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Abstract

We consider electrical circuits containing linear resistances, capacitances, inductances. The circuits can be described
by differential-algebraic input-output systems, where the input consists of voltages of voltage sources and currents of
current sources and the output consists of currents of voltage sources and voltages of current sources. We generalize
a characterization of asymptotic stability of the circuit and give sufficient topological criteria for its invariant zeros
being located in the open left half-plane. We show that asymptotic stability of the zero dynamics can be characterized
by means of the interconnectivity of the circuit and that it implies that the circuit is high-gain stabilizable with any
positive high-gain factor. Thereafter we consider the output regulation problem for electrical circuits by funnel control.
We show that for circuits with asymptotically stable zero dynamics, the funnel controller achieves tracking of a class
of reference signals within a pre-specified funnel; this means in particular that the transient behavior of the output
error can be prescribed and the funnel controller does neither incorporate any internal model for the reference signals
nor any identification mechanism, it is simple in its design. The results are illustrated by a simulation of a discretized
transmission line.

Keywords: electrical circuits; passivity; differential-algebraic equations; zero dynamics; invariant zeros; high-gain
stabilization; funnel control.

1. Introduction

The concept of zero dynamics and its asymptotic stability is important in the theory and application of adaptive
control. Especially systems governed by ordinary differential equations with asymptotically stable zero dynamics,
relative degree one and positive definite high-gain matrix can be stabilized by high-gain output feedback [7, 31]. In
particular, this class allows the application of the funnel controller [18, 20, 21], a closed-loop control law of intriguing
simplicity that guarantees that the output evolves inside a prescribed domain (the so-called funnel) around some given
reference trajectory. Recently, funnel control was shown to be also feasible for systems governed by differential-
algebraic equations with asymptotically stable zero dynamics [2, 3, 4] and some additional criterion that comprises
systems with relative degree one as well as systems with transfer function having a proper inverse.

Asymptotic stability of the zero dynamics and relative degree are said to be structural properties in [16, 17, 19].
That is, for the feasibility of the funnel controller, the exact knowledge of the system parameters is not required.

The present article is devoted to the analysis of zero dynamics and feasibility of the funnel controller for systems
governed by electrical circuits with voltage and current sources and linear time-invariant resistances, capacitances
and inductances. The input is composed of voltages of voltage sources and currents of current sources, whereas the
output consists of currents of voltage sources and voltages of current sources. We show that the zero dynamics have
a descriptive physical interpretation: They are the free dynamics of an artificial circuit which emerges from the to-be-
considered circuit by replacing voltage sources by open circuits and current sources by short circuits. Based on this
finding, we can show that several properties of the zero dynamics are physically structural: For instance, we show that
autonomy of the zero dynamics (that is, its evolution is fully described by the initial value) is equivalent to the absence
of loops of current sources and cutsets of voltage sources. Inspired by the results of RIAZA and TISCHENDORF in [27]
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on asymptotic stability of circuits, we are able to characterize asymptotic stability of the zero dynamics by sufficient
criteria on the circuit topology. In particular, the parameter values of resistances, capacitances and inductances need
not to be known explicitly (only the physically reasonable assumption of positivity of these values is made).

We further analyze high-gain output stabilizability of circuits. We will see that an output feedback has the physical
interpretation of replacing sources by resistances. Analysis of asymptotic stability of the closed-loop system therefore
again leads to the problem of stability analysis of a certain replacement circuit.

Finally, we discuss funnel control for electrical circuits. It is shown that asymptotic stability of the zero dynamics
is sufficient for feasibility of the funnel controller. Only some assumptions on smoothness of the reference trajectory
and the funnel boundary are made. In particular, we will show that no further condition on the relative degree has to
be imposed. These results are further extended to circuits with possibly non-autonomous zero dynamics: Under the
condition of the invariant zeros of the system being located in the open left half-plane (this condition is necessary for
systems with asymptotically stable zero dynamics), we show that funnel control is feasible, provided that the reference
trajectory evolves in a certain subspace. The latter will be shown to have the physical interpretation that the reference
trajectory satisfies Kirchhoff’s laws pointwise.

1.1. Nomenclature

N, N0 set of natural numbers, N0 = N∪{0}, set of all integers, resp.

R≥0, (R>0) = [0,∞), ((0,∞))

C+(C−) open set of complex numbers with positive (negative) real part, resp.

R[s] the ring of polynomials with coefficients in R

R(s) the quotient field of R[s]

Rn,m the set of n×m matrices with entries in a ring R

Gln(R) the group of invertible matrices in Rn,n

On(R) the group of orthogonal matrices in Rn,n

M∗ = M>, the conjugate transpose of M ∈ Cn,m

‖x‖ =
√

x>x, the Euclidean norm of x ∈ Rn

‖M‖ = max
{
‖M x‖

∣∣x ∈ Rm, ‖x‖= 1
}

, induced norm of M ∈ Rn,m

C `(I ;Rn) the set of `-times continuously differentiable functions f : T →Rn, ` ∈N0∪{∞}, T ⊆
R an interval

B`(T ;Rn) = { f ∈ C `(T ;Rn)
∣∣ di

dt i f is bounded for i = 0, . . . , `}, ` ∈ N0∪{∞}, T ⊆ R an interval

1.2. System class
We consider linear differential-algebraic systems of the form

d
dt Ex(t) = Ax(t)+Bu(t)

y(t) =Cx(t) ,
(1)

where E,A ∈ Rn,n, B,C> ∈ Rn,m; the set of these square systems (i.e., same number of inputs and outputs) is denoted
by Σn,m and we write [E,A,B,C] ∈ Σn,m.

The functions u,y : R→ Rm are called input and output of the system, respectively. A trajectory (x,u,y) : R→
Rn×Rm×Rm is said to be a solution of (1) if it belongs to the behavior of (1):

B[E,A,B,C] :=
{
(x,u,y) ∈ C (R≥0;Rn×Rm×Rm)

∣∣∣∣ Ex ∈ C 1(R≥0;Rn) and (x,u,y)
solves (1) for all t ≥ 0

}
.
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In the present paper, we are interested in systems of the form (1), which arise from modified nodal analysis (MNA)
models of electrical circuits [15], i.e.,

sE−A =

sAC CA>C +AR GA>R AL AV
−A>L sL 0
−A>V 0 0

 , B =C> =

−AI 0
0 0
0 −InV

 , (2)

x = (η>, i>L , i
>
V )
>, u = (i>I ,v>V )

>, y = (−v>I ,−i>V )
>, (3)

where
C ∈ RnC ,nC ,G ∈ RnG ,nG ,L ∈ RnL ,nL ,

AC ∈ Rne,nC ,AR ∈ Rne,nG ,AL ∈ Rne,nL ,AV ∈ Rne,nV ,AI ∈ Rne,nI ,

n = ne +nL +nV , m = nI +nV .

 (4)

Here AC , AR , AL , AV and AI denote the element-related incidence matrices, C , G and L are the matrices expressing
the constitutive relations of capacitances, resistances and inductances, η(t) is the vector of node potentials, iL(t),
iV (t), iI (t) are the vectors of currents through inductances, voltage and current sources, and vV (t), vI (t) are the
voltages of voltage and current sources.

1.3. Control objective

We consider output regulation for (1) by funnel control

u(t) =−k(t)e(t), where e(t) = y(t)− yref(t)

k(t) =
1

1−ϕ(t)2‖e(t)‖2 ,
(5)

where it is desired that the reference signal yref is tracked by the output signal y within the pre-specified performance
funnel

Fϕ := { (t,e) ∈ R≥0×Rm | ϕ(t)‖e‖< 1 } , (6)

where ϕ is a nonnegative bounded function with ϕ(0) = 0 and otherwise ϕ is bounded away from 0, see Section 7.
Note that no exact tracking is pursued, but a tracking error evolving in Fϕ . In contrast to approximate tracking,
funnel control achieves arbitrarily given transient behavior and the funnel boundary is not necessarily monotonically
decreasing or even constant.

The concept of funnel control as a simple strategy for output regulation has been developed in [21] for ODEs, see
also the survey [19] and the references therein. Funnel control for linear DAE systems has been investigated in the
recent papers [2, 3, 4]; nonlinear DAEs have been considered in [5].

The funnel controller proved to be the appropriate tool for tracking problems in various “real world” applications,
such as chemical reactor models [23], industrial servo-systems [14, 22] and rigid, revolute joint robotic manipu-
lators [13]. In the present article we show that the funnel controller can be further applied to problems in signal
processing. This is underlined in Section 8, where we provide a simulation of the funnel controller with a reference
signal formed by a sawtooth wave signal.

In the present paper we aim to apply the funnel controller to MNA models of passive electrical circuits, see
Section 7. To this end, the guiding research idea is that the controller design is independent of the system parameters,
that means only structural assumptions are required to be satisfied.

As outlined in [18], for linear single-input single-output ODE systems, these structural assumptions are repre-
sented by the three properties (a) positive high-frequency gain, (b) relative degree one and the (c) minimum phase
property. For DAEs, the situation is more involved, but essentially (a)–(c) together with (d) right-invertibility of the
system, are the crucial assumptions needed for funnel control [2]. In the present paper we show that (a), (b) and (d)
are always satisfied for MNA models of electrical circuits, so it remains to find conditions for (c). Property (c) is
equivalent to so called asymptotically stable zero dynamics (see the next subsection) and it is shown in Section 5 that
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the latter can be characterized by topological criteria on the circuit which qualifies this property as structural. The
aforementioned statements do also explain the main difference compared to our earlier work [2, 3, 4, 5].

1.4. Zero dynamics

As explained in the previous subsection, we place particular emphasis on the zero dynamics of (1); this concept
has been introduced in [6]. The zero dynamics are, for [E,A,B,C] ∈ Σn,m, defined by

Z D [E,A,B,C] :=
{
(x,u,y) ∈ B[E,A,B,C]

∣∣ y = 0
}
.

By linearity of (1), Z D [E,A,B,C] is a real vector space.
The zero dynamics of (1) are called autonomous if

∀w1,w2 ∈Z D [E,A,B,C] ∀ I ⊆ R≥0 open interval : w1|I = w2|I =⇒ w1 = w2 ; (7)

and asymptotically stable if
∀(x,u,y) ∈Z D [E,A,B,C] : lim

t→∞

(
x(t),u(t)

)
= 0.

Note that the above definitions are within the spirit of the behavioral approach [25] and take into account that the
zero dynamics Z D [E,A,B,C] are a linear behavior. In this framework the definition for autonomy of a general behavior
was given in [25, Sec. 3.2] and the definition of asymptotic stability in [25, Def. 7.2.1]. (Asymptotically stable) zero
dynamics are the vector space of those trajectories of the system which are, loosely speaking, not visible at the output
(and tend to zero).

In Section 5 we show that the zero dynamics of an MNA model of an electrical circuit can be interpreted as the
free dynamics of a replacement circuit, where voltage sources are replaced with open circuits and current sources are
replaced with short circuits. Therefore, stability investigations of the zero dynamics can be lead back to the respective
considerations for the replacement circuit. In this regard, the approach from [27] can be used: It is clear that passive
RLC circuits are always stable, however not necessarily asymptotically stable. The absence of eigenvalues on the
imaginary axis for MNA models of electrical circuits with regular matrix pencil sE−A has been characterized in [27]
in terms of conditions on the network topology. In Section 4 we generalize this result to circuits which might contain
cutsets of current sources and/or loops of voltage sources, i.e., where sE−A is not necessarily regular.

The aforementioned Theorem 4.6 is the basis for the investigation of asymptotically stable zero dynamics and the
location of invariant zeros in terms of topological criteria in Section 5. These results in turn allow for the application
of high-gain output feedback u = −ky for the stabilization of the circuit equation (1) in Section 6. It turns out that
high-gain feedback has a practical interpretation as introduction of resistances: all current and voltage sources are
replaced with resistances of values k−1 and k, resp.

2. Matrix pencils and rational functions

Let sE−A ∈ R[s]k,n be a matrix pencil. Then sE−A is called regular if k = n and det(sE−A) ∈ R[s]\{0}.
We introduce the following notation: For k ∈ N, we define the matrices

Nk =

[ 0
1

1 0

]
∈ Rk,k, Kk =

[
1 0

1 0

]
, Lk =

[
0 1

0 1

]
∈ Rk−1,k.

Many properties of a matrix pencil can be characterized in terms of the Kronecker canonical form (KCF).

Lemma 2.1 (Kronecker canonical form [10]). For a matrix pencil sE−A ∈C[s]k,n, there exist matrices W ∈Glk(C),
T ∈Gln(C), such that

W (sE−A)T = diag(C1(s), . . . ,Ck(s)), (8)

where each of the pencils C j(s) is of one of the types presented in Table 2.
The numbers λ appearing in the blocks of type W1 are called the generalized eigenvalues of sE−A. A generalized

eigenvalue is called semi-simple, if all blocks of type W1 corresponding to λ are of size 1×1.

4



The index ν ∈ N0 of sE−A is defined as

ν := max
({

k j
∣∣ C j(s) is of type W2 or W4, j = 1, . . . ,k

}
∪{0}

)
.

Type Size C j(s) Parameters

W1 k j× k j (s−λ )Ik j −Nk j k j ∈ N, λ ∈ C

W2 k j× k j sNk j − Ik j k j ∈ N

W3 (k j−1)× k j sKk j −Lk j k j ∈ N

W4 k j× (k j−1) sK>k j
−L>k j

k j ∈ N

Table 2: Block types in Kronecker canonical form

The following is immediate from the block structure of the KCF.

Corollary 2.2 (Generalized eigenvalues). Let a pencil sE−A ∈ R[s]k,n be given. Then λ ∈ C is a generalized eigen-
value of sE−A if, and only if,

rkC(λE−A)< rkR(s)(sE−A).

It is shown in [10] that the KCF is unique up to permutation of the indices j = 1, . . . ,k. Since each block of type
W3 (W4) leads to an additional column (resp. row) rank deficiency of 1, the regularity of a pencil is equivalent to the
absence of blocks of type W3 and W4 in its KCF.

In the following we collect some facts on rational matrix functions. These concepts and findings will play an
important role for the analysis of an MNA model (1), (2).

Definition 2.3 (Positive real/proper rational function). A rational matrix function G(s) ∈ R(s)m,m is called positive
real if G(s) does not have any poles in C+ and, for all λ ∈ C+, we have

G(λ )+G∗(λ )≥ 0.

G(s) is called proper if lims→∞ G(s) ∈ Rm,m exists.

Lemma 2.4 (Properties of positive real functions [1, Sec. 5.1]). Let G(s) ∈ R(s)m,m be positive real. Then there exist
ω1, . . . ,ωk ∈ R, Hermitian and positive semi-definite matrices M1, . . . ,Mk ∈ Cm,m, M0,M∞ ∈ Rm,m and some proper
and positive real function Gs(s) ∈ R(s)m,m which does not have any poles on iR, such that

G(s) = Gs(s)+ sM∞ +
M0

s
+

k

∑
j=1

M j

s− iω j
+

M j

s+ iω j
.

In particular, we may characterize the positive realness of matrix pencils sE −A ∈ R[s]n,n by means of certain
definiteness properties of the matrices E,A ∈ Rn,n. This is a direct consequence of Lemma 2.4.

Corollary 2.5 (Positive real matrix pencils). A matrix pencil sE−A∈R[s]n,n is positive real if, and only if, E =E>≥ 0
and A+A> ≤ 0.

In the following we collect some further properties of positive real matrix pencils sE − A with the additional
assumption that the kernels of E and A intersect trivially. This in particular encompasses regular MNA models of
passive electrical networks.

Lemma 2.6 (Properties of positive real pencil). Let a positive real pencil sE−A∈R[s]n,n be such that kerE∩kerA =
{0}. Then the following holds true:
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(i) sE−A is regular.

(ii) (sE−A)−1 ∈ R(s)n,n is positive real.

(iii) All generalized eigenvalues of sE−A have non-positive real part.

(iv) All generalized eigenvalues of sE−A on the imaginary axis are semi-simple.

(v) The index of sE−A is at most two.

Proof. Step 1: To prove that (i) and (iii) hold true, we show that ker(λE −A) = {0} for all λ ∈ C+. Seeking a
contradiction, assume that λ ∈ C+ and x ∈ Cn \{0} are such that (λE−A)x = 0. Then we obtain

0 = x∗
(
(λE−A)+(λE−A)∗

)
x = 2Re(λ )x∗Ex− x∗(A+A>)x.

Since, by Corollary 2.5, there holds E ≥ 0, A+A> ≤ 0 and Re(λ ) > 0, we have x∗Ex = x∗(A+A>)x = 0, whence,
in particular, Ex = 0. Therefore, the equation (λE−A)x = 0 gives also rise to Ax = 0 and consequently, x ∈ kerE ∩
kerA = {0}, a contradiction.

Step 2: (ii) follows from the fact the the inverse of a positive real function is positive real as well [28].
Step 3: It remains to show that (iv) and (v) are valid: Since (sE−A)−1 is positive real by (ii), Lemma 2.4 gives

rise to the fact that all poles on the imaginary axis are of order one and, moreover, (sE−A)−1 = sM+Gp(s), where
Gp(s) ∈ R[s]n,n is proper and M ∈ Rn,n. This in particular means that s−1(sE−A)−1 is proper. Let W,T ∈Gln(C) be
such that W (sE−A)T is in KCF (8). Regularity of sE−A then gives rise to

(sE−A)−1 = T−1 diag(C1(s)−1, . . . ,Ck(s)−1)W−1. (9)

Assuming that (iv) does not hold, i.e., there exists some ω ∈ R such that iω is a generalized eigenvalue of sE −A
which is not semi-simple. Then there exists some block C j(s) = (s− iω)Ik j −Nk j with k j > 1 in the KCF of sE−A.
Hence, due to

C j(s)−1 =
k j−1

∑
l=0

1
(s− iω)l+1 Nl

k j
,

the formula (9) implies that (sE−A)−1 has a pole of order greater than one on the imaginary axis, a contradiction.
Assume that (v) does not hold, i.e., the index of sE−A exceeds two. Then there exists some block C j(s) = sNk j − Ik j

with k j > 2 in the KCF of sE−A. Then

C j(s)−1 =−
k j−1

∑
l=0

slNl
k j
,

and this contradicts properness of s−1(sE−A)−1.

3. Graph theoretical preliminaries

In this section we introduce the graph theoretical concepts which are crucial for the modified nodal analysis of
electrical circuits. We derive some characterizations for the absence of cutsets and loops in a given subgraph. These
characterizations will be given in terms of algebraic properties of the incidence matrices.

Definition 3.1 (Graph theoretical concepts). A graph is a triple G = (V,E,ϕ) consisting of a node set V and a branch
set E together with an incidence map

ϕ : E→V ×V, e 7→ ϕ(e) = (ϕ1(e),ϕ2(e)) ,

where ϕ1(e) 6= ϕ2(e) for all e ∈ E, i.e., the graph does not contain self-loops. If ϕ(e) = (v1,v2), we call e to be
directed from v1 to v2. v1 is called the initial node and v2 the terminal node of e. Two graphs Ga = (Va,Ea,ϕa),
Gb = (Vb,Eb,ϕb) are
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called isomorphic, if there exist bijective mappings ιE : Ea→ Eb, ιV : Va→Vb, such that ϕa,1 = ι
−1
V ◦ϕb,1 ◦ ιE and

ϕa,2 = ι
−1
V ◦ϕb,2 ◦ ιE .

Let V ′ ⊆V and let E ′ be a set of branches satisfying

E ′ ⊆ E|V ′ :=
{

e ∈ E
∣∣ ϕ1(e) ∈V ′ and ϕ2(e) ∈V ′

}
.

Further let ϕ|E ′ be the restriction of ϕ to E ′. Then the triple K := (V ′,E ′, ϕ|E ′) is called subgraph of G . In the case
where E ′ = E|V ′ , we call K the induced subgraph on V ′. If V ′ =V , then K is called a spanning subgraph. A proper
subgraph is one with E 6= E ′.

G is called finite, if both the node and the branch set are finite.
For each branch e, define an additional branch −e being directed from the terminal to the initial node of e, that is

ϕ(−e) = (ϕ2(e),ϕ1(e)) for e ∈ E. Now define the set Ẽ = { e | e ∈ E or − e ∈ E }. A tuple w = (w1, . . . ,wr) ∈ Ẽr,
where for i = 1, . . . ,r−1,

v0 := ϕ1(v1), vi := ϕ2(wi) = ϕ1(wi+1)

is called path from v0 to vr; w is called elementary path, if v1, . . . ,vr are distinct. A loop is an elementary path with
v0 = vr. Two nodes v,v′ are called connected, if there exists a path from v to v′. The graph itself is called connected, if
any two nodes are connected. A subgraph K = (V ′,E ′, ϕ|E ′) is called component of connectivity, if it is connected
and K c := (V \V ′,E \E ′, ϕ|E\E ′) is a subgraph.

A spanning subgraph K = (V,E ′, ϕ|E ′) is called a cutset of G = (V,E,ϕ), if its branch set is non-empty, G −
K := (V,E \E ′, ϕ|E\E ′) is a disconnected subgraph and G −K ′ is a connected subgraph for any proper spanning
subgraph K ′ of K .

For finite graphs we can set up special matrices which will be useful to describe Kirchhoff’s laws.

Definition 3.2 (Incidence matrix). Let a finite graph G = (V,E,ϕ) with l branches E = {e1, . . . ,el} and k nodes
V = {v1, . . . ,vk} be given. Then the all-node incidence matrix of G is given by A0 = (ai j) ∈ Rk,l , where

ai j =


1, if ϕ1(e j) = vi,
−1, if ϕ2(e j) = vi,

0, otherwise.

Since the rows of A0 sum up to the zero row vector, one might delete an arbitrary row of A0 to obtain a matrix A
having the same rank as A0. We call A an incidence matrix of G .

This section continues with some results on the relation between properties of subgraphs and linear algebraic
properties of corresponding submatrices of incidence matrices. First we declare some manners of speaking.

Definition 3.3. Let G be a graph, K be a spanning subgraph of G , L be a subgraph of G , and ` be a path of G .

(i) L is called a K -cutset, if L is a cutset of K .

(ii) ` is called a K -loop, if ` is a loop of K .

A spanning subgraph K of the finite graph G has an incidence matrix AK which is constructed by deleting
columns of the incidence matrix A of G corresponding to the branches of the complementary spanning subgraph
G −K . By a suitable reordering of the branches, the incidence matrix reads

A =
[
AK AG−K

]
. (10)

Lemma 3.4 (Subgraphs and incidence matrices [27, Lem. 2.1 & Lem. 2.3]). Let G be a connected graph with inci-
dence matrix A ∈Rl−1,k. Further, let K be a spanning subgraph. Assume that the branches of G are sorted in a way
that (10) is satisfied. Then the following holds true:

(i) The following two assertions are equivalent:
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a) G does not contain K -cutsets.

b) kerA>G−K = {0}.

(ii) The following two assertions are equivalent:

a) G does not contain K -loops.

b) kerAK = {0}.

The following two auxiliary results are concerned with properties of subgraphs of subgraphs, and give some
equivalent characterizations in terms of properties of their incidence matrices.

Lemma 3.5 (Loops in subgraphs [27, Prop. 4.5]). Let G be a connected graph with incidence matrix A ∈ Rk−1,l .
Further, let K be a spanning subgraph of G , and let L be a spanning subgraph of K . Assume that the branches of
G are sorted in a way that

A =
[
AL AK −L AG−K

]
and AK =

[
AL AK −L

]
.

Then the following two assertions are equivalent:

a) G does not contain K -loops except for L -loops.

b) kerAK = kerAL ×{0}.

Lemma 3.6 (Cutsets in subgraphs [27, Prop. 4.4]). Let G be a connected graph with incidence matrix A ∈ Rk−1,l .
Further, let K be a spanning subgraph of G , and let L be a spanning subgraph of K . Assume that the branches of
G are sorted in a way that

A =
[
AL AK −L AG−K

]
and AG−L =

[
AK −L AG−K

]
.

Then the following two assertions are equivalent:

a) G does not contain K -cutsets except for L -cutsets.

b) kerA>G−K = kerA>G−L .

4. Circuit equations

It is well-known [15, 8] that the graph underlying an electrical circuit can be described by an incidence matrix
A ∈ Rk−1,l , which can be decomposed into submatrices

A =
[
AC AR AL AV AI

]
for the quantities in (4), where ne = k− 1 and l = nC + nG + nL + nV + nI . Each submatrix is the incidence matrix
of a specific subgraph of the circuit graph. AC is the incidence matrix of the subgraph consisting of all circuit nodes
and all branches corresponding to capacitors. Similarly, AR ,AL ,AV ,AI are the incidence matrices corresponding
to the resistor, inductor, voltage source and current source subgraphs, resp. Then using the standard MNA modeling
procedure [15], which is just a clever arrangement of Kirchhoff’s laws together with the characteristic equations of
the devices, results in a differential-algebraic system (1) with (2)–(4). C , G and L are the matrices expressing the
constitutive relations of capacitances, resistances and inductances, η(t) is the vector of node potentials, iL(t), iV (t),
iI (t) are the vectors of currents through inductances, voltage and current sources, and vV (t), vI (t) are the voltages
of voltage and current sources.

Definition 4.1 (MNA model). For a given linear electrical circuit, any differential-algebraic system (1) satisfying (2)–
(4), which arises from the MNA modeling procedure [15], is said to be an MNA model of the circuit.
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It is a reasonable assumption that an electrical circuit is connected; otherwise, since the components of connectivity
do not physically interact, one might consider them separately. Furthermore, in the present paper we consider circuits
with passive devices. These assumptions lead to the following assumptions on an MNA model (2)–(4) of the circuit
(compare Lemma 3.4).

(A1) rk
[
AC AR AL AV AI

]
= ne,

(A2) C = C> > 0,L = L> > 0,G +G> > 0.

It is possible that in the circuit equations (1) there are still redundant equations and superfluous variables, i.e., in
general the pencil sE−A arising from (2), (4) is not regular. In the following we show how this can be overcome by
a simple transformation; the reduced circuit model is regular and positive real. This transformation is also important
to show feasibility of funnel control in Section 7.

Remark 4.2. The above assumptions on the circuit imply that the system (1) is passive in the systems thoretic sense
[29, 30]. That is, the L2-inner product of input and output of the trivially initialized system is always non-negative.
This follows from the fact that the circuit equations imply∫ t1

t0
iV (t)>vV (t)+ iI (t)>vI (t)dt =

∫ t1

t0
η(t)>AR GA>R η(t)dt + η(t)>AC CA>C η(t)

∣∣∣t=t1

t=t0
+ iL(t)>LiL(t)

∣∣∣t=t1

t=t0
.

This means that the energy consumed by the circuit in the interval [t0, t1] equals the sum of (a) the energy dissipated
at the resistances, (b) the difference between the capacitive energies at t0 and t1, and (c) the difference between the
inductive energies at t0 and t1.

Theorem 4.3 (Reduction of circuit pencil). Let sE −A ∈ R[s]n,n with E,A as in (2), (4) be given and suppose that
(A1) and (A2) hold. Let ZCRLV , Z′CRLV , Z̄V , Z̄′V be real matrices with full column rank such that

imZCRLV = ker
[
AC AR AL AV

]>
, imZ′CRLV = im

[
AC AR AL AV

]
, im Z̄V = kerAV , im Z̄′V = imA>V .

Then we have

T =


Z′CRLV 0 0 ZCRLV 0

0 InL 0 0 0

0 0 Z̄′V 0 Z̄V

 ∈Gln(R), (11)

and

T>(sE−A)T =

sẼ− Ã 0

0 0

 ,
where the pencil

sẼ− Ã =


(Z′CRLV )

>(sAC CA>C +AR GA>R
)
Z′CRLV (Z′CRLV )

>AL (Z′CRLV )
>AV Z̄′V

−A>L Z′CRLV sL 0

−Z̄′V A>V Z′CRLV 0 0

 (12)

is regular and satisfies ker Ẽ ∩ker Ã = {0}, Ẽ = Ẽ> ≥ 0 and Ã+ Ã> ≤ 0.

Proof. The invertibility of T is a consequence of imZCRLV ⊕ imZ′CRLV =Rne and im Z̄V ⊕ im Z̄′V =RnV . The properties

Ẽ = Ẽ> ≥ 0 and Ã+ Ã> ≤ 0 follow immediately from the construction of Ẽ and Ã. To prove that sẼ− Ã is regular,
it suffices by Lemma 2.6 to show that ker Ẽ ∩ker Ã = {0}: Let x ∈ ker Ẽ ∩ker Ã. Partitioning according to the block
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structure of Ẽ and Ã, i.e., x = (x>1 ,x
>
2 ,x
>
3 )
>, and using that, by (A2), C > 0, L > 0 and G +G> > 0, we obtain from

x>Ẽx = x>
(
Ã+ Ã>

)
x = 0 that x2 = 0 and A>C

A>R

Z′CRLV x1 = 0. (13)

Furthermore, Ãx = 0 gives rise to

(a) (Z̄′V )
>A>V Z′CRLV x1 = 0, (b) A>L Z′CRLV x1 = 0, and (c) (Z′CRLV )

>AV Z̄′V x3 = 0.

(a) implies
A>V Z′CRLV x1 ∈ ker(Z̄′V )

> = (im Z̄′V )
⊥ = (imA>V )

⊥,

whence A>V Z′CRLV x1 = 0. Together with (13) and (b) this yields

Z′CRLV x1 ∈ ker
[
AC AR AL AV

]>
= imZCRLV = (imZ′CRLV )

⊥,

and therefore x1 = 0. By (c) we find

AV Z̄′V x3 ∈ ker(Z′CRLV )
> = (imZ′CRLV )

⊥ = ker
[
AC AR AL AV

]>
⊆ kerA>V = (imAV )

⊥,

and thus AV Z̄′V x3 = 0. From this, we obtain

Z̄′V x3 ∈ kerAV = (imA>V )
⊥ = (im Z̄′V )

⊥,

whence x3 = 0.

We may infer the following characterization of the presence of generalized eigenvalues from Theorem 4.3.

Corollary 4.4 (Kernel and generalized eigenvalues). Let sE−A∈R[s]n,n with E,A as in (2), (4) be given and suppose
that (A1) and (A2) hold. Then

kerR(s) sE−A = kerR(s)
[
AC AR AL AV

]>
×{0}×kerR(s) AV .

Furthermore, λ ∈ C is not a generalized eigenvalue of sE−A if, and only if,

kerC λE−A = kerC
[
AC AR AL AV

]>
×{0}×kerC AV .

Proof. Using the transformation matrix T in (11) and accompanying notation from Theorem 4.3, we obtain (denoting
the number of columns of ZCRLV by k1 and the number of columns of Z̄V by k2) that

kerR(s) sE−A = T
(
kerR(s)(sẼ− Ã)︸ ︷︷ ︸

={0}

×R(s)k1+k2
)

= imR(s) ZCRLV ×{0}× imR(s) Z̄V = kerR(s)
[
AC AR AL AV

]>
×{0}×kerR(s) AV .

Now let λ ∈ C and observe that
kerC λE−A = T

(
kerC λ Ẽ− Ã×Ck1+k2

)
.

By Corollary 2.2, λ is not a generalized eigenvalue of sE−A if, and only if, rkC λE−A = rkR(s) sE−A or, equiva-
lently, dimkerC λE−A = dimkerR(s) sE−A. Therefore, λ is not a generalized eigenvalue of sE−A if, and only if,
kerC λ Ẽ− Ã = {0} and this implies the last statement of the corollary.
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In the following we will use expressions like VL-loop for a loop in the circuit graph whose branch set consists
only of branches corresponding to voltage sources and/or inductors. Likewise, a I C -cutset is a cutset in the circuit
graph whose branch set consist only of branches corresponding to current sources and/or capacitors.

Corollary 4.5 (Regularity of circuit pencil). Let sE −A ∈ R[s]n,n with E,A as in (2), (4) be an MNA model of an
electrical circuit and suppose that (A1) and (A2) hold. Then the following statements are equivalent:

a) sE−A is regular.

b) ker
[
AC AR AL AV

]>
= {0} and kerAV = {0}.

c) The circuit neither contains V -loops nor I -cutsets.

Proof. The result follows immediately from Corollary 4.4 and Lemma 3.4.

Next we give sufficient criteria for the absence of purely imaginary generalized eigenvalues of the pencil sE−A as
in (2), (4). This result can be seen as a generalization of the results in [27] to circuits which might contain I -cutsets
and/or V -loops, i.e., where sE−A is not necessarily regular.

Theorem 4.6 (Absence of imaginary eigenvalues). Let sE−A ∈ R[s]n,n with E,A as in (2), (4) be an MNA model of
an electrical circuit and suppose that (A1) and (A2) hold. Furthermore, suppose that at least one of the following two
assertions holds:

(i) The circuit neither contains VL-loops except for V -loops, nor I CL-cutsets except for I L-cutsets; equivalently

ker
[
AV AL

]
= kerAV ×{0} and ker

[
AR AV

]>
= ker

[
AC AR AV

]>
. (14)

(ii) The circuit neither contains I C -cutsets except for I -cutsets, nor VCL-loops except for VC -loops; equivalently

ker
[
AR AL AV

]>
= ker

[
AC AR AL AV

]>
and ker

[
AV AC AL

]
= ker

[
AV AC

]
×{0}.

(15)

Then all generalized eigenvalues of sE−A are in contained C−.

Proof. The equivalent characterizations of the absence of certain loops or cutsets in the circuit graph, resp., and kernel
conditions on the element-related incidence matrices follow from Lemmas 3.5 and 3.6.

By Theorem 4.3 and Lemma 2.6 all generalized eigenvalues of sE−A are contained in C−. Then, using Corol-
lary 4.4, we have to show that

∀ω ∈ R : kerC(iωE−A) = kerC
[
AC AR AL AV

]>
×{0}×kerC AV . (16)

Since “⊇” does always hold true, we show “⊆”. Let ω ∈ R and x1 ∈ Cne , x2 ∈ CnL and x3 ∈ CnV be such that

x := (x>1 ,x
>
2 ,x
>
3 )
> ∈ kerC(iωE−A). (17)

By the structure of sE−A as in (2), relation (17) implies A>V x1 = 0 and

0 = x∗
(
(iωE−A)+(iωE−A)∗

)
x =−x∗(A+A>)x =−x∗1AR (G +G>)A>R x1,

hence A>R x1 = 0 since G +G> > 0 by (A2).

We show that (i) implies (16): Since x1 ∈ kerC
[
AR AV

]>
we obtain from (14) that x1 ∈ kerC A>C . Then (17)

implies AL x2 +AV x3 = 0 and by (14) we find AV x3 = 0 and x2 = 0. The latter implies that x1 ∈ kerC A>L . Altogether,
we have that (16) is valid.
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We show that (ii) implies (16): From (17) we have

AC (iωCA>C x1)+AL x2 +AV x3 = 0, (18)

and by (15) we obtain x2 = 0. This implies A>L x1 = 0, hence x1 ∈ kerC
[
AR AL AV

]>
which by (15) yields

[
AC AR AL AV

]>
x1 = 0.

Now, from (18) we have AV x3 = 0 and (16) is shown.

5. Zero dynamics and invariant zeros

In this section we derive topological characterizations of autonomous and asymptotically stable zero dynamics of
the circuit system. The latter is done by an investigation of the invariant zeros of the system.

Using a simple transformation of the system, properties of the zero dynamics can be led back to properties
of a circuit pencil where voltage sources are replaced with current sources, and vice versa. To this end, consider
[E,A,B,C] ∈ Σn,m with (2), (4) and define the matrices W,T ∈Gln+m(R) by

W =



Ine 0 0 0 −AV

0 InL 0 0 0

0 0 0 −InI
0

0 0 0 0 InV

0 0 InV 0 0


, T =



Ine 0 0 0 0

0 InL 0 0 0

0 0 0 InV 0

0 0 InI
0 0

−A>V 0 0 0 InV


.

Then we obtain

W

sE−A −B

−C 0

T =



sAC CA>C +AR GA>R AL AI 0 0

−A>L sL 0 0 0

−A>I 0 0 0 0

0 0 0 InV 0

0 0 0 0 InV


. (19)

As desired, the upper left part is a matrix pencil which is an MNA model of a circuit in which voltage sources are
replaced with current sources, and vice versa. We may now derive the following important properties, which are
immediate from Corollary 4.4 and (19).

Corollary 5.1 (Kernel and generalized eigenvalues of system pencil).
Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of an electrical circuit and suppose that (A1) and (A2) hold.
Then

kerR(s)

sE−A −B

−C 0

=





x1(s)

0

0

x3(s)

−A>V x1(s)



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1(s) ∈ kerR(s)

[
AC AR AL AI

]>
,

x3(s) ∈ kerR(s) AI


.
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Furthermore, λ ∈ C is not a generalized eigenvalue of
[ sE−A −B
−C 0

]
if, and only if,

kerC

λE−A −B

−C 0

=





x1

0

0

x3

−A>V x1



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
x1 ∈ kerC

[
AC AR AL AI

]>
,

x3 ∈ kerC AI


.

We now aim to characterize autonomous zero dynamics. By considering the zero dynamics as the set of solutions
of the DAE

d
dt

E 0

0 0

z =

A B

C 0

z, (20)

it is clear that this system is autonomous if, and only if, the matrix pencil
[ sE−A −B
−C 0

]
has full column rank over R(s),

i.e., there are no blocks of type W3 in its KCF. An application of Corollary 5.1 and Lemma 3.4 then yields the
following result.

Proposition 5.2 (Autonomous zero dynamics). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of an electrical
circuit and suppose that (A1) and (A2) hold. Then the following statements are equivalent.

(i) The zero dynamics Z D [E,A,B,C] are autonomous.

(ii) rkR(s)
[ sE−A −B
−C 0

]
= n+m.

(iii) ker
[
AC AR AL AI

]>
= {0} and kerAI = {0}.

(iv) The circuit neither contains I -loops nor V -cutsets.

We also remark that autonomy of the zero dynamics implies left invertibility of the system [E,A,B,C], but in
general not vise versa, see [2]; equivalence holds true for systems with regular sE−A. By [11, Cor. 4.15], autonomous
zero dynamics are furthermore equivalent to “left invertibility in the strong sense” as in [11, Def. 4.10], provided that
[E>,A>,C>] has full row rank.

In order to characterize asymptotic stability of the zero dynamics we need the concept of invariant zeros. An in-
variant zero of [E,A,B,C] ∈ Σn,m is defined as a generalized eigenvalue of

[ sE−A −B
−C 0

]
, see e.g. [24].

Definition 5.3 (Invariant zeros). Let [E,A,B,C] ∈ Σn,m. Then λ ∈ C is called invariant zero of [E,A,B,C] if

rkC

λE−A −B

−C 0

< rkR(s)

sE−A −B

−C 0

 .
From Theorem 4.6 and (19) we get the following result on the location of invariant zeros.

Corollary 5.4 (Location of invariant zeros). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of an electrical
circuit and suppose that (A1) and (A2) hold. Furthermore, suppose that at least one of the following two assertions
holds:

(i) The circuit neither contains I L-loops except for I -loops, nor VCL-cutsets except for VL-cutsets.

(ii) The circuit neither contains VC -cutsets except for V -cutsets, nor I CL-loops except for I C -loops.

Then all invariant zeros of [E,A,B,C] are contained in C−.
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We are now in the position to characterize asymptotically stable zero dynamics. By verifying that the zero dynam-
ics is the solution set of the DAE (20), it can be deduced that the zero dynamics are asymptotically stable if, and only
if, the matrix pencil

[ sE−A −B
−C 0

]
has full column rank over R(s) and all its generalized eigenvalues are located in the

open left half-plane. In other words, the matrix
[

λE−A −B
−C 0

]
has full column rank for all λ ∈ C with Re(λ )≥ 0.

Theorem 5.5 (Asymptotically stable zero dynamics). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of an
electrical circuit and suppose that (A1) and (A2) hold. Then the zero dynamics Z D [E,A,B,C] are asymptotically stable
if, and only if,

a) Z D [E,A,B,C] are autonomous and

b) all invariant zeros of [E,A,B,C] are contained in C−.

Furthermore, suppose that at least one of the following two assertions holds:

(i) The circuit neither contains I L-loops, nor VCL-cutsets except for VL-cutsets with at least one inductor.

(ii) The circuit neither contains VC -cutsets, nor I CL-loops except for I C -loops with at least one capacitor.

Then the zero dynamics Z D [E,A,B,C] are asymptotically stable.

Proof. The equivalence between asymptotic stability of the zero dynamics and the validity of a) and b) has been proved
in front of the statement of the present theorem. It remains to be shown that (i) or (ii) implies asymptotically stable
zero dynamics. In particular, we have “The circuit neither contains I -loops nor V -cutsets” and hence Proposition 5.2
implies a). Furthermore, (i) or (ii) from Corollary 5.4 holds true and therefore b) is valid. This yields the assertion of
the theorem.

6. High-gain stabilization

In this section we consider high-gain output feedback for a system [E,A,B,C]∈ Σn,m, i.e., system (1) together with
the feedback equation u(t) =−k · y(t), where k > 0. This gives rise to a differential-algebraic equation

d
dt Ex(t) = (A− kBC)x(t). (21)

Usually (see e.g. [4, Def. 5.5]) a system is called high-gain stabilizable if the feedback interconnection leads to an
asymptotically stable closed-loop system (21) (i.e., any solution tends to zero) for k large enough. In other words,
there exists κ > 0 such that for all k≥ κ the pencil sE− (A−kBC) is regular and all of its generalized eigenvalues are
contained in C−.

We will show that for electrical circuits, i.e., [E,A,B,C] with (2), (4), the high-gain need not be high; any positive
k is sufficient. In order to achieve this note that we have

sE− (A− kBC) =


sAC CA>C +AR GA>R + kAI A>I AL AV

−A>L sL 0

−A>V 0 kInV

 . (22)

Then, for

W =


Ine 0 −k−1AV

0 InL 0

0 0 k−1InV

 , T =


Ine 0 0

0 InL 0

k−1A>V 0 InV

 ,
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we find that

W (sE− (A− kBC))T =


sAC CA>C +AR GA>R + kAI A>I + k−1AV A>V AL 0

−A>L sL 0

0 0 InV

 . (23)

The upper left part is a matrix pencil which is an MNA model of a circuit in which all current and voltage sources are
replaced with resistances of values k−1 and k, resp. We may therefore conclude the following from Corollary 4.5.

Corollary 6.1 (Closed-loop pencil is regular). Let [E,A,B,C] ∈ Σn,m with (2), (4) be given and suppose that (A1)
and (A2) hold true. Then, for all k > 0, the pencil sE− (A− kBC) is regular.

As a consequence of Theorem 4.6, we can furthermore analyze the asymptotic stability of the closed-loop system.

Theorem 6.2 (Asymptotic stability of closed-loop pencil). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of
an electrical circuit and suppose that (A1) and (A2) hold. Furthermore, suppose that at least one of the following two
assertions holds true:

(i) The circuit neither contains L-loops, nor CL-cutsets except for L-cutsets.

(ii) The circuit neither contains C -cutsets, nor CL-loops except for C -loops.

Then, for any k > 0, all generalized eigenvalues of sE− (A− kBC) are contained in C−.

Remark 6.3 (Asymptotically stable zero dynamics and high-gain). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA
model of an electrical circuit and suppose that (A1) and (A2) hold. Then, under one of the assumptions (i) or (ii) from
Theorem 5.5, the respective assumption from Theorem 6.2 holds true, but not vice versa. Therefore, the (topological
condition for) asymptotic stability of the zero dynamics implies high-gain stabilizability, but in general not the other
way round; this has already been observed for two important classes of DAEs in [3, Sec. 4].

7. Funnel control

In this section we consider funnel control for systems [E,A,B,C] ∈ Σn,m with (2), (4). The aim is to achieve
tracking of a reference trajectory by the output signal with prescribed transient behavior. The funnel controller resolves
several problems of other classical adaptive controllers (see e.g. the survey [19]): High-gain adaptive control requires
an internal model, the gain is monotonically increasing, noise in the output measurement can lead to an unbounded
gain, and transient behavior of the tracking error is not taken into account. Adaptive λ -tracking resolves some of
these issues, but still the gain is monotonically increasing and the transient behavior is not addressed. Note that a
comprehensive comparison of the aforementioned methods by means of several (also practically relevant) simulations
has been undertaken in [12].

t

1
ϕ(t)

‖e(t)‖

Figure 1: Error evolution in a funnel Fϕ with boundary 1/ϕ(t) for t > 0.
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For any function ϕ belonging to

Φ :=

 ϕ ∈ C ∞(R≥0;R)∩B1(R≥0;R)

∣∣∣∣∣∣ ϕ(0) = 0, ϕ(s)> 0 for all s > 0

and liminfs→∞ ϕ(s)> 0


we associate the performance funnel Fϕ as in (6), see Figure 1. The control objective is feedback control so that
the tracking error e(·) = y(·)− yref(·), where yref(·) is the reference signal, evolves within Fϕ and all variables are
bounded. More specific, the transient behavior is supposed to satisfy

∀ t > 0 : ‖e(t)‖< 1/ϕ(t),

and, moreover, if ϕ is chosen so that ϕ(t) ≥ 1/λ for all t sufficiently large, then the tracking error remains smaller
than λ .

By choosing ϕ(0) = 0 we ensure that the width of the funnel is infinity at t = 0, see Figure 1. In the following
we only treat “infinite” funnels for technical reasons, since if the funnel is finite, that is ϕ(0) > 0, then we need to
assume that the initial error is within the funnel boundaries at t = 0, i.e., ϕ(0)‖Cx0−yref(0)‖< 1, and this assumption
suffices.

As indicated in Figure 1, we do not assume that the funnel boundary decreases monotonically. Certainly, in most
situations it is convenient to choose a monotone funnel, however there are situations where widening the funnel at
some later time might be beneficial, e.g., when it is known that the reference signal varies strongly.

To ensure error evolution within the funnel, we use the funnel controller (5). If we assume asymptotically stable
zero dynamics, we see intuitively that, in order to maintain the error evolution within the funnel, high gain values may
only be required if the norm ‖e(t)‖ of the error is close to the funnel boundary ϕ(t)−1: k(·) increases if necessary to
exploit the high-gain property of the system and decreases if a high gain is not necessary. This intuition underpins
the choice of the gain k(t) in (5). The control design (5) has two advantages: k(·) is non-monotone and (5) is a static
time-varying proportional output feedback of striking simplicity.

Before we state and prove feasibility of funnel control for electrical circuits, we need to define consistency of the
initial value of the closed-loop system and solutions of the latter. We also define what “feasibility of funnel control”
will mean.

Definition 7.1 (Consistent initial value). Let [E,A,B,C] ∈ Σn,m, ϕ ∈Φ and yref ∈B∞(R≥0;Rm). An initial value x0 ∈
Rn is called consistent for the closed-loop system (1), (5) if there exists a solution of the initial value problem (1), (5),
x(0) = x0, i.e., a function x ∈ C 1([0,ω);Rn) for some ω ∈ (0,∞], such that x(0) = x0 and x satisfies (1), (5) for all
t ∈ [0,ω).

Note that, in practice, consistency of the initial state of the “unknown” system should be satisfied as far as the
DAE [E,A,B,C] is the correct model.

In the following we define feasibility of funnel control for a system on a set of reference trajectories. For reference
trajectories we allow signals in B∞(R≥0;Rm), whereas in [2] signals in Bν(R≥0;Rm) are allowed and ν ∈ N is a
number which can be calculated out of a certain system decomposition. To avoid the details of this calculation we
restrict ourselves to the case of B∞(R≥0;Rm).

Definition 7.2 (Feasibility of funnel control). Let [E,A,B,C] ∈ Σn,m and S ⊆B∞(R≥0;Rm) be a set of reference
trajectories. We say that funnel control is feasible for [E,A,B,C] on S , if for all ϕ ∈Φ, any reference signal yref ∈S
and any consistent initial value x0 ∈ Rn the application of the funnel controller (5) to (1) yields a closed-loop initial-
value problem that has a solution and every solution can be extended to a global solution. Furthermore, for every
global solution x(·),

(i) x(·) is bounded and the corresponding tracking error e(·) =Cx(·)− yref(·) evolves uniformly within the perfor-
mance funnel Fϕ ; more precisely,

∃ε > 0 ∀ t > 0 : ‖e(t)‖ ≤ ϕ(t)−1− ε . (24)

(ii) the corresponding gain function k(·) given by (5) is bounded.
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Remark 7.3 (Bound for the gain). If funnel control is feasible as stated in Definition 7.2, then the gain function k is
bounded in a way that

∀ t0 > 0 : sup
t≥t0
|k(t)| ≤ 1

1− (1− ελt0)
2 ,

where ε is given in (24) and λt0 := inft≥t0 ϕ(t)> 0 for all t0 > 0. A proof for this can be found in [2, Thm. 5.3].

In the following we show that funnel control for systems [E,A,B,C] ∈ Σn,m with (2), (4) is feasible provided
that the invariant zeros have negative real part and the reference signal is sufficiently smooth and evolves in a certain
subspace, see Theorem 7.7. The former means that the autonomous part of the zero dynamics has to be asymptotically
stable, but autonomy of the whole zero dynamics is not required. As a preliminary result we derive that, for positive
real systems [E,A,B,C] ∈ Σn,m with asymptotically stable zero dynamics, funnel control will be feasible for any
sufficiently smooth reference signal.

Proposition 7.4 (Funnel control for systems with stable zero dynamics). Let [E,A,B,C]∈ Σn,m be such that E =E> ≥
0, A+A> ≤ 0, and B = C>. Further, assume that the zero dynamics of [E,A,B,C] are asymptotically stable. Then
funnel control is feasible for [E,A,B,C] on B∞(R≥0;Rm).

Proof. We aim to apply [2, Thm. 5.3] for k̂ = 1 and to this end verify its assumptions.
Step 1: The zero dynamics of [E,A,B,C] are asymptotically stable by assumption.
Step 2: We show that for the inverse L(s) of

[ sE−A −B
−C 0

]
over R(s) the matrix

Γ =− lim
s→∞

s−1[0, Im]L(s)

 0

Im

 ∈ Rm,m

exists and satisfies Γ = Γ> ≥ 0. By Corollary 2.5, the pencilsE−A −B

C 0

=

In 0

0 −Im

sE−A −B

−C 0


is positive real. Then, for the inverse L(s) of

[ sE−A −B
−C 0

]
over R(s), L̃(s) := L(s)

[
In 0
0 −Im

]
is the inverse of

[
sE−A −B

C 0

]
,

and we have
L̃(λ )+ L̃(λ )∗ = L̃(λ )

([
λE−A −B

C 0

]∗
+
[

λE−A −B
C 0

])
L̃(λ )∗ ≥ 0

for all λ ∈ C+. Furthermore, since
[ sE−A −B
−C 0

]
does not have any invariant zeros in C+, L̃(s) has no poles in

C+. This shows that L̃(s) is positive real. Hence, H(s) := [0, Im]L̃(s)[0, Im]
> is positive real and satisfies H(s) =

−[0, Im]L(s)[0, Im]
>. Now Lemma 2.4 yields that

Γ = lim
s→∞

s−1H(s) ∈ Rm,m

exists and satisfies Γ = Γ> ≥ 0.
Step 3: We show that [E,A,B,C] is right-invertible in the sense of [2, Def. 4.1]. Since the zero dynamics of

[E,A,B,C] are in particular autonomous it follows from Proposition 5.2 (ii) that rkC = m and hence right-invertibility
can be concluded from [2, Rem. 4.12].

Step 4: It remains to show that k̂ in [2, Thm. 5.3] can be chosen as k̂ = 1 and funnel control is still feasible. A
careful inspection of the proof of [2, Thm. 5.3] reveals that ‘k̂ large enough’ is needed

a) in Step 1 of the proof of [2, Thm. 5.3] to show that the map M(·) = Â22− k
(
I +G(·)

)
, where G(·) = G(·)> ≥ 0

pointwise, is well-defined (i.e., pointwise invertible) for k ≥ k̂,

b) in Step 3 of the proof of [2, Thm. 5.3] to show that Â22− k̂ · k(t)Im is invertible for all t ≥ 0.
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It can be deduced that both a) and b) are satisfied with k̂ = 1 if Â22− kIm is negative definite for all k > 0, where

Â22 = [0, Im−m1 ]VA22V>

 0

Im−m1

 ,
m1 and the orthogonal matrix V have been defined in Step 1 of the proof of [2, Thm. 5.3], and

A22 = lim
s→∞

[0, Im]L(s)

 0

Im

+ sΓ

 .

We may calculate that
A22 = lim

s→∞
(sΓ−H(s)) =−H0− lim

s→∞
Hsp(s)

where, since H(s) is positive real, by Lemma 2.4 the rational function H0+Hsp(s) is positive real and lims→∞ Hsp(s) =
0. Hence, it is easy to derive that H0 ≥ 0 (H0 not necessarily symmetric) and hence

A22− kIm =−H0− kIm < 0

for all k > 0 (again A22− kIm not necessarily symmetric). This implies that Â22− kIm is negative definite for all
k > 0.

Before we prove our main result we need to know how feasibility of funnel control behaves under transformation
of the system.

Lemma 7.5 (Funnel control under system transformation). Let E,A ∈ Rn,n, B,C> ∈ Rn,m and S ⊆B∞(R≥0;Rm).
Further, let W,T ∈Gln(R), U ∈ Om(R), and define

[Ẽ, Ã, B̃,C̃] := [WET,WAT,WBU,U>CT ].

Then funnel control is feasible for [E,A,B,C] on S if, and only if, funnel control is feasible for [Ẽ, Ã, B̃,C̃] on U>S .

Proof. Observe that (x,u,y) ∈ B[E,A,B,C] and yref ∈S if, and only if,

(x̃, ũ, ỹ) = (T−1x,U>u,U>y) ∈ B[Ẽ,Ã,B̃,C̃] ∧ U>yref ∈U>S .

Then the assertion follows from the observation that, for any ϕ ∈ Φ, and tracking errors e = y− yref, ẽ = ỹ− ỹref we
have, for all t ≥ 0,

1
1−ϕ(t)2‖e(t)‖2 =

1
1−ϕ(t)2‖ẽ(t)‖2 .

In the following, in order to show that funnel control is feasible for circuits where all invariant zeros are located in
C−, but the zero dynamics are not necessarily autonomous, we derive a transformation of the circuit which decouples
the “non-autonomous part” of the zero dynamics. This part, in particular, does not affect the input-output behavior of
the system.

Proposition 7.6 (Decomposition of circuit pencil). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of an elec-
trical circuit and suppose that (A1) and (A2) hold. Let Z′CRLI ∈ Rne,k1 , ZCRLI ∈ Rne,k2 with full column rank such
that

imZCRLI = ker
[
AC AR AL AI

]>
, and imZ′CRLI = im

[
AC AR AL AI

]
.
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Further, let ZV−CRLI ∈ RnV ,k3 , Z′V−CRLV ∈ RnV ,k4 , Z̄I ∈ RnI ,k5 , Z̄′I ∈ RnI ,k6 with orthonormal columns such that

imZV−CRLI = kerZ>CRLI AV , imZ′V−CRLI = imA>V ZCRLI , im Z̄I = kerAI , im Z̄′I = imA>I .

Then we have

W> := T :=


ZCRLI Z′CRLI 0 0 0

0 0 InL 0 0

0 0 0 ZV−RCLI Z′V−RCLI

 ∈Gln(R) (25a)

and

U :=

 0 Z̄I Z̄′I 0

Z′V−RCLI 0 0 ZV−RCLI

 ∈ Om(R), (25b)

and

W (sE−A)T =


0 0 Z>CRLI AV Z′V−CRLI

0 sẼr− Ãr

[
(Z′CRLI )>AV Z′V−CRLI

0
0

]
−(Z′V−CRLI )>A>V ZCRLI [−(Z′V−CRLI )>A>V Z′CRLI , 0, 0 ] 0

 (26)

and

WBU =
(
U>CT

)>
=


0 0

0 B̃r

[−Ik4 ,0] 0

 , (27)

where

sẼr− Ãr =

 (Z′CRLI )>(sAC CA>C +AR GA>R )Z′CRLI (Z′CRLI )>AL Z>CRLI AV ZV−CRLI

−A>L Z′CRLI sL 0

−Z>V−CRLI A>V Z′CRLI 0 0

 , B̃r = C̃>r =

[
−(Z′CRLI )>AI Z̄′I 0

0 0
0 −Ik3

]
(28)

Furthermore, the following holds true:

(a) k2 = k4 and Z>CRLI AV Z′V−CRLI ∈Glk2(R).

(b) The zero dynamics of the system [Ẽr, Ãr, B̃r,C̃r] are autonomous.

(c) λ ∈ C is an invariant zero of [E,A,B,C] if, and only if, λ is an invariant zero of [Ẽr, Ãr, B̃r,C̃r].

Proof. The invertibility of W,T and U is a consequence of

imZ′CRLI ⊕ imZCRLI = im
[
AC AR AL AI

]
⊕ker

[
AC AR AL AI

]>
= Rne ,

imZ′V−RCLI ⊕ imZV−RCLI = imA>V ZCRLI ⊕kerZ>CRLI AV = RnV ,

im Z̄′I ⊕ im Z̄I = imA>I ⊕kerAI = RnI .

Furthermore, by choice of ZV−CRLI , Z′V−CRLV , Z̄I and Z̄′I the matrix U is orthogonal. The representation of the
transformed system in (26), (27) and (28) is then a simple calculation.

We prove assertions (a)–(c).

(a) The assertion will be inferred from the fact that both matrices Z>CRLI AV Z′V−CRLI and (Z>CRLI AV Z′V−CRLI )>
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have trivial kernels. To prove the first assertion, assume let z ∈ kerZ>CRLI AV Z′V−CRLI . Then

Z′V−CRLI z ∈ kerZ>CRLI AV = (imA>V ZCRLI )⊥ = (imZ′V−CRLI )⊥.

Therefore, Z′V−CRLI z= 0, and the full column rank of Z′V−CRLI implies z= 0. Now let z∈ ker(Z′V−CRLI )>A>V ZCRLI .
Then

A>V ZCRLI z ∈ ker(Z′V−CRLI )> = (imZ′V−CRLI )⊥ = (imA>V ZCRLI )⊥.

Thus, ZCRLI z ∈ kerA>V and by choice of ZCRLI we have

ZCRLI z ∈ ker
[
AC AR AL AI

]>
∩kerA>V

(A1)
= {0},

Hence, we obtain z = 0 from the full column rank of ZCRLI .

(b) By Proposition 5.2 it is sufficient to show that the pencil

sE −A :=

sẼr− Ãr B̃r

−C̃r 0

=

sẼr− Ãr −B̃r

−C̃r 0

I 0

0 −I


is regular. Observing that E = E > ≥ 0 and A +A > ≤ 0, we can use Lemma 2.6 to further reduce the problem
to showing that kerE ∩kerA = {0}:
Let z = (z1,z2,z3,z4,z5) ∈ kerE ∩kerA be suitably partitioned according to the block structure of Ẽr, Ãr, B̃r and
C̃r as in (28). Then, by (A2), the equation z>E z = z>(A +A >)z = 0 gives rise to z2 = 0 and

z1 ∈ ker
[
AC AR

]>
Z′CRLI .

The equation A z = 0 further implies z3 = 0 and

z1 ∈ kerA>L Z′CRLI ∧ z1 ∈ ker(Z̄′I )>A>I Z′CRLI .

The latter implies
A>I Z′CRLI z1 ∈ ker(Z̄′I )> = (im Z̄′I )⊥ = (imA>I )⊥,

whence z1 ∈ kerA>I Z′CRLI . Altogether, we have

Z′CRLI z1 ∈ ker
[
AC AR AL AI

]>
=
(

im
[
AC AR AL AI

])⊥
= (imZ′CRLI )⊥.

The full column rank of Z′CRLI now implies that z1 = 0. Now using that z1 = 0, z2 = 0 and z3 = 0, we can infer
from A z = 0 that z5 = 0 and (Z′CRLI )>AI Z̄′I z4 = 0. Thus,

AI Z̄′I z4 ∈ ker(Z′CRLI )> = (imZ′CRLI )⊥ =
(

im
[
AC AR AL AI

])⊥
⊆ (imAI )⊥.

Therefore, AI Z̄′I z4 = 0 or, equivalently,

Z̄′I z4 ∈ kerAI = (imA>I )⊥ = (im Z̄′I )⊥.

This implies Z̄′I z4 = 0, and since Z̄′I has full column rank, we have that z4 = 0.
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(c) It can be obtained from simple row and column operations that for all λ ∈ C we have

rkC

λE−A −B

−C 0

= rkC

λWET −WAT −WBU

−UTCT 0

= rkC

λ Ẽr− Ãr −B̃r

−C̃r 0

+2k4

and, similarly,

rkR(s)

sE−A −B

−C 0

= rkR(s)

sẼr− Ãr −B̃r

−C̃r 0

+2k4.

This implies that the generalized eigenvalues of
[ sE−A −B
−C 0

]
coincide with those of

[
sẼ−Ãr −B̃r
−C̃r 0

]
and hence the

assertion is proved.

This concludes the proof of the proposition.

We are now in the position to prove the main result of this section, which improves Proposition 7.4 by relaxing
the assumption of asymptotically stable zero dynamics (which in particular requires autonomous zero dynamics) to
the assumption of asymptotic stability of the autonomous part of the zero dynamics; the latter is characterized by the
stability of the invariant zeros of the system. This leads to the following result, where we show that funnel control is
feasible for circuits where all invariant zeros are located in C−. However, the drawback is that the reference trajectory
must be restricted to a certain subspace in order to account for the non-autonomous part of the zero dynamics.

Theorem 7.7 (Funnel control for circuits). Let [E,A,B,C] ∈ Σn,m with (2), (4) be an MNA model of an electrical
circuit and suppose that (A1) and (A2) hold. Assume that the system [E,A,B,C] does not have any invariant zeros on
the imaginary axis. Let ZCRLI be a matrix with full column rank such that

imZCRLI = ker
[
AC AR AL AI

]>
.

Then funnel control is feasible for [E,A,B,C] on

B∞

(
R≥0; imA>I ×kerZ>CRLI AV

)
.

Proof. Step 1: Use the notation from Proposition 7.6 and define

[Ẽ, Ã, B̃,C̃] := [WET,WAT,WBU,U>CT ].

Then, by Lemma 7.5, it suffices to prove that funnel control is feasible for [Ẽ, Ã, B̃,C̃] on

S :=U>B∞

(
R≥0; imA>I ×kerZ>CRLI AV

)
.

Step 2: We show that [Ẽr, Ãr, B̃r,C̃r] has asymptotically stable zero dynamics. By Proposition 7.6 (c), the zero
dynamics of [Ẽr, Ãr, B̃r,C̃r] are autonomous. Furthermore, by Proposition 7.6 (d) and the fact that the invariant zeros
of [E,A,B,C] all have negative real part, we obtain from Theorem 5.5 that the zero dynamics of [Ẽr, Ãr, B̃r,C̃r] are
asymptotically stable.

Step 3: We reduce the feasibility problem of funnel control to that of the system [Ẽr, Ãr, B̃r,C̃r]. Let

(x̃, ũ, ỹ) ∈ B[Ẽ,Ã,B̃,C̃] and ỹref =U>

yref,1

yref,2

 ∈S .

Since
yref,1 ∈ imA>I = im Z̄′I = (im Z̄I )

⊥
= ker Z̄>I
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and
yref,2 ∈ kerZ>CRLI AV = imZV−CRLI =

(
imZ′V−CRLI

)⊥
= ker

(
Z′V−CRLI

)>
we obtain that

ỹref =
[
0, 0, ỹref,1, ỹref,2

]>
,

where ỹref,1 =
(
Z̄′I
)>yref,1 and ỹref,2 = Z>V−CRLI yref,2. By suitably partitioning

x̃(t) =



x1(t)

x2(t)

x3(t)

x4(t)

x5(t)


, ũ(t) =


u1(t)

u2(t)

u3(t)

u4(t)

 , ỹ(t) =


y1(t)

y2(t)

y3(t)

y4(t)



according to the block structure of sẼ− Ã as in (26), and B̃, C̃ as in (27), we obtain Z>CRLI AV Z′V−CRLI x5 = 0, whence,
by Proposition 7.6 (b), we have x5 = 0, and thus also y1 = 0. Moreover, y2 = 0 and

x1 =−(Z>CRLI AV Z′V−CRLI )−1(Z′V−CRLI )>A>V Z′CRLI x2−u1,

and, further

x̃r(t) =


x2(t)

x3(t)

x4(t)

 , ũr(t) =

u3(t)

u4(t)

 , ỹr(t) =

y3(t)

y4(t)


satisfy

(x̃r, ũr, ỹr) ∈ B[Ẽr ,Ãr ,B̃r ,C̃r ]
.

Application of the funnel controller (5) then yields ũ =−k(ỹ− ỹref) and hence u1 = 0 and u2 = 0. Therefore, funnel
control is feasible for [Ẽ, Ã, B̃,C̃] on S if, and only if, funnel control is feasible for [Ẽr, Ãr, B̃r,C̃r] on B∞(R≥0;Rk3+k6).
The latter however follows from Step 2 and Proposition 7.4. This concludes the proof of the theorem.

Remark 7.8 (Topological criteria for funnel control). We analyze the constraints on the reference trajectories in
Theorem 7.7.

(a) The subspace restriction
yref(t) ∈ imA>I ×kerZ>CRLI AV ∀ t ≥ 0 (29)

on the reference signal can be interpreted as follows: Since we do no longer assume autonomous zero dynamics
it is, by Proposition 5.2, possible that the circuit contains I -loops and V -cutsets and we have to check the
consequences of these two configurations. If the circuit contains a V -cutset, then, by Kirchhoff’s current law, the
currents of the voltage sources in the V -cutset sum up to zero. Since both are components of the output y this
leads to an output constraint. Clearly, the reference trajectory has to satisfy this restriction as well if we want
funnel control to be feasible. Likewise, if the circuit contains an I -loop, then Kirchhoff’s voltage law implies
that the voltages of the current sources in the I -loop sum up to zero which again leads to an output constraint.
Condition (29) therefore means that, in a sense, the reference signal has to satisfy Kirchhoff’s laws pointwise, see
also Figure 2.

(b) Invoking that

kerZ>CRLI = (imZCRLI )⊥ =

(
ker
[
AC AR AL AI

]>)⊥
= im

[
AC AR AL AI

]
,
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iV 1(t) iV 2(t)
⇒ iV 1(t) = iV 2(t) vI 1(t) vI 2(t) ⇒ vI 1(t) = vI 2(t)

Figure 2: Interpretation of condition (29) in terms of Kirchhoff’s laws

we find
kerZT

CRLI AV =
{

x ∈ RnV

∣∣∣ AV x ∈ im
[
AC AR AL AI

] }
.

In particular, this space is independent of the choice of the matrix ZCRLI with imZCRLI =

ker
[
AC AR AL AI

]>
.

(c) We have that kerZ>CRLI AV = RnV if, and only if,

imAV ⊆ kerZ>CRLI = (imZCRLI )⊥ =

(
ker
[
AC AR AL AI

]>)⊥
= im

[
AC AR AL AI

]
.

Hence, by (A1), kerZ>CRLI AV = RnV is equivalent to

im
[
AC AR AL AI

]
= Rne .

The latter is, by Lemma 3.4, equivalent to the absence of V -cutsets in the given electrical circuit.
Furthermore, imA>I = RnI if, and only if, {0}=

(
imA>I

)⊥
= kerAI . By Lemma 3.4 the latter is equivalent to

the absence of I -loops in the given electrical circuit.

(d) By virtue of Theorem 7.7 and Corollary 5.4, we see that funnel control is feasible for passive and connected
electrical circuits (on a suitable set of reference trajectories) provided that at least one of the following two
properties is satisfied:

(i) The circuit neither contains I L-loops except for I -loops, nor VCL-cutsets except for VL-cutsets.

(ii) The circuit neither contains VC -cutsets except for V -cutsets, nor I CL-loops except for I C -loops.

(e) By virtue of Proposition 7.4 and Theorem 5.5, we see that funnel control is feasible for passive and connected
electrical circuits (on the set of all sufficiently smooth reference trajectories) provided that at least one of the
following two properties is satisfied:

(i) The circuit neither contains I L-loops, nor VCL-cutsets except for VL-cutsets with at least one inductor.

(ii) The circuit neither contains VC -cutsets, nor I CL-loops except for I C -loops with at least one capacitor.

8. Simulations

In this section we demonstrate the applicability of the funnel controller. First, we consider an example of a
discretized transmission line [9] and show that the funnel controller (5) achieves tracking of two different types
of reference signals: A sinusoidal reference signal is considered in Subsection 8.1 and a sawtooth wave signal in
Subsection 8.2. In each case the transient behavior of the tracking error is prescribed. We also like to emphasize again
that funnel control does not need the exact knowledge of the system parameters. In particular, no pre-computation
(such as, for instance, in flatness-based control [9]) has do be done.

In Subsection 8.3 we consider a circuit with unstable zero dynamics (and also unstable invariant zeros) in order to
show that this assumption is essential. Although the funnel controller achieves tracking of a constant reference signal,
the gain grows unboundedly.
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8.1. Discretized transmission line - sinusoidal reference signal

We consider a discretized transmission line as depicted in Figure 3, where n is the number of spacial discretization
points.

RT/n LT/n RT/n LT/n RT/n LT/n

GT/nCT/nGT/nCT/nGT/nCT/n

Figure 3: Discretized transmission line

The element related incidence matrices of this circuit can be calculated as

AC = diag




0

0

1

 ,
0

1

 , . . . ,
0

1


 ∈ R2n+1,n,

AR =

diag


 1

−1

 , . . . ,
 1

−1

 ,


1

−1

0


 , AC

 ∈ R2n+1,2n,

AL = diag




0

1

−1

 ,
 1

−1

 , . . . ,
 1

−1


 ∈ R2n+1,n,

AV = [1,0, . . . ,0]> ∈ R2n+1,1,

AI = [0, . . . ,0,1]> ∈ R2n+1,1.

The matrices expressing the constitutive relations of capacitances, resistances (and conductances, resp.) and induc-
tances are given by

C =
CT

n
In, G = diag

(
n

RT
In,

GT

n
In

)
, L =

LT

n
In.

The differential-algebraic system (1) describing the discretized transmission line is then given by [E,A,B,C] for the
matrices in (2).

The circuit in Fig. 3 does not contain any I L-loops. Further, the only VCL-cutset of the circuit is formed by the
voltage source and the inductance of the left branch. We can therefore conclude from Theorem 5.5 that [E,A,B,C]
has asymptotically stable zero dynamics. Then, by Proposition 7.4, funnel control is feasible for [E,A,B,C] on
B∞(R≥0;R2).

For the simulation we chose the parameters

n = 50, CT = RT = GT = LT = 1, (30)

and the (consistent) initial value for the closed-loop system [E,A,B,C], (5) by

x0 = (−1,−1.04,2,1.96, . . . ,2,1.96︸ ︷︷ ︸
(n−1)-times

, 2, . . . ,2︸ ︷︷ ︸
(n+1)-times

,−2) ∈ R3n+2. (31)
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As reference signal we take the sinusoidal signal yref = (sin,cos)> ∈B∞(R≥0;R2). The funnel Fϕ is determined by
the function

ϕ : R≥0→ R≥0, t 7→ 0.5 te−t +2 arctan t . (32)

Note that this prescribes an exponentially (exponent 1) decaying funnel in the transient phase [0,T ], where T ≈ 3, and
a tracking accuracy quantified by λ = 1/π thereafter, see Fig. 4d.

Note further that the asymptotic stability of the zero dynamics can also be verified by a numerical test which shows
that all invariant zeros of [E,A,B,C] have real part −1.

0 2 4 6 8 10
-2

-1

0

1

2

t

 

 
y1
y2

Fig. a: Solution components y1 and y2

0 2 4 6 8 10
1

2

3

4

5

t

 

 

k

Fig. b: Gain k

0 2 4 6 8 10
-2

-1

0

1

2

3

t

 

 
u1

u2

Fig. c: Input components u1 and u2

0 2 4 6 8 10
0

1

2

3

4

5

t

 

 
√

|e1|2 + |e2|2

ϕ!1

Fig. d: Norm of error ‖e(·)‖ and funnel boundary ϕ(·)−1

Figure 4: Simulation of the funnel controller (5) with funnel boundary specified in (32) and reference signal yref = (sin,cos)> applied to system
[E,A,B,C] with initial data (31).

The simulation has been performed in MATLAB (solver: ode15s, relative tolerance: 2.3 · 10−14, absolute tol-
erance: 10−10). In Figure 4 the simulation, over the time interval [0,10], of the funnel controller (5) with funnel
boundary specified in (32) and reference signal yref = (sin,cos)>, applied to system [E,A,B,C] with initial data (31) is
depicted. Fig. 4a shows the output components y1 and y2 tracking the reference signal yref within the funnel shown in
Fig. 4d. Note that an action of the input components u1 and u2 in Fig. 4c and the gain function k in Fig. 4b is required
only if the error ‖e(t)‖ is close to the funnel boundary ϕ(t)−1. It can be seen that initially the error is very close to the
funnel boundary and hence the gain rises sharply. Then, at approximately t = 1, the distance between error and funnel
boundary gets larger and the gain drops accordingly. In particular we see that the gain function k is non-monotone.

8.2. Discretized transmission line - sawtooth wave signal

To highlight the applicability of the funnel controller, we provide another simulation for the discretized transmis-
sion line as discussed in Subsection 8.1 with the same system parameters (30) and (consistent) initial value x0 for the
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closed-loop system [E,A,B,C], (5) given by

x0 = (x0
1,x

0
2,2,1.96, . . . ,2,1.96︸ ︷︷ ︸

(n−1)-times

, 2, . . . ,2︸ ︷︷ ︸
(n+1)-times

,−2) ∈ R3n+2, (33)

where approximately x0
1 ≈ 1.6366 and x0

2 ≈ 1.6766.
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Figure 5: Sawtooth wave reference signal yref.

As reference signal we take a sawtooth wave signal
yref = (s1,s2)

> ∈ B∞(R≥0;R2) with period 1 and
amplitude 1. The component s1 has a phase shift
of 0.3 and s2 has a phase shift of 2.0. In order to
meet the smoothness requirements on the reference
trajectory, the signals s1 and s2 are smoothed by a
gaussian low-pass filter with standard deviation 0.2.
The components of the refrence signal yref are de-
picted in Figure 5.
The funnel Fϕ is again determined by (32).
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Figure 6: Simulation of the funnel controller (5) with funnel boundary specified in (32) and reference signal yref = (s1,s2)
> applied to system

[E,A,B,C] with initial data (33).
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The simulation has been performed in MATLAB (solver: ode15s, relative tolerance: 2.3 · 10−14, absolute tol-
erance: 10−10). In Figure 6 the simulation, over the time interval [0,10], of the funnel controller (5) with funnel
boundary specified in (32) and reference signal yref = (s1,s2)

> as shown in Figure 5, applied to system [E,A,B,C]
with initial data (33) is depicted. In Fig. 6a we see that the output components y1 and y2 can keep track of the vivid
sawtooth wave yref within the funnel as shown in Fig. 6d. The input components u1 and u2 resemble sawtooth waves
as well, see Fig. 6c. The gain function k in Fig. 6b has a strong non-monotonic character in this example and varies
between 1.5 and 3.5 in the depicted time interval.

8.3. Example with unstable zero dynamics
To illustrate that asymptotic stability of the zero dynamics is an essential assumption for funnel control we consider

the simple RC circuit depicted in Figure 7.

R

C

Figure 7: Simple RC circuit

The incidence matrices are given by

AR =

 1

−1

 , AC =

0

1

 , AV =

1

0

 .
The system is consequently described by [E,A,B,C] ∈ Σ3,1 with

E =


0 0 0

0 C 0

0 0 0

 , A =


−R R −1

R −R 0

1 0 0

 , B =C> =


0

0

−1

 .
To analyze the zero dynamics, let x = (η1,η2, iV )

>, u = vV , y = −iV be such that (x,u,y) ∈ Z D [E,A,B,C]. The
equation Cx = 0 implies iV = 0. Then d

dt Ex(t) = Ax(t)+Bu(t) gives η1 = η2 and d
dt η2 = 0, whence η2 is constant.

The relation d
dt Ex(t) = Ax(t)+Bu(t) further gives rise to u = −η1. On the other hand we obtain that a trajectory

(x,u,y)≡
(
(c,c,0)>,c,0

)
satisfies (x,u,y) ∈Z D [E,A,B,C]. Thus we have

Z D [E,A,B,C] =





c

c

0

 , c, 0


∣∣∣∣∣∣∣∣∣ c ∈ R

 .

Consequently, the zero dynamics are not asymptotically stable. Note that the transfer function of this system reads

G(s) =
[
0 0 1

]
R −R 1

−R Cs+R 0

−1 0 0


−1

0

0

1

=
Cs

R +Cs
.
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For the simulation we chose the parameters C = R = 1 and the (consistent) initial value x0 = (1,1,0)> ∈ R3 for
the closed-loop system [E,A,B,C], (5). As reference signal we take the constant function yref ≡ 1 and the funnel Fϕ

is determined by

ϕ : R≥0→ R≥0, t 7→ 2t
t +1

. (34)
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Fig. d: Absolute value of error |e(·)| and funnel boundary ϕ(·)−1

Figure 8: Simulation of the funnel controller (5) with funnel boundary specified in (34) and reference signal yref ≡ 1 applied to system [E,A,B,C]
with initial data x0 = (1,1,0)>.

The simulation has been performed in MATLAB (solver: ode15s, relative tolerance: 2.3 · 10−14, absolute toler-
ance: 10−10) and is depicted in Figure 8 over the time interval [0,25]. In Fig. 8a we see that the output converges to 0.5
and thus stays away from the reference trajectory by at least 0.5. This can also be concluded from the tracking error
shown in Fig. 8d. Since the zero dynamics are not asymptotically stable the error does not stay away from the funnel
boundary uniformly, but converges to ϕ−1. In Fig. 8b and Fig. 8c we see that the gain and input grow unboundedly.
This is necessary for feasibility of tracking in this case.

Indeed we can show that no output signal evolving in the performance funnel can be generated by a bounded input:
Assuming that (x,u,y) ∈ B[E,A,B,C] with (t,y(t)− yref(t)) ∈Fφ for all t ∈ R≥0 we have

∀ t > 0 : |1− y(t)|= |yref(t)− y(t)| ≤ ϕ(t)−1.

Since ϕ(t)−1 ≤ 3
4 for all t ≥ 2, we have in particular that y(t) ≥ 1

4 for t ≥ 2. Then, by y(t) = −iV (t) = R η1(t)−
R η2(t) = C η̇2(t), we obtain

η2(t) = η2(2)+
∫ t

2
η̇2(τ)dτ = η2(2)+

1
C

∫ t

2
y(τ)dτ ≥ η2(2)+

1
4C

(t−2) = η2(2)−
1

2C
+

t
4C

, t ≥ 2.
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Therefore,

u(t) = η1(t) = R −1y(t)+η2(t)≥
1

4R
+η2(2)−

1
2C

+
t

4C
, t ≥ 2.

This implies that the input is unbounded. Therefore, it seems that stability of the zero dynamics is a fundamental
principle that is generally required for output tracking problems in order to achieve boundedness of the input.

9. Conclusion

We have investigated the zero dynamics of linear passive electrical circuits and proved that autonomy and asymp-
totic stability of the zero dynamics are physically structural properties. Furthermore, we have shown that the applica-
tion of high-gain output feedback leads to a stability problem for a certain replacement circuit. In particular, it follows
that funnel control is feasible only under physically structural assumptions on the circuit and some smoothness as-
sumptions on the reference trajectory and the funnel boundary. The case of circuits with possibly non-autonomous
zero dynamics can also be treated, provided that the reference trajectory is restricted to a certain subspace.

Finally, we like to stress that the findings of the present paper can directly be carried over to MLA (modified loop
analysis) models of electrical circuits; for the latter see e.g. [26].
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