Controllability of linear differential-algebraic
systems - a survey

Thomas Berger and Timo Reis

Abstract

Different concepts related to controllability of diffetéad-algebraic equations
are described. The class of systems considered consistsarf differential-algebraic
equations with constant coefficients. Regularity, whichdssely speaking, a con-
cept related to existence and uniqueness of solutions foindimogeneity, is not
required in this article. The concepts of impulse conttulity, controllability at in-
finity, behavioral controllability, strong and completentllability are described
and defined in time-domain. Equivalent criteria that gelimrahe Hautus test are
presented and proved.

Special emphasis is placed on normal forms under state gpatsEormation
and, further, under state space, input and feedback tnanafions. Special forms
generalizing the Kalman decomposition and Brunovsky fame presented. Con-
sequences for state feedback design and geometric intstipreof the space of
reachable states in terms of invariant subspaces are proved
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1 Introduction

Controllability is, roughly speaking, the property of a t§ya that any two trajec-
tories can be concatenated by another admissible trayjedibe precise concept
however depends on the specific framework, as quite a nunfidéferent concepts
of controllability are present today.

Since the famous work by XLMAN [80—82], who introduced the notion of con-
trollability about fifty years ago, the field of mathematicahtrol theory has been
revived and rapidly growing ever since, emerging into anangmt area in applied
mathematics, mainly due to its contributions to fields stemachanical, electrical
and chemical engineering (see e.g. [2, 46, 138]). For a goedview of standard
mathematical control theory, i.e., involving ordinaryfdiential equations (ODES),
and its history see e.g. [69, 75, 76,79,137,144].

Just before mathematical control theory began to gromyNB1ACHER published

his famous book [59] and therewith laid the foundations fug tediscovery of
differential-algebraic equations (DAES), the first maiadhes of which have been
developed by WIERSTRASS[157] and KRONECKER([92] in terms of matrix pen-

cils. DAEs have then been discovered to be appropriate fatetimgy a vast va-

riety of problems in economics [110], demography [36], natbal systems [7,
30,58, 66,126, 139], multibody dynamics [54, 66, 141, 1dRictrical networks [7,

35, 53, 105, 116, 133, 134], fluid mechanics [7, 64, 105] anelrdbal engineer-
ing [47,49-51, 125], which often cannot be modeled by steh@DE systems.
Especially the tremendous effort in numerical analysis AEB [10, 95, 97] is re-

sponsible for DAEs being nowadays a powerful tool for mauglind simulation of
the aforementioned dynamical processes.

In general, DAEs are implicit differential equations, amdtihe simplest case
just a combination of differential equations along withetlgaic constraints (from
which the name DAE comes from). These algebraic constraowg&ver may cause
that the solutions of initial value problems are no longdgua, or that there do not
exist solutions at all. Furthermore, when considering mbgeneous problems, the
inhomogeneity has to be “consistent” with the DAE in ordargolutions to exist.
Dealing with these problems a huge solution theory for DAES heen developed,
the most important contribution of which is the one byl\WINSON [158]. Nowa-
days, there are a lot of monographs [30, 36, 37, 48, 65, 97paedextbook [95],
where the whole theory can be looked up. A comprehensiveseptation of the
solution theory of general linear time-invariant DAEs,rajavith possible distribu-
tional solutions based on the theory developed in [145,14§]ven in [25]. A good
overview of DAE theory and a historical background can alsdédund in [98].

DAEs found its way into control theory ever since the famooskby ROSEN-
BROCK [135], in which he developed his ideas of the descriptioriraddr systems
by polynomial system matrices. Then a rapid developmetdvi@d with impor-
tant contributions of RSENBROCK himself [136] and WENBERGER[106—109],
not to forget the work by BGH et al. [130], VERGHESEet al. [150, 152-154], Pan-
dolfi [123, 124], @®BB [41,42,44,45], YpP et al. [168] and BERNARD [26]. The
most important of these contributions for the developménbacepts of controlla-
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bility are certainly [45, 154, 168]. Further developmentr&vmade by Ewis and
OZzCALDIRAN [100,101] and by BNDERand LAuUB [20, 21]. The first monograph
which summarizes the development of control theory for DA&dar was the one
by DAl [48]. All these contributions deal with regular systems,,isystems of the
form

ExX(t) = Ax(t) + f(t), x(0)=x°,

where for any inhomogeneit§ there exist initial values® for which the corre-
sponding initial value problem has a solution and this sotuis unique. This has
been proved to be equivalent to the condition thaf are square matrices and
detse—A) e R[g\ {0}.

The aim of the present paper is to state the different cora@ptontrollabil-
ity for differential-algebraic systems which are not neze#y regular, i.e.E and
A may be non-square. Applications with the need for non-i@gDAES appear in
the modeling of electrical circuits [53] for instance. Fwgtmore, a drawback in
the consideration of regular systems arises when it comiettback: the class of
regular DAE systems is not closed under the action of a fegddipaoup [12]. This
also rises the need for a complete and thorough investigafimon-regular DAE
systems. We also like to stress that general, possibly mgular, DAE systems are
a sub-class of the class of so-called differential behayiotroduced by BLDER-
MAN and WILLEMS [127], see also [160]. In the present article we will pay ecigde
attention to the behavioral setting, formulating most & tbsults and the concepts
by using the underlying set of trajectories (behavior) efsgstem.

In this paper we do not treat controllability of time-vargiibAEs, but refer
to [39, 71-73, 155, 156]. We also do not treat controllapibit discrete time DAES,
but refer to [13, 26, 98,99, 167].

The paper is organized as follows:

2 Controllability concepts p.5

The concepts of impulse controllability, controllabilitat infinity, R-
controllability, controllability in the behavioral sensg#rong and complete con-
trollability, as well as strong and complete reachabilitg stabilizability in the
behavioral sense, strong and complete stabilizability lél described and de-
fined in time-domain in Section 2. In the more present DARditere these no-
tions are not consistently treated. We try to clarify thisehe\ comprehensive
discussion of the introduced concepts as well as some fistiaes between
them are also included in Section 2.

3 Solutions, relations and normal forms p.16
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In Section 3 we briefly revisit the solution theory of DAEs ahdn concentrate
on normal forms under state space transformation and gyihder state space,
input and feedback transformations. We introduce the qusaef system and
feedback equivalence and state normal forms under theseatances, which
forinstance generalize the Brunovsky form. It is also désed when these forms
are canonical and what properties (regarding controltstahd stabilizability)
the appearing subsystems have.

4 Algebraic criteria p.31

The generalized Brunovsky form enables us to give shomfprof equivalent
criteria, in particular generalizations of the Hautus,tést the controllability
concepts in Section 4, the most of which are of course wedlakm- we discuss
the relevant literature.

5 Feedback, stability and autonomous system p.36

In Section 5 we revisit the concept of feedback for DAE systamd proof new
results concerning the equivalence of stabilizability éfbcontrol systems and
the existence of a feedback which stabilizes the closed4gstem.

6 Invariant subspaces p.47

In Section 6 we give a brief summary of some selected restitteeageometric
theory using invariant subspaces which lead to a represemtaf the reach-
ability space and criteria for controllability at infinitimpulse controllability,
controllability in the behavioral sense, complete andragroontrollability.

7 Kalman decomposition p.50

Finally, in Section 7 the results regarding the Kalman degoasition for DAE
systems are stated and it is shown how the controllabilibcepts can be related
to certain properties of the Kalman decomposition.

We close the introduction with the nomenclature used inghjser:

N, No, Z set of natural number§jg = NU {0}, set of all integers,
resp.
La), |al length and absolute value of a multi-indest =

(0q,...,a1) e N"

R>0 (Rs0, R<g, = [0,0) ((0,0), (—00,0], (—o0,0)), resp.
R<O)
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Cy, C- (C,, the open (closed) set of complex numbers with positive,

Co) negative real part, resp.

Gln(R) the set of invertible real x n matrices

INE the ring of polynomials with coefficients iR

R(s) the quotient field oR[s]

R™M the set oh x mmatrices with entries in a ring

o(A) spectrum of the matriA € R"™"

fl, restriction of the functiorf : .7 - R"to .# C .7,

LT R locally Lebesgue integrable functiofis .7 — R", see [1,
Chap. 1]

f (F0) (i-th) distributional derivative of € £t (7;R"),i € Ng

Ve TRY = { xe LL(TRY [ X € ZL(TiR" fori=0,... k |,
ke Ng

o7 the r-shift operator, i.e., fof : 7 — R", 7 CR,
orf: 7-1->RVt— f(t+71)

p the reflection operator, i.e., fdr: 7 — R", 7 CR,

pf:—7 =>R" t— f(-t)

2 Controllability concepts

We consider linear differential-algebraic control sysseshthe form
Ex(t) = AX(t) +Bu(t), (1)

with E,A € R&", B € R*™; the set of these systems is denotedSRy, m, and we
write [E,A,B] € Zxnm.

We do not assume that the persfl— A € R[g“" is regular, that is ks (SE-A) =
k=n.

The functionu: R — R™M is calledinput x: R — R" is called(generalized)
state Note that, strictly speaking(t) is in general not a state in the sense that
the free system (i.ey = 0) satisfies a semigroup property [88, Sec. 2.2]. We will,
however, speak of the stakét) for sake of brevity, especially sincét) contains
the full information about the system at timmeFurthermore, one might argue that
(especially in the behavioral setting) it is not correctadl a “input”, because due to
the implicit nature of (1) it may be that actually some comguutis ofu are uniquely
determined and some componentsg afe free, and only the free variables should be
called inputs in the behavioral setting. However, the adlzbility concepts given
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in Definition 1 explicitly distinguish betweer andu and not between free and
determined variables. We feel that, in some cases, it mtghibe the choice of the
designer to assign the input variables, that,iand if some of these are determined,
then the input space has to be restricted in an appropriate wa

A trajectory(x,u) : R — R" x R™is said to be a&olutionof (1) if, and only if, it
belongs to théehaviorof (1):

. 11, 1 (- (x,u) satisfies (1)
Plea = { (ou) € g (RIRT) x Zioo(RiR") foralmostalt e R [~ 2)

Note that any functiom € ng;:l(R;R”) is continuous. Moreover, by linearity of (1),

D g IS a vector space. Further, since the matrices in (1) do nuentbort, the
behavior isshift-invariant that is (orx, oru) € Bjg ag for all T € R and (x,u) €

BlE B
The following spaces play a fundamental role in this article

(a) Thespace of consistent initial states
Yieas = { X e R" | 3(x,u) € Beag : X(0) = X 1.
(b) Thespace of consistent initial differential variables
Vg ={X°€R" |3(xu) €Bag: EXO0)=EX }.
(c) Thereachability space at timex 0
Zieag = { X R |I(xU) €Bgag: X(0)=0AX(t) =X}
and thereachability space

HEAB = U‘%EE,A,B]'

t>0

(d) Thecontrollability space attimet 0
%[tE,A’B} ={XeR" | I(xu) €Beapg: X(0)=x> A x(t)=0}
and thecontrollability space

CK[E,A,B] = U <5[tE,A,B]-
t>0

Note that, by linearity of the systemic g, 7/[5"/&.3] , ‘%)EE AB and%[tE ap arelin-

; t it Tt ‘ot
ear subspaces &". We will show. th_at%’[lli e %“25, e %[é e %[é A for
all t3,tz € R0, see Lemma 3. This implie@g g = %’EEAB] CK[tEAB] = Gieng

for allt € R-o. Note further that, by shift-invariance, we have fortadl R that
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Veag={XER" | I(XU) EBEap: =x0 1, (3)
Vigg ={ X° €R" | 3(x.u) €V ag: =E>P}. (4)

In the following three lemmas we clarify some of the conratdi of the above
defined spaces, before we state the controllability coscept

Lemma 1 (Inclusions for reachability spaces).
For [E,A,B] € 2y nmand t,to € R.g With t; < ty, the following holds true:

(a)‘@EAB] ‘@[EAB]
(b) Ifﬂ’EAB] %[EAB] then%[EAB] %[EAB] forallt € Rwitht > t;.
Proof.

(a) Letxe ﬂ’f}z ABl By definition, there exists sonfe, u) € B ag With x(0) =0
andx(t;) = x. Consider nowfx,us) : R — R" x R™ with

Xt—-t+t),ut—ta+t1)), ift>tr—ty
(0,0), ft<t,—1t1

(xa(t),us(t)) = {

Thenx(0) = 0 implies thatx; is continuous at, —t;. Since, furthermore,

X1 € Woi (—o0,ta—ta;R") and Xay, 1, ) € #jor ([t2 —tr,00); R),

(—oo,tz—1] —t1,%)

we have(xy,u) € # . HR;RM) x LL(R;R™). By shift-invariance Ex (t) =

loc

Ax(t) + Buy(t) holds true for almost al e R, i.e., (xg,u1) € BiE AP Then,
due tox; (0) = 0 andxX = x(t1) = x4 (t2), we obtainx e Q’EE AR

(b) Step 1:We show thaj%’[E AB = ﬂ’[E ABl mphesﬁ’[E ABl _%Eé+igf : By (a),
it suffices to show the inclusion>”. Assume thatx € ﬁfg/fg]z W je., there
exists soméxy, Ur) € Bje o g With x1(0) = 0 andxy (t1 + 2(t — 1)) = x. Since
x1(tz) € ﬂ’fé A= ﬂ’f}z ag there exists somec, Up) € Bje g With x2(0) = 0
andxy(t1) = x1(t2). Now consider the trajectory

(Xz(t)aUZ(t))a if t <t1,

(xp(t+ (to—t)),ur(t+ (2 —t1))), ift>tg.

(x(t),u(t)) = {

Sincexis continuous atiy, we can apply the same argumentation as in the proof

of (a) to infer that(x,u) € Bg g The result to be shown in this step is now
a consequence af0) = x»(0) = 0 and

X=x1(ts+2(t2 — 1)) = X(t2) € Z p gy = Z|f ppy

Step 2:We show (b): From the result shown in the first step, we maydtidely

conclude that%’E}EAB] = %EEAB] mphesﬁ’EEAB] = %EE*A'(QZ] W for all | € N.
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Lett € Rwitht > t;. Then there exists sonhee Nwitht <t; +1(t, —t;). Then
statement (a) implies

R

t t+ (t—ty)
Eag S Zeas S ZEpg

[EAB

and, byc%’[E Ap = /EA,(;TH) , we obtain the desired result. O
Now we present some relations between controllability aatinability spaces
of [E,A,B] € Zxnm and itsbackward systemi—E,A,B| € 5, m. It can be easily
verified that
B_eap = { (PX.PU) | (X,U) €BEap }- (5)

Lemma 2 (Reachability and controllability spaces of the bakward system).
For [E,A,B] € 2y nm and te R, there holds
%EE,A,B] = Cg[t—E,A,B]v and <g[tE,A,B] = %E—E,A,B]'

Proof. Both assertions follow immediately from the fact thatu) € B ag), i,
and only if, (6t (px), Gt (pu)) € B|_gap)- o

The previous lemma enables us to show that the controliabitid reachability
spaces ofE,A,B| € 5, m are even equal. We further prove that both spaces do not
depend on time € R+ .

Lemma 3 (Impulsive initial conditions and controllability spaces).
For [E, A, B] € Zx nm, the following holds true:

(@) Zt ppy = %}; ag foralltsto € Roo.
(b) ﬁ’tE ap = €ag forallt e Reo,

() 7/3”/& g = Veap tkerE

Proof.

(a) By Lemma 1(a), there holds

t1 2t nty
AEne S HEns S S ZEnn S AEag R
and thus
by 2t ny "
n n 1 n+1
0<dimZz [E+ g < d|mﬁ’[E+AB] - < dlmﬁ’[gAB] < d|mﬁ’[}EAB] n.

As a consequence, there has to exist sprag 1, ...,n+ 1} with

1 Hlill
dm%EA B = dlmﬁ’[E"; B

Together with the subset inclusion, this yields
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(b

(c

)

~—

ﬂi (J+1)ty
n+ _ n+
Rens = ZEng:

Lemma 1(b) then implies the desired statement.

Letxe ‘%EE,A,B]' Then there exists song,u;) € Bje o With x1(0) = 0 and
x1(t) = x. Since, by (a), we have;(2t) € %}E AB) there also exists some
(X2,Uz) € Bie.ap With X2(0) = 0 andxz(t) = x1(2t). By linearity and shift-
invariance, we have

(X,U) == (OtX1 — X2, GtUy — U2) € Be ap)-

The inclusionZt

EAg & <g[tE,A,B] then follows by

X(0) =x1(t) = x(0) =%, X(t) =x1(2t) —x%(t) = 0.

To prove the opposite inclusion, we make use of the prewostsbwn subset
relation and Lemma 2 to infer that

Cg[tE,A,B] = ‘%EfE,A,B] < %[EE,A,B] = %EE,A,B]-

We first show that//[gif,fw] C Yeap + kerg E: Assume thak? e ”I/[gif;B], ie.
EXC = Ex(0) for some(x,u) € Bieap By X(0) € Ve ag) X(0) — X0 € kel E,
we obtain

x* =x(0) + (xX* —x(0)) € ¥ a g + ke E.

To proveYfe ag +kerg E C %giZ‘B], assume that® = x(0) + xfor some(x, u) €
B ap andx € kerz E. Thenx? € 7/[3"/&.3] is a consequence &3 = E(x(0) +
x) = Ex(0). O

By Lemma 3 it is sufficient to only consider the spadgsa g andZg g in

the following.

We are now in the position to define the central notions of radlability, reach-

ability and stabilizability considered in this article.

Definition 1.
The systemE, A, B| € 5 nm is called

a) controllable at infinity

e VO EeRMI(xU) € Beag : X(0) =X & Yeag =R"

b) impulse controllable

12 VO eR"I(xU) € Beag : EX =EX0) & #ghg=R"
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c) controllable within the set of reachable states (R-coitdiule)

& VX0, Xt € Veag I >03(XU) € B ag : X(0) =X A X(t) = Xt.
d) controllable in the behavioral sense

&V (X1, Un), (X2, U2) € BEap

3T >03(xU) € A (X(O,U)) = {(Xl(t)’“lw <0,

(X2(t)7u2(t))7 ift>T.
e) stabilizable in the behavioral sense

& V(X,U) € B apg 3 (%0,U0) € ZEag N (7%3&1(9;}1%”) X %3&1(9;}1%”)) :
(Vt<0: (x(t),u(t)) = (%o(t),uo(t))) A liMie(Xo(t), Uo(t)) =O.
f) completely reachable

o JLERo VX € RMI(XU) € B ag : X(0) =0 A X(t) =X
< JteRag: A =R".

[E,AB]

g) completely controllable

& JteR.o VX0, Xf € R" I (x,U) € BEeap - X0) =% A X(t) =Xt
h) completely stabilizable

& VX € R"I(xU) € Beag : X(0) =% A tImox(t) =0.

i) strongly reachable

& FteRoVXs €R"I(XU) € B ag) - EX0) =0 A EX(t) = EXs.
j) strongly controllable

& e R0 VX0, Xs €R"I(X,U) € B ag : EX(0) =Ex A EX(t) = EXt.

k) strongly stabilizablg¢or merelystabilizablg
& VX € R"I(X,u) € B ag s EX0) =Ex A tlm Ex(t) =0.
Some remarks on the definitions are warrant.

Remark 1.

(i) The controllability concepts are not consistently teshin the literature. For
instance, one has to pay attention if it is (tacitly) claintleat[E, B] ¢ R<"*™
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or [E,A, B] € Rk?™M have full rank.
For regular systems we have the following:

concept coincides with notion in called [...]in
controllability at infinity see item (vi) reachability ato in [98]
impulse controllability {[45] and [72, Rem. 2] controllability at o

in [98]; controllability at
infinity in [5, 6, 154]

R-controllability [40,48,168]and [72, Rem. B

complete controllability[40, 48, 168] controllability in [45]

strong controllability |[154] and [72, Rem. 2] impulse controllability
in [62]

Some of these aforementioned articles introduce the ctattility by means
of certain rank criteria for the matrix triplge, A, B]. The connection of the
concepts introduced in Definition 1 to linear algebraic @mjes ofE, A andB
will be highlighted in Section 4.

For general DAE systems we have:

concept coincides with notion ircalled [...] in
controllability at infinity— -

impulse controllability |[60, 70, 74] -
R-controllability - -
complete controllability[119] controllability in [57]

strong controllability |- controllability in [119]

Our behavioral controllability coincides with the frameakavhich is intro-
duced in [127, Definition 5.2.2] for so-calledifferential behaviorswhich
are general (possibly higher order) DAE systems with caristaefficients.
Note that the concept of behavioral controllability does mreguire a distinc-
tion between input and state. The concepts of reachabiiitycantrollability
in [12-15] coincide with our behavioral and complete coltatality, resp. (see
Sec. 4). Full controllability of [170] is our complete coolfability together
with the additional assumption that solutions have to beumi

(i) Stabilizability in the behavioral sense is introdudad127, Definition 5.2.2].
For regular systems, stabilizability is usually defineti@itvia linear algebraic
properties ofE, A andB, or by the existence of a stabilizing state feedback,
see [32,33,56] and [48, Definition 3-1.2.]. Our conceptsatidvioral stabi-
lizability and stabilizability coincide with the notiong mternal stability and
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complete stabilizability, resp., defined in [113] for thesm&z(t) = /' 2(t)
with & = [E, 0], & = [A, B], z(t) = [x" (t),u’ (t)]".

(iif) Other concepts, not related to the ones consideretiimdrticle, are e.g. the
instantaneous controllability (reachability) of ordan [119] or the impulsive
mode controllability in [70]. Furthermore, the concept ibag controllability
introduced in [149, Exercise 8.5] for ODE systems diffemirthe concepts
considered in this article.

(iv) The notion of consistent initial conditions is the masiportant one for DAE
systems and therefore the consideration of the spfacgg (for B= 0 when
no control systems were considered) is as old as the theoDA&S itself,
see e.9. [59]¥ a g is sometimes called viability kernel [28], see also [8, 9].
The reachability and controllability space are some of tlestimportant no-
tions for (DAE) control systems and have been considere®&h for regu-
lar systems. They are the fundamental subspaces consitetieel geomet-
ric theory, see Section 6. Further usage of these conceptbedound in
the following: in [121] generalized reachability and catiiability subspaces
of regular systems are considered;i& ouLou and KARCANIAS [55] con-
sider reachability and almost reachability subspaces ioéigd DAE systems;
FRANKOWSKA [57] considers the reachability subspace in terms of differ
tial inclusions.

A nice formula for the reachability space of a regular syskexs been derived
by Yip et al. [168] (and later been adopted bp&B [45], however called con-
trollable subspace): Consider a regular systemi, B] € 2, nm in Weierstraf
form [59], that is

|l O (3o _|B1
==[8x] 2= lon] >8]
whereN is nilpotent. Then [168, Thm. 2]
%[E,A,B] = (J|B1) x (N[By),

where(K|L) := img[L,KL,...,K""1L] for some matrice € R™" L € R™™,
Furthermore, we have [168, Thm. 3]

Yeap = R™ x (N|By).

This result has been improved later in [40] so that the WaRsform is no
longer needed. Denoting &P the Drazin inverse of a given matrixe R™"
(see [38]), it is shown [40, Thm. 3.1] that, fér= 1,

HEAB = EP(EP|B)& (I —EEP)(E|B),

where the consideration &= | is justified by a certain (time-varying) trans-
formation of the system [123]. We further have [40, Thm. 3.2]
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Venp =iMgE® @ (I - EEP)(E[B).
Yet another approach was followed by€s [41] who obtains that
Ke ap = (QE—A)'E[(aE—A)'B)

for somea € R with defaE — A) = 0. A simple proof of this result can also
be found in [169].

(v) The notion”i/[gif/&B] comes from the possible impulsive behavior of solutions
of (1), i.e.,x may have jumps, when distributional solutions are peruhjtee
e.g. [45] as a very early contribution in this regard. Sirfeese jumps have no
effect on the solutions if they occur at the initial time andhwn the kernel
of E this leads to the definition 01/[2{1,5]- See also the definition of impulse
controllability.

(vi) Impulse controllability and controllability at infity are usually defined by
considering distributional solutions of (1), see e.g. [8®, 74], sometimes
called impulsive modes, see e.g. [19, 70, 154]. For regylstems, impulse
controllability has been introduced bye®GHESEet al. [154] (called control-
lability at infinity in this work) as controllability of thempulsive modes of
the system, and later made more precise mBE [45], see also RMEN-
TANO [5, 6] (who also calls it controllability at infinity) for a mre geometric
point of view. In [154] the authors do also develop the notdrstrong con-
trollability as impulse controllability with, additionlg] controllability in the
regular sense. @88 [42] showed that under the condition of impulse control-
lability, the infinite eigenvalues of regulaE — A can be assigned via a state
feedbacku = Fx to arbitrary finite positions. RAMENTANO [5] later showed
how to calculatd-. This topic has been further pursued in [93] in the form of
invariant polynomial assignment.

The name “controllability at infinity” comes from the clairdt the system
has no infinite uncontrollable modes: Speaking in terms ok i&iteria (see
also Section 4) the systef,A,B] € 2y nm is said to have an uncontrollable
mode at% if, and only if, rk[aE + BA B] < rk[E, A, B] for somea, 3 € C.

If B =0, then the uncontrollable mode is infinite. Controllaiilét infinity
has been introduced byd®ENBROCK[136] - although he does not use this
phrase - as controllability of the infinite frequency zerbater Coes [45]
compared the concepts of impulse controllability and aafability at infinity,
see [45, Thm. 5]; the notions we use in the present articleagti o the dis-
tinction in this work.

The concepts have later been generalized bg & s[60] (see [60, Thm. 4.5 &
Rem. 4.9], however he does not use the name “controllakbiityfinity”). Con-
trollability at infinity of (1) is equivalent to the strictse of the corresponding
differential inclusion [57, Prop. 2.6]. The concept of inflgiue mode control-
lability in [70] is even weaker than impulse controllahyilit

(vii) Controllability concepts with a distributional sdlan setup have been consid-
ered in [60, 119, 129] for instance, see also [45]. A typigguaentation in
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these works is that inconsistent initial values causeiligipnal solutions in
a way that the state trajectory is composed of a continuaugifon and a lin-
ear combination of Dirac’s delta impulse and some of itsv@gities. However,
some frequency domain considerations in [115] refute thig@ach (see [147]
for an overview on inconsistent initialization). This jifiets that we do only
consider weakly differentiable solutions as defined in thleaviorZe a ;.-
Distributional solutions for time-invariant DAEs haveedidy been considered
by CoBB [43] and GEERTS[60,61] and for time-varying DAEs by &BIER and
RHEINBOLDT [131]. For a mathematically rigorous approach to distiiual
solution theory of linear DAEs we refer to [145, 146] brANN. The latter
works introduce the notions of impulse controllability gachp controllability
which coincide with our impulse controllability and beharal controllability,
resp.

(viii) R-controllability has been first defined in [168] foegular DAEs. Roughly
speaking, R-controllability is the property that any cetesit initial statexg
can be steered to any reachable statevhere here; is reachable if, and only
if, there exist > 0 and(x,u) € Ze a g such thak(t) = x;; by (3) the latter is
equivalentta; € ¥ a ), as stated in Definition 1.

(ix) The concept of behavioral controllability has beemaaiuced by WLLEMS [159],
see also [127]. This concept is very suitable for genertdina in various di-
rections, see e.g. [34,39,71,96,132,162,166]. Havingddbe behavior of the
considered control system one can take over the definitidmebévioral con-
trollability without the need for any further changes. Fraws point of view
this appears to be the most natural of the controllabilityoapts. However,
this concept also seems to be the least regarded in the D&&tlitre.

(x) The controllability theory of DAE systems can also betesl with the theory
of differential inclusions [8, 9] as showed brENKOWSKA [57].

(xi) KARCANIAS and HAYTON [84] pursued a special ansatz to simplify the sys-
tem (1): provided thaB has full column rank, we take a left annihilatdrand

a pseudoinversB' of B (i.e., NB =0 andB'B = |) such thatW = BNT
invertible and then pre-multiply (1) By, thus obtaining the equivalent system

is

NEX = NAX
u= B'(Ex—Ax).

The reachability (controllability) properties of (1) mayw be studied in
terms of the pencisNE— NA, which is called the restriction pencil [77],
first introduced as zero pencil for the investigation of egstzeros of ODEs
in [90, 91], see also [87]. For a comprehensive study of tlop@rties of the
pencilsNE— NAsee e.g. [83-86].
(xii) BANASzUK and RRzytrUsKI [15] have considered perturbations of DAE con-

trol systems and obtained conditions under which the setdl @ompletely
controllable systems (systems controllable in the belal/gense) within the
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set of all systemgy , m contain an open and dense subset, or its complement
contains an open and dense subset.

The following dependencies hold true between the concepis Definition 1.
Some further relations will be derived in Section 4.

Proposition 1.
For any[E, A, B] € 3 nm the following implications hold true:

controllable at i« completely :__: completely

_ ] completely
infinity : : controllable : ": reachable : i stabilizable
impulse con- <: strongly con- @ strongly P strongly sta-

trollable T trollable :: reachable : i bilizable

If “ =" holds, then “<" does, in general, not hold.

Proof. Since it is easy to construct counterexamples for any daecethere in the
diagram only =" holds, we skip their presentation. The following impliicats are
immediate consequences of Definition 1:

completely controllables- controllable at infinity=- impulse controllable,
completely controllable> strongly controllable=- impulse controllable,
completely controllables completely reachable- strongly reachable,
strongly controllable=- strongly reachable,

completely stabilizables controllable at infinity,

strongly stabilizable= impulse controllable,

completely stabilizable> strongly stabilizable.

It remains to prove the following assertions:

(a) completely reachable- completely controllable,
(b) strongly reachable> strongly controllable,
(c) completely reachable- completely stabilizable,
(d) strongly reachable> strongly stabilizable.

(@) Letxg,x; € R". Then, by complete reachability ¢, A, B], there exist > 0
and somexy, 1) € Ze a g With x1(0) = 0 andxy (t) = Xo. Further, there exists
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(X2, Uz) € e ag) With X2(0) = 0 andxz(t) = Xt —xa(2t). By linearity and shift-
invariance, we have

(X U) 1= (GX1 + X2, Ot Uy + Up) € Bl ag)-

On the other hand, this trajectory fulfillg0) = x3 (t) + %2(0) = xo andx(t) =
X1(2t) + %2(t) = Xs.

(b) The proof of this statement is analogous to (a).

(c) By (a) it follows that the system is completely contrblia Complete control-
lability implies that there exists some- 0, such that for alky € R" there exists
(X1,U1) € B ap) With X1(0) = o andxy (t) = 0. Then, sincéx, u) with

(x1(1),un (1)), if1<t
X(1),u(1)) = .
(X(1),u(1)) {(070)7 1ot
satisfies(x,u) € Ze apg) (cf. the proof of Lemma 1(a)) , the syste, A, Bl is
completely stabilizable.
(d) The proof of this statement is analogous to (c). a

3 Solutions, relations and normal forms

In this section we give the definitions for system and feelleagiivalence of DAE
control systems (see [62,136,154]), revisit the solutieoty of DAES (see [95,158]
and also [25]), and state a normal form under system and &sdéquivalence
(see [104]). For the definition of a canonical and a normahfeee Remark 3.

3.1 System and feedback equivalence

We define the essential concepts of system and feedbaclaéenoe. System equiv-
alence was first studied byd®eENBROCK[136] (called restricted system equiva-
lence in his work, see also [154]) and later became a cruoiadept in the control
theory of DAEs [22, 23,62, 63, 68]. Feedback equivalencé®Es seems to have
been first considered in [62] to derive a feedback canonicai for regular systems,
little later also in [104] (for general DAES) where additadly also derivative feed-
back was investigated and respective canonical formselraee also Section 3.3.

Definition 2 (System and feedback equivalence).
Two systemsE;, A, Bi] € Zicnm, i = 1,2, are called

e system equivaletit, and only if,
: TOJ|.
W e G|k(R),T € G|n(R) . [SEl—Al Bl] =W [SEQ—AZ Bz} {O | ] ;
m
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we write W
[El)Al) Bl] N7se [E27A27 BZ]

o feedback equivalerif, and only if,

JW € GIk(R),T € GIn(R),V € Glm(R),F e R™":

[SEL— Ay By] =W [sE— A; By [TF 3] ; ©

we write WTVE
[E1,A1,B1] ~te [Ez,A2,B2].

It is easy to observe that both system and feedback equosakme equivalence
relations onX , m. To see the latter, note that[iE; , A1, By ] Wg’fvf [Ez, A2, By],
then

w-iT-lv-1 v-1pT-1
[E2, Az, By ~fe [E1,Aq, B1].

The behaviors of system and feedback equivalent systent®anected via

If [E1, A, B1] “ee [Ez, Az, Bo], then
(X,U) € Big, a8y < (TXU) € BiE, A8y
(7)
If [E1, A, B] "Wia [Ea, Ag, Bp], then
(x,u) € BiE, AR & (Tx,Fx+Vu) e BiE,.A0,8,]-
Vﬁ\f,T
se

In particular, if[E; , A1, B ] [E2, Az, By], then

-1 -1
VErAB) =T VEsA Bl %EEl,Al,Bl] =T '%EEZ,AZ,BZ]'

Further, if[E1, A, B1] "te [Ez, As, Ba], then

-1 t -1 t
%[ElvAlvBl] =T '%Eszszz]’ %[ELALBI] =T '%[EzyAzsz]’

and properties of controllability at infinity, impulse couitability, R-controllability,
behavioral controllability, behavioral stabilizabilityomplete controllability, com-
plete stabilizability, strong controllability and stroetabilizability are invariant un-
der system and feedback equivalence.

Remark 2 (Equivalence and minimality in the behavioral sgns

(i) Another equivalence concept has been introduced iy AMs in [160] (see
also [127, Def. 2.5.2]): Two systemE;,Aj,Bi] € 5 nm, | = 1,2, are called
equivalent in the behavioral sensetheir behaviors coincide, i.e.,

B, A1) = DlEA0,Bo]-
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Note that, in particular, two systems being equivalenteldbhavioral sense do
not necessarily have the same number of equations. Fonagstthe following
two systems are equivalent in the behavioral sense:

e |35 o] |

(ii) It is shown in [127, Thm. 2.5.4] that for a unimodular miatU (s) € R[g<k
(thatisU (s) has a polynomial inverse), aifld, A, B] € 2y nm, it holds(x,u) €
DEAS if, and only if,

U($)EX(t) =U()AX(1) +U(Z)Bu(t),

where the differential operatbr(%) has to be understood in the distributional
sense. The unimodular mattik(s) can particularly been chosen in a way that

U(s)- [sE—A, —B] = [Rxés) R“és)] ,

where [Ry(s) Ru(s)] € R[g"™™ has full row rank as a matrix in the field
R(s) [127, Thm.3.6.2]. It is shown thd($)x+ Ry(3)u = 0 is minimal in
the behavioral sense.e., it describes the behavior by a minimal number of
| differential equations among all behavioral descriptioh®g 5 g. By us-
ing a special normal form, we will later remark that for d&yA,B| € i nm,
there exists a unimodular transformation from the left stz the resulting
differential-algebraic system is minimal in the behavieense.

(iif) Conversely, if two systemsEj, A, Bi] € 2 nm, i = 1,2 are equivalent in the
behavioral sense, and, moreovar= k», then there exists some unimodular
U(s) € R[ska, such that

U(S)~ [SE]_—A]_7 —Bl} = [SEZ—AZ, —Bz] .

If [Ei,A,Bi] i =1,2, contain different numbers of equations (such as, e.g.,
k1 > ko), then one can first add — ko equations of type “6= 0” to the second
system and, thereafter, perform a unimodular transfoomdg¢iading from one
system to another.

(iv) Provided that a unimodular transformatioreof(t) = Ax(t) + Bu(t) again leads
to a differential-algebraic system (that is, neither adsive of the input nor
a higher derivative of the state occurs), the propertiesofrollability at infin-
ity, R-controllability, behavioral controllability, belvioral stabilizability, com-
plete controllability, complete stabilizability are imi@nt under this transfor-
mation. However, since the differential variables may tengjed under a trans-
formation of this kind, the properties of impulse contrbilay, strong control-
lability and strong stabilizability are not invariant. Wallveee in Remark 12
thatanyE,A, B] € 5, n m is, in the behavioral sense, equivalent to a system that
is controllable at infinity.
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In order to study normal forms under system and feedbackvalguice we in-
troduce the following notation: Fak € N we introduce the matricell, € R¥K,
Ky, Lic € RK=1K with

0

Ng = 1 , K=

10 01
10

Further, Ieteim € R be thei-th canonical unit vector, and, for some multi-index
a=(ay,...,a)) €N, we define

Ng =diag(Ng, ,...,Ng ) € RIAHl
Ko =diagKa,,...,Kq ) € REHAL
Ly =diagLa,,...,Ly ) € RIOIHI
Eq —diagef?,....ell") e RIOI.

e

KRONECKERproved [92] that any matrix pendE — A € R[g%" can be put into
a certain canonical form, called Kronecker canonical foowadays, of which a
more comprehensive proof has been provided ByWwGVACHER [59]. In the fol-
lowing we may use the quasi-Kronecker form derived in [2B]¢e in general the
Kronecker canonical form is complex-valued even thoughgikien pencilsE — A
is real-valued, what we need to avoid. The obtained form thaot canonical any-
more, but it is a normal form (see Remark 3).

Proposition 2 (Quasi-Kronecker form [25,59]).
For any matrix pencil SE- A € R[sk", there exist We Gl(R), T € Gl(R) such
that

Shy—As O 0 0
. 0 SNy — |‘a‘ 0 0
W(SE-AT = | 0 "kl 0 ®)
0 0 0 sk L)

for some A€ R""™ and multi-indicesr € N", B € N, y € N, The multi-indices
a, B,y are uniquely determined by sEA. Further, the matrix Ais unique up to
similarity.

The (components of the) multi-indices 3, y are often called minimal indices
and elementary divisors and play an important role in thdyaisgof matrix pen-
cils, see e.g. [59, 103, 104, 112], where the components afe the orders of the
infinite elementary divisors, the componentsfoére the column minimal indices
and the components gfare the row minimal indices. In fact, the number of column
(row) minimal indices equal to one corresponds to the dinoensf kerg E Nkerg A
(kerg ET nkerg A1), or, equivalently, the number of zero columns (rows) in asiu
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Kronecker form ofsE — A. Further, note thasl,, — As may be further transformed
into Jordan canonical form to obtain the finite elementawjsadrs.

Since the multi-indicesr € N, 8 € N, y € N are well-defined by means
of the pencilsE— A and, furthermore, the matriks is unique up to similarity, this
justifies the introduction of the following quantities.

Definition 3 (Index of sE— A).
Let the matrix penciéE — A € R[s/*" be given with quasi-Kronecker form (8). Then
theindexv € Ny of SE— Ais defined as

V= max{al, cee Gf(a), i, .\, Vé(y)}
The index is larger or equal to the index of nilpoterdcyf Ny, i.e.,{ < v, Ng =0

and Ng’l =# 0. By means of the quasi-Kronecker form (8) it can be seenttieat
index of sE— A does not exceed one if, and only if,

imrACIimrE+A-ker E. (9)

This is moreover equivalent to the fact that for some (andc@amy) real matriZ
with img Z = kerg E, we have

im [E,AZ] = img[E, A]. (10)

Since each block isKg — Lg (SKJ — L}) causes a single drop of the column (row)
rank ofsE— A, we have

£(B) =n—rkpg(SE-A), L(y)=K—TKg(SE-A). (11)
Further,A € Cis a generalized eigenvalue it — A if, and only if,

rKc(AE —A) < k(g (SE—A).

3.2 A normal form under system equivalence
Using Proposition 2 it is easy to determine a normal form usgstem equivalence.
For regular systems this normal form was first discovered bg ENBROCK[136].

Corollary 1 (Decoupled DAE).
Let[E,A,B] € 2y nm- Then there exist W Gl (R), T € Gly(R) such that

I 0 0 0] [Ac O 0 07 [Bs
wr |[|ONg O 0| |0140 0] [By

[EAB ~se 110 ok; 0] [0 0Ls 0] |Bl] @2
00 0K/ |00 0L]| |B
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for some BE R™™, Br ¢ RI9I™, B, € RIBI-4A).M B, c RIVM A € RMs"s and multi-
indicesa € N'a, B ¢ N", y ¢ N, This is interpreted, in terms of the DAE), as
follows: (x,u) € B a g if, and only if,

(xs() Tt ()T xa() T %() ) T = TX()

with

solves the decoupled DAEs

Xs(t) = Asxs(t) +Bsu(t), (13a)
Ng, Xs(ij () = X¢ij (1) + By u(t) fori=1,...,¢(a), (13b)
Kg % (t) = LX) (1) + By u(t) fori=1,...,4(B), (13c)
Ky Xofi] (1) = Ly X (1) + o u(t) fori=1,...,4(y) (13d)

with suitably labeled partitions of 8 B, and B,.

Remark 3 (Canonical and normal form).

Recall the definition of a canonical form: given a grd@pa set.’, and a group
actiona : G x . — . which defines an equivalence relati®f s if, and only if,
JU €G:a(U,s)=<.Thenamay:.¥ — .~ is called acanonical form forx [27]
if, and only if,

vsses 1 ys) s A [sgs’@)y(s):y(s’) .

Therefore, the se? is divided into disjoint orbits (i.e., equivalence clagsasd the
mappingy picks a unique representative in each equivalence claskelsetup of
system equivalence, the groupGs= Gl (R) x Gly(R), the considered set i’ =

Zinm and the group actiora (W, T),[E,A,B]) = WET,WAT,WB corresponds

—171-1
oV However, Corollary 1 does not provide a mappjnghat means that the

form (12) is not a unique representative within the equiveéeclass and hence it is
not a canonical form. Nevertheless, we may calliitoamal form since every entry
is (at least) unique up to similarity.

Remark 4 (Canonical forms for regular systems).

For regular systems which are completely controllable tetaa@ canonical forms of
[E,A,B] € Z,nm under system equivalence have been obtained: the Jordémolcon
canonical form in [63] and, later, the more simple canonicah in [68] based on
the Hermite canonical form for controllable ODHSA, B.
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Remark 5 (DAEs corresponding to the blocks in the quasi-&ekar form) Corol-
lary 1 leads to the separate consideration of the diffesbatgebraic equations
(13a)-(13c):

() (13a) is an ordinary differential equation whose salntsatisfies
t
xs(t) = €'xs(0) +/ MEDBu(T)dT, teR.
0

In particular, solvability is guaranteed hye 4% (R;R™). The initial value
Xs(0) € R" can be chosen arbitrarily; the prescriptionuof £ (R; R™) and
xs(0) € R" guarantees uniqueness of the solution.
(ii) The solutions of (13b) can be calculated by successifferdntiation and pre-
multiplication withNg,, hence we have

13b L — - — -
0=Ng (fu)(t)(=)'\'°'-' S (O + NG B u (D)
==X () + 3L Na.Bf ud (),

whereull) denotes thg-th distributional derivative ofi. As a consequence, the
solution requires a certain smoothness of the input, egprely

loc

Z) NG Brjul) € # o (R RY).

In particular, conditiom € % it (R;R%) guarantees solvability of the DAE (13b).

loc
Note that the initial value(;(0) cannot be chosen at all: It is fixed lyvia

the relation
a—-1 )
=— NS Briut) | (0).
<,Zo i B

On the other hand, for any (sufficiently smooth) input thexists a unique
solution for appropriately chosen initial value.

(iii) Writing
Xu[i],l
Xujij- = : 5
Xuli] B
(13c) is equivalent to
Xyiij— = Ng_1Xuii— + e[ei__ll]xu[i],ﬁi + Byppu(t).-

Hence, a solution exists for all inputss 43 (R; R™) and allx,j g € #H(R;R)

loc
as well ¢y 1(0) - -, Xyji), g —1(0). This system is therefore under-determined

in the sense that one component as well as all initial valaase freely cho-
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sen. Hence any existing solution for fixed inprand fixed initial valuex; (0)
is far from being unique.

(iv) Denoting

01,1}

Xolil+ = L(o[i] ;

(13d) can be rewritten as
Ny Xofij+ = X+ + Bopu(t)-
Hence we obtaib). (t) = — zf;ol(NJ)JBo[i]u“)(t), which gives

-1 . _
Xoii) (t) = =0y - 1)1, ly—1] %(NVT)JBO[HU(J)(I)
J:

together with the consistency condition on the input:

)

The smoothness condition

y—1 ) )
ZO(N; )IBgu(t) = 0. (14)

J:

er oo
Z}(NVT)JBOWU(J) € W (R;RY)

) loc
J:

is therefore not enough to guarantee existence of a sojutienadditional
constraint formed by (14) has to be satisfied, too. Furtheemes in (i), the
initial valuexy;) (0) is fixed by the inputi. Hence, a solution does only exist if
the consistency conditions on the input and initial valuesatisfied, but then
the solution is unique.

Remark 6 (Solutions on (finite) time intervals).

The solution of a DAEE, A, B] € 2, m on some time intervdl C R can be defined
in a straightforward manner (compare (2)). By the consiitema in Remark 5, we
can infer that any solutiofx,u) on some finite time intervdlC R can be extended
to a solution on the whole real axis. Consequently, all cpteevhich have been
defined in Sec. 2 could be also made based on solutions owatgérincluding
zero.

3.3 A normal form under feedback equivalence

A normal form under feedback transformation (6) was firsdstd for systems
governed by ordinary differential equations byr@®Novsky [31]. In this sec-
tion we present a generalization of the Brunovsky form fengral DAE sys-
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tems|[E,A B] € 2 nm from [104]. For more details on the feedback form and a
more geometric point of view on feedback invariants andliee#t canonical forms

see [86,104].

Remark 7 (Feedback for regular systems).
It is known [12,62] that the class of regular DAE systems isalosed under the

action of state feedback. Therefore, in [142] the class gl systems is divided
into the families

29:={(E,AB) € Zhnm | defcosO E—sinB A)#0 }, 6¢cl0,m),

and it is shown that any of these families is dense in the seggflar systems and
the union of these families is exactly the set of regularesyst The authors of [142]
then introduce the “constant-ratio proportional and deiiee” feedback orky, i.e.

u=F(cosf x—sinB x) + v.

This feedback leads to a group action and enables them tma@bgeneralization of
Brunovsky’s theorem [31] on each of the subsets of comiyletntrollable systems
in Zg, see [142, Thm. 6].

GLUSING-LUERSSEN[62] derived a canonical form under the unchanged feed-
back equivalence (6) on the set of strongly controllablé€dampulse controllabil-
ity in [62]) regular systems, see [62, Thm. 4.7]. In partiout was shown that this
set is closed under the action of a feedback group.

Theorem 1 (Normal form under feedback equivalence [104]).
Let [E,A B] € Zxnm. Then there exist W GI(R),T € Glp(R),V € GIn(R),F €
R™" such that

EAB "

gy 0 0 0 0 0] [N 0 0 0 0 0] [Eq 00

Ks O 0 00/ [0Lg 0O 00O |000O

B B 15
0 OLj 0 00| |0 OK/ O 0 0| |0E0O (15)
0 0 0K, 0 0['|0 0 OL;OO[|OO0O]

0 00 ONO| [0 OO OlO0| [0D00DO

0 000 Olp] [0 00O OAJ [000

for some multi-indices, B8, y, 8,k and a matrix & € R™", This is interpreted, in
terms of the DAKL), as follows:(x,u) € B g if, and only if,

(%) T xu() T Xob() 3% () Toxe () T xe() T) T o= TX(),
(Ue() T Uon(-) Tyus() ) " =V (u() — Fx(-)),

with
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Xe1) () Ugig) (+) X1 ()
Xe(+) = : Ue(+) = : s %)= :
Xeje(ay) () Xeje(ay) (+) Xufe(p)) ()
Xobj1) () Uohyy) () Xog ()
Xob() = : , Uop(r) = : ; Xo() = : :
Xobit(y)) (*) Uobie(y)) (+) Xoe(3)) ()
Xt (+)
() = :
Xt (o)) ()

solves the decoupled DAEs

X (t) = N X (t) + el uggy () fori=1,....0(a) (16a)

Kg % (1) = Ly (t) fori=1,....0(B), (16b)
L Yo (8) = KXo () + €ff Uots fori=1,...,0(y), (16¢)
Ka Xoiij (t) = L Xoi (1) fori=1,...,0(0), (16d)
Nig X¢[ij (1) = Xc(t) fori=1,...,4(k) (16e)
%c(t) = AcXe(t). (16f)

Note that by Remark 3 the form (15) is a normal form. Howeviewe apply
an additional state space transformation to the bltgkAc, 0] which putsAc into
Jordan canonical form, and then prescribe the order of thekblof each type, e.g.
from largest dimension to lowest (what would mean> a, > ... > O¢(a) for a
for instance), then (15) becomes a canonical form.

Remark 8 (DAEs corresponding to the blocks in the feedbank)fo
The form in Theorem 1 again leads to the separate considemaitthe differential-
algebraic equations (16a)-(16f):

(i) (16a) is given byl o, N; , eLfi“]], and is completely controllable by the classical
results for ODE systems (see e.g. [149, Sec. 3.2]). Thiesyhkas furthermore
the properties of being R-controllable, and both conttiéand stabilizable in
the behavioral sense.

(i) (16b) corresponds to an under-determined system veith dimensional input
space. Sincg; satisfies (16b) if, and only if, there exists sowme ,,Sflgc(R; R)
with

X (t) = Na (1) + 5 vi(t),

this system has the same properties as (16a).
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(iii) Denoting

then (16c¢) can be rewritten as

Ny Zopji) () = Zopyi) (1),
which has, by (i) in Remark 5, the unique solutipjg; = 0. Hence,

%[LJ,KJ,e[Vy']] = {0}

The systeniL;I, KJ,eQ"]] is therefore completely controllable if, and only if,
v = 1. In the case wherg > 1, this system is not even impulse controllable.

However, independent of, [L;,Kg,eg,}"]] is R-controllable, and both control-
lable and stabilizable in the behavioral sense.

(iv) Again, there holds
%[Kgﬁl-; ﬁoéi,O] - {0}7

whence, in dependence dn we can infer the same properties as in (iii).
(v) Dueto

%[NKi ’IKi 70Ki ‘0] = {0}7

the systeniNy;, |, Ok, o] is never controllable at infinity, but always R-controllabl
and both controllable and stabilizable in the behaviorase€N, I«;, Ox; 0] IS
strongly controllable if, and only ifg; = 1.

(vi) The systenln,, Ac, Oc o] satisfies

’%['nchmonc,o] - { efex’ ‘ x? € R }v

whence it is controllable at infinity, but neither stronglyntrollable nor con-
trollable in the behavioral sense nor R-controllable. Thepprties of being
complete and strong stabilizability and stabilizabilitythe behavioral sense
are attained if, and only ilg(Az) C C_.

By using the implications shown in Proposition 1, we can aedihe following for
the systems arising in the feedback form:
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[le,. N €5 1| 1K, L, 010l IL Ky e )| 1K 3, LE 0 0| N, 1 O 01 T A, Oc o]

coptr.ol.lable 0 0 oy=1]| os=1 0 0

at infinity

impulse 0 0 sy=1|e§=1|eKk=1| O

controllable|

completely| o 0 sy=1|eg=1| O 0

controllable|

completely| 0 sy=1|es=1| 0O 0

reachable

strongly 0 0 sy=1|es=1|eKk=1| O

controllable|

strongly 0 0 sy=1|e§=1|exn=1| O

reachable

completely 0 0 oy=1|os=1 0 < 0(Ac)

stabilizable y| ccC-

strongly stg- 0 oy=1|os=1|ek=1|TIHA

bilizable § | ccC.

R - controlr 0 0 0 0 0 0

lable

controllable|

in the be- 0 0 0 0 0 0

havioral

sense

stabilizable

in the be- [ O a I o |®9A)

havioral ccC-

sense

Corollary 2.

A systemE, A, B] € 2y nm With feedback fornf15)is

(a) controllable at infinity if, and only ify = (1,...,1),0 =(1,...,1) and{(k) = 0;

(b) impulse controllable if, and only ify = (1,...,1), d = (1,...,1) and kK =

(1,...,1);

(c) strongly controllable (and thus also strongly reachagbif, and only if,y =

a,...

,1,0=(1,...,1),k=(1,...,1) and = =0;

(d) completely controllable (and thus also completely hedate) if, and only ify =

a,...

,1),0=(1,...,1) and/(k) =nc = 0;
(e) R-controllable if, and only if, 1= O;

(f) controllable in the behavioral sense if, and only i, 0;
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(9) strongly stabilizable if, and only i/ = (1,...,1), 0 = (4,...,1), {(k) =0, and
o(A) CC;

(h) completely stabilizable ifand only if=(1,...,1),0 =(1,...,1),k = (1,...,1),
ando(Az) CC_;

(i) stabilizable in the behavioral sense if, and onlyafA:) C C_.

Remark 9 (Parametrization of the behavior of systems inbfaeldform).
With the findings in Remark 8, we may explicitly charactetize behavior of sys-
tems in feedback form. Define

Vi) =1[Ls,...,9" e R
and, for some multi-indeg = (uy,..., ) € N,
Vyu(s) = diagVy, (9), ...,V (5)) € R[gHIH),
W (s) = diags, ..., s!) € R[g/ (W),

Further lety +k:= (u1 +k, ..., +K) forke Z, and

PENRR) = HERR) x - x Hjpd " (RiR),

loc loc loc

Then the behavior of a system in feedback form can, formiadiyyritten as

Vo-1(3) 0 ) 0 0
0 V(3 00 )
0 0 00 Vo (RR)
0 0 00 Bl
#EH(R;R)
We(§) O 0 O] LZLRR™UD-)
0 0 00
| O 0 0 1]

where the sizes of the blocks are according to the block tstreién the feedback
form (15) and the horizontal line is the dividing line betwee andu-variables. If
the systeniE, A, B] € 3, m is not in feedback form, then a parametrization of the
behavior can be found by using the above representationsdetibin (7) expressing
the connection between behaviors of feedback equivalstess.

For general differential behaviors, a parametrizatiorhefabove kind is called
image representatiofl27, Sec. 6.6].

Remark 10 (Derivative feedback).

A canonical form under proportional and derivative feedb@eD feedback) was
derived in [104] as well (note that PD feedback defines anvatprnce relation on
Zknm). The main tool for doing this is the restriction pencil (&emark 1(xi)):
Clearly, the system
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NEx = NAX
u= B"(Ex—Ax)
is equivalent, via PD feedback, to the system
NEx = NAX
u=0.

Then puttingsNE— NAinto Kronecker canonical form yields a PD canonical form
for the DAE system with a 5 4-block structure.
We may, however, directly derive this PD canonical form fim@normal form (15).
To this end we may observe that the sysfémNg,, eo,I }] can be written as

KaiXefiy (t) = LayXegij (1), Xgif.a (1) = Ugy (1),

and hence is, via PD feedback, equivalent to the system

IRl

On the other hand, the syste{h;4 ]] can be written as

b M 7
Ny —1%obi] () = Xobji] (t);  Xobji),y_1 (t) = Uopjij (1),

and hence is, via PD feedback, equivalent to the system

IcaRARHlE

A canonical form forlE, A, B] € 2 nm under PD feedback is therefore given by

Ks 0 0 0] [Lg 0O 0 0] [00O
0K/ ool oLl 0oo| |00
[E,AB] ~pp [ [0 ONcO|,[0 Ol 0f,l00]],
0 0 Olp|] |0 O OA] |0OO
0 000 [000O0] ][I0

whereA¢ is in Jordan canonical form, and the blocks of each type atered from
largest dimension to lowest.

Note that the properties of complete controllability, coitability at infinity and
controllability in the behavioral sense are invariant unéP feedback. However,
since derivative feedback changes the set of differengighbles, the properties of
strong controllability as well as impulse controllabilityay be lost/gained after PD
feedback.

Remark 11 (Connection to Kronecker form).
We may observe from (6) that feedback transformation maytbmatively consid-
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ered as a transformation of the extended pencil
S —of = [sE—A, —B] , a7)

that is based on a multiplication from the left % =W < GI¢(R), and from the
right by

7= [l 8} € Glnim(R).

This equivalence is therefore a subclass of the class whidlduced by the pre- and
post-multiplication ofs§” — .o/ by arbitrary invertible matrices. Loosely speaking,
one can hence expect a normal form under feedback equieabenich specializes
the quasi-Kronecker form @&’ — <7 . Indeed, the latter form may be obtained from
the feedback form o, A, B] by several simple row transformatios$ — < which
are not interpretable as feedback group actions anymoree ldi@cisely, simple
permutations of columns lead to the separate consideratithe extended pencils
corresponding to the systems (16a)-(16f): The extendedilgerorresponding to
[Iai,N;i, Efi'i]] and[Kg,Lg,0q; 0] aresKy —Lg; andsKg —Lg, resp. The extended
matrix pencil corresponding to the systény, KVT,e[yf”] is given bysN, — Iy The
extended matrix pencils corresponding to the systp(gsLT, 05 .0)+ [Nk s Ixi» Oki 0]
and[ln;, Ac, Og o] are obviously given bgKs —Lg, SNq — l; andsln, — Ag, respec-
tively. In particular,A € C is a generalized eigenvalue 8f — o7, if, and only if,
A€ o(Ac).

Remark 12 (Minimality in the behavioral sense).

(i) According to Remark 2, a differential-algebraic systéA,B] € 3 nm is
minimal in the behavioral sense, if, and only if, the extahdencils® — <7 as
in (17) has full row rank as a matrix with entries in the fi®(ks). On the other
hand, a systerfE, A, B] € 2y nm With feedback form (15) satisfies

rkR(S)(sé’—;z%) = k—€(6)

Using that rkg(s) (s6” — /) is invariant under feedback transformation (6), we
can conclude that minimality &, A, B] € 2, m in the behavioral sense cor-
responds to the absence of blocks of type (16d) in its feddimau.

(ii) The findings in Remark 5 imply that a system in feedbadkrfas, in the be-
havioral sense, equivalent to

lgg 00000] [Ng 0 O 0 0 0] [Eq 00
0 K000 Ol |OLg O O OO0l 00O
0 00000/ |0 OK;/ O 00| [0EO
0 00000’/ 0 O Olg_ys 0 0|0 00
0 00000/ |0 OO O IO [OO0O
0 0000l [O OO 0O OA]J [000
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This system can alternatively be achieved by multiplying éxtended pen-
cil (17) in feedback form (15) from the left with the polyncahimatrix

Vyf

Z(s) = dlag<la 81— Zoska, Ps(s) ZoskN )

wherevy = max{yi, ..., Yy}, Vk = Max{Ka,..., Ky}, and

(iii) Let a differential-algebraic systett, A, B] € 2, m be given. Using the nota-
tion from (15) and the previous item, a behaviorally equéwaland minimal
systemEwm,Am,Bm] € Zx_(5),nm Can be constructed by

[SEw — A, —Bw] = Z(SW [SE—A, —B].

It can be seen that this representation is furthermore clteitte at infinity.
As well, it minimizes, among all differential-algebraicuegions representing
the same behavior, the index and the rank of the matrix intfobrthe state
derivative (that is, loosely speaking, the number of déferal variables). This
procedure is very much relateditalex reductiof95, Sec. 6.1].

4 Criteria of Hautus type

In this section we derive equivalent criteria on the magiEeA € Rk", B € RkM
for the controllability and stabilizability concepts of fdtion 1. The criteria are
generalizations of the Hautus test (also called PopovdieleHautus test, since
independently developed byolPov [128], BELEVITCH [17] and HAUTUS [67]) in
terms of rank criteria on the involved matrices. Note thasthconditions are not
new - we refer to the relevant literature. However, we previdw proofs using only
the feedback normal form (15).

First we show that certain rank criteria on the matrices lve@ in control sys-
tems are invariant under feedback equivalence. After thatelate these rank cri-
teria to the feedback form (15).

Lemma 4.
Let[E1,Aq,B1],[Ez, A2, By] € Zknm be given such that for W Gl (R), T € Gln(R),
V € Gly(R) and F € R™", there holds

W,T.V.F
[El)Al7Bl] ~fe [E27A27BZ]

Then
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img Ey +img Ag +img By =W - (img Ez +img Az 4 img By)
img Eg + Aq - kerg E; +img By =W - (img E; + A - kerg Ex +img By)
img Ey +img By =W - (img Bz +img By),
iMmc(AE1 — A1) +img By =W - (img(AE2; — Ap) +imeBy)  forall A € C,

imR( )(SEl — Aj_) + |mR B, = (ImR SEZ Az) |mR(S) Bz) .

Proof. Immediate from (6). O

Lemma 5 (Algebraic criteria via feedback form).
For a systemE, A, B] € 5y , m With feedback forni15) the following statements hold
true:

@ iIMgE+impA+imgB=imrE+imrB
—y=(1...,1),0=(1,...,1), {(k)=0.
(b)
iMRE+impA+impB=IimrE+A-ker E+imgB
—y=(1...,1),6=(1...,1), k=(1,...,1).
(€)

imcE+imcA+imgB=imc(AE—A)+imcB
—0=(1,...,1), A ¢ 0(Ac)
(d) For A € C we have
dim (img ) (SE— A) +imp(s B) = dim (im¢(AE — A) +imc B)
= A ¢o(A).
Proof. Itis, by Lemma 4, no loss of generality to assume {Eaf, B] is already in

feedback normal form. The results then follow by a simpléfiation of the above
statements by means of the feedback form. a

Combining Lemmas 4 and 5 with Corollary 2, we may deduce thieviing
criteria for the controllability and stabilizability coapts introduced in Definition 1.

Corollary 3 (Algebraic criteria for controllability/stab ilizability).
Let a systenfE, A, B] € 2 nm be given. Then the following holds:

[E,A,B]is if, and only if,

controllable at

infinity IMrE+imrA+imrB=imr E+imgB.

:?bplglse conirol, img E +img A+img B=img E +A-kerg E +img B.
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completely con-
trollable

imrE+imgA+imgB=IimrE+imgB
A im(CE-l—im(CA—i—im(CB:im@(/\E—A)-i—im(CB VA eC.

strongly control-
lable

imMRE+imrA+impB=A-ker E+imrB
A im(CE-l—im(CA—i—im(CB:im@(/\E—A)-i—im(CB VA eC.

completely stab
lizable

iMgE+impA+imgB=imgrE+imrB
A imcE+imcA+imgB=img(AE—A)+imcB VA €@+.

strongly stabiliz-
able

IMrgE+imgA+imgB=imgrE+A-keigE+imrB
A im(CE-l—im(CA—i—im(CB:im@(/\E—A)-i—im(CB VA EEJr.

controllable in
the behavioral
sense

I’kR(S> [SE—A7 B] = I’k(c[/\ E—A B] VA e C.

stabilizable in
the behavioral
sense

k(s [SE—AB] = rkc[AE — A,B] VA € C,.

The above result leads to the following extension of themiagn Proposition 1.
Note that the equivalence of R-controllability and corgability in the behavioral
sense was already shown in Corollary 2.
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controllable i i completely i i completely i i completely
e . =] 3 1 —>; -
at infinity : : controllable : ": reachable : 1 stabilizable

impulse con- : strongly con- : strongly strongly sta- §
trollable : 1 trollable :~ i reachable o7t bilizable '

controllable : 5 i stabilizable

in _the be- R-control- L in _the be-
havioral i i lable © : havioral
sense : : : 1 sense

In the following we will consider further criteria for the noepts introduced in
Definition 1.

Remark 13 (Controllability at infinity).
Corollary 3 immediately implies that controllability affinity is equivalent to

imr AC img E +img B.
In terms of a rank criterion, this is the same as
rkg[E,A,B] =rkg|[E,B]. (18)

Criterion (18) has first been derived bye€rTs [60, Thm. 4.5] for the case
rk[E, A, B] =k, although he does not use the name “controllability at ityfni
In the case of regulaE — A € R[g™", condition (18) reduces to

rkg[E,B] =n.

Remark 14 (Impulse controllability).
By Corollary 3, impulse controllability ofE, A, B] € 5y, m iS equivalent to

imr AC img E+ A-kerg E+img B.

Another equivalent characterization is that, for one (aedde any) matrixZ with
img(Z) = kerg (E), there holds

rkg[E,A,B] = rkg[E,AZ,B]. (19)
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This has first been derived bye&GRTS[60, Rem. 4.9], again for the case[Ek A, B] =
k. In[74, Thm. 3] and [70] it has been obtained that impulsei@iability is equiv-

alent to

rkg |:i g g:| = I’k]R[E,A7 B] +rkr E,

which is in fact equivalent to (19). It has also been showrv# p. 1] that impulse
controllability is equivalent to

rkR(S)(sé’—;z%) = I’k]R[E,A7 B]

This criterion can be alternatively shown by using the feadtform (15). Using
condition (10) we may also infer that this is equivalent te ithdex of the extended
pencils€ — o € R[g*™™M being at most one.

If the pencilsE — Ais regular, then condition (19) reduces to

rkg[E,AZ,B] =n.
This condition can be also inferred from [48, Th. 2-2.3].

Remark 15 (Controllability in the behavioral sense and Rtaalability).
The concepts of controllability in the behavioral sense Badontrollability are
equivalent by Corollary 2. The algebraic criterion for bebgal controllability in
Corollary 3 is equivalent to the extended matrix pemsgil— o7 € R[g<™™ hav-
ing no generalized eigenvalues, or, equivalently, in tleelimck form (15) it holds
ne=0.

The criterion for controllability in the behavioral senseshown in [127, Thm. 5.2.10]
for the larger class of linear differential behaviors. Ryollability for systems with
regularsE— Awas considered in [48, Thm. 2-2.2], where the condition

rkc[AE—A,B]=n VA €C

was derived. This is, for regulaE— A, in fact equivalent to the criterion for behav-
ioral stabilizability in Corollary 3.

Remark 16 (Complete controllability and strong controllayp).

By Corollary 3, complete controllability dE, A, B] € 5 , m is equivalent tdE, A, B]
being R-controllable and controllable at infinity, wheras&®ng controllability of
[E,A,B] € 3 nmis equivalent tdE, A, B] being R-controllable and impulse control-
lable.

BANASZUK et al. [12] already obtained the condition in Corollary 3 é@m-
plete controllability considering discrete systems. Ctatgocontrollability is called
2 -controllability in [12]. Recently, ZBovA [170] considered full controllability,
which is just complete controllability with the additioredsumption that solutions
have to be unique, and obtained three equivalent criterid,[$ec. 7], where the first
one characterizes the unigueness and the other two areatanitito the condition
for complete controllability in Corollary 3.
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For regular systems, the conditions in Corollary 3 for cagtglnd strong con-
trollability are also derived in [48, Thm. 2-2.1 & Thm. 2-2.3

Remark 17 (Stabilizability).
By Corollary 3, complete stabilizability dE, A, B] € 3 m iS equivalent tdE, A, B]
being stabilizable in the behavioral sense and contralabinfinity, whereas strong
stabilizability of [E, A, B] € 2 nm is equivalent tgE, A, B] being stabilizable in the
behavioral sense and impulse controllable.

The criterion for stabilizability in the behavioral sensshown in [127, Thm. 5.2.30]
for the class of linear differential behaviors.

Remark 18 (Kalman criterion for regular systems).
For regular systemi&, A, B] € 2, nm with det(sE— A) € R[g]\ {0} the usual Hau-
tus and Kalman criteria can be found in a summarized formin.j48]. Other
approaches to derive controllability criteria rely on tx@ansion of(sE— A)~! as
a power series is, which is only feasible in the regular case. For instancl 1]
the numerator matrices of this expansion, i.e., the coeffisi of the polynomial
adj(sE— A), are used to derive a rank criterion for complete contrditgbThen
again, in [89] Kalman rank criteria for complete controlldi, R-controllability
and controllability at infinity are derived in terms of theetficients of the power
series expansion ¢6E — A)~1. The advantage of these criteria, especially the last
one, is that no transformation of the system needs to be ipeefibas it is usually
necessary in order to derive Kalman rank criteria for DAESg, 8.9. [48].

However, simple criteria can be obtained using only a lafisformation of little
impact: ifa € R is chosen such that detE — A) # 0 then the system is complete
controllable if, and only if, [169, Cor. 1]

rkg [(dE —A)'B, ((aE—~A)'E)(aE-A)'B,...
...,((aEfA)-lE)”*l(aEfA)-lB} —n,
and it is impulse controllable if, and only if, [169, Thm. 2]
img (aE —A)"'E+ker(aE — A)"1E +img(aE —A)"IB=R".

The result concerning complete controllability has alserbebtained in [40, Thm. 4.1]
for the caséd =1 anda = 0.

Yet another approach was followed byUKERA and ZAGALAK [93] who intro-
duced controllability indices and characterized strongtialability in terms of an
equation for these indices.

5 Feedback, stability and autonomous systems

State feedback is, roughly speaking, the special choideeafiput being a function
of the state. Due to the mutual dependence of state and impufieiedback system,
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this is often referred to aslosed-loop controlin the linear case, feedback is the
imposition of the additional relatiom(t) = Fx(t) for someF € R™". This results in
the system

Ex(t) = (A+BF)x(t).

Feedback for linear ODE systems was studied bgNNMAM [164], where it is
shown that controllability ofl , A, B] € Znnm is equivalent to any set C C which
has at mosh elements and is symmetric with respect to the imaginary @xé is,

A € A & A € A) being achievable by a suitable feedback, i.e., there ®sisine

F € R™" with the property that(A+ BF) = I". In particular, the input may be
chosen in a way that the closed-loop system is stable, hg state trajectory tends
to zero. Using th&alman decompositiof31] (see also Section 7), it can be shown
for ODE systems that stabilizability is equivalent to théseence of a feedback such
that the resulting system is stable.

These results have been generalized to regular DAE systgi@obs [42], see
also [48,56,101,102,120,122]. Note that, for DAE systemspnly the problem of
assignment of eigenvalues occurs, but also the index mahdreged by imposing
feedback.

The crucial ingredient for the treatment of DAE systems waibin-regular pencil
SE— A will be the feedback form by ©ISEAU et al. [104] (see Thm. 1).

5.1 Stabilizability, autonomy and stability

The feedback lavu(t) = Fx(t) applied to (1) results in a DAE in which the input
is completely eliminated. We now focus on DAEs without inarid we introduce
several properties and concepts. For matriegs < R¥", consider a DAE

EX(t) = AX(t). (20)
Its behavioris given by
B = { x € #oH(R;R") | x satisfies (20) for almost alle R } .

Definition 4 (Stability/Stabilizability concepts for DAEs, autonomous DAES).
A linear time-invariant DAEE, A| € 3y, is called

(a) completely stabilizable
e VXX ERMIXE B o X(0) =x° A limx(t)=o0.
(b) strongly stabilizable
o VXX e R"IxE B o0 EXO0) =EX A lim x(t) = 0.

(c) stabilizable in the behavioral sense
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& Vxe BeaIxeBea: (VE<0: x(t)=x(t)) A lim xo(t) = 0.
(d) autonomous
e VXX €BE s (VE<0: xi(t) =x(t) = (VEeR: x(t) =X(t)).
(e) completely stable
& {X(0) [xeBEea } =R"AVXEBEA: tlm,x(t) =0.
(f) strongly stable
& {EX0) | XeBen } =IMRE A VXE B lim x(t) =0.
(g) stable in the behavioral sense

& VXEBEA ! tIm)x(t) =0.

Remark 19 (Stabilizable and autonomous DAEs are stable).

The notion of autonomy is introduced byoPbERMAN and WILLEMS in [127,
Sec. 3.2] for general behaviors. For DAE systelxgt) = AX(t) we can further
conclude that autonomy is equivalent to a3 g 4 being uniquely determined by
X(0). This gives also rise to the fact that autonomy is equivatedimg B o) < n
which is, on the other hand, equivalent to gifyg o < «. Autonomy indeed means
that the DAE is not underdetermined.

Moreover, due to possible underdetermined blocks of fifgel g, 0,5 () 0, IN
general there are solutionss B o Which grow unboundedly. As a consequence,
for a quasi-Kronecker form of any completely stable, stigrsgable or behavioral
stable DAE, it hold€() = 0. Hence, systems of this type are autonomous. In fact,
complete, strong and behavioral stability are equivalernthe respective stabiliz-
ability notion together with autonomy, cf. also Corollary 4

In regard of Remark 5 we can infer the following:

Corollary 4 (Stability/Stabilizability criteria and quas i-Kronecker form).
Let [E,A] € 2 and assume that the quasi-Kronecker form of-sk is given by
(8). Then the following holds true:

[E,A]is if, and only if,

completely stabilizablé(a) =0, y=(1,...,1) ando(As) CC_.

strongly stabilizable |a =(1,...,1),y=(1,...,1) andg(As) CC_.
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stabilizable in the
behavioral sense

autonomous ¢B)=0.

completely stable  |{(

a)=0,4(B)=0,y=(1,...,1)ando(As) CC_.

strongly stable a

=(1,...,0),08)=0,y=(1,...,1) ando(As) C C_.

stable in the
behavioral sense

t(B)=0,0(As) CC-.

The subsequent algebraic criteria for the previously ddfimaions of stabiliz-
ability and autonomy can be inferred from Corollary 4 by gsiarther arguments
similar to the ones of Section 4.

Corollary 5 (Algebraic criteria for stabilizability).
Let [E,A] € 2k . Then the following holds true:

[E,Alis

if, and only if,

completely stabilizab

img A C img E andrkgs) (SE—A) =rkc(AE - A)
Sorall A € C,.

strongly stabilizable

img AC img E+A-kerg E andrkg s (SE—A) =
rkc(AE—A)forall A € C,.

stabilizable in the
behavioral sense

rkr(s)(SE—A) =rkc(AE—-A) forall A € C,.

autonomous

kerr(s (SE—A) = {0}.

Corollary 5 leads to the following implications:
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stronaly sta. | | Stabilizable in
e/ => the behavioral :
sense :

completely
stabilizable : ": bilizable

stable in the :
strongly sta- ]

SIS : = behavioral
stable 1 ble b
: sense
ey index at most

one

Remark 20.

(i) Strong stabilizability implies that the index gE— A is at most one. In the
case where the matrf, A] € RX?" has full row rank, complete stabilizability
is sufficient for the index o§E — A being zero.

On the other hand, behavioral stabilizability & A together with the index
of SE— A being not greater than one implies strong stabilizabilityE& A].
Furthermore, for system&, A| € i , with rkg[E,A] = k, complete stabiliz-
ability is equivalent to behavioral stabilizability togpet with the property that
the index ofsE— Ais zero.

For ODEs the notions of complete stabilizability, strorajdizability, stabiliz-
ability in the behavioral sense, complete stability, stystability and stability
in the behavioral sense are equivalent.

(if) The behaviour of an autonomous systém A| satisfies dim3Bg a = ns,
wherens denotes the number of rows of the mathixin the quasi-Kronecker
form (8) of sE— A. Note that regularity o§E — A is sufficient for autonomy of
[E,A].

(iii) Autonomy has been algebraically characterized foedr differential behaviors
in [127, Sec. 3.2]. The characterization of autonomy in @Garg 5 can indeed
be generalized to a larger class of linear differential ¢éiqua.

5.2 Stabilization by feedback

A system[E, A, B| € 5 nm can, via state feedback with sorfie= R™", be turned
into a DAE[E,A+BF| € 2 n. We now present some propertie§BfA+BF| € 3
that can be achieved by a suitable feedback m&rixR™". Recall that the stabi-
lizability concepts for a systeff, A, B] € > , m have been defined in Definition 1.
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Theorem 2 (Stabilizing feedback).
For a systemE, A, B] € 2 nm the following holds true:

(a) [E,A,B] is impulse controllable if, and only if, there existsdR™" such that
the index of sk- (A+ BF) is at most one.

(b) [E, A, B] is completely stabilizable if, and only if, there existe R™" such that
[E,A+ BF] is completely stabilizable.

(c) [E,A,B] is strongly stabilizable if, and only if, there existsdFR™" such that
[E,A+ BF] is strongly stabilizable.

Proof.

(a) Let [E,A,B] be impulse controllable. ThefE,A,B] can be put into feed-
back form (15), i.e., there exi®/ € GIx(R),T € Gln(R) andF € R™" such
that

W(SE— (A+BFT T

Slaj—Ng 0 0 0 0 0
0 sKg—Lg O 0 0 0
_ 0 0 sby—-K/ 0 0 0 (21)
|l o 0 0 ski-Lj 0O 0
0 0 0 0 SN¢ — |‘K‘ 0
0 0 0 0 0 Sh,—Ac

By Corollary 2(b) the impulse controllability ofg,A,B] implies thaty =
(1,...,1), 6 = (1,...,1) andk = (1,...,1). Therefore, we have that, with
F = FT1, the pencilsE — (A+ BF) has index at most one as the index is
preserved under system equivalence.

Conversely, assume thg, A B] is not impulse controllable. We show that for
all F € R™" the index ofsE— (A+ BF) is greater than one. To this end, let
F € R™ and choos&V € GIx(R),T € Gly(R) andF € R™" such that (15)
holds. Then, partitioning ~1F T = [Fijli=1,... 3,j=1,....s accordingly, we obtain

SE —A:=W(SE— (A+BF +BFT1))T =W(SE— (A+BFT1))T —WBVVIFT

Sl — (Ng +EqF11) —EqF12 —EaFi3 —EaF14 —EqF1s —EqFis
0 SKs — Ly 0 0 0 0
_ —EyF21 =Y 3'—; - (K; + EyFZS) —-E/F2a —E/Fs —EyFo6
- 0 0 0 sKI—L] 0 0
0 0 0 0 " sNe—lyy O
0 0 0 0 0 Sk — A¢
(22)

Now the assumption thdE,A,B] is not impulse controllable leads tp+#
(1,...,1), 6 #(1,...,1) or k # (1,...,1). We will now show that the index
of sE— (A+BF + BlfT‘l) is greater than one by showing this for the equiva-
lent pencil in (22) via applying the condition in (10): L&be a real matrix with
img Z = kerg E. Then



42 Thomas Berger and Timo Reis
0zJ 000 q "
7Z = 1
{O 00 022T O} ’

where imZ; = kerKg =imEg and imZ, = kerN¢ = im E. Taking into account
that img Ey, C img L, , we obtain that

Mg [Oa|—¢(a)+1 () k ly+161+x Oknc] [E AZ] = 0Ky 0 0

) L} 0 0 E/FsZy
imR

On the other hand, we have

Mg [Oja|—¢(a)+|8|—¢(8)k lyi+161+/k| Oknc] [E Al

Ly 0 0 Ky +EyFas EyFas EyFos

img | 0 Kg O 0 Ly O
0 ON¢ O 0 Iy

Since the assumption that at least one of the multi-indiatésfesy # (1,...,1),
0+#(1,...,1),0rk #(1,...,1) and the fact that ird, = imE lead to

Ly 0 0 ERsZe] Ly 0 0Ky +E/FsE/FsEFs
OKj O 0 |[Cimg|OK] O 0 Ly O
0 0N« 2 0 0 N 0 0 Iy

)

and thus

we find that, by condition (10), the index 6E — (A+ BF + BFT 1) has to
be greater than one. SinEewas chosen arbitrarily we may conclude teBt—
(A+BF) has index greater than one for Bl R™", which completes the proof
of (a).

(b) If [E,A,B] is completely stabilizable, then we may transform the sysitgto
feedback form (21). Corollary 2(h) impligs=(1,...,1),0=(1,...,1),4(k) =
0, ando(A¢) C C_. Further, by [149, Thm. 4. 20] there exists sofg €
RI214@) sych thata(Na +EqF11) C C_. SettingF := [Fjli—y. 3j=1..6 with

Fj =0fori# 1orj# 1, we obtain that withF = FT- 1JrVFT the system
[E,A+BF] is completely stabilizable by Corollary 4 as complete dizdbility
is preserved under system equivalence.
On the other hand, assume tH&t A B] is not completely stabilizable. We
show that for allF € R™" the system{E, A+ BF] is not completely stabiliz-
able. To this end, leF € R™" and observe that we may do a transformation
as in (22). Then the assumption tH&t A,B] is not completely stabilizable
yieldsy # (1,...,1), 0 #(1,...,1),4(k) > 0,0ra(Ac) L C_. If y £ (1,...,1),
o # (1, ) or €( ) > 0, then imk A Z img E, and by Corollary 5 the sys-
tem [E, A] |s not completely stabilizable. On the other handy i (1,...,1),
5=(1,...,1),4(k) =0, andA € o(As)NC-, we find im: (AE —A) ¢ |mCE
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which implies

tkc(AE—A) < tkc E = n—£(B) — £(k) = n—£(B) Btk g (sE — A).

Hence, applying Corollary 5 again, the systﬁén,&] is not completely stabiliz-
able. As complete stabilizability is invariant under systequivalence it follows
that[E, A+ BF +BF T 1] is not completely stabilizable. Sinewas chosen ar-
bitrarily we may conclude thdE, A+ BF] is not completely stabilizable for all
F € R™", which completes the proof of (b).

(c) The proofis analogous to (b). a

Remark 21 (State feedback).

(i) If the pencilsE— Ais regular andE, A, B] is impulse controllable, then a feed-
backF € R™" can be constructed such that the pegEi- (A+ BF) is regular
and its index does not exceed one: First we chsE, F such that we can
put the system into the form (21). Now, impulse controllépiimplies that
y=(1,...,1),5=(1,...,1) andk = (1,...,1). Assuming/(d) > O implies
that any quasi-Kronecker form of the pens — (A4 BFT ! 4 BF) fulfills
{(y) > 0 (in the form (8)), a feedbadk € R™" as the feedback cannot act on
this block, which contradicts regularity eE— A. Hence it hold€(d) = 0 and
fromk = nwe further obtain that(y) = ¢(3). Now applying another feedback
as in (22), where we choos$e, = EE € RYP)IBl andFj = 0 otherwise, we

sKg —L
obtain, taking into account th&, = | ¢() and that the penci[ KBET B] is
"B

regular, thasE— (A+ BF) is indeed regular with index at most one.
(i) The matrixFy1 in the proof of Theorem 2(b) can be constructed as follows: Fo
j=1,...,4(a), consider vectors

aj = —[aja;-1,---,8jo) € R4,
Then, for
Fii=diagas,...,aq)) € R@) |al

the matrixNg + Eq F11 is diagonally composed of companion matrices, whence,
for
pi(s) =s" +ajg, 18"t +...+ajo € R[Y

the characteristic polynomial &, + E4F1; is given by

(a)
detslg) — (Na + EaF11)) = I_I| p;(s)-
=

Hence, choosing the coefficierag, j =1,...,¢(a), i =0,...,a;j such that
the polynomialspy(s),..., pyq)(s) € R[g are all Hurwitz, i.e., all roots of
P1(S), - -, Py(a)(S) are inC_, we obtain stability.
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5.3 Control in the behavioral sense

The hitherto presented feedback concept consists of thitadd application of the
relationu(t) = Fx(t) to the systenEx(t) = Ax(t) + Bu(t). Feedback can therefore be
seen as an additional algebraic constraint that can bevesstar the input. Control
in the behavioral sense, or, also calledntrol via interconnectiofil62] generalizes
this approach by also allowing further algebraic relationsvhich the state not
necessarily uniquely determines the input. That is, foegitor to be determined)
K = [Ky, Ky] with Ky € R'", K, € RMY™, we consider

B ag 1:{ (xU) €Beag |VEER: (x(O),uM)")" € kerz(K) }
= BeAB NDB0) K Kul-

We can alternatively write
K
Vleag = Ve ac),

K K EOl |[A B
e n1= {50 [

The concept of control in the behavioral sense has its oiigithe works by
WILLEMS, POLDERMAN and TRENTELMAN [18,127,148,161, 162], where differ-
ential behaviors and their stabilization \@antrol by interconnectiois considered.
The latter means a systematic addition of some furthergdifitial) equations in
a way that a desired behavior is achieved. In contrast teetivesks we only add
equations which are purely algebraic. This justifies to kggaontrol by intercon-
nection using static control law&Ve will give equivalent conditions for this type
of generalized feedback stabilizing the system. Note ihgprinciple, one could
make the extreme choi¢e= I, m to end up with a behavidBFE,A‘B] = {0} which
is obviously autonomous and stable. This, however, is ritdlsie from a practical
point of view, since in this interconnection, the space ofgistent initial differential
variables is a proper subset of the initial differentialiabtes which are consistent
with the original systenfE, A, B]. Consequently, the interconnected system does not
have the causality property - that is, the implementatiahefcontroller at a certain
timet € R is not possible, since this causes jumps in the differeasieibbles. To
avoid this, we introduce the conceptadmpatibility.

where

Definition 5 (Compatible and stabilizing control).

The static controK = [Ky, Ky], defined byKy € R'", K, € R'™, is called

(a) compatible if for any X0 ¢ “//[gi’f/f*B], there exists soméx,u) € %FE,A’B] with
Ex(0) = EX.

(b) stabilizing if [EX,A] € 5y, is stabilizable in the behavioral sense.

Remark 22 (Compatible control).

Our definition of compatible control is a slight modificatiohthe concept intro-
duced by diLIUS andVAN DER SCHAFT in [78] where an interconnection is called
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compatible, if any trajectory of the system without contea¥ can be concatenated
with a trajectory of the interconnected system. This celydmplies that the space
of initial differential variables of the interconnectedstgm cannot be smaller than
the corresponding set for the nominal system.

Theorem 3 (Stabilizing control in the behavioral sense).

Let[E,A B] € Zx nm be given. Then there exists a compatible and stabilizingrabn
K = [Kx, Ky] with K € R'", K, € R'™, if, and only if,[E, A, B] is stabilizable in the
behavioral sense. In case [&, A, B] being stabilizable in the behavioral sense, the
compatible and stabilizing control K can moreover be chosech that[EK, AX]

is autonomous, i.e., the interconnected sysfEfn AX] is stable in the behavioral
sense.

Proof. Since, by definition[E,A,B| € 3, m is stabilizable in the behavioral sense
if, and only if, fors&’ — o7 = [SE— A, —B], the DAE[&, &7] € 3y nym IS Stabilizable
in the behavioral sense, necessity follows from settiag0.

In order to show sufficiency, let = [Ky, K] with Ky € R'"", K, € R'™, be a
compatible and stabilizing control fdE, A, B]. Now the system can be put into
feedback form, i.e., there exiéf € GI(R), T € Gl,(R), V € Gly(R) andF € R™"

such that L
sE-AB| |WO|[sE-AB||T O
et o R L]
where[E, A B] is in the form (15). Now the behavioral stabilizability {E*, A]
implies that the systenEX, AK] :— H'é g} , [KA KBH is stabilizable in the be-
X \u

havioral sense as well. Assume ttigt A B] is not stabilizable in the behavioral
sense, that is, by Corollary 2(i), there existsc o(Az) N C... Hence we find
xd € R\ {0} such thatAxd = Ax2. Then, withx(-) := (0,...,0,(exQ)T) ", we
have thatx, 0) € g 4 . AsX(0) € [g{f}\B] =T 1.7 g the compatibility of the
controlK implies that there exist, 0) € %EA,B} with EX(0) = ET X(0). This gives
(WET)T~1%(0) = WETX0) and writingT ~1X(t) = (%) 7, ..., R%(t) ") T with vec-
tors of appropriate size, we obtaig(0) = xg Since the solution of the initial
value probleny = Agy, y(0) = x2, is unique, we findkg(t) = e*'x2 for all t € R.
Now (T 1%, —VIFT 1% +V 1) € Bex ax) and as for al(%,0) € Bex a) with
(R(1),0q(t)) = (TIX(t), -V IFT-1g+V-LG(t)) for all t < 0 we haveg(t) = (t)
forallt € R, andxs(t) /e 0 sinced € C,, this contradicts thd€X, AX] is stabi-
lizable in the behavioral sense.

It remains to show the second assertion, that is, for a syEieMB| € >y , m that
is stabilizable in the behavioral sense, there exists sampatible and stabilizing
control K such that[EX, AX] is autonomous: Since, fdEj,Ar,B1], [E2, Az, By] €
Zknm with

W,T.V,F

[E1,A1,B1] ~te [Ez,Az,Bp], KpeR'"™™M and Kle[T O},

FV
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the behaviors of the interconnected systems are related by

T 0] qakg ko
[F V} %[El,Al,Bi] B %[EzﬁAzﬁBz]’

it is no loss of generality to assume tHiEt A, B] is in feedback form (15), i.e.,

sE—-A
Sl\a\_NC{ 0 0 0 0 0 Ea 00
0 sKg —Lg 0 0 0 0 0 0O
- 0 0 S T—L; 0 0 0 B_ 0 E,0
] o 0 0 skl-Lf O o | "7 |ooo
0 0 0 0 SN¢ — k| 0 0 00
0 0 0 0 0 sh,—A 0 00

Let Fr; € RY@)al such that déslq) — (Ng + EqFi11)) is Hurwitz. Then the DAE

(50 = R
is stable in the behavioral sense. Furthermore, by reag@asiim Remark 21(ii), for
aj = [ajp_2,---,8j0, 1] € RLBi
with the property that the polynomials
pi(s) =i +ap 1P 4. +apeR[s
are Hurwitz forj = 1,...,¢(a), the choice
Kx = diag(ay, ..., a,p)) € RIP)FI

leads to an autonomous system

Kg| . L

B —|-B

|: O :| Z(t) - |:KX:| Z(t)7

which is also stable in the behavioral sense. Since, morgmy€orollary 2(i), there
holdso(Ac) C C_, the choice

K _ [F11 000001400
~10K0000 0 0

leads to a behavioral stable (in particular autonomousgrysSince the differential
variables can be arbitrarily initialized in any of the prawsly discussed subsystems,
the constructed control is also compatible. a
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6 Invariant subspaces

This section is dedicated to some selected results of thengeiw theory of
differential-algebraic control systems. Geometric tlygalays a fundamental role

in standard ODE system theory and has been introduced indep#ly by WON-
HAM and MoRrseand BasiLE and MARRO, see the famous books [16, 165] and
also [149], which are the three standard textbooks on geamntrol theory.

In [99] LEwIsS gave an overview of the to date geometric theory of DAES. As we
will do here he put special emphasis on the two fundamengaleseces of subspaces
¥ and¥#; defined as follows:

Yo:=R", Y i=ANEX+imgB)CR", ¥ = (%
ieNg
Wo:={0}, W1 =E YA¥+imgB)CR",  »*:=|]%.
ieNp

The sequencesh)icn and(#)icn are calledcaugmented Wong sequencks[24,

25] the Wong sequences for matrix pencils (ie= 0) are investigated, the name
chosen this way since WNG [163] was the first one who used both sequences for
the analysis of matrix pencils. The sequenCésicy and(#f)icn are no Wong se-
quences corresponding to any matrix pencils, that is why alletltem augmented
Wong sequences with respect to control systems (1). In tlaet\Wong sequences
(with B = 0) can be traced back toiIBUDONNE [52], who focused on the first of
the two Wong sequencesEBNHARD [26] and ARMENTANO [6] used the Wong
sequences to carry out a geometric analysis of matrix pertiley appear also

in [3,4,94,140].

In control theory, that is wheB # 0, the augmented Wong sequences have been
extensively studied by several authors, see e.g.[98,121117,118,120,121,151]
for regular systems and [3,11, 13, 14, 28, 29, 55, 99, 104 1219 for general DAE
systems. RANKOWSKA [57] did a nice investigation of systems (1) in terms of
differential inclusions [8, 9], however requiring conteddility at infinity (see [57,
Prop. 2.6]). Nevertheless, she is the first to derive a foanfat the reachabil-
ity space [57, Thm. 3.1], which was later generalized ®zP.UskI and s
NOWSKI [129, Sec. 4] (in fact, the same generalization has beennweal in [104,

p. 296], [99, Sec. 5] and [11, p. 1510], however without pypitfalso occurred

in [55, Thm. 2.5].

Proposition 3 (Reachability space [129, Sec. 4]).
For [E,A,B] € 2xnm and limits ¥ and#* of the augmented Wong sequences we
have

%[E,A,B] =¥y nwr.

It has been shown in [13] (for discrete systems), see alsalfL 28, 119], that
the limit ¥* of the first augmented Wong sequence is the space of cornsisiteai
states. For regular systems this was proved in [98].
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Proposition 4 (Consistent initial states [13]).
For [E,A,B] € Zxnm and limit 7 of the first augmented Wong sequence we have

A//[E,A,B] =7

Various other properties of * and#* have been derived in [13] in the context
of discrete systems.

A characterization of the spac#s and»# ™ in terms of distributions is also given
in [129]: 7* + ke E is the set of all initial values such that the distributioimétial
value problem [129, (3)] has a smooth solutionu); #* is the set of all initial
values such that[129, (3)] has an impulsive solutiam); ¥* + #* is the set of all
initial values such that [129, (3)] has an impulsive-smamthution(x, u).

For regular system®zCALDIRAN [118] showed that¥* is the supremal
(A, E;img B)-invariant subspace @&" and# * is the infimal restrictedE, A; img B)-
invariant subspace @&". These concepts, which have also been used in [3,13, 98,
112] are defined as follows.

Definition 6 ((A E;img B)- and (E, A;img B)-invariance [118]).
Let [E,A,B] € 2nm. A subspace” C R" is called(A, E;imp B)-invariant if, and
only if,

AY CEY +imgB.

A subspace#’ C R" is calledrestricted(E, A;img B)-invariantif, and only if,

W =E YAY +imgB).
It is easy to verify that the proofs given in [118, Lems. 2.1 &]2emain the
same for generdt, A € R*" andB € R™™ - this was shown in [13] as well. For*
this can be found in [3], see also [112]. So we have the follgwiroposition.

Proposition 5 (Augmented Wong sequences as invariant subapes).
Consider[E,A,B| € 5, m and the limits?* and #* of the augmented Wong se-
quences. Then the following statements hold true.

(@) v* is (A E;imgB)-invariant and for any?” C R" which is (A E;imgB)-
invariant it holds? C v*;

(b) #* is restricted(E, A;img B)-invariant and for any#” C R" which is restricted
(E,A;img B)-invariant it holds#* C 7.

It is now clear how the controllability concepts can be chedzed in terms of
the invariant subspaces* and# . However, the statement about R-controllability
(behavioral controllability) seems to be new. The only otagpearance of a sub-
space inclusion as a characterization of R-controllghitiat the authors are aware
of occurs in [40] for regular systems: X = |, then the system is R-controllable
if, and only if, img EP C (EP|B), whereEP is the Drazin inverse oE, see Re-
mark 1(iv).

Theorem 4 (Geometric criteria for controllability).
Consider[E,A,B| € 2, m and the limits?* and #* of the augmented Wong se-
quences. ThefE, A, B] is
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(a) controllable at infinity if, and only ify* = R";

(b) impulse controllable if, and only iff* + kerg E = R" or, equivalently, B* =
imgE;

(c) controllable in the behavioral sense if, and only#f: C #*;

(d) completely controllable if, and only i#/* N #™* = R";

(e) strongly controllable if, and only if,¥* N #*) + kergk E = R" or, equivalently,
E(v*n#*)=imgE.

Proof. By Propositions 3 and 4 it is clear that it only remains to gr¢e). We
proceed in several steps.
Step 1Let [E1,A1,B4], [E2,A2,B] € 3 nm such that for som&/ € GI(R), T

Glh(R),V € GIn(R) andF € R™" it holds

W,TV,F

[E1,A1,B1] ~fé [Ez,Az,Ba].

We show that the augmented Wong sequencés¥;* of [E;, A1, B;] and the aug-
mented Wong sequenceg, #;2 of [E,, Ay, B,] are related by

VieNo: K1 =T "2 A #t =T w2

We proof the statement by induction. It is clear thgt = T~172. Assuming that
¥ = T-1%2 for somei > 0 we find that, by (6),

¥t = ALY EL A +ime By)
= {xeR" |Iye # Jue R™: W(AT +B,T)x=WETy+WB\Vu }
= {xeR"|3ze %% IveR™: A Tx=Epz+Byv }
=T 1A EH +imgBy)) =T 192,

The statement abowt;* and#;2 can be proved analogous.

Step 2By Step 1 we may without loss of generality assume faaA, B] is given
in feedback form (15). We make the convention that i N' is some multi-index,
thena —1:= (a1 —1,...,01 —1). It not follows that

VieNo: #% =R xR ximp N,y ximg(Ny_;)' ximg N x R, (23)

which is immediate from observing thlaﬂx = L}y+ Eyu for somex,y, u of appro-
priate dimension yieldg = N,_1y andLzx = K y for somex,y yieldsx = Ny _,y.
Note that in the casg =1 or g = 1, i.e., we have a & 0 block, we find thaiNy,_1
andNj_, are absent, so these relations are consistent.

On the other hand we find that

VieNo: # =ketr Ny x kerg Ny x kerg Ny,_; x {0}1°171(%) x kerg Ny x {0},
(24)
which indeed needs some more rigorous proof. First obsbatény Eq = kerg Ny,
kerz Kg = kerg Ng and (L;)*l(imR Ey) = imgE,_1 = kerg N,_1. Therefore we
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have
#1=E(img B) = kefg Ny x kerg Ng x kerg Ny_1 x {0}/%17(9) x ker Ny x {0}".

Further observe that, N = NgN, N;* foralli € Nand, hence, ik= Njy-+Equ
for somex,uandy € kerg N * it follows x € kerg Ni,. Likewise, if L, x = K/ y+Eyu
for somex, uandy € kerg N{,:ll we findx = N‘/T_lyjL EJ_lu and hence € kerg N;/_l.
Finally, if Kgx = Lgy for somex and somey € kerg Nb‘l it follows that by adding
some zero rows we obtaMgx = NBNBTy and hence, as aboveg kerg N}g. This
proves (24).

Step 3From (23) and (24) it follows that

7 = Rl x R 5 imp {0}V=40) 5 {0}191-400) 5 1O} KT 5 RMe,

w* =R x RIB x imp RM—4W) {0}\5\—5(5) « RIKI % {0},

As by Corollary 2(f) the systerfE, A, B] is controllable in the behavioral sense if,
and only if,ns = 0 we may immediately deduce that this is the case if, and dnly i
¥* C w*. This proves the theorem. a

Remark 23 (Representation of the reachability space).
From Proposition 3 and the proof of Theorem 4 we may immeljiateserve that,
using the notation from Theorem 1, we have

B ng =T (R\a\ » RIB!  impg {O}Y=40) 5 [0}101-4(8) 5 roylxl {o}nﬁ) ,

7 Kalman decomposition

Nearly fifty years ago KLMAN [81] derived his famous decomposition of linear
ODE control systems. This decomposition has later beenrgkred to regular
DAEs by VERGHESEat al. [154], see also [48]. A Kalman decomposition of gen-
eral discrete-time DAE systems has been provided byASzuUk et al. [14] (later
generalized to systems with output equation in [11]) in aywéce way using the
augmented Wong sequences (cf. Section 6). They deriveansyst

Ei1 BE12| [A11A12| |Bs
o] [ R [5]) &

which is system equivalent to givgg,A,B| € 5 ,m with the properties that the
system[Ej1,A11,B1] is completely controllable and the matrjk;1,A11,B1] has
full row rank (strongly.7Z-controllable in the notation of [14]) and, furthermore,
‘@[Ezz,Azzﬁo] ={0}.

This last condition is very reasonable, as one should wondhet properties
a Kalman decomposition of a DAE system should have. In the cd©DEs the
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decomposition simply is

A11 Az| [Br _
H 0 AZJ ; [OH , where[A11,Bq] is controllable.

Therefore, an ODE system is decomposed into a controllaideaa uncontrol-
lable part, since clearljA,,,0] is not controllable at all. For DAEs however, the
situation is more subtle, since in a decomposition (25) iy, A11,B1] com-
pletely controllable (andEj1,A11,Bs] full row rank) the conjectural “uncontrol-
lable” part[Ez2, A22, 0] may still have a controllable subsystem, since systemseof th
type [Kg,Lg,0] are always controllable. To exclude this and ensure thaoalirol-
lable parts are included ifiE11,A11,B1] we may state the additional condition (as
in [14]) that

%[EZZ,AZZ)O] ={0}.

This then also guarantees certain uniqueness properttas #falman decomposi-
tion. Hence, any system (25) with the above properties wikisiistem equivalent to
[E,A,B] we may call a Kalman decomposition|[&, A, B]. We cite the result of [14],
but also give some remarks on how the decomposition may lilg dasved.

Theorem 5 (Kalman decomposition [14]).
For [E,A,B] € Zx nm, there exist We Gl (R), T € Gln(R) such that

wT | B Bi2| (A1 A2| |Ba
[E7AaB] ~se |:|: O E22:|,|: 0 A22:|a|:0:|:|5 (26)

with Ej, A1 € RAOM, Epp A € RKUM2 Exy Ayy € RK2™ and B, € RK™, such
that [E11,A11,B1] € 2k, n,,m IS completely controllablerk g [E11,A11,B1] = ki and
‘@[Ezz,Azzﬁokz,m] =1{0}

Remark 24 (Derivation of the Kalman decomposition).

Let[E,A,B] € 2 nm be given. The Kalman decomposition (26) can be derived using

the limits ¥* and#* of the augmented Wong sequences presented in Section 6. It
is clear that these spaces satisfy the following subspéatomes:

E(¥*nw™)
AV ™)

(E¥* +imgB) N (AZ* +img B),

C
C (E¥ +imgB) N (A% +imgB).

Therefore, if we choose any full rank matridese R™™ P, e R R, e Rkk P, €
R*k2 such that

imgRy = 7*Nw™, imMrRy = (E”V*#*lmR B)Q(AW*+|mR B),
imrRL®imp P, = Rn, imr Ro @ iMg P> = Rk7

then[Ry, P1] € GIn(R) and[Ry, P2] € Glk(R), and, furthermore, there exists matrices
E11,A11 € RKOM Eqp Agp € RKUM2 Epy Aoy € RK2M2 such that
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ER = RyEqg, ARy = RoAq;,
EP. = RoE1o+PoEpy, AP = RoA1p+ PoAg).

Since ing B C (E¥* 4 img B) N (A% +img B) = img Ry, there exist8; € Rk
such thaB = R;B;. All these relations together yield the decomposition (&&h

W = [Ry,P,] andT = [Ry,P1] L. The properties of the subsystems essentially rely
on the observation that by Proposition 3

Reap =V MW" =imgR =T H(R™ x {0}").

Remark 25 (Kalman decomposition).
Itis important to note that a trivial reachability space slnet necessarily imply that
B = 0. An intriguing example which illustrates this is the syste

eno=[ 1)

Another important fact we like to stress by means of this exans thatB +~ 0 does

no necessarily imply; # 0 in the Kalman decomposition (26). In fact, the above
system[E, A, B] is already in Kalman decomposition wikh =k, = 1,n; = 0,n; =
Im=1andE,=1,A12=0,B; =1 as well as,, =0, Ay, = 1. Then all the
required properties are obtained, in particulag [ 1,A11,B1] = rkg[1] = 1 and
the system{Ej1,A11,B1] is completely controllable as it is in feedback form (15)
with y = 1; complete controllability then follows from Corollary However,
[E11,A11,B1] is hard to view as a control system as no equation can be wdten.
Nevertheless, the spac@g,, a,, 8, has dimension zero and obviously every state
can be steered to every other state.

We now analyze how two forms of type (26) of one syst#inA B| € 2 nm
differ.

Proposition 6 (Uniqueness of the Kalman decomposition).
Let [E,A,B] € Zxnm be given and assume that, for alki{1,2}, the systems

[E, A, B Yet [E, A, B] with

~_|sEw1i —Aazj SEi2j — Aroj ~_|Ba,i
SE—A= 0 SEi _A22,i] » Bi= [ 0 }

where B1j,Ap1j € RKIMI Epoj Agpj € RKIM2E Eppj Agpj € RR21M2i By j € RKLim
satisfy
rke [Ex1i Aazi Bai] =k

and, in addition, [E11j,A11i,Bci] € Zk;n;,m IS completely controllable and
‘%)[Ezz,i A22i,Oky m = {0}.

Then K1 = ki, ko1 = ko2, M1 = M2, Np1 = Nz2. Moreover, for some W €
Gli(R), Wiz € RN1R21, Wy € Gl (R), Tas € Glny, (R), Taz € RM™IML, Ty €
Gln,, (R), there holds
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VVZWJ_il = |:V\g-l &gﬂ ’

In particular, the systems$Ei11,A111,B11], [E112,A112,B12] and, respectively,
[E22’1,A22’1,0], [E22’2,A22’2,0] are system equivalent.

Proof. Itis no loss of generality to assume th8t = Iy, T; = I5. Then we obtain
R x {0} = Zl, g 1) = T2 %[y 00.85) = T2(R™2 % {0}).

This impliesny 1 = ny > and

T = |:T81 E‘z] for someTy; € G|nll, T € Rn“’nz‘l, Ty € G|n21.
22 ’ ’

Now partitioning
(Wi W
o= {\/\/21 Wi,

the block(2,1) of the equation¥\iE1 Ty = Ep, WiAI T1 = A, andWiB; = B, give
rise to

] . Wi e R|<1,17|<1,27 Wi, € Rk1~1’k2~2, Woy € sz,lvkcz’ W, € Rk2.17k2.2’

0=Wos [E112 A112 B12] .

Since the latter matrix is supposed to have full row rank, Waim\W,; = 0. The
assumption of\b being invertible then leads tq 1 < ki 2. Reversing the roles of
[E1,A1,B1] and[Ep, Az, By], we further Obtailkl,z < kl,lu WhenCé(j_’z = kl,l- Using
again the invertibility ofV, we obtain that botky; andW,, are invertible. O

It is immediate from the form (26) thdE, A, B] is completely controllable if,
and only if,n; = n. The following result characterizes the further controility and
stabilizability notions in terms of properties of the sultrizzs in (26).

Corollary 6 (Properties induced from the Kalman decompositon).
Consider[E,A,B] € Zx nm With

wWT | |E11 E12| |A11 Ar2| [Ba
enertel %] 5 R 3]
such thatEq1,A11,B1] € 2k, n,,m is completely controllablekr[E11,A11, B1] = ki
andZ, | = {0}. Then the following statements hold true:

E22,A22,015,m

(a) rkR(s) (SEzzf Azz) = Ny.

(b) If sSE— A is regular, then both pencils sE— Aj1 and sk, — Ay, are regular. In
particular, it holds k = n; and k = na.

(c) If [E,A,B] is impulse controllable, then the index of the pencil:sE Az, is at
most one.

(d) [E,A,B] is controllable at infinity if, and only iimg Ag» C img Ep).
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(e) [E,A,B] is controllable in the behavioral sense if, and onlyrig s (SE2 —
Azz) = I’k(c()\ E227A22) forall A € C.

(f) [E,AB] is stabilizable in the behavioral sense if, and onlyrig s (SE2 —
Azz) = I’k(c(A E22—A22) forall A € @Jr-

Proof.

(@) Assuming that ri) (B2 — Azz) < Nz, then, in a quasi-Kronecker (8) form of
SEy» — Ay, it holds /() > 0 by (11). By the findings of Remark 8(ii), we can
ConC|Ude%’[Ezz,A22,ok2,m] # {0}, a contradiction.

(b) We can infer from (a) that, < kp. We can further infer from the regularity of

sE— Athatn, > ky. The regularity ofsEy1 — A3 andsEy, — Az, then follows

immediately from ddsE— A) = detW - T) - det(sE;1 — A11) - det(sExp — Aga).

Assume thalE, A, B] is impulse controllable. By Corollary 3 and the invariance

of impulse controllability under system equivalence thipiies that

(c

~—

: : E11 B2 B1 A11Zs + A2y
C
"M { 0 Azz} =M { 0 Ex» O AxoZ; ’

E11 B2
0 Ezz] . The last

condition in particular implies that inZ, C kerg Ex» and therefore we obtain

whereZ = [Z],Z]]" is a real matrix such that igZ = kerg

imr Ago C impg Exp+ Az - ke Epo,

which is, by (9), equivalent to the index sy, — Az, being at most one.
(d) Since rig[Ei11,A11,B1] = kg and the systenEj1,Aq1,B4] is controllable at in-
finity, Corollary 3 leads to rk[Ej1,B1] = ki. Therefore, we have

E11 E12 By

Analogously, we obtain

E11 E12 A11 A12 B

. - kl . .
IMg { 0 Exp 0 Ay O} =R X(ImREzerlmRAzz).

Again using Corollary 3 and the invariance of controllaigilt infinity under
system equivalence, we see tfatA, B] is controllable at infinity if, and only
if,
Rk x (img Egp + img Agp) = RM x imp Eoo,
which is equivalent to il Az C imp Ezo.
(e) Since rig[E11,A11,B1] = ki and[E11,Aq11,B1] € 3y, n, m is completely control-
lable it holds
I’k(c[)\ E11— A1, Bl] =k forallA eC.

Therefore, we have
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AE11—A11 AE1n—A1p By

I'k(;[/\E*A,B]:I'k(C 0 AEz—Agy 0

=K1+ rkc(AEz— Ag),

and, analogously, fs)[SE — A, B] = ki + k) (SE22 — Az2). Now applying
Corollary 3 we find thafE, A, B] is controllable in the behavioral sense if, and
only if, rkg(s) (sEx2— Azp) = ke (AEz— Agp) forall A € C.

(f) The proof of this statement is analogous to (e). a

Remark 26 (Kalman decomposition and controllability).

Note that the condition of the index sk, — Az» being at most one in Corollary 6(c)
is equivalentto the systef&22, A2z, Ok, m] being impulse controllable. Likewise, the
condition img A2z C img Ep in (d) is equivalent tdEz», Axp, O, m| being control-
lable at infinity. Obviously, the conditions in (e) and (feagquivalent to behavioral
controllability and stabilizability ofEz2, A2z, Ok, m], resp.

Furthermore, the converse implication in (b) does not hld.tThat is, the index of
sE, — Azp being at most one is in general not sufficient fiérA, B] being impulse
controllable. For instance, reconsider system (27) whsctot impulse controllable,
butsEy, — Ayo = —1 is of index one. Even in the case whete— A is regular, the
property of the index a$Ey» — A2 being zero or one is not enough to infer impulse
controllability of SE— A. As a counterexample, consider

er8={log oo}

Acknowledgements We are indebted to Harry L. Trentelman (University of Gragren) for pro-
viding helpful comments on the behavioral approach.
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