundary 1/¢(r), and decreases if a high gain is not necessary.

For a sketch of the construction of the funnel observer (1)
see also Figure 4.

u(t) y(t)

3| System (4) *
L z(t)

.| Funnel Observer ——

7

~

Figure 3: Interconnection of system (4) with the funnel observer (1).

4. Properties of the funnel observer

In this section we prove one of the main results of the
present paper: The funnel observer (1), using u(z) and y(z),
provides estimates for all bounded signals y,y, ...,y D of the
system (4) such that y — z; evolves in a prescribed performance
funnel ., and all signals are bounded; this is true for any dis-
turbance d, i.e., the observer is robust. We only consider the
relevant case of strict relative degree r > 2.

Theorem 4.1. Consider a system (4) with r > 2. Let
Woe #(~h,0] — R™), u € £2(Rso — R™) and
let y € € 1([~h,») — R™) be a solution of (4) such
that y,y,...,y'"V are bounded. Consider the funnel ob-
server (1), (11) with ¢ € ® such that

P(0)[y(0) —27 < 1,

[ e R™™ and q; > 0, p; > 0 such that (12) is satisfied for cor-
responding matrices A, P, Q.
Then (1), (11) has an absolutely continuous solution 7 =
(21,.--,2r) € L= (R>p — (R™)") with k € £~ (R>g — [1,0))
and

Je>0Vr>0: |y(@)—z(0)| <o) ' —e.  (13)

Furthermore, using the constants M\ and M, in the esti-

mates (19) and (20), resp., with M = 4 /M12 —|—M% we have

4M Amax (P)?
zfmin(Q) }Lmin (P) .

Here Amax (P) denotes the largest eigenvalue of the positive def-
inite matrix P, and Ay (P) denotes its smallest eigenvalue.

limsup (1) < (14)
t—ro0

Proof. We proceed in several steps.
Step 1. We show existence of a local solution of (1), (11).

Set 7 :={ (t,e1,...,e,) ERso x (R™)" | @(t)]le1]] <1 } and
Y= (y,y7 ,y(’ 1))7
F(t,Y) :=T(d(t ) F(d(), T)(0))
+<%F(d Y)(t))~ )y’1 (1),
G(t,Y) := (I-TT(d(1), <Y><r>) h.
Defining
€ .= <i_1)*Zl, i=1 r—

5)



Choose Q = Q' > 0 and solve
Choose g; > 0 such that ATPLPA+Q=0, P>0; Choose I" € R"™*™
—ar % Py Py
A= : ‘s Hurwitz Let P = [Psz Pzz] , P11 € R and set ;i P
—qr—1 1
° ()~ Cring)
. _ Pil PlT2 Funnel observer:
21(0) = 22() + (g1 + pik (1)) (v(t) — 21 (1)),
Choose @ € ® (1) = z3(t) + (g2 + p2k(t)) (6(t) — 21 (1)),
) 2r1(t) = 20(6) + (=1 + pr—1k(2)) (3(1) — 21 (1)),
(1) = Tu(r) + (qr+l’rk(t))()’(t) —z(1),
o(r)”" k(r) = !
, O = b - a P

Figure 4: Construction of the funnel observer (1) depending on its design parameters.

and invoking r > 2 we find let i
—q1im  Im
é1(t) = ex(t) — (q1 + pik(0))e1 (1), A=Aely=| i o |ermom,
7rqr1m 0
and

éra(t) = er1(t) = (qra+ prk(t))er (),
ér1(t) = ex(t) = (gr1 + proik(t))er(t) + G(2,Y )y D),
ér(t) = —(gr+prk(t))er(r) +TF (1,Y)

(16a)

for
1

K = a0l

By the existence theorem for ordinary differential equations
(see e.g. [30, §10, Thm. VI]), there exists a maximal abso-
lutely continuous solution e = (ey,...,e,) : [0,0) — (R™)",
o € (0,00], of (16) satisfying the initial conditions

(16b)

13 =P®I, € erxrm’ Q _ Q@Im c Rrmxrm

Since the Kronecker product (17) satisfies that, if / = n and
p = q, then

det(V @W) = (detV)” (detW)’,

we obtain that

~

c(d)=0(A), o(Q)=0(Q), o(P)=a(P).
Then it follows from ATP+PA+Q=0that P=P" > 0,0 =

Q" >0and

(18)

ei(0) =y 0)—2, i=1,..,n ATPLPA+LO—0.
er(0) =IT(d(0),T(¥)(0)) 'y~ (0) -2, P2
Since P, + P» ( : ) =0 we find
and (t,e(t)) € & for all t € [0, w). Furthermore, the closure of pr
the graph of e, i.e., the set 1
pllm (Pll _PIZOPQQ Psz)Im
graph e :={ (t,e(r)) [ 1 €[0,®) }, Al | = 7

is not a compact subset of Z. Thus, a local solution (zy,...,z,) Prlm 0

of (1), (11) can be reconstructed.

Step 2: We show that e € .~ ([0,0) — (R™)"). Recalling
that the Kronecker product of two matrices V € R/>" and W €
RP*4 is given by

where Py — P12P2*21P1T2 > 0. Observe that we may write (16) in
the form

0
vuWw viaW Pl
l ~
vews=| : | ERPEE, A é(t) =Ae(t)—k(t) | 1 |er(n)+ 0
W vinW Prly G(t,Y)y(r_l)(t)
I'F(t,Y)



By boundedness of Y and the bounded-input, bounded-output
property of T it follows that 7(Y) is bounded, and since d is
bounded and T'(-)~! is continuous we further obtain bounded-
ness of I'(d(-),T(Y)(-))
that

1 .
. Hence there exists M| > 0 such

fora.a.te[0,0): |G(r,Y)y" V()| < M;. (19)

Since f is continuous we have that f(d(-), T(Y)(-)) is bounded
on [0, ). By boundedness of y as in (5) we then find M, > 0
such that

foraa.t €[0,0): |[TF(#,Y)| < M,. (20)

Let M := /M? +M3. We may now calculate that, for almost
allz € [0, w),

de(t) Pe(t)
Pilm
=e(t) A Pe(r) +e(t) " PAe(t) —2k(t)e(t) P | = |ei(t)
Prlm
0
+2e(t) 0
G(t, Y)Y V()
TF(t,Y)
—e(t) " Qe(r) — 2k(1) (Pt — PiaPyy P)) [len (1)
+2M | Pl|]le(r)]|

< —pe(t) " Pe(r) +2M||P| [le(r)]l,

where {1 = Amin(Q)/Amax(P). Now let 8 € (0, 1 Amin(P)) be

arbitrary and

o 2MIP]
5
Then
2M | P|[[le(2)]| < 8lle(r)]* +2M || P||R 21)

provided that ||e(z)|| < R, and if ||e(z)|| > R, then

2M|B|[le()l| = 8lle(t)|* < (2M|| Pl - 8R) |le(1)|| = 0,

and hence (21) is also true in this case. Therefore,

de(r) " Pe(t) < ( >e(t)T13e(t)+2M||l3||R

)
Aamin(P)

for almost all ¢ e [0,®). Gronwall’s lemma now implies that,
withv=pu — ) ( 5 >0,

5 5 2M||P|IR
e(t) " Pe(r) < e(0)" Pe(0)e™ V" + #,

and hence

Amax (P)
= Tin(P)

2M||P||R

7vt 2
lle(0)]I” + Vimin (P)

le(r)])> < 22)

for all ¢t € [0, ®). Equation (22) in particular implies that e €
2=([0,0) - (R")").

Step 3: We show that k € £~ ([0,0) — R). Let k € (0, ®)
be arbitrary but fixed and A := inf,¢(g o) @(t)~' > 0. Since ¢
is bounded and liminf, . ¢(t) > 0 we find that & @, .., ()"
is bounded and hence there exists a Lipschitz bound L > 0 of
?lixc.00) ()7'. By Step 2, e is bounded and we may choose
€ > 0 small enough so that

egmm{”zx inf (¢()"! —||e1<r>||>}

r€(0,x]
and L2
L<— sup |lea(t)]| =My + L2 42, 23)

t€[0,m) 2 4e

feasibility of this choice is guaranteed by r > 2. We show that
Vi e (0,0): @) —|lei(t)]| > e. (24)

By definition of ¢ this holds on (0, k]. Seeking a contradiction
suppose that

3 €k,0): o) —lei(tr)] < e.

Then for
- -1 _
to:=max{tei,n) | o) —|e(t)] =€}
we have for all ¢ € [rg,#] that

o) ()| < e,

les(r)| > @(e) ™ —& > A~ %
and | 1 X
KO = T e O = 2090 = 26
Now we have, for all ¢ € [rg, 1],
L8leOIF = en(t) (e20) ~ (g1 + piki@))en (1)
+G(1,Y)y(1))
—_———
ifr=2
(g1 + pik(0))[ler (]2 + (é{ép)'ez‘”” +M1> lex(r)]

2
< _(q;ujg) ||e1<r>||+< sup ez(f)+Ml|> Jer ()]

t€0,m)
(23)

< —Lfler(@)]l

Therefore, using

1
Saler I = ller @l ler @I,



and that ||e; (r)|| > O for all 7 € [t,#;], we find that

Jer(e) = ller(o)l = [ Fler O & e o)1 8

<—L(ti—10) < —lo(t) " — o)
<ot) ' —o) ",

and hence

e=0(t)) ' —ller(t)| < @(t)) " —[ler(nn)]| <&,

a contradiction. Therefore, (24) holds and this implies bound-
edness of k.

Step 4: We show @ = . Assume that @ < co. Then, since e
and k are bounded by Steps 2 and 3, it follows that graph e is
a compact subset of &, a contradiction. Therefore, ® = co. In
particular, Steps 3 and 4 imply (13).

Step 5: We show (14). Consider the estimate (22) and
observe that by (18) we have Amin(P) = Amin(P), Amax(P) =
Amax (P) and Amin(0) = Amin(Q). Furthermore, since P is pos-
itive definite we have ||P| = Amax(P) = Amax(P). Then (22)
gives

' 2M)lqnax(P)R
limsup le(r)| <4/ =575~

A close look at the §-dependent expression

R 2MAna(P)

Y- mim)

reveals that it is minimal for

_ uﬂ'min(P)

With this choice we obtain

R 8M Amax(P)

; ”2 /’Lmin (P )
from which the assertion (14) follows. O

In [25, Thm. 2.2], using the adaptive high-gain observer
proposed therein, bounds for the mean value of e; are given;
we stress that both the bounds in [25, (14)] and in (14) cannot
be made arbitrarily small in general, they depend on the system
data.

Remark 4.2. If the input u and its first k derivatives are
bounded, then the funnel observer works for an even larger sys-
tem class than (4) and strict relative degree is not required. Con-
sider a system of the form

Y (6) = F(do(0), T (39, .y )(0),u(0), ..,u" (1))

y‘[—h,O] :y() € erl,w([_h’o} - Rm)a

(25)

where F € €(R? x R? x REHDm _ R gy € £=(Rsg —
RP), u € #**(Rsp — R™) and T : €([—h,) — R")" —

Zoo

o (R>p — RY) is an operator with the properties as discussed
in Section 2. It is then possible to reformulate (25) as a sys-

tem of the form (4). To this end, let d; := (uT, el (u(k))T)T,
dyi=u,d:=(dj ,d],d) )" € L (Rsg— RP xR" x Rk+1m)
and

iR xR x RED S RY (dy,dy,da, T) — F(do,T,dy) —do.
Then (25) is equivalent to

YO = £(dt), T, ...,y ")) +ult),

i.e., it is of the form (4) with I = I, and in particular the condi-
tion of bounded y as in(5) is always satisfied.

Furthermore, exact knowledge of the number r of deriva-
tives of y involved in (25) (the relative degree in case of (4))
is not required for feasibility of the funnel observer. Only an
upper bound p € N is required, i.e., r < p. If y,...,y) are
bounded, then the funnel observer (1) (with » = p in (1)) works
for (25) in the sense of Theorem 4.1. To see this, the proof of
Theorem (4.1) has to be recapitulated with the new observation
errors e; ::y<i’1) —zifori=1,...,p.

Remark 4.3. We consider two special cases for (4) and the
funnel observer (1), and the resulting estimate (14).

(i) T'=0. A careful inspection of the proof of Theorem 4.1
reveals that in this case the condition of bounded V is
superfluous. Furthermore, M; in (19) can be chosen as
M; = ||yl and M; = 0 in (20). Therefore, we find
that M = ||y~ 1| in (14). Note that the choice of I" is
independent of (4).

(ii) T =T €Gl,(R) and f =0. This means to assume that (4)
is of the very special form y()(r) = Tu(r) and we have
exact knowledge of the invertible matrix I". Then M| =
M, =0 in (19) and (20), resp., and hence M = 0 in (14).
In particular, this implies that e(z) — 0 and k(¢) — 1 for
t — oo,

Remark 4.4. If the output of the system (4) is subject to mea-
surement noise, i.e., the funnel observer (1) receives y + n in-
stead of y, where n € €"([—h,o) — R™) and its first r deriva-
tives are bounded, then the funnel observer achieves that

Vi>0: 9@)|y() +nl) —a ()] <1,

which implies

Vt>0: (1) all Iy(t) —z1(0)| < 1,

L+ o(1)[n

i.e., y —z; evolves in the funnel .%,, where y = Eﬁ(t

)

. o)
an upper bound for n is known, say ||n(¢)|| < v for all + > 0,
then

V> 0: [|y() —za()] < @) +v.

Hence, the actual error remains in the wider funnel obtained
by adding the corresponding bound of the noise to the funnel



bounds used for the observer. The bound in (14) changes as
follows: Modify M| to M, such that

fora.a.t € [0,0): |G, Y)(y+n)""V ()] <M,

and modify M, to M, such that

HfF(z,Y)+f(r(d(z),T(y)(t))‘1n<r> (1)

1\ (- _
+($1@, 7)) ) a0 < .
for a.a. ¢ € [0,0). Then, with M := \/m’ we have that

. 4M Dipax (P)?
timsuplle(ll < 70V A (P)

+ H (n,r't,...,n(”z)fr(d’T(Y))ilnvil)) Hw

If the input of the system (4) is subject to noise before the funnel
observer receives it, i.e., u enters system (4) and u + v enters the
observer (1), where v € 2% (R>o — R™), then the statement of
Theorem 4.1 remains the same (the funnel observer still works)
and the proof only changes slightly: on the right hand side of
the equation for ¢, in (16) the term —I'v(¢) has to be added. Due
to boundedness of v, the remaining calculations stay the same
and only the constant M, possibly needs to be increased.

5. Simulations

We illustrate the funnel observer by comparing it to the sim-
ulations of the A-strip observer for a bioreactor model in [3].
We consider the generic model as in [3], cf. also [8]:

o aim(t)s(t) (P
m(t) - agm(t)+s(t) (t) (t)v
o arazm(t)s(t) (26)
s(t) = " om@® +30) + (as —s(t))u(t),
y(£) =m(t),

where m(t) and s(¢) denote the concentrations of the microor-
ganism and the substrate, resp., and u(z) is the substrate inflow
rate. All state variables are strictly positive and the parameters
area; =ay =az =1, a4 = 0.1, m(0) = 0.075, and s(0) = 0.03.
For the simulation we choose the following substrate inflow
rate:

0.08, 1€[0,30—¢]
u(t)=4 0.02, re[30+¢,50—¢]
0.08, t>50+¢,

where € < 1 is some positive constant and on the intervals
(30 — £,30+ ¢) and (50 — £,50 + €) the function u is chosen
such that it is continuously differentiable on R>o. This setup
for the bioreactor coincides with that considered in [3], where
it is also explained that (26) can be reformulated in the form

() = @ (y(r),y(2),u(t), (1))

Therefore, invoking Remark 4.2, system (26) belongs to the
class (4) with r =2 and I" = I,,,. Theorem 4.1 thus implies that
the funnel observer works for (26). We note that we applied
the funnel observer to the original system (26) in the simulation
and not to the reformulated system as above.

As design parameters for the funnel observer (1) (see also
Figure 4) we choose '=0, g1 = 1, g2 = 0.2 and

@ :Rsg — Rag, 1 3te™ + Warctant.

Note that this prescribes an exponentially (exponent 1) decay-
ing funnel in the transient phase [0,7], where T ~ 3, and a
tracking accuracy quantified by A = 0.02 thereafter. The so-
lution of the Lyapunov equation A" P+ PA + 1, = 0 is given by

06 —0.5
P= [—0.5 55 }
and hence p; =1 and p, = ﬁ A numerical computation yields

that the eigenvalues of P are given by A; ~ 0.5495 and 1, ~
5.5505. Therefore, the estimate (14) becomes

AM A2
limsup [|e(t)|| < AMAy ~ 22426 M. (27)

100 A
Since no knowledge of the initial values for (26) is assumed we
set the observer initial values to z) =z = 0.

The simulation has been performed in MATLAB (solver:
odel35s, relative tolerance: 1074, absolute tolerance: 10’10).
In Figure 5 the simulation of the funnel observer (1) for the
bioreactor model (26) with the above stated parameters is de-
picted. Figure 5a shows the output m and its estimate m,, while
Figure 5b show the concentration of the substrate s and its esti-
mate s.. In fact, the estimate is much better than the bound (27)
guarantees. An action of the gain function k in Figure 5c is
required only if the error |m(t) — m,(¢)| is close to the funnel
boundary 1/¢(¢). It can be seen that initially the error is very
close to the funnel boundary and hence the gain rises rather
sharply by about 0.25. After this initial error correction the gain
is nearly equal to 1 for most of the time; only slight corrections
are necessary when the input u(¢) changes its value at t = 30
and t = 50. This in particular shows that the gain function & is
non-monotone.

Compared to the simulation in [3] we see that the funnel ob-
server achieves better estimation results for m and s, while the
gain function is much smaller (k is equal to its minimal value 1
most of the time). The main reason for this is that the funnel
observer is able to influence the transient behavior of the obser-
vation error.

6. Application in feedback control

While Theorem 4.1 shows that the funnel observer is able
to achieve prescribed transient behavior of the observation error
e; =y —z1 and that the errors ey, ..., e, as in (15) converge to
a certain strip, we like to stress that no transient behavior can
be prescribed for ey, ..., e, since y',...,y(”l) are not known.
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Figure 5: Simulation of the funnel observer (1) for the bioreactor model (26).

Therefore, z3, ...,z from the funnel observer cannot be viewed
as estimates for y, ..., y"~1. Nevertheless, an advantage of the
funnel observer is that the derivative of z; is known explicitly.
In Subsection 6.1 we show that the successive application of
the funnel observer to the observer-plant system with output z;
results in a cascade of observers which yields

e an estimate z for the output y with prescribed transient

10

behavior (i.e., (f,y(t) —z(t)) € Fy) and
e the derivatives z,...,z"!) are known explicitly.

Furthermore, the high-frequency gain matrix I of the observer-
plant system may be prescribed. This allows for the application
of different feedback control techniques, which would usually
need the first r — 1 derivatives of the output of system (4) (see
e.g. [2, 10, 11, 12]), by just applying the controller to the artifi-
cial output z produced by the cascade of funnel observers.

When tracking problems for systems (4) are considered, a
crucial condition is the stability of the internal dynamics (the
minimum phase property in case of linear systems, see also
Section 2), cf. [4, 12, 26]. This condition is modelled by the
property a) of the operator 7 in (4). When tracking controllers
are to be applied to the interconnection of the system (4) with
a cascade of funnel observers, it is thus desirable that this in-
terconnection again has stable internal dynamics in the sense
that it can be described by an appropriate functional differential
equation where the involved operator has property a). In Sub-
section 6.2 we show that this can be achieved for a special class
of systems which are linear up to the influence of an operator T
and have relative degree two or three. For relative degree larger
than three this remains an open problem; we show explicitly
where our proof does not work in this case.

6.1. The observer cascade

We introduce a cascade of funnel observers as follows:

i (1) =zip(t) + (qi1 + pinki(r)) (zic1,1(£) — 201 (1)),
gia(t) = zi3(t) + (qiz + pinki(t)) (zio1.1 (£) — 21 (1)),

Zir1(t) = 2ir (1) + (Gir—1 + Pir—1ki(2)) (zic1,1(£) — 201 (1)),
Zir(t) = fi”(t) + (Qi,r‘i’pi,rki(t))(zifl,l(t) —zi1(1)),

1
ki(t) = 1 012|211 (t) —zia (0)|?

(28)
fori=1,...,r—1, where zo | :==y, I'; € R"™",

P €D, ::qm{q) e ¢ (Rao—R)|¢,..., 00D bounded}

and g; ; > 0, p; ; > 0 are such that (12) is satisfied for corre-
sponding matrices A;,P;,Q; for i = 1,...,r — 1. We consider
initial values

2j0) =20, €R", ij=1,..r—1 (29)
The situation is illustrated in Figure 6.

We show that the cascade (28) applied to (4) yields an inter-
connection with new output z = z,_1,1 such that y — z has pre-
scribed transient behavior and z, ..., z"~!) are known explicitly.
In order to derive the dependence of z, . .. ,z(’ =1 on the states of
the individual observers in (28) we define the following func-
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Figure 6: Cascade of funnel observers (1) applied to a system (4) in conjunction with a feedback controller.

tions in a recursive way:

b
Pg (k,(P(),E()) = (qa.b +pa1bk)eo,
,b
Piii(ka(P()v“-;(PiJrl,eO,...,eiJr])

aP-a’b p,“J’
- alk (2k2(<p0<p1e§eo+<p3e§e1))+ 8500 Qo +...
b b b
...—i—aP’g Piy1+ 3 61+-..+7"a€i+1
a(Pl 86() aei

fora,b € {1,...,r—1} and i > 0, where k,¢; € R and ¢; € R™
for each i > 0. Further define, using (28),

5ic N i 0
Bie) = Y B (ki0),0:0),.. 0" (1),
=0

Zi71,1(l)—Zi,l(l)7-~-7259171(f)—Z,(,lf(t))
fori=1,....,r—1and j=0,...,r— 1. We will show that
D)=z () +Pie),  i=1,.r—1, j=0,...r—1.

(30)
Theorem 6.1. Consider a system (4) with r > 2.  Let

W e #1=([—h,0] = R™), u € L2 (Rsg — R™) and let
y € € Y([~h,0) — R™) be a solution of (4) such that
Vo Vsueos y<”1) are bounded. Consider the cascade of funnel ob-

servers (28), (29) with ¢; € ®, such that
0i(0)||zi—1,1(0) =2 || < 1,

where zo1 =Y, [ e R™" and qi,j > 0, pij > 0 are such
that (12) is satisfied for corresponding matrices A;, P;,Q; for
alli=1,....,r—1.
Then (28), (29) has absolutely continuous solutions z;; €
L7 (R>0 = R™") withkj € 7 (R0 — [1,)) fori=1,...,r—
1, j=1,...,rand

Vie{l,...,r—1} 3 >0Vt >0:

lzi1,1(8) = zia ()| < (1) ™' =& (31)
Furthermore, for z := z,_1,1 we have that
r—1
Vi>0: @) —z0)] < Y oi(t) ' & (32)
i=1
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and Z',...,z(r_1> are known explicitly in the sense that (30)
holds.

Proof. Step 1: We show existence of bounded absolutely con-
tinuous solutions for each observer in (28) and the property (31)
by induction. For i =1 we have zp1 =y and hence the exis-
tence of bounded global solutions follows from Theorem 4.1.
We may calculate that

20 (1) =z (1)

j—1

+Y (&) (it + Pijoiki0)) (zi-10 (1) — 201 (1) (33)

=0

fori=1,...,r—land j=0,...,r—1. Withw;(r) :=z;_11(t) —
zi1(t) we calculate

ki(t) = 260 (@) @i wile) wir) + @it Pwi (1) Tvn(1))

(34)
foralli=1,...,r— 1. In particular, for i = 1 we obtain that
FSRTE ,z(lffl) are bounded since y,...,y""V oy ,. .., (pl(F1> are
bounded and z11,...,21,, and k; are bounded by Theorem 4.1.
Now assume that the statement is true fori € {1,...,r—2} such
that z; 1,. .. ,zl(’rfl) are bounded. Then an application of Theo-
rem 4.1 again yields existence of bounded global solutions such

that k;1 | is bounded. Again invoking (33) yields boundedness
. ~1
of Zit1.1,- .- ,zl(_rH’l).

Step 2: Property (32) is obvious, so it remains to show (30).
First observe that it follows from (34) and a simple induction

that

l
(&) (qijm1+ pijiki(t)) wie)
=B (1(0), 010, 91(0), -, 0" (1) wi(1) ii(0) . i 0)
fori=1,....r—1, j=0,...,r—1 and [ =0,...,j — 1.

Then (33) immediately implies (30) and this finishes the
proof. O

The derivatives of z = z,_1 1 are given by (30) fori =r —1
as

D) =21 11 (1) +F’j’_l(t),

By definition, f’;*](t) depends on the derivatives of z,_
and z,_11 = z up to order j — 1. The dependencies on

2,...,2Y~1) may be immediately resolved by applying the same



formula again, thus 7z depends on z,_11,...,2—1,j+1 and on

; (=1
ir—2,1,3r—=2,15--- ,Zr_2’

. (j=1)
Lr—21y--- ,Zr_2’1

ure 7.

- Applying (30) in a recursive way to

we obtain dependencies as depicted in Fig-

6.2. Internal dynamics

In the following we restrict ourselves to a subclass of sys-
tems (4) which are linear up to the influence of an operator T
which may enter nonlinearly, but is bounded whenever y is
bounded:

Y() = iRiy(i_l)(f) + (A0, T3, ) () +Tu(2),
i=1

Ying =2 €#7=([=h,0] = R™),

(35)
where h >0, f € €(R? xR? — R™), d € L (R>9 — RP) is
a disturbance, I € Gl,,(R) is the high-frequency gain matrix
and T : €([—h,) = R™)" = £~ (R>0 — R?) is an operator
with the properties b) and c) described in Section 2, and the

following (stronger) replacement of a):

a’) for all ¢; > O there exists ¢; > 0 such that for all
C17"'7CI’ E%([_haw) _>Rm) :

sup [|T(81,-, &)(0)] < e

t€[0,00)

sup [[Gi(1)[| <er =

t€[—h,eo)

We like to stress that the class (35) includes finite- and infinite-
dimensional linear systems as well as nonlinear systems, as dis-
cussed in Section 2, provided that the latter satisfy that g; is
linear, g; is constant and x in (8) depends only on ||y(s)||. In
particular, it contains the system classes discussed in [9, 15, 16]
and the nonlinear systems in [20] provided that the internal dy-
namics are input-to-state stable.

We show that, if =2 or r = 3, the composition of (35) with
the cascade of funnel observers, where I'; = I is invertible, has
again relative degree r and stable internal dynamics in the sense
that it can be rewritten as

Z(’) (l)

F(d(1),T(z,2,...,2"")(1)) +Tu(r),

where T is an operator with the properties a)—c).

Theorem 6.2. Consider a system (35) with r € {2,3}, y0 €
W1 ([~h,0] — R™) and assume that T > 0. Further con-
sider the cascade of funnel observers (28), (29) with ¢; € D,
such that

@i(0)[lzi-1,1(0) =2 | < 1,

where 291 =y and g;; = q; > 0, p;; = p; > 0 are such
that (12) is satisfied for corresponding matrices A, P,Q for all
i=1,....r—1, j=1,...,r. Moreover, assume that Ii=Te
R™™ j=1,...,r—1, such that T > 0 and,

ifr=>3then I-TT'=(I-TT"")" >0.  (36)
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Then the conjunction of (35) and (28) with input u and out-
put 7 :=z,_1,1 can be equivalently written as

) = F(d(0),T(z,2,...,2" D) (0)) +Tu(t), 2(0)=2

:erl,h

(37)
for d(t) = (9r1(0).9r1 (1), 93 (0) " € Z=(Ro =
R"), some F € €(R" x R — R™) and an operator T :
E([—h,0) — R")" — £ (Rsg — RI) which satisfies the

loc
properties a)—c) as in Section 2. Furthermore, for any solution

of (28), (35) we have (32) and the derivatives of the observer
states satisfy (30).

Proof. Step 1: We start with several transformations of the error
dynamics between two successive systems.

Step la: Define v; j :=z; 1 j—zjfori=2,...,r—1 and
j=1,...,r. Then

Vi1 (t) = vip (1) = (q1 4 piki(r))vii (1)
+ (g1 + piki1 (1)) vie11 (1),

Vi1 () =i (t) — (Qr—l +pr71ki(t))vi,l (1)
+ (gr—1+ pr—1ki—1 (1)) vie1,1 (1),
‘}i,r(t) = _(Qr+prki(t))vi,1(t) + (qr+prk,-_1(t))v,»_1$1(t).

Step 1b: Defining ey ;(t) :=yU=D(r) —z1 j(t) for j=1,...,r —
land ey (1) ;= yU"~D(r) =TT 'z ,(r) we obtain

é11(t) =ei2(t) — (g1 + piki(r))er (1),

é1r-2(t) = e1p—1(t) = (qr—2+ praki (1)) er1(2),
ér—1(t) = €10 (t) = (qr—1 + pr—1ki (1)) 1,1 (1)
+ (T =Dz, (1),
é1,(t) = =TT (g, + pki(t))er 1 (2)

+ Y R0+ £(d0), 703" )(0).

i=1

Set v 1(t) := e1,1(t) and ¥(¢) := ¥/_ | v;1(¢), then we may de-
fine vy ;(t) :=e1 j(t) — X3_; R, j1xr17%(¢) and obtain
Vi () =via(t) = (g1 + piki (1)) vi,1 (£) + Re3(1),
vi2(t) =vis(t) — (f]2 + 2k (l))Vl,l(f) +R,_17(t),

Vir—2(t) =vi,—1(t) — (Qr72 + pr—2ky (I))Vl,l (t) +R3v(t),
\'/17r,1(t) = Vl"r(t) — (qr,1 + pr—1ki (I))VH(I) + Ryi(1)
+ (Fle —I)Zl,r(t)a
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-2 | &iaq Zr—j+13 r—J2

Figure 7: Dependency of Z) on the observer states. Note that Z—j-11 =201 =yforj=r—1

Vi(t) = *Ff_l(qﬂrl?rkl( 1)via(t) +Riv(7)
+ZR( )= 0(0)
+f(d), @).

Now we observe that

T(y,y,.-

y(t) —ﬁ(l) :y(t) —Vlﬁl(l) —V271(l) —... —v,_lﬁl(t)
=y(t) - (Y(t) —Zl,l(f)) - (Zl,l(f) —Z2,1(f))
- (erz,l(t) _erl,l(f)) :erl,l(t)

=z(t).

Furthermore,

2ty =2V () —

r=2 ,
Y (4) [(greict + preiciki () v1,1(1)]
i=0

and
z,1(1) = y(1) = vi1 () = 2(t) +9(t) —vi1,1(2) +Zv,1
hence
210 =200+ F, a0
—}?gH@FH+nqqmmwumy

Step Ic: Define w; j(t) :=v; j(t) fori=2,...
1,...,rand

,F—land j=

wi (1) == vi.(1),

Zr}l

Wi—i(t) ==vi—
J i

L@

[ Gr—i—1 + pr—ic1ki (£))vi1(2)]

— 1, where G :=

+GZV11

for j=1,....r (I-TT~"); in particular we

have

wii(t) =via(t
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Y wit
Wl,l(t) = W172(t) —1r! (Ch + p1ki (l)) (Wlﬁl(l‘) — GW([))
+Rwi 1 (t) +RIT 1 (r),

Wwia(t) =wi3(t) =TT (q2+ paki (t)) (wia (1) —
+Re—1wi 1 () + R TT (1),

Withw(t) := (t) we find

GW(1))

Wip—a(t) =wi—1(t) =TT (g2 + proaki (1)) (w11 () — GWW(2))
+Rywy 1 (1) + RTThio(r),

Wi 1 (t) = wi,(t) —TT! (qr—1+ pr—iki (1)) (w11 (1) —
+ Rywy 1 (£) + RoTT (1) — G2~V (1),

GW(1))

W17r(l‘) = 71—‘1:‘_1 (qr +prk1 (I)) (W]ﬂy] (l‘) — GW(I‘))
+R1W1,1(t)+R1Ff‘71W(I)
+ iRizU*”(t) +£(d(), T(3,9,-... ")),
i=1

1

4O = o w0 - GR)
(38a)
and
Wit (1) = win(t) — (g1 + prki(t))wia (1)
+ (g1 + piki-1 (7)) wi-1,1(?) ;
——
=(wi1()-Gw(0)) ifi=2
Wir—1(t) = Wiy (t) = (qr—1 4 Pr—1ki(t) ) wi 1 (r)
+ (gr—1+ pro1ki-1 (1)) wi—1,1(t) ;
N—_——

=(wii()-Gw()) ifi=2
Wir(t) = —(gr + prki(t)) wia (t)

+ (qr+ prki—1(1)) wi-1,1(7) ’
——
=(wi1()-Gw() ifi=2
1
k,'l = .
O = eGP O
(38b)
fori=2,....,r—1.

Step 2: We define the operator T : €'([—h,o0) — R™)" —

£ (Rsp — RY), where § = (r — 1)rm + r, (essentially) as the

loc



solution operator of (38), i.e., for §i,...,§ € €([—h,) — R™)
letw;;:[0,B8) = R™, B € (0,|, be the unique maximal solution
of 38) forz = {1,z =&, ...,2" Y = £, with appropriate initial
values according to the transformation which leads to (38), and
define

T G () = (wia(t),..

-,Wr—l,r(l),kl(f)>---

7W1.r(t)7w2,l(t)a

K(0)", re[0.p).
D in (38a)can be replaced by w; ;
()er() +IT 4% and the
differential equations (38). Furthermore the operator T de-
pends on the disturbance d and several initial values. In
the following we show that T is well-defined, i.e., B = oo,
and has the properties a)-c) as defined in Section 2. Note
that (£, w11 (1), ..., w1 (t), w21 (),...,wr—1 (1)) € P forallt €
[0,B), with 2 as defined in (39), and the closure of the graph
of the solution (w1 1,..., Wi Wa1,...,Wr_1,) is not a compact
subset of 7.

Step 2a: First assume that {, ..., are bounded on [0, ).
We show that w; ; and k; are bounded as well. As the solu-
tion evolves in &, it is clear that wy | — GW, wa 1,...,W,_1| are
bounded, and thus also w; ; is bounded. Since y =z 4wy 1 +
[T~ ', it follows that y is bounded and hence T'(y, y, ...,y 1)
is bounded by property a’). Boundedness of d and continuity
of f then imply that f(d(-),T(3,y,...,y"~V)(:)) is bounded.

Now letw; := (w/|,...,w/},) T, then it follows from (38) that

r—

5%
,Z(rfl) using y(l)

We stress that y,y,...
and z,z,...

4
ke
=
=
I
Q
%1
+
oo}
PN

1 (t)PW,',L] (l‘) +Bi(t)

(40)
fori=3,...,r—1, where A is as in the proof of Theorem 4.1,
B; is some suitable bounded function and

Prln
Recall that AT P+ PA+ O = 0, where P > 0 and O > 0, and that

PTP=[ply,0,....0, p:=(Pij—PpPy'P})>0.

We consider the cases » = 2 and r = 3 separately.
Step 2b: Assume that » = 2. Then (40) reads

(r)

Using the Lyapunov function V(w;) = w{ Pw; one can then
show, as in the proof of Theorem 4.1, that w; and k; are
bounded on [0, 3).

~

wi(t) =Aw —kl(t)Prf‘_lel(l‘)-l-Bl(t).

14

Step 2c¢: Assume that r = 3. Then (40) reads

Aw (Z‘)—kl(l‘)Prf‘il(lel(t)—GW271(I))+Bl(I),
Aws (1) — ko (1) Pwa (1)
+ ki (I)P(lel(t) — GW271(I)) + B ().

From condition (36) we obtain that G = G' > 0, hence
GIT~! > 0 has a unique matrix square root. Let K :=
I, ® (Gl“f“_l)% > 0 (recall the Kronecker product ® from
the proof of Theorem 4.1) and define the Lyapunov function
V(wi,wa) :=w] Pwi +w] KTPKw, for wi,wy € R3. Then,
forallr € [0,8),

SV (w1 (6),w2(0)

=wi(r) (ATP+PA)wi (1)
—2ky (t)w1 (t) " PPTT ! (wy1(r) — Gw(t))
+2wi (1) By () + wa(t) T (ATKTPK + KT PKA)w (1)
— 2y (t)wa (1) "K " PKPwy (1) +2wa (1) K PKB;(t)
+2k1 ()wo(t) 'K TPKP (w11 (1) — Gwa,i (1)),

and since it is easy to see that A and K commute and
KTPKP = pl[l,,0,...,0]TGI'T~!, it follows that, for some pos-
itive ap, 0, M, M,

SV (wi(0),ma(r))
< —aullwi(1)]|* = oa|lwa (1) [I?
= 2ki(6) (pwl TT " = w3, GTT ) (w10 (1) = Gz (1)
+Mi|[wi ()| + Ma|[wa (1)
:*061IIWl(t)||2*azIIWz(t)||2+M1||W1(t)\I+M2||W2(t)H
ki (1) (w11 — Gwa1) TT (w1 (1) — Gwai (1))
< — oy ||lwi (0)[|* = o llwa (1) ||* + Mi[[wi (1) | + Ma [ w2 (1)

As in the proof of Theorem 4.1 we may now show that w; and
wy are bounded and that k; and k; are bounded as well on [0, ).

Step 2d: We show B = oo (not assuming boundedness of
C1,...,&). Assume that B < . Then {,...,, are bounded
on [0,B) and hence w; ; and k; are bounded by Steps 4a—4c.
Therefore, it follows that the closure of the graph of the solu-
tion (Wi,1,..., Wi Wa1,...,W,—1,) is a compact subset of 2,
a contradiction, thus f§ = .

Step 2e: It remains to show that 7" has the properties a)—c).
Properties b) and c) are clear and property a) is an immediate
consequence of Steps 4a—4c.

Step 3: By Step 2 we may write the conjunction of (35)
and (28) with input u# and output z = z,_1 1 in the form

r—1

Lu(r) + ;) (Y [(Gr—j + Prsbr—1 () wp—1.1 (1)]

" (1)



r—1
Wro1r) €Rso X R™ | @(1) |wi,i =G Y win|| <1, @i(t)[winll <1,i=2,...,r—1

2 =3 (w1, Wi Wi, o)
i=2
and hence behavior. Furthermore, the interconnection of the system with

) = F(d(1),T(z,2,...,2" D)) +Tu(r)

for d(t) == (@r1(1), @ 1(2),-., 0" V(1) € L=(Rso —
R"), some F € €(R” x R? — R™) and the operator 7 :
€ ([—h,0) = R™)" — £> (R>9 — RY) which satisfies the
properties a)—c). It is clear that any solution of (28), (35) satis-
fies the properties (30) and (32). ]

00

Remark 6.3. A careful inspection of the proof of Theorem 6.2
reveals that in order for Theorem 6.2 to holds true for r > 4 we
would need to show that (40) has bounded solutions. However,
we were only able to find suitable Lyapunov functions in the
cases r = 2 and r = 3, thus the proof for » > 4 remains an open
problem.

An immediate application of Theorem 6.2 is the following:
Trajectory tracking with prescribed transient behavior of the
tracking error for single-input, single-output systems (35) (i.e.,
m = 1) of relative degree r = 2 is possible without having to
calculate the derivative of the output. To achieve this we may
apply the funnel controller introduced in [10] in conjunction
with the funnel observer (1) (the cascade consists only of one
observer in this case). Using the assumptions in Theorem 6.2
we obtain that the assumptions of [10, Thm. 3.1] are satisfied
when applied to the observer-plant system with output z and
hence we obtain tracking of any yr € #>*(R>¢ — R) such
that, for given ¢ € P,

1

Je>0Vr>0: ||z(t) — yeet]| < @(r) ' —&.

Combining this with (32) we obtain

ly(1) = yretll < @(1) " + @1 (1) ! —e .

7. Conclusion

In the present paper we have introduced the funnel observer
as a novel and simple adaptive high-gain observer. We showed
that the funnel observer is feasible for a large class of nonlinear
systems described by functional differential equations which
have a known strict relative degree, the internal dynamics map
bounded signals to bounded signals, and the operators involved
are sufficiently smooth to guarantee local maximal existence
of solutions. The proposed adaptation scheme for the observer
gain is simple and non-monotone, and we showed that it guar-
antees prescribed transient behavior of the observation error.
Using a cascade of funnel observers, we proved that it is pos-
sible to obtain an artificial output with explicitly known deriva-
tives which tracks the system output with prescribed transient
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the observer cascade is shown to have stable internal dynamics
provided the relative degree does not exceed three.

The results that we obtained in Section 6 suggest that the
funnel observer is a suitable tool for resolving the problem of
higher relative degree in stabilization and tracking problems. If
a system has a higher relative degree and derivatives of the out-
put are not available, then a filter or observer is frequently used
to obtain approximations of the output derivatives, see the sur-
vey [12] and the references therein. As explained there, the con-
cept of funnel control is usually combined with a back-stepping
procedure to overcome the higher relative degree, which how-
ever complicates the feedback structure. However, in the last
sentence of [12, Sec. 6] it is conjectured that the combination
of a high-gain observer with a funnel-type controller might be
beneficial for tracking of higher relative degree systems. In Sec-
tion 6 we have shown that the funnel observer may be used to
achieve this for systems with relative degree two. Systems of
higher relative degree are the topic of future research.
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