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Abstract

We consider linear time-invariant differential-algebraic systems which are not necessarily regular. The fol-
lowing question is addressed: When does an (asymptotic) observer which is realized by an ODE system exist?
In our main result we characterize the existence of such observers by means of a simple criterion on the system
matrices. To be specific, we show that an ODE observer exists if, and only if, the completely controllable part of
the system is impulse observable. Extending the observer design from earlier works we provide a procedure for
the construction of (asymptotic) ODE observers.
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1 Introduction
In our recent work Berger and Reis (2017) we have considered observer design for linear systems described by
differential-algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t)+Bu(t)

y(t) =Cx(t)+Du(t) ,
(1)

which are not necessarily regular in the sense that they may be under- or overdetermined. This approach is based
on the observer notions in Valcher and Willems (1999), where equivalent criteria for the existence of (exact,
asymptotic) observers have been presented. It has been shown in Berger and Reis (2017) that, with the same
criteria as in Valcher and Willems (1999), DAE systems admit (exact, asymptotic) observers which are again
DAEs.

In the present article, we address the question when observers for DAE systems can be constructed which are
described by ordinary differential equations (ODEs). This observer type is preferable from a practical point of
view, since unconstrained observer dynamics do not involve derivatives of the inputs and outputs, which would
lead to an ill-posed problem. Another advantage of ODE observers is that they can be initialized without any
further restrictions. The aforementioned problem has been well investigated already several decades ago. In El-
Tohami, Lovass-Nagy and Mukundan (1983) asymptotic ODE observers are constructed using a singular value
decomposition of the matrix E; a similar method has been used in Fahmy and O’Reilly (1989). The construction
developed in Verhaegen and Van Dooren (1986) is based on the staircase form and generalized Sylvester equati-
ons, while the method in Shafai and Carroll (1987) uses generalized inverses. All the aforementioned approaches
involve different, quite restrictive assumptions on the system (1) (for instance, El-Tohami et al. (1983) require
restrictive consistency conditions) and additionally regularity of the matrix pencil sE−A and (complete) observa-
bility is required. These assumptions have been relaxed in Darouach and Boutayeb (1995), where asymptotic ODE
observers are constructed under the assumptions of impulse observability and behavioral detectability; regularity
of sE−A is not required. While behavioral detectability is clearly necessary for the existence of asymptotic ODE
observers, impulse observability is not. A weaker (but still not necessary) condition than impulse observability has
been derived in Müller and Hou (1993); this condition is a rank condition involving E,A,B,C and it is notable that
in this work a condition which depends on the matrix B appears for the first time. We will illustrate in Section 3
that indeed the existence of ODE observers depends on the choice of B. The result of Müller and Hou (1993)
has again been improved in Hou and Müller (1999b), where so called causal detectability has been derived as
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an equivalent condition for the existence of asymptotic ODE observers. However, the proof given in (Hou and
Müller, 1999b, Thm. 5) seems a little bit incomplete, as at the crucial point it is simply referred to “similar ar-
guments as in” another result of another paper by the authors. Moreover, the causal detectability condition is not
easy to check since the test provided in Hou and Müller (1999b) relies on a certain decomposition resembling the
Kalman decomposition and the construction procedure is quite involved (using procedures from two other papers
by the authors). More recently, in Darouach (2014) the problem has been considered again, but regular sE−A and
complete controllability is required.

In the present paper, we show that for general linear DAE systems, an ODE observer exists if, and only if, the
completely controllable part of the system is impulse observable; a physically meaningful condition. The observer
is moreover asymptotic if, and only if, the DAE system is additionally behaviorally detectable. We also provide
simple alternative characterizations in terms of subspace intersections involving the augmented Wong sequences.
These conditions are formulated in terms of the system matrices E,A,B,C and are easy to check using MATLAB
for instance; a MATLAB function for the computation of the required pre-image is given in Berger and Trenn
(2012). We like to stress that our proofs involve completely different methods than the above mentioned earlier
works. Furthermore, we provide a construction procedure for the observer in each case, which extends the method
for impulse observable systems presented in Darouach and Boutayeb (1995).

As a first step towards our main result we show, using a simple argument, that the existence of ODE observers
is equivalent to the existence of observers with index at most one. The latter class has already been introduced
in Nikoukhah (1998) for ODE systems, generalized to semi-explicit index-1 DAEs in Åslund and Frisk (2006),
and considered for nonlinear descriptor systems in Labisch and Konigorski (2014), see also the references therein.

Throughout this article, we use the following notation: For K ∈ {R,C} and A ∈ Kn×m, we use the symbols
imK A, kerK A and rkK A for the image, kernel and rank of A, resp. The subscripts are omitted when they are clear
from context. The group of invertible real matrices of size n× n is denoted by Gln(R), and ‖x‖ is the Euclidean
norm of x ∈ Rn. By N we denote the set of natural numbers including zero. The symbols C+ and C+ denote the
sets of complex numbers with positive and nonnegative real part, resp.

Further, f |I is the restriction of a function f : R→ Rn to I ⊆ R and ḟ ( f (i)) is the (i-th) weak derivative of f ,
see (Adams, 1975, Chap. 1). We further use the following function spaces in this article:

C ∞(R;Rn) set of infinitely-times continuously differentiable Rn-valued functions
L 1

loc(R;Rn) set of locally (Lebesgue) integrable Rn-valued functions

W 1,1
loc (R;Rn) set of locally integrable Rn-valued functions with locally integrable weak derivative ḟ

2 Preliminaries
We study linear time-invariant DAE systems (1) where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n, D ∈ Rp×m. Sys-
tems of that type are also called descriptor systems. The set of systems (1) is denoted by Σl,n,m,p and we write
[E,A,B,C,D] ∈ Σl,n,m,p. DAE systems of the form (1) naturally occur when modeling dynamical systems sub-
ject to algebraic constraints, e.g. chemical process systems (see Kumar and Daoutidis (1999)), mechanical systems
(see Simeon (2013); Simeon, Führer and Rentrop (1991)), and modified nodal analysis models of electrical circuits
(see Riaza (2008)); see also the textbooks Kunkel and Mehrmann (2006); Lamour, März and Tischendorf (2013).
In the present paper we do not assume that the matrix pencil sE−A is regular, which would mean that l = n and
det(sE−A) is not the zero polynomial.

The functions u : R→ Rm and y : R→ Rp are called input and output of the system, resp. A trajectory
(x,u,y) : R→ Rn×Rm×Rp is said to be a solution of (1), if Ex ∈ W 1,1

loc (R;Rl) and (x,u,y) solves (1) in the
weak sense. Recall that Ex ∈ W 1,1

loc (R;Rl) implies continuity of Ex (though x itself may be discontinuous). The
behavior B[E,A,B,C,D] of (1) is defined as the set of all solutions (x,u,y) : R→ Rn×Rm×Rp of (1). Based on
this behavior, DAE systems have been studied in detail e.g. in Berger (2014). For the analysis of DAE systems
in Σl,n,m,p we assume that the states, inputs and outputs of the system are fixed a priori by the designer. This is
different from other approaches based on the behavioral setting, cf. Berger and Van Dooren (2015); Campbell,
Kunkel and Mehrmann (2012); Valcher and Willems (1999).

We consider different notions of controllability and observability for DAE systems. For a rigorous time domain
definition and a detailed discussion we refer to the surveys Berger and Reis (2013); Berger, Reis and Trenn (2017).
In the following we state their algebraic characterizations.

Proposition 2.1. A system [E,A,B,C,D] ∈ Σl,n,m,p is
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(i) completely controllable if, and only if, imC(λE−A)+ imC B = imC E + imC B = imC E + imC A+ imC B for
all λ ∈ C.

(ii) impulse observable if, and only if, kerE ∩A−1(imE)∩kerC = {0}.

(iii) completely observable if, and only if, kerE ∩kerC = {0} and kerC(λE−A)∩kerCC = {0} for all λ ∈ C.

(iv) behaviorally detectable if, and only if, kerC(λE−A)∩kerCC = {0} for all λ ∈ C+.

We also need the Kalman controllability decomposition derived in Berger and Trenn (2014).

Theorem 2.2. For any [E,A,B,C,D] ∈ Σl,n,m,p there exist T ∈Gln(R), S ∈Gll(R) such that [SET,SAT,SB,CT,D]
is in Kalman controllability decomposition (KCD), i.e.,

S(sE−A)T =

sE11−A11 sE12−A12 sE13−A13
0 sE22−A22 sE23−A23
0 0 sE33−A33

 ,
SB =

B1
0
0

 , CT =
[
C1 C2 C3

]
,

(2)

where

(i) [E11,A11,B1,C1,D] ∈ Σl1,n1,m,p with l1 = rk[E11,B1]≤ n1 +m is completely controllable,

(ii) [E22,A22,0,C2,D] ∈ Σl2,n2,m,p with l2 = n2 and E22 is invertible,

(iii) [E33,A33,0,C3,D] ∈ Σl3,n3,m,p with l3 ≥ n3 satisfies rkC(λE33−A33) = n3 for all λ ∈ C.

To introduce the concept of an (asymptotic) observer for a DAE system, we first need to define acceptors.

Definition 2.3. Consider a system [E,A,B,C,D] ∈ Σl,n,m,p. A system [Eo,Ao,Bo,Co,Do] ∈ Σlo,no,m+p,po is called
an acceptor for [E,A,B,C,D], if for all (x,u,y) ∈B[E,A,B,C,D] there exist xo ∈L 1

loc(R;Rno), z ∈L 1
loc(R;Rpo) such

that
(xo,(

u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do].

The concept of an acceptor has been first introduced by Valcher and Willems (1999) for behaviors. Loosely
speaking, an acceptor absorbs the external signals of a given system without influencing the system. A special class
of acceptors is that of observers. We use the definition of observers of DAE systems from Berger and Reis (2017).
Note that the following definition has also been stated for behavioral systems in Valcher and Willems (1999).

Definition 2.4. Consider a system [E,A,B,C,D] ∈ Σl,n,m,p. Then a system [Eo,Ao,Bo,Co,Do] ∈ Σlo,no,m+p,n is
called

a) an observer for [E,A,B,C,D], if it is an acceptor for [E,A,B,C,D], and

∀(x,u,y,xo,z) ∈L 1
loc(R;Rn×Rm×Rp×Rno ×Rn) :(

(x,u,y) ∈B[E,A,B,C,D] ∧ (xo,(
u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do] ∧ Ez(0) = Ex(0)

)
=⇒ z = x.

b) an asymptotic observer for [E,A,B,C,D], if it is an observer for [E,A,B,C,D], and

∀(x,u,y,xo,z) ∈L 1
loc(R;Rn×Rm×Rp×Rno ×Rn) :(

(x,u,y) ∈B[E,A,B,C,D] ∧ (xo,(
u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do]

)
=⇒ lim

t→∞
esssup[t,∞) ‖z− x‖= 0,

where “esssup” denotes the essential supremum.

The definition of an observer means that once the observer matches the state via Ez(0) = Ex(0), it does not
lose track, i.e., the whole trajectories have to coincide (z = x). Note that, by time-invariance, the condition Ez(0) =
Ex(0) may be replaced by the existence of some t ∈ R such that Ez(t) = Ex(t).
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In order to define index-1 observers we need to introduce the notion of the index: The index ν ∈N of a regular
matrix pencil sE−A is defined via its (quasi-)Weierstraß form, cf. Berger, Ilchmann and Trenn (2012); Gantmacher
(1959); Kunkel and Mehrmann (2006); Lamour et al. (2013): if for some S,T ∈Gln(R)

S(sE−A)T =

[
sIr− J 0

0 sN− In−r

]
, N nilpotent,

then ν :=
{

0, if r = n,
min

{
k ∈ N

∣∣ Nk = 0
}
, if r < n.

The index is independent of the choice of S,T and can be computed e.g. via the Wong sequences (defined below)
corresponding to sE−A as shown in Berger et al. (2012).

Definition 2.5. Let a system [E,A,B,C,D] ∈ Σl,n,m,p be given and let [Eo,Ao,Bo,Co,Do] ∈ Σlo,no,m+p,n be an ob-
server for [E,A,B,C,D]. Then we call [Eo,Ao,Bo,Co,Do]

a) regular, if lo = no and sEo−Ao is regular;

b) an index-1 observer, if it is regular and the index of sEo−Ao is at most one;

c) an ODE observer, if Eo = Ino .

Clearly, every ODE observer is an index-1 observer. The following result highlights some advantages of index-
1 observers. Its proof is straightforward and therefore omitted.

Proposition 2.6. Let a system [E,A,B,C,D] ∈ Σl,n,m,p be given and let [Eo,Ao,Bo,Co,Do] ∈ Σlo,no,m+p,n be an
observer for [E,A,B,C,D]. Then the following two statements are equivalent:

(i) [Eo,Ao,Bo,Co,Do] is regular and freely initializable in the sense that for all (x,u,y) ∈B[E,A,B,C,D] and x0
o ∈

Rno there exist xo ∈L 1
loc(R;Rno), z ∈L 1

loc(R;Rn) such that

(xo,(
u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do] and Eoxo(0) = Eox0

o.

(ii) [Eo,Ao,Bo,Co,Do] is an index-1 observer.

In the following we show that the existence of an index-1 observer is equivalent to the existence of an ODE
observer.

Proposition 2.7. Let a system [E,A,B,C,D] ∈ Σl,n,m,p be given. Then the following two statements are equivalent.

(i) There exists an (asymptotic) index-1 observer for [E,A,B,C,D].

(ii) There exists an (asymptotic) ODE observer for [E,A,B,C,D].

Proof. It suffices to show (i)⇒(ii): Assume that [Eo,Ao,Bo,Co,Do] ∈ Σlo,no,m+p,n is an (asymptotic) index-1 ob-

server for [E,A,B,C,D]. Then there exist S ∈ Gllo(R), T ∈ Glno(R) such that S(sEo −Ao)T =
[

sIr−J 0
0 −Ino−r

]
,

SBo =
[

Bo,1
Bo,2

]
, CoT = [Co,1,Co,1], and hence (xo,(

u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do] with ( x1

x2 ) = T−1xo if, and only if,

ẋ1 = Jx1 +Bo,1 (
u
y ) ,

0 = x2 +Bo,2 (
u
y ) ,

z =Co,1x1 +Co,2x2 +Do (
u
y ) ,

which is equivalent to
ẋ1 = Jx1 +Bo,1 (

u
y ) ,

z =Co,1x1 +(Do−Co,2Bo,2)(
u
y ) .

(3)

Therefore, [Ir,J,Bo,1,Co,1,Do−Co,2Bo,2] is an (asymptotic) ODE observer for [E,A,B,C,D].
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In order to geometrically characterize the existence of an (asymptotic) ODE observer we use the augmented
Wong sequences (see Berger and Reis (2013); Berger and Reis (2015); Berger and Trenn (2014) and the references
therein) which are defined as follows for [E,A,B,C,D] ∈ Σl,n,m,p:

V 0
[E,A,B] := Rn, V i+1

[E,A,B] := A−1(EV i
[E,A,B]+ imB),

W 0
[E,A,B] := {0}, W i+1

[E,A,B] := E−1(AW i
[E,A,B]+ imB),

V ∗[E,A,B] :=
⋂
i∈N

V i
[E,A,B], W ∗

[E,A,B] :=
⋃
i∈N

W i
[E,A,B].

(4)

Recall that, for some matrix M ∈ Rl×n, MS =
{

x ∈ Rl
∣∣ x ∈S

}
denotes the image of S ⊆ Rn under M and

M−1S = { x ∈ Rn |Mx ∈S } denotes the preimage of S ⊆ Rl under M.
The sequences (V i

[E,A,B])i∈N and (W i
[E,A,B])i∈N are called augmented Wong sequences since they are based on

the Wong sequences (B = 0) used in Berger et al. (2012); Berger and Trenn (2012); Berger and Trenn (2013) and
which have their origin in Wong (1974) who was the first using both sequences (with B = 0) for the analysis of
matrix pencils.

As shown in Berger and Reis (2013) the augmented Wong sequences allow a characterization of complete
controllability as follows.

Lemma 2.8. [E,A,B,C,D] ∈ Σl,n,m,p is completely controllable if, and only if,

V ∗[E,A,B]∩W ∗
[E,A,B] = Rn.

Remark 2.9. The augmented Wong sequences are related to the reachable space of a system [E,A,B,C,D] ∈
Σl,n,m,p, which is defined as

R[E,A,B] :=
{

x f ∈ Rn
∣∣∣∣ ∃ t f > 0 ∃(x,u,y) ∈B[E,A,B,C,D] :

x ∈W 1,1
loc (R;Rn) ∧ x(0) = 0 ∧ x(t f ) = x f

}
,

cf. also Berger and Reis (2013). In Berger and Reis (2013) it is shown that

R[E,A,B] = V ∗[E,A,B]∩W ∗
[E,A,B],

hence complete controllability can also be characterized by the intuitive condition R[E,A,B] = Rn.

3 Main result
In this section we state and prove a characterization of existence of (asymptotic) ODE and index-1 observers.
Before this result is shown, we advance to simple examples. We start with an example of a system for which there
does not exist any ODE observer (and thus, by Proposition 2.7, there does neither exist any index-1 observer).

Example 3.1. Consider the system

[E,A,B,C,D] =

[[
0 1
0 0

]
,

[
1 0
0 1

]
,

[
0
1

]
,
[
0 1

]
,0
]
∈ Σ2,2,1,1.

Then we have x2 = y =−u and x1 = ẏ =−u̇. Consequently, an observer [Eo,Ao,Bo,Co,Do] has to take derivatives
of y or u in order to satisfy Definition 2.4 a). Hence, by Proposition 2.7, the construction of ODE or index-1
observers for [E,A,B,C,D] is impossible.
We like to stress that this example also shows that the existence of ODE observers depends on the choice of the
matrix B, unlike the existence of DAE observers, which is independent of B, see Berger and Reis (2017). If we
choose B = 0, then the system only has the trivial solution x1 = x2 = 0 and it is easy to find an ODE observer. Also
note that the system is not impulse observable and nevertheless an ODE observer exists in the case B = 0.

The subsequent example shows that there exist systems with higher index which admit the construction of ODE
observers.
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Example 3.2. Consider the system

[E,A,B,C,D] =

0 1 0
0 0 1
0 0 0

 ,
1 0 0

0 1 0
0 0 1

 ,
0

0
1

 ,[1 0 0
]
,0

 ∈ Σ3,3,1,1.

We show that the ODE system

[Eo,Ao,Bo,Co,Do] =

[1 0
0 1

]
,

[
0 −1
1 −2

]
,

[
−1 1
−2 0

]
,

0 0
1 0
0 1

 ,
0 1

0 0
0 0


given by

ẋo1 = − xo2−u+ y, z1 =y,

ẋo2 =xo1−2xo2−2u, z2 =xo1,

z3 =xo2

is an asymptotic observer for [E,A,B,C,D]. Denoting the states of [E,A,B,C,D] by x1, x2 and x3, we obtain
z1 = y = x1 and, for e2 = z2− x2 and e3 = z3− x3,

ė2 =−xo2−u+ y− x1 =−z3−u =−e3,

ė3 = xo1−2xo2−2u− x2 = e2−2e3.

Therefore, we have (
ė2
ė3

)
=

[
0 −1
1 −2

](
e2
e3

)
and since the matrix

[ 0 −1
1 −2

]
only has the eigenvalue −1, it follows that e2(t)→ 0 and e3(t)→ 0 for t → ∞. This

shows that Definition 2.4 b) is satisfied.

Now we present the main result of the present paper.

Theorem 3.3. Let a system [E,A,B,C,D] ∈ Σl,n,m,p be given. Then the following statements are equivalent:

1) There exists an ODE observer for [E,A,B,C,D].

2) There exists an index-1 observer for [E,A,B,C,D].

3) For some (and hence any) KCD (2) the completely controllable part [E11,A11,B1,C1,D] of [E,A,B,C,D] is
impulse observable.

4) The augmented Wong sequences in (4) satisfy

V ∗[E,A,B]∩W ∗
[E,A,B]∩kerE ∩A−1

(
E
(
V ∗[E,A,B]∩W ∗

[E,A,B]

))
∩kerC = {0}. (5)

Furthermore, the following statements are equivalent:

1’) There exists an asymptotic ODE observer for [E,A,B,C,D].

2’) There exists an asymptotic index-1 observer for [E,A,B,C,D].

3’) [E,A,B,C,D] is behaviorally detectable and for some (and hence any) KCD (2) we have that
[E11,A11,B1,C1,D] is impulse observable.

4’) [E,A,B,C,D] is behaviorally detectable and the augmented Wong sequences in (4) satisfy (5).

Proof. By Proposition 2.7 we have 1)⇔ 2).
3)⇒ 2): Since [E11,A11,B1,C1,D] is impulse observable and E22 in (2) is invertible it follows that

[Ẽ, Ã, B̃,C̃,D] :=
[[

E11 E12
0 E22

]
,

[
A11 A12
0 A22

]
,

[
B1
0

]
, [C1,C2],D

]
∈ Σl1+l2,n1+n2,m,p (6)
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is impulse observable. Then (Berger and Reis, 2017, Thm. 3.8) implies that there exists an index-1 observer
[E1

o ,A
1
o,B

1
o,C

1
o ,D

1
o] ∈ Σlo,no,m+p,n1+n2 for [Ẽ, Ã, B̃,C̃,D]. Define

[Eo,Ao,Bo,Co,Do] :=
[

E1
o ,A

1
o,B

1
o,T

[
C1

o
0

]
,T
[

D1
o

0

]]
∈ Σlo,no,m+p,n,

where T is as in (2). Since the DAE d
dt E33x3 = A33x3 does only have the trivial solution, cf. Berger and Trenn

(2012), it follows that [Eo,Ao,Bo,Co,Do] is an observer for [E,A,B,C,D]. Since sE1
o −A1

o has index at most one, it
follows that [Eo,Ao,Bo,Co,Do] is an index-1 observer.

2)⇒ 3): Without loss of generality we may assume that [E,A,B,C,D] is in KCD (2). Consider the completely
controllable part [E11,A11,B1,C1,D] of [E,A,B,C,D]. By the Kalman observability decomposition, see (Berger
et al., 2017, Thm. 8.3), there exist S̃ ∈Gll1(R) and T̃ ∈Gln1(R) such that

[S̃E11T̃ , S̃A11T̃ , S̃B1,C1T̃ ] =

Ẽ11 Ẽ12 Ẽ13
0 Ẽ22 Ẽ23
0 0 Ẽ33

 ,
Ã11 Ã12 Ã13

0 Ã22 Ã23
0 0 Ã33

 ,
B̃1

B̃2
B̃3

 , [0,0,C̃3]

 , (7)

where Ẽi j, Ãi j ∈ Rri×q j , B̃i ∈ Rri×m for i, j = 1, . . . ,3, C̃3 ∈ Rp×q3 with

a) r1 ≤ q1 and rkC(λ Ẽ11− Ã11) = r1 for all λ ∈ C,

b) r2 = q2 and Ẽ22 is invertible,

c) [Ẽ33, Ã33, B̃3,C̃3,0] is completely observable.

Using the existence of an index-1 observer [Eo,Ao,Bo,Co,Do] ∈ Σlo,no,m+p,n for [E,A,B,C,D] we derive some
consequences for the form (7) and proceed in several steps.
Step 1: We consider the subsystem [Ẽ11, Ã11, B̃1,0,0] with property a). Using the quasi-Kronecker form (Berger
and Trenn, 2013, Cor. 2.3), which is an extension of the Kronecker canonical form as derived Gantmacher (1959),
we find V ∈Glr1(R),W ∈Glq1(R) such that

V (sẼ11− Ã11)W =

[
sEP−AP 0

0 sN− Ik

]
,

where EP,AP ∈ Rlp×nP , lP < nP (or lP = nP = 0), such that rkC(λEP−AP) = lP, rkEP = lP, and N ∈ Rk×k is
nilpotent. If nP > 0, then (Berger and Trenn, 2012, Thm. 3.2) implies existence of xP ∈ C ∞(R;RnP), xP 6= 0, with
xP(0) = 0 such that EPẋP(t) = APxP(t) for all t ∈ R. Then

x := T

T̃
(

WxP
0

)
0

 satisfies (x,0,0) ∈B[E,A,B,C,D].

Since (0,0,0) ∈ B[Eo,Ao,Bo,Co,Do] and [Eo,Ao,Bo,Co,Do] is an observer for [E,A,B,C,D] it follows that x = 0,
whence xP = 0, a contradiction. Therefore, nP = 0 and we may without loss of generality assume that

sẼ11− Ã11 = sN− Ir1 , N nilpotent. (8)

Step 2: We consider the subsystem [Ẽ33, Ã33, B̃3,C̃3,0] with property c). Choose W̃ ∈ Glr3(R),Ṽ ∈ Glq3(R) such
that

[W̃ Ẽ33Ṽ ,W̃ Ã33Ṽ ,C̃3Ṽ ] =

[[
Ik 0
0 0

]
,

[
J11 J12
J21 J22

]
, [C̃31,C̃32]

]
,

where k = rk Ẽ33, J11 ∈ Rk×k,J12 ∈ Rk×(q3−k),J21 ∈ R(r3−k)×k,J22 ∈ R(r3−k)×(q3−k),C̃31 ∈ Rp×k and C̃32 ∈
Rp×(q3−k). By complete observability due to c) we have ker Ẽ33∩kerC̃3 = {0}, which gives

ker
[

Ik 0
C̃31 C̃32

]
= {0},

thus rkC̃32 = q3− k.
Henceforth, without loss of generality we may assume that W̃ = Ir3 and Ṽ = Iq3 .

Step 3: We show that N = 0. If r1 = 0, then there is nothing to show. Assume that r1 > 0 and let ν ∈ N be
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such that Nν = 0 and Nν−1 6= 0. Since Ẽ22 is invertible and (8) holds, we may without loss of generality assume
that Ẽ22 = Ir2 and Ẽ12 = Ã12 = 0. If the latter is not satisfied it can always be achieved by a straightforward
transformation. Therefore, (7) takes the form

[S̃E11T̃ , S̃A11T̃ , S̃B1,C1T̃ ] =




N 0 Ẽ13 Ẽ14
0 Ir2 Ẽ23 Ẽ24
0 0 Ik 0
0 0 0 0

 ,


Ir1 0 Ã13 Ã14
0 Ã22 Ã23 Ã24
0 0 J11 J12
0 0 J21 J22

 ,


B̃1
B̃2
B̃3
B̃4

 , [0,0,C̃31,C̃32]

 . (9)

Step 3a: Since the observer [Eo,Ao,Bo,Co,Do] is index-1, we find that it does not differentiate the input and output
of the system [E,A,B,C,D], cf. also (3), that is

∀T > 0 ∃C(T )> 0 ∀ t ∈ [0,T ] ∀(xo,(
u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do]∩C ∞(R;Rno+m+p+n) :

‖z(t)‖ ≤C(T )
(
‖xo(0)‖+ max

0≤s≤t

∥∥∥( u(s)
y(s)

)∥∥∥) . (10)

In the following we relate the solutions of the system to those of the observer to show that the solutions cannot
contain derivatives of the input. We consider (x,u,y) ∈B[E,A,B,C,D] with the following properties:

(i) (x,u,y) ∈ C ∞(R;Rn+m+p),

(ii)
[

T̃−1 0
0 In2+n3

]
T−1x =

(
x̃
0

)
and x̃ = (x>1 , . . . ,x

>
4 )
> according to the partitioning in (9),

(iii) x̃(0) = 0 and u(0) = 0.

We define the following nonempty subset of B[E,A,B,C,D],

B[E,A,B,C,D] :=
{
(x,u,y) ∈B[E,A,B,C,D]

∣∣ (x,u,y) satisfies (i)–(iii)
}
.

Let (x,u,y) ∈B[E,A,B,C,D]. By Proposition 2.6 there exist xo ∈L 1
loc(R;Rno) and z ∈L 1

loc(R;Rn) such that

(xo,(
u
y ) ,z) ∈B[Eo,Ao,Bo,Co,Do] and Eoxo(0) = 0.

As sEo−Ao has index at most one it further follows that xo and z are smooth. By x(0) = 0 and u(0) = 0 it follows
that y(0) = 0, thus xo(0) = 0 (by the index-1 property) and z(0) = 0. We may now conclude from the definition of
an observer that z = x. Then using ẋ3 = J11x3 + J12x4 + B̃3u and y = C̃31x3 +C̃32x4 +Du we obtain

‖y(t)‖=
∥∥∥∥∫ t

0
C̃31eJ11(t−s)(J12x4(s)+ B̃3u(s)

)
ds +C̃32x4(t)+Du(t)

∥∥∥∥
≤
∫ T

0

∥∥∥C̃31eJ11(t−s)[J12, B̃3]
∥∥∥ ds max

0≤s≤t

∥∥∥( x4(s)
u(s)

)∥∥∥+‖[C̃32,D]‖
∥∥∥( x4(t)

u(t)

)∥∥∥
for all t ∈ [0,T ], where T > 0. Using this as well as z = x and xo(0) = 0 it then follows from (10) that

∀T > 0 ∃C(T )> 0 ∀(x,u,y) ∈B[E,A,B,C,D] ∀ t ∈ [0,T ] : ‖x(t)‖ ≤C(T ) max
0≤s≤t

∥∥∥( x4(s)
u(s)

)∥∥∥ . (11)

Step 3b: We show that x4 and u can be chosen freely in a certain sense. Observe that the subsystem[[
Ik 0
0 0

]
,

[
J11 J12
J21 J22

]
,

[
B̃3
B̃4

]
, [C̃31,C̃32],D

]
∈ Σr3,q3,m,p (12)

is completely controllable since [E11,A11,B1,C1,D] is completely controllable. Choose Ŵ ∈Glr3−k(R) such that

Ŵ [J21,J22, B̃4] =

[
J̃21 J̃22 B̃41
0 0 0

]
with J̃21 ∈ Rk2×k, J̃22 ∈ Rk2×(q3−k), B̃41 ∈ Rk2×m and rk[J̃21, J̃22, B̃41] = k2. Then complete controllability yields

rk

Ik B̃3
0 B̃41
0 0

= rk

Ik J11 J12 B̃3
0 J̃21 J̃22 B̃41
0 0 0 0

= k+ k2,
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and hence rk B̃41 = k2. Then there exist F1 ∈ Rm×k,F2 ∈ Rm×(q3−k) such that

[J̃21, J̃22] = B̃41[F1,F2].

Therefore, applying the feedback
u(t) =−F1x3(t)−F2(t)x4(t)+ v(t), (13)

where v ∈ C ∞(R;Rm), to the DAE associated with system (12), we obtain

ẋ3(t) = (J11− B̃3F1)x3(t)+(J12− B̃3F2)x4(t)+ v(t)

0 = B̃41v(t).
(14)

This proves the following statement:
For all x4 ∈ C ∞(R;Rq3−k), v ∈ C ∞(R;Rm) with x4(0) = 0, v(0) = 0, B̃41v = 0 and the unique solution (x1,x2,x3)
of N 0 Ẽ13

0 Ir2 Ẽ23
0 0 Ik

ẋ1
ẋ2
ẋ3

=

Ir1 0 Ã13
0 Ã22 Ã23
0 0 J11

x1
x2
x3

+

Ẽ14 Ã14 B̃1
Ẽ24 Ã24 B̃2
0 J12 B̃3

ẋ4
x4
u

 (15)

with x1(0) = 0, x2(0) = 0, x3(0) = 0 and u =−F1x3−F2x4 + v as well as y = C̃31x3 +C̃32x4 +Du we have, using
the notation in (ii), (x,u,y) ∈B[E,A,B,C,D]. Note that the condition x1(0) = 0 may restrict the initial values of the
derivatives of x4 and u, which is only a slight restriction of their free choice.
Step 3c: In order to exploit the inequality (11) we consider arbitrary (x,u,y) ∈B[E,A,B,C,D]. Using the partitioning
in (ii) and equation (9) it follows that

Nẋ1 + Ẽ13ẋ3 + Ẽ14ẋ4 = x1 + Ã13x3 + Ã14x4 + B̃1u,

ẋ3 = J11x3 + J12x4 + B̃3u,

0 = J21x3 + J22x4 + B̃4u.

We ignore the equation for x2 since it is always solvable provided the above equations are solvable. Since x3(0) = 0
we calculate

x( j)
3 (t) =

∫ t

0
J j

11eJ11(t−s)
ψ(s)ds +

j∑
i=1

Ji−1
11 ψ

( j−i)(t)

for all j ∈ N and all t ∈ R, where ψ(t) = J12x4(t)+ B̃3u(t).
Therefore,

x1(t) =−
ν−1∑
k=0

(
N d

dt

)k (
(Ã13− Ẽ13J11)x3(t)+(B̃1− Ẽ13B̃3)u(t)+(Ã14− Ẽ13J12)x4(t)− Ẽ14ẋ4(t)

)
=−

ν−1∑
k=0

Nk
(
(Ã14− Ẽ13J12)x

(k)
4 (t)− Ẽ14x(k+1)

4 (t)+(B̃1− Ẽ13B̃3)u(k)(t)

+(Ã13− Ẽ13J11)

k∑
i=1

Ji−1
11
(
J12x(k−i)

4 (t)+ B̃3u(k−i)(t)
))

−
∫ t

0

ν−1∑
k=0

Nk(Ã13− Ẽ13J11)Jk
11eJ11(t−s)(J12x4(s)+ B̃3u(s)

)
ds

for all t ∈ R. We may now show that Ẽ14 = 0. If Ẽ14 6= 0 (and q3− k > 0), then, due to the free choice of x4
as proved in Step 3b, we may choose a sequence (xk,uk,yk) ∈ B[E,A,B,C,D] such that supt≥0 ‖xk

4(t)‖ ≤ 1 and
supt∈[0,1] ‖Ẽ14ẋk

4(t)‖ → ∞ for k→ ∞. Furthermore, by (13) and (14) and choosing vk such that supt≥0 ‖vk(t)‖ ≤ 1,
we can guarantee that supk∈N supt∈[0,1] ‖uk(t)‖< ∞. This contradicts (11) and hence Ẽ14 = 0.
Step 3d: Using a similar argument as above, we can show that x1 cannot depend on derivatives of x4. Furt-
hermore, according to Step 3b, using the free choice of vk under the condition B̃41vk = 0 in the sequence
(xk,uk,yk) ∈ B[E,A,B,C,D] we can show that x1 cannot depend on derivatives of u as well. Note that if B̃41 has
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full column rank (i.e., v = 0), then u =−F1x3−F2x4 and thus derivatives of u involve derivatives of x4 which have
already been excluded. Hence, x1 must be of the form

x1(t) =
ν−1∑
k=0

Nk(Ẽ13J11− Ã13)Jk
11x3(t)+(Ẽ13B̃3− B̃1)u(t)+(Ẽ13J12− Ã14)x4(t)

+

ν−1∑
k=1

Nk(Ẽ13J11− Ã13)Jk−1
11
(
J12x4(t)+ B̃3u(t)

)
.

(16)

Step 3e: By complete controllability of [E11,A11,B1,C1,D] we have{
x̃(t)

∣∣ (x,u,y) ∈B[E,A,B,C,D]

}
= Rn1 (17)

for all t > 0. Note that in B[E,A,B,C,D] only inputs with u(0) = 0 are considered. However, reachability of every
state is still guaranteed which can be seen as follows: For controllable ODE systems this is straightforward. For
completely controllable DAE systems this can then be concluded from the feedback form (Berger and Reis, 2013,
Thm. 3.3). Multiplying (16) by Nν−1 from the left it follows that for all (x,u,y) ∈B[E,A,B,C,D] we have

M1

x1(t)
x3(t)
x4(t)

= M2u(t)

for all t ∈ R, where

M1 :=
[
Nν−1,Nν−1(Ẽ13J11− Ã13),Nν−1(Ẽ13J12− Ã14)

]
,

M2 := Nν−1(Ẽ13B̃3− B̃1).

Then it follows from (17) that imM1 ⊆ imM2, and it is a simple calculation that imNν−1 = imM1 ⊆ imM2 ⊆
imNν−1, thus imM2 = imNν−1. Since Nν−1 6= 0 this implies M2 6= 0. By Step 3b, and invoking (13)
and (14), it is then possible to find a sequence (xk,uk,yk) ∈ B[E,A,B,C,D] with supk∈N supt∈[0,1] ‖uk(t)‖ < ∞ and
supt∈[0,1] ‖Nν−1(Ẽ13B̃3− B̃1)(

d
dt )

ν−1uk(t)‖ → ∞ for k→ ∞. If u = −F1x3−F2x4, then we may choose x4 accor-
dingly. This contradicts (11) and proves that N = 0.
Step 4: We show that [E11,A11,B1,C1,D] is impulse observable. Since impulse observability is invariant under
equivalence transformations it is sufficient to show that the system in (9) is impulse observable. We calculate that

ker(S̃E11T̃ )> = im


Ir1 0
0 0
−Ẽ>13 0

0 Ir3−k

=: imZ.

Then

 S̃E11T̃
Z>(S̃A11T̃ )

C1T̃

=



0 0 Ẽ13 0
0 Ir2 Ẽ23 Ẽ24
0 0 Ik 0
0 0 0 0
Ir1 0 Ã13− Ẽ13J11 Ã14− Ẽ13J12
0 0 J21 J22
0 0 C̃31 C̃32


and the latter matrix has full column rank since C̃32 has full column rank. Then impulse observability follows
from (Berger et al., 2017, Cor. 6.2) and this finishes the proof of 2)⇒ 3).

3)⇔ 4): For T as in (2) we have, see Berger and Trenn (2014),

imT

In1
0
0

= V ∗[E,A,B]∩W ∗
[E,A,B].
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Let T1 := T
[

In1
0
0

]
and observe that C1 =CT1. Then

kerC∩ imT1 = { T1x | x ∈ Rn1 , CT1x = 0 }= T1 kerC1,

kerE ∩ imT1 = { T1x | x ∈ Rn1 , ET1x = 0 }= T1 { x ∈ Rn1 | SET1x = 0 }= T1 ker

E11
0
0

= T1 kerE11,

and

A−1(E(imT1)
)
∩ imT1 = { T1x | x ∈ Rn1 , ∃y ∈ Rn1 : AT1x = ET1y }

= T1 { x ∈ Rn1 | ∃y ∈ Rn1 : SAT1x = SET1y }
= T1 { x ∈ Rn1 | ∃y ∈ Rn1 : A11x = E11y }= T1A−1

11 (imE11).

Therefore, we find

V ∗[E,A,B]∩W ∗
[E,A,B]∩kerE ∩A−1

(
E
(
V ∗[E,A,B]∩W ∗

[E,A,B]

))
∩kerC = T1 kerE11∩T1A−1

11 (imE11)∩T1 kerC1

= T1
(

kerE11∩A−1
11 (imE11)∩kerC1

)
.

Now, by Proposition 2.1 (ii) we have that [E11,A11,B1,C1,D] is impulse observable if, and only if,

kerE11∩A−1
11 (imE11)∩kerC1 = {0}

and the statement follows from full column rank of T1.
1’)⇔ 2’) follows from Proposition 2.7 and 3’)⇔ 4’) is a consequence of 3)⇔ 4). It remains to show 2’)⇔ 3’).
3’)⇒ 2’): We modify the proof of “3)⇒ 2)”. Since [E,A,B,C,D] is behaviorally detectable, it follows that

system [Ẽ, Ã, B̃,C̃,D] defined in (6) is behaviorally detectable as well. Then, by (Berger and Reis, 2017, Thm. 3.8),
the index-1 observer [E1

o ,A
1
o,B

1
o,C

1
o ,D

1
o] can be chosen to be asymptotic, and hence [Eo,Ao,Bo,Co,Do] is an asymp-

totic index-1 observer for [E,A,B,C,D].
2’)⇒ 3’): By 2)⇔ 3) the completely controllable part [E11,A11,B1,C1,D] is impulse observable. Furthermore,

since there exists an asymptotic observer for [E,A,B,C,D], it follows from (Berger and Reis, 2017, Thm. 3.5) that
[E,A,B,C,D] is behaviorally detectable.

4 Observer design
In this section we present a procedure for the design of ODE observers for DAE systems satisfying the condition in
Theorem 3.3. The presented method is essentially an extension of the method presented in Darouach and Boutayeb
(1995) to systems which are not impulse observable. As a starting point we use the following result which was
derived in (Hou and Müller, 1999a, Prop. 1).

Lemma 4.1. For any [E,A,B,C,D] ∈ Σl,n,m,p there exist orthogonal matrices U ∈ Rl×l , V ∈ Rn×n such that

U(sE−A)V =

[
sẼ11− Ã11 sẼ13− Ã13

0 sE33−A33

]
,

UB =

[
B̃1
0

]
, CV =

[
C̃1 C3

]
,

(18)

where

(i) [Ẽ11, Ã11, B̃1,C̃1,D] ∈ Σl̃1,ñ1,m,p with l̃1 = rk[E11,B1]≤ ñ1 +m,

(ii) [E33,A33,0,C3,D] ∈ Σl3,n3,m,p with l3 ≥ n3 satisfies rkC(λE33−A33) = n3 for all λ ∈ C.

As indicated by the notation used in (18) it is possible to transform it into KCD (2) by an additional transforma-
tion of the first block row and block column, hence we may view (18) as a precursor of the KCD. More precisely,
there exist S̃ ∈Gll̃1(R), T̃ ∈Glñ1(R) such that

S̃(sẼ11− Ã11)T̃ =

[
sE11−A11 sE12−A12

0 sE22−A22

]
,

S̃B̃1 =

[
B1
0

]
, C̃1T̃ =

[
C1 C2

]
,

(19)

11



where the new block entries have the properties as in Theorem 2.2.
If M ∈ Rl×n with rkM = r, then, using QR factorization with pivoting (see Golub and van Loan (1996)), there

exists an orthogonal matrix T ∈ Rl×l such that

T M =

[
Σ

0

]
,

where Σ ∈ Rr×n with rkΣ = r, see also Beelen and Van Dooren (1988). We call T a row compression of the
matrix M.

We are now in a position to state our observer design procedure. Feasibility of each step of the procedure will
be proved in the subsequent Theorem 4.2.

Initialization. Let [E,A,B,C,D] ∈ Σl,n,m,p be given such that Theorem 3.3 3) is satisfied. If an asymptotic
ODE observer is sought, then assume that additionally [E,A,B,C,D] is behaviorally detectable.

Step 1. Compute orthogonal matrices U ∈ Rl×l , V ∈ Rn×n such that (18) holds, e.g. using the procedure
presented in the proof of (Hou and Müller, 1999a, Prop. 1).

Step 2. Compute a row compression P of Ẽ11 such that

PẼ11 =

[
E1
0

]
, PÃ11 =

[
A1
A2

]
, PB̃1 =

[
B11
B12

]
,

where rk Ẽ11 = r, E1,A1 ∈ Rr×ñ1 , B11 ∈ Rr×m, B12 ∈ R(l̃1−r)×m. Set

C11 :=
[

A2
C̃1

]
∈ R(p+l̃1−r)×ñ1 .

Step 3. Compute a row compression Q =
[

Q̃1 Q̃2
Q3 Q4

]
of
[

E1
C11

]
such that

Q̃1E1 + Q̃2C11 = Σ,

Q3E1 +Q4C11 = 0,

where Σ ∈Glñ1(R). Solve
ΣQi = Q̃i, i = 1,2,

for Qi (e.g. using Gaussian elimination with pivoting or QR factorization with pivoting), then Q1E1+Q2C11 = Iñ1 .

Step 4. If [E,A,B,C,D] is behaviorally detectable, then
[
Iñ1 ,Q1A1,0,

[
Q3A1
C11

]
,0
]

is behaviorally detectable as

well and hence, using classical methods (see e.g. (Datta, 2004, Sec. 10.2)), we may choose K ∈ Rñ1×(p+l̃1−ñ1),
L2 ∈ Rñ1×p such that for

N := Q1A1 +[K,−L2]

[
Q3A1
C11

]
∈ Rñ1×ñ1

we have σ(N)⊆ C−. Otherwise, choose K = 0, L2 = 0 and N := Q1A1. Set

L1 := N(Q2 +KQ4),

G := (Q1 +KQ3)B11.

Step 5. The (asymptotic) ODE observer is given by

[Eo,Ao,Bo,Co,Do] :=

[
Iñ1 ,N,(L1 +L2)

[
−B12 0
−D Im

]
+[G,0],V

[
Iñ1
0

]
,V

[
(Q2 +KQ4)

[
−B12 0
−D Im

]
0

]]
∈ Σñ1,ñ1,m+p,n.

We prove feasibility of the above procedure and show that the result is indeed an (asymptotic) ODE observer
for [E,A,B,C,D].

Theorem 4.2. Let [E,A,B,C,D] ∈ Σl,n,m,p be given such that Theorem 3.3 3) is satisfied. Then each step of the
observer design procedure is feasible (Step 4 with K = 0 and L2 = 0) and the resulting observer [Eo,Ao,Bo,Co,Do]
is an ODE observer for [E,A,B,C,D]. If [E,A,B,C,D] is additionally behaviorally detectable, then Step 4 is
feasible and the observer [Eo,Ao,Bo,Co,Do] is asymptotic.
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Proof. Step 1 is feasible by Lemma 4.1 and Step 2 is always feasible. With the additional transformation as
in (19) the form (18) can be put into KCD. By Theorem 3.3 3) the completely controllable part [E11,A11,B1,C1,D]
of [E,A,B,C,D] is impulse observable and since E22 is invertible it follows that [Ẽ11, Ã11, B̃1,C̃1,D] is impulse
observable. As shown in Darouach and Boutayeb (1995) this implies that

[
E1
C11

]
has full column rank and therefore

Step 3 is feasible. It is further shown in Darouach and Boutayeb (1995) that if [E,A,B,C,D] is behaviorally
detectable, then

[
Iñ1 ,Q1A1,0,

[
Q3A1
C11

]
,0
]

is behaviorally detectable (i.e., detectable in the classical sense) which
finally shows feasibility of Steps 4 and 5.

It remains to show that [Eo,Ao,Bo,Co,Do] is an (asymptotic) ODE observer. This however is an immediate
consequence of the fact that, since the DAE d

dt E33x3 = A33x3 does only have the trivial solution, the error e = x− z
between the system state and the observer output satisfies that e =V

(
ẽ
0
)

and, as shown in detail in Darouach and
Boutayeb (1995), we have the dynamics d

dt ẽ(t) = Nẽ(t).

We like to note that if a reduced order observer is required, then the observer design method may be appropri-
ately adjusted using the reduced order observer design for impulse observable systems presented in Darouach and
Boutayeb (1995).

5 Conclusion
In the present paper we have considered the observer design approach to DAE systems introduced in Berger and
Reis (2017). We have shown that a necessary and sufficient condition for the existence of an ODE observer is that
the completely controllable part of the system is impulse observable; and that the observer is moreover asymptotic
if, and only if, the system is additionally behaviorally detectable. Extending the observer design method for
impulse observable systems given in Darouach and Boutayeb (1995) we presented a procedure for the construction
of an (asymptotic) ODE observer.
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Publishing House, Zürich, Switzerland.

Labisch, D., Konigorski, U., 2014. Design of causal observers for nonlinear descriptor systems, in: Schöps, S.,
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