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Abstract
Different concepts related to controllability of differential-algebraic equations

are described. The class of systems considered consists of linear differential-algebraic
equations with constant coefficients. Regularity, which is, loosely speaking, a con-
cept related to existence and uniqueness of solutions for any inhomogeneity, is not
required in this article. The concepts of impulse controllability, controllability at in-
finity, behavioral controllability, strong and complete controllability are described
and defined in time-domain. Equivalent criteria that generalize the Hautus test are
presented and proved.

Special emphasis is placed on normal forms under state spacetransformation
and, further, under state space, input and feedback transformations. Special forms
generalizing the Kalman decomposition and Brunovský formare presented. Con-
sequences for state feedback design and geometric interpretation of the space of
reachable states in terms of invariant subspaces are proved.
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1 Introduction

Controllability is, roughly speaking, the property of a system that any two trajec-
tories can be concatenated by another admissible trajectory. The precise concept
however depends on the specific framework, as quite a number of different concepts
of controllability are present today.

Since the famous work by KALMAN [80–82], who introduced the notion of con-
trollability about fifty years ago, the field of mathematicalcontrol theory has been
revived and rapidly growing ever since, emerging into an important area in applied
mathematics, mainly due to its contributions to fields such as mechanical, electrical
and chemical engineering (see e.g. [2, 46, 138]). For a good overview of standard
mathematical control theory, i.e., involving ordinary differential equations (ODEs),
and its history see e.g. [69,75,76,79,137,144].
Just before mathematical control theory began to grow, GANTMACHER published
his famous book [59] and therewith laid the foundations for the rediscovery of
differential-algebraic equations (DAEs), the first main theories of which have been
developed by WEIERSTRASS[157] and KRONECKER [92] in terms of matrix pen-
cils. DAEs have then been discovered to be appropriate for modeling a vast va-
riety of problems in economics [110], demography [36], mechanical systems [7,
30, 58, 66, 126, 139], multibody dynamics [54, 66, 141, 143],electrical networks [7,
35, 53, 105, 116, 133, 134], fluid mechanics [7, 64, 105] and chemical engineer-
ing [47, 49–51, 125], which often cannot be modeled by standard ODE systems.
Especially the tremendous effort in numerical analysis of DAEs [10, 95, 97] is re-
sponsible for DAEs being nowadays a powerful tool for modeling and simulation of
the aforementioned dynamical processes.

In general, DAEs are implicit differential equations, and in the simplest case
just a combination of differential equations along with algebraic constraints (from
which the name DAE comes from). These algebraic constraintshowever may cause
that the solutions of initial value problems are no longer unique, or that there do not
exist solutions at all. Furthermore, when considering inhomogeneous problems, the
inhomogeneity has to be “consistent” with the DAE in order for solutions to exist.
Dealing with these problems a huge solution theory for DAEs has been developed,
the most important contribution of which is the one by WILKINSON [158]. Nowa-
days, there are a lot of monographs [30, 36, 37, 48, 65, 97] andone textbook [95],
where the whole theory can be looked up. A comprehensive representation of the
solution theory of general linear time-invariant DAEs, along with possible distribu-
tional solutions based on the theory developed in [145,146], is given in [25]. A good
overview of DAE theory and a historical background can also be found in [98].

DAEs found its way into control theory ever since the famous book by ROSEN-
BROCK [135], in which he developed his ideas of the description of linear systems
by polynomial system matrices. Then a rapid development followed with impor-
tant contributions of ROSENBROCK himself [136] and LUENBERGER [106–109],
not to forget the work by PUGH et al. [130], VERGHESEet al. [150,152–154], Pan-
dolfi [123, 124], COBB [41, 42, 44, 45], YIP et al. [168] and BERNARD [26]. The
most important of these contributions for the development of concepts of controlla-
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bility are certainly [45, 154, 168]. Further developments were made by LEWIS and
ÖZÇALDIRAN [100,101] and by BENDER and LAUB [20,21]. The first monograph
which summarizes the development of control theory for DAEsso far was the one
by DAI [48]. All these contributions deal with regular systems, i.e., systems of the
form

Eẋ(t) = Ax(t)+ f (t), x(0) = x0,

where for any inhomogeneityf there exist initial valuesx0 for which the corre-
sponding initial value problem has a solution and this solution is unique. This has
been proved to be equivalent to the condition thatE,A are square matrices and
det(sE−A) ∈R[s]\ {0}.

The aim of the present paper is to state the different concepts of controllabil-
ity for differential-algebraic systems which are not necessarily regular, i.e.,E and
A may be non-square. Applications with the need for non-regular DAEs appear in
the modeling of electrical circuits [53] for instance. Furthermore, a drawback in
the consideration of regular systems arises when it comes tofeedback: the class of
regular DAE systems is not closed under the action of a feedback group [12]. This
also rises the need for a complete and thorough investigation of non-regular DAE
systems. We also like to stress that general, possibly non -regular, DAE systems are
a sub-class of the class of so-called differential behaviors, introduced by POLDER-
MAN and WILLEMS [127], see also [160]. In the present article we will pay a special
attention to the behavioral setting, formulating most of the results and the concepts
by using the underlying set of trajectories (behavior) of the system.

In this paper we do not treat controllability of time-varying DAEs, but refer
to [39, 71–73, 155, 156]. We also do not treat controllability of discrete time DAEs,
but refer to [13,26,98,99,167].
The paper is organized as follows:

2 Controllability concepts p.5

The concepts of impulse controllability, controllabilityat infinity, R-
controllability, controllability in the behavioral sense, strong and complete con-
trollability, as well as strong and complete reachability and stabilizability in the
behavioral sense, strong and complete stabilizability will be described and de-
fined in time-domain in Section 2. In the more present DAE literature these no-
tions are not consistently treated. We try to clarify this here. A comprehensive
discussion of the introduced concepts as well as some first relations between
them are also included in Section 2.

3 Solutions, relations and normal forms p.16
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In Section 3 we briefly revisit the solution theory of DAEs andthen concentrate
on normal forms under state space transformation and, further, under state space,
input and feedback transformations. We introduce the concepts of system and
feedback equivalence and state normal forms under these equivalences, which
for instance generalize the Brunovský form. It is also discussed when these forms
are canonical and what properties (regarding controllability and stabilizability)
the appearing subsystems have.

4 Algebraic criteria p.31

The generalized Brunovský form enables us to give short proofs of equivalent
criteria, in particular generalizations of the Hautus test, for the controllability
concepts in Section 4, the most of which are of course well-known - we discuss
the relevant literature.

5 Feedback, stability and autonomous system p.36

In Section 5 we revisit the concept of feedback for DAE systems and proof new
results concerning the equivalence of stabilizability of DAE control systems and
the existence of a feedback which stabilizes the closed-loop system.

6 Invariant subspaces p.47

In Section 6 we give a brief summary of some selected results of the geometric
theory using invariant subspaces which lead to a representation of the reach-
ability space and criteria for controllability at infinity,impulse controllability,
controllability in the behavioral sense, complete and strong controllability.

7 Kalman decomposition p.50

Finally, in Section 7 the results regarding the Kalman decomposition for DAE
systems are stated and it is shown how the controllability concepts can be related
to certain properties of the Kalman decomposition.

We close the introduction with the nomenclature used in thispaper:

N, N0, Z set of natural numbers,N0 = N∪{0}, set of all integers,
resp.

ℓ(α), |α| length and absolute value of a multi-indexα =
(α1, . . . ,αl ) ∈ Nn

R≥0 (R>0, R≤0,
R<0)

= [0,∞) ((0,∞), (−∞,0], (−∞,0)), resp.
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C+, C− (C+,
C−)

the open (closed) set of complex numbers with positive,
negative real part, resp.

Gln(R) the set of invertible realn×n matrices

R[s] the ring of polynomials with coefficients inR

R(s) the quotient field ofR[s]

Rn,m the set ofn×mmatrices with entries in a ringR

σ(A) spectrum of the matrixA∈ Rn,n

f |
I

restriction of the functionf : T →Rn to I ⊆ T ,

L 1
loc(T ;Rn) locally Lebesgue integrable functionsf : T →Rn, see [1,

Chap. 1]

ḟ ( f (i)) (i-th) distributional derivative off ∈ L 1
loc(T ;Rn), i ∈ N0

W
k,1

loc (T ;Rn) :=
{

x∈ L 1
loc(T ;Rn)

∣

∣

∣ x(i) ∈ L 1
loc(T ;Rn) for i = 0, . . . ,k

}

,

k∈ N0

στ theτ-shift operator, i.e., forf : T → Rn, T ⊆ R,
στ f : T − τ →Rn, t 7→ f (t + τ)

ρ the reflection operator, i.e., forf : T → Rn, T ⊆ R,
ρ f : −T →Rn, t 7→ f (−t)

2 Controllability concepts

We consider linear differential-algebraic control systems of the form

Eẋ(t) = Ax(t)+Bu(t), (1)

with E,A ∈ Rk,n, B ∈ Rk,m; the set of these systems is denoted byΣk,n,m, and we
write [E,A,B] ∈ Σk,n,m .
We do not assume that the pencilsE−A∈R[s]k,n is regular, that is rkR(s)(sE−A) =
k= n.

The functionu : R → Rm is called input; x : R → Rn is called (generalized)
state. Note that, strictly speaking,x(t) is in general not a state in the sense that
the free system (i.e.,u≡ 0) satisfies a semigroup property [88, Sec. 2.2]. We will,
however, speak of the statex(t) for sake of brevity, especially sincex(t) contains
the full information about the system at timet. Furthermore, one might argue that
(especially in the behavioral setting) it is not correct to call u “input”, because due to
the implicit nature of (1) it may be that actually some components ofu are uniquely
determined and some components ofx are free, and only the free variables should be
called inputs in the behavioral setting. However, the controllability concepts given



6 Thomas Berger and Timo Reis

in Definition 1 explicitly distinguish betweenx and u and not between free and
determined variables. We feel that, in some cases, it might still be the choice of the
designer to assign the input variables, that isu, and if some of these are determined,
then the input space has to be restricted in an appropriate way.

A trajectory(x,u) : R→ Rn×Rm is said to be asolutionof (1) if, and only if, it
belongs to thebehaviorof (1):B[E,A,B] :=

{

(x,u) ∈ W
1,1

loc (R;Rn)×L
1
loc(R;Rm)

∣

∣

∣

∣

(x,u) satisfies (1)
for almost allt ∈R

}

. (2)

Note that any functionx∈W
1,1

loc (R;Rn) is continuous. Moreover, by linearity of (1),B[E,A,B] is a vector space. Further, since the matrices in (1) do not depend ont, the
behavior isshift-invariant, that is(στx,στ u) ∈ B[E,A,B] for all τ ∈ R and (x,u) ∈B[E,A,B].

The following spaces play a fundamental role in this article:

(a) Thespace of consistent initial states

V[E,A,B] =
{

x0 ∈ Rn
∣

∣ ∃(x,u) ∈ B[E,A,B] : x(0) = x0 } .

(b) Thespace of consistent initial differential variables

V
diff
[E,A,B] =

{

x0 ∈ Rn
∣

∣ ∃(x,u) ∈ B[E,A,B] : Ex(0) = Ex0 } .

(c) Thereachability space at time t≥ 0

R
t
[E,A,B] =

{

x0 ∈ Rn
∣

∣ ∃(x,u) ∈ B[E,A,B] : x(0) = 0 ∧ x(t) = x0 }

and thereachability space

R[E,A,B] =
⋃

t≥0

R
t
[E,A,B].

(d) Thecontrollability space at time t≥ 0

C
t
[E,A,B] =

{

x0 ∈ Rn
∣

∣ ∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ x(t) = 0
}

and thecontrollability space

C[E,A,B] =
⋃

t≥0

C
t
[E,A,B].

Note that, by linearity of the system,V[E,A,B], V
diff
[E,A,B], R

t
[E,A,B] andC t

[E,A,B] are lin-

ear subspaces ofRn. We will show thatRt1
[E,A,B] = R

t2
[E,A,B] = C

t1
[E,A,B] = C

t2
[E,A,B] for

all t1, t2 ∈ R>0, see Lemma 3. This impliesR[E,A,B] = Rt
[E,A,B] = C t

[E,A,B] = C[E,A,B]

for all t ∈ R>0. Note further that, by shift-invariance, we have for allt ∈R that
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V[E,A,B] =
{

x0 ∈Rn
∣

∣ ∃(x,u) ∈B[E,A,B] : x(t) = x0 } , (3)

V
diff
[E,A,B] =

{

x0 ∈Rn
∣

∣ ∃(x,u) ∈B[E,A,B] : Ex(t) = Ex0 } . (4)

In the following three lemmas we clarify some of the connections of the above
defined spaces, before we state the controllability concepts.

Lemma 1 (Inclusions for reachability spaces).
For [E,A,B] ∈ Σk,n,m and t1, t2 ∈R>0 with t1 < t2, the following holds true:

(a) R
t1
[E,A,B] ⊆ R

t2
[E,A,B].

(b) If R
t1
[E,A,B] = R

t2
[E,A,B], thenR

t1
[E,A,B] = Rt

[E,A,B] for all t ∈R with t > t1.

Proof.

(a) Let x̄∈ R
t1
[E,A,B]. By definition, there exists some(x,u) ∈ B[E,A,B] with x(0) = 0

andx(t1) = x̄. Consider now(x1,u1) : R→Rn×Rm with

(x1(t),u1(t)) =

{

(x(t − t2+ t1),u(t − t2+ t1)), if t > t2− t1
(0,0), if t ≤ t2− t1

Thenx(0) = 0 implies thatx1 is continuous att2− t1. Since, furthermore,

x1|(−∞,t2−t1]
∈W

1,1
loc ((−∞, t2− t1];R

n) and x1|[t2−t1,∞) ∈W
1,1

loc ([t2− t1,∞);Rn),

we have(x1,u1) ∈ W
1,1

loc (R;Rn)×L 1
loc(R;Rm). By shift-invariance,Eẋ1(t) =

Ax1(t)+Bu1(t) holds true for almost allt ∈ R, i.e., (x1,u1) ∈ B[E,A,B]. Then,
due tox1(0) = 0 andx̄= x(t1) = x1(t2), we obtain ¯x∈ R

t2
[E,A,B].

(b) Step 1:We show thatRt1
[E,A,B] =R

t2
[E,A,B] impliesR

t1
[E,A,B] =R

t1+2(t2−t1)
[E,A,B] : By (a),

it suffices to show the inclusion “⊇”. Assume that ¯x ∈ R
t1+2(t2−t1)
[E,A,B] , i.e., there

exists some(x1,u1) ∈ B[E,A,B] with x1(0) = 0 andx1(t1+2(t2− t1)) = x̄. Since
x1(t2) ∈ R

t2
[E,A,B] = R

t1
[E,A,B], there exists some(x2,u2) ∈B[E,A,B] with x2(0) = 0

andx2(t1) = x1(t2). Now consider the trajectory

(x(t),u(t)) =

{

(x2(t),u2(t)), if t < t1,

(x1(t +(t2− t1)),u1(t +(t2− t1))), if t ≥ t1.

Sincex is continuous att1, we can apply the same argumentation as in the proof
of (a) to infer that(x,u) ∈ B[E,A,B]. The result to be shown in this step is now
a consequence ofx(0) = x2(0) = 0 and

x̄= x1(t1+2(t2− t1)) = x(t2) ∈ R
t2
[E,A,B] = R

t1
[E,A,B].

Step 2:We show (b): From the result shown in the first step, we may inductively

conclude thatRt1
[E,A,B] = R

t2
[E,A,B] implies R

t1
[E,A,B] = R

t1+l(t2−t1)
[E,A,B] for all l ∈ N.
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Let t ∈R with t > t1. Then there exists somel ∈N with t ≤ t1+ l(t2− t1). Then
statement (a) implies

R
t1
[E,A,B] ⊆ R

t
[E,A,B] ⊆ R

t1+l(t2−t1)
[E,A,B] ,

and, byRt1
[E,A,B] = R

t1+l(t2−t1)
[E,A,B] , we obtain the desired result. ⊓⊔

Now we present some relations between controllability and reachability spaces
of [E,A,B] ∈ Σk,n,m and itsbackward system[−E,A,B] ∈ Σk,n,m. It can be easily
verified that B[−E,A,B] =

{

(ρx,ρu)
∣

∣ (x,u) ∈B[E,A,B]

}

. (5)

Lemma 2 (Reachability and controllability spaces of the backward system).
For [E,A,B] ∈ Σk,n,m and t∈ R>0, there holds

R
t
[E,A,B] = C

t
[−E,A,B], and C

t
[E,A,B] = R

t
[−E,A,B].

Proof. Both assertions follow immediately from the fact that(x,u) ∈ B[E,A,B], if,
and only if,(σt(ρx),σt (ρu)) ∈B[−E,A,B]. ⊓⊔

The previous lemma enables us to show that the controllability and reachability
spaces of[E,A,B] ∈ Σk,n,m are even equal. We further prove that both spaces do not
depend on timet ∈ R>0.

Lemma 3 (Impulsive initial conditions and controllability spaces).
For [E,A,B] ∈ Σk,n,m, the following holds true:

(a) R
t1
[E,A,B] = R

t2
[E,A,B] for all t1, t2 ∈ R>0.

(b) Rt
[E,A,B] = C t

[E,A,B] for all t ∈R>0.

(c) V diff
[E,A,B] = V[E,A,B]+ kerR E.

Proof.

(a) By Lemma 1(a), there holds

R

t1
n+1
[E,A,B] ⊆ R

2t1
n+1
[E,A,B] ⊆ ·· · ⊆ R

nt1
n+1
[E,A,B] ⊆ R

t1
[E,A,B] ⊆ Rn,

and thus

0≤ dimR

t1
n+1
[E,A,B] ≤ dimR

2t1
n+1
[E,A,B] ≤ ·· · ≤ dimR

nt1
n+1
[E,A,B] ≤ dimR

t1
[E,A,B] ≤ n.

As a consequence, there has to exist somej ∈ {1, . . . ,n+1} with

dimR

jt1
n+1
[E,A,B] = dimR

( j+1)t1
n+1

[E,A,B] .

Together with the subset inclusion, this yields
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R

jt1
n+1
[E,A,B] = R

( j+1)t1
n+1

[E,A,B] .

Lemma 1(b) then implies the desired statement.
(b) Let x̄ ∈ Rt

[E,A,B]. Then there exists some(x1,u1) ∈ B[E,A,B] with x1(0) = 0 and

x1(t) = x̄. Since, by (a), we havex1(2t) ∈ Rt
[E,A,B], there also exists some

(x2,u2) ∈ B[E,A,B] with x2(0) = 0 andx2(t) = x1(2t). By linearity and shift-
invariance, we have

(x,u) := (σtx1− x2,σtu1−u2) ∈B[E,A,B].

The inclusionRt
[E,A,B] ⊆ C t

[E,A,B] then follows by

x(0) = x1(t)− x2(0) = x̄, x(t) = x1(2t)− x2(t) = 0.

To prove the opposite inclusion, we make use of the previously shown subset
relation and Lemma 2 to infer that

C
t
[E,A,B] = R

t
[−E,A,B] ⊆ C

t
[−E,A,B] = R

t
[E,A,B].

(c) We first show thatV diff
[E,A,B] ⊆ V[E,A,B]+ kerR E: Assume thatx0 ∈ V diff

[E,A,B], i.e.,

Ex0 = Ex(0) for some(x,u) ∈ B[E,A,B]. By x(0) ∈ V[E,A,B], x(0)− x0 ∈ kerRE,
we obtain

x0 = x(0)+ (x0− x(0)) ∈ V[E,A,B]+ kerR E.

To proveV[E,A,B]+kerRE ⊆V diff
[E,A,B], assume thatx0 = x(0)+ x̄ for some(x,u)∈B[E,A,B] andx̄∈ kerR E. Thenx0 ∈ V diff

[E,A,B] is a consequence ofEx0 = E(x(0)+

x̄) = Ex(0). ⊓⊔

By Lemma 3 it is sufficient to only consider the spacesV[E,A,B] andR[E,A,B] in
the following.

We are now in the position to define the central notions of controllability, reach-
ability and stabilizability considered in this article.

Definition 1.
The system[E,A,B] ∈ Σk,n,m is called

a) controllable at infinity

:⇔ ∀x0 ∈Rn ∃(x,u) ∈ B[E,A,B] : x(0) = x0 ⇔ V[E,A,B] = Rn.

b) impulse controllable

:⇔ ∀x0 ∈ Rn ∃(x,u) ∈ B[E,A,B] : Ex0 = Ex(0) ⇔ V
diff
[E,A,B] = Rn.
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c) controllable within the set of reachable states (R-controllable)

:⇔ ∀x0,xf ∈ V[E,A,B] ∃ t > 0 ∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ x(t) = xf .

d) controllable in the behavioral sense

:⇔ ∀(x1,u1),(x2,u2) ∈ B[E,A,B]

∃T > 0 ∃(x,u) ∈ B[E,A,B] : (x(t),u(t)) =

{

(x1(t),u1(t)), if t < 0,

(x2(t),u2(t)), if t > T.

e) stabilizable in the behavioral sense

:⇔ ∀(x,u) ∈ B[E,A,B] ∃(x0,u0) ∈ B[E,A,B]∩
(

W
1,1

loc (T ;Rn)×W
1,1

loc (T ;Rn)
)

:
(

∀ t < 0 : (x(t),u(t)) = (x0(t),u0(t))
)

∧ limt→∞(x0(t),u0(t)) = 0.

f) completely reachable

:⇔ ∃ t ∈R>0 ∀xf ∈Rn ∃(x,u) ∈ B[E,A,B] : x(0) = 0 ∧ x(t) = xf

⇔ ∃ t ∈R>0 : Rt
[E,A,B] = Rn.

g) completely controllable

:⇔ ∃ t ∈ R>0 ∀x0,xf ∈ Rn ∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ x(t) = xf .

h) completely stabilizable

:⇔ ∀x0 ∈ Rn ∃(x,u) ∈ B[E,A,B] : x(0) = x0 ∧ lim
t→∞

x(t) = 0.

i) strongly reachable

:⇔ ∃ t ∈ R>0 ∀xf ∈ Rn ∃(x,u) ∈ B[E,A,B] : Ex(0) = 0 ∧ Ex(t) = Exf .

j) strongly controllable

:⇔ ∃ t ∈R>0 ∀x0,xf ∈Rn ∃(x,u) ∈ B[E,A,B] : Ex(0) = Ex0 ∧ Ex(t) = Exf .

k) strongly stabilizable(or merelystabilizable)

:⇔ ∀x0 ∈Rn ∃(x,u) ∈ B[E,A,B] : Ex(0) = Ex0 ∧ lim
t→∞

Ex(t) = 0.

Some remarks on the definitions are warrant.

Remark 1.

(i) The controllability concepts are not consistently treated in the literature. For
instance, one has to pay attention if it is (tacitly) claimedthat [E,B] ∈ Rk,n+m
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or [E,A,B] ∈ Rk,2n+m have full rank.
For regular systems we have the following:

concept coincides with notion in called [...] in
controllability at infinitysee item (vi) reachability at∞ in [98]

impulse controllability [45] and [72, Rem. 2] controllability at ∞
in [98]; controllability at
infinity in [5,6,154]

R-controllability [40,48,168] and [72, Rem. 2]–

complete controllability[40,48,168] controllability in [45]

strong controllability [154] and [72, Rem. 2] impulse controllability
in [62]

Some of these aforementioned articles introduce the controllability by means
of certain rank criteria for the matrix triple[E,A,B]. The connection of the
concepts introduced in Definition 1 to linear algebraic properties ofE, A andB
will be highlighted in Section 4.
For general DAE systems we have:

concept coincides with notion incalled [...] in
controllability at infinity– –

impulse controllability [60,70,74] –

R-controllability – –

complete controllability[119] controllability in [57]

strong controllability – controllability in [119]

Our behavioral controllability coincides with the framework which is intro-
duced in [127, Definition 5.2.2] for so-calleddifferential behaviors, which
are general (possibly higher order) DAE systems with constant coefficients.
Note that the concept of behavioral controllability does not require a distinc-
tion between input and state. The concepts of reachability and controllability
in [12–15] coincide with our behavioral and complete controllability, resp. (see
Sec. 4). Full controllability of [170] is our complete controllability together
with the additional assumption that solutions have to be unique.

(ii) Stabilizability in the behavioral sense is introducedin [127, Definition 5.2.2].
For regular systems, stabilizability is usually defined either via linear algebraic
properties ofE, A andB, or by the existence of a stabilizing state feedback,
see [32, 33, 56] and [48, Definition 3-1.2.]. Our concepts of behavioral stabi-
lizability and stabilizability coincide with the notions of internal stability and
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complete stabilizability, resp., defined in [113] for the systemE ż(t) = A z(t)
with E = [E , 0], A = [A, B], z(t) = [xT(t) , uT(t) ]T .

(iii) Other concepts, not related to the ones considered in this article, are e.g. the
instantaneous controllability (reachability) of orderk in [119] or the impulsive
mode controllability in [70]. Furthermore, the concept of strong controllability
introduced in [149, Exercise 8.5] for ODE systems differs from the concepts
considered in this article.

(iv) The notion of consistent initial conditions is the mostimportant one for DAE
systems and therefore the consideration of the spaceV[E,A,B] (for B= 0 when
no control systems were considered) is as old as the theory ofDAEs itself,
see e.g. [59].V[E,A,B] is sometimes called viability kernel [28], see also [8, 9].
The reachability and controllability space are some of the most important no-
tions for (DAE) control systems and have been considered in [98] for regu-
lar systems. They are the fundamental subspaces consideredin the geomet-
ric theory, see Section 6. Further usage of these concepts can be found in
the following: in [121] generalized reachability and controllability subspaces
of regular systems are considered; ELIOPOULOU and KARCANIAS [55] con-
sider reachability and almost reachability subspaces of general DAE systems;
FRANKOWSKA [57] considers the reachability subspace in terms of differen-
tial inclusions.
A nice formula for the reachability space of a regular systemhas been derived
by YIP et al. [168] (and later been adopted by COBB [45], however called con-
trollable subspace): Consider a regular system[E,A,B] ∈ Σn,n,m in Weierstraß
form [59], that is

E =

[

In1 0
0 N

]

, A=

[

J 0
0 In2

]

, B=

[

B1

B2

]

,

whereN is nilpotent. Then [168, Thm. 2]

R[E,A,B] = 〈J|B1〉× 〈N|B2〉,

where〈K|L〉 := imR[L,KL, . . . ,Kn−1L] for some matricesK ∈Rn×n,L∈Rn×m.
Furthermore, we have [168, Thm. 3]

V[E,A,B] = Rn1 ×〈N|B2〉.

This result has been improved later in [40] so that the Weierstraß form is no
longer needed. Denoting byED the Drazin inverse of a given matrixE ∈ Rn×n

(see [38]), it is shown [40, Thm. 3.1] that, forA= I ,

R[E,A,B] = ED〈ED|B〉⊕ (I −EED)〈E|B〉,

where the consideration ofA= I is justified by a certain (time-varying) trans-
formation of the system [123]. We further have [40, Thm. 3.2]
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V[E,A,B] = imRED ⊕ (I −EED)〈E|B〉.

Yet another approach was followed by COBB [41] who obtains that

R[E,A,B] = 〈(αE−A)−1E|(αE−A)−1B〉

for someα ∈ R with det(αE−A) 6= 0. A simple proof of this result can also
be found in [169].

(v) The notionV diff
[E,A,B] comes from the possible impulsive behavior of solutions

of (1), i.e.,x may have jumps, when distributional solutions are permitted, see
e.g. [45] as a very early contribution in this regard. Since these jumps have no
effect on the solutions if they occur at the initial time and within the kernel
of E this leads to the definition ofV diff

[E,A,B]. See also the definition of impulse
controllability.

(vi) Impulse controllability and controllability at infinity are usually defined by
considering distributional solutions of (1), see e.g. [45,60, 74], sometimes
called impulsive modes, see e.g. [19, 70, 154]. For regular systems, impulse
controllability has been introduced by VERGHESEet al. [154] (called control-
lability at infinity in this work) as controllability of the impulsive modes of
the system, and later made more precise by COBB [45], see also ARMEN-
TANO [5, 6] (who also calls it controllability at infinity) for a more geometric
point of view. In [154] the authors do also develop the notionof strong con-
trollability as impulse controllability with, additionally, controllability in the
regular sense. COBB [42] showed that under the condition of impulse control-
lability, the infinite eigenvalues of regularsE−A can be assigned via a state
feedbacku = Fx to arbitrary finite positions. ARMENTANO [5] later showed
how to calculateF . This topic has been further pursued in [93] in the form of
invariant polynomial assignment.
The name “controllability at infinity” comes from the claim that the system
has no infinite uncontrollable modes: Speaking in terms of rank criteria (see
also Section 4) the system[E,A,B] ∈ Σk,n,m is said to have an uncontrollable
mode atα

β if, and only if, rk[αE + βA,B] < rk [E,A,B] for someα,β ∈ C.
If β = 0, then the uncontrollable mode is infinite. Controllability at infinity
has been introduced by ROSENBROCK [136] - although he does not use this
phrase - as controllability of the infinite frequency zeros.Later COBB [45]
compared the concepts of impulse controllability and controllability at infinity,
see [45, Thm. 5]; the notions we use in the present article go back to the dis-
tinction in this work.
The concepts have later been generalized by GEERTS[60] (see [60, Thm. 4.5 &
Rem. 4.9], however he does not use the name “controllabilityat infinity”). Con-
trollability at infinity of (1) is equivalent to the strictness of the corresponding
differential inclusion [57, Prop. 2.6]. The concept of impulsive mode control-
lability in [70] is even weaker than impulse controllability.

(vii) Controllability concepts with a distributional solution setup have been consid-
ered in [60, 119, 129] for instance, see also [45]. A typical argumentation in
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these works is that inconsistent initial values cause distributional solutions in
a way that the state trajectory is composed of a continuous function and a lin-
ear combination of Dirac’s delta impulse and some of its derivatives. However,
some frequency domain considerations in [115] refute this approach (see [147]
for an overview on inconsistent initialization). This justifies that we do only
consider weakly differentiable solutions as defined in the behaviorB[E,A,B].
Distributional solutions for time-invariant DAEs have already been considered
by COBB [43] and GEERTS[60,61] and for time-varying DAEs by RABIER and
RHEINBOLDT [131]. For a mathematically rigorous approach to distributional
solution theory of linear DAEs we refer to [145, 146] by TRENN. The latter
works introduce the notions of impulse controllability andjump controllability
which coincide with our impulse controllability and behavioral controllability,
resp.

(viii) R-controllability has been first defined in [168] for regular DAEs. Roughly
speaking, R-controllability is the property that any consistent initial statex0

can be steered to any reachable statexf , where herexf is reachable if, and only
if, there existt > 0 and(x,u) ∈ B[E,A,B] such thatx(t) = xf ; by (3) the latter is
equivalent toxf ∈ V[E,A,B], as stated in Definition 1.

(ix) The concept of behavioral controllability has been introduced by WILLEMS [159],
see also [127]. This concept is very suitable for generalizations in various di-
rections, see e.g. [34,39,71,96,132,162,166].Having found the behavior of the
considered control system one can take over the definition ofbehavioral con-
trollability without the need for any further changes. Fromthis point of view
this appears to be the most natural of the controllability concepts. However,
this concept also seems to be the least regarded in the DAE literature.

(x) The controllability theory of DAE systems can also be treated with the theory
of differential inclusions [8,9] as showed by FRANKOWSKA [57].

(xi) K ARCANIAS and HAYTON [84] pursued a special ansatz to simplify the sys-
tem (1): provided thatB has full column rank, we take a left annihilatorN and

a pseudoinverseB† of B (i.e., NB= 0 andB†B = I ) such thatW =

[

N
B†

]

is

invertible and then pre-multiply (1) byW, thus obtaining the equivalent system

NEẋ = NAx,

u = B†(Eẋ−Ax).

The reachability (controllability) properties of (1) may now be studied in
terms of the pencilsNE− NA, which is called the restriction pencil [77],
first introduced as zero pencil for the investigation of system zeros of ODEs
in [90, 91], see also [87]. For a comprehensive study of the properties of the
pencilsNE−NAsee e.g. [83–86].

(xii) BANASZUK and PRZYŁUSKI [15] have considered perturbations of DAE con-
trol systems and obtained conditions under which the sets ofall completely
controllable systems (systems controllable in the behavioral sense) within the
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set of all systemsΣk,n,m contain an open and dense subset, or its complement
contains an open and dense subset.

The following dependencies hold true between the concepts from Definition 1.
Some further relations will be derived in Section 4.

Proposition 1.
For any[E,A,B] ∈ Σk,n,m the following implications hold true:

controllable at
infinity

completely
controllable

completely
reachable

completely
stabilizable

impulse con-
trollable

strongly con-
trollable

strongly
reachable

strongly sta-
bilizable

If “ ⇒” holds, then “⇐” does, in general, not hold.

Proof. Since it is easy to construct counterexamples for any direction where in the
diagram only “⇒” holds, we skip their presentation. The following implications are
immediate consequences of Definition 1:

completely controllable⇒ controllable at infinity⇒ impulse controllable,
completely controllable⇒ strongly controllable⇒ impulse controllable,
completely controllable⇒ completely reachable⇒ strongly reachable,
strongly controllable⇒ strongly reachable,
completely stabilizable⇒ controllable at infinity,
strongly stabilizable⇒ impulse controllable,
completely stabilizable⇒ strongly stabilizable.

It remains to prove the following assertions:

(a) completely reachable⇒ completely controllable,
(b) strongly reachable⇒ strongly controllable,
(c) completely reachable⇒ completely stabilizable,
(d) strongly reachable⇒ strongly stabilizable.

(a) Let x0,xf ∈ Rn. Then, by complete reachability of[E,A,B], there existt > 0
and some(x1,u1) ∈ B[E,A,B] with x1(0) = 0 andx1(t) = x0. Further, there exists
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(x2,u2)∈B[E,A,B] with x2(0) = 0 andx2(t) = xf −x1(2t). By linearity and shift-
invariance, we have

(x,u) := (σtx1+ x2,σtu1+u2) ∈ B[E,A,B].

On the other hand, this trajectory fulfillsx(0) = x1(t)+ x2(0) = x0 andx(t) =
x1(2t)+ x2(t) = xf .

(b) The proof of this statement is analogous to (a).
(c) By (a) it follows that the system is completely controllable. Complete control-

lability implies that there exists somet > 0, such that for allx0 ∈Rn there exists
(x1,u1) ∈ B[E,A,B] with x1(0) = x0 andx1(t) = 0. Then, since(x,u) with

(x(τ),u(τ)) =

{

(x1(τ),u1(τ)), if τ ≤ t

(0,0), if τ ≥ t

satisfies(x,u) ∈ B[E,A,B] (cf. the proof of Lemma 1(a)) , the system[E,A,B] is
completely stabilizable.

(d) The proof of this statement is analogous to (c). ⊓⊔

3 Solutions, relations and normal forms

In this section we give the definitions for system and feedback equivalence of DAE
control systems (see [62,136,154]), revisit the solution theory of DAEs (see [95,158]
and also [25]), and state a normal form under system and feedback equivalence
(see [104]). For the definition of a canonical and a normal form see Remark 3.

3.1 System and feedback equivalence

We define the essential concepts of system and feedback equivalence. System equiv-
alence was first studied by ROSENBROCK [136] (called restricted system equiva-
lence in his work, see also [154]) and later became a crucial concept in the control
theory of DAEs [22, 23, 62, 63, 68]. Feedback equivalence forDAEs seems to have
been first considered in [62] to derive a feedback canonical form for regular systems,
little later also in [104] (for general DAEs) where additionally also derivative feed-
back was investigated and respective canonical forms derived, see also Section 3.3.

Definition 2 (System and feedback equivalence).
Two systems[Ei ,Ai ,Bi ] ∈ Σk,n,m, i = 1,2, are called

• system equivalentif, and only if,

∃W ∈ Glk(R),T ∈ Gln(R) :
[

sE1−A1 B1
]

=W
[

sE2−A2 B2
]

[

T 0
0 Im

]

;
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we write
[E1 , A1 , B1 ]

W,T
∼se [E2 , A2 , B2 ] .

• feedback equivalentif, and only if,

∃W ∈ Glk(R),T ∈ Gln(R),V ∈ Glm(R),F ∈ Rm,n :

[

sE1−A1 B1
]

=W
[

sE2−A2 B2
]

[

T 0
−F V

]

;
(6)

we write
[E1 , A1 , B1 ]

W,T,V,F
∼ f e [E2 , A2 , B2 ] .

It is easy to observe that both system and feedback equivalence are equivalence

relations onΣk,n,m. To see the latter, note that if[E1 , A1 , B1 ]
W,T,V,F
∼ f e [E2 , A2 , B2 ],

then

[E2 , A2 , B2 ]
W−1,T−1,V−1,−V−1FT−1

∼ f e [E1 , A1 , B1 ].

The behaviors of system and feedback equivalent systems areconnected via

If [E1 , A1 , B1 ]
W,T
∼se [E2 , A2 , B2 ] , then

(x,u) ∈ B[E1,A1,B1] ⇔ (Tx,u) ∈ B[E2,A2,B2]

If [E1 , A1 , B1 ]
W,T,V,F
∼ f e [E2 , A2 , B2 ] , then

(x,u) ∈ B[E1,A1,B1] ⇔ (Tx,Fx+Vu)∈B[E2,A2,B2].

(7)

In particular, if[E1 , A1 , B1 ]
W,T
∼se [E2 , A2 , B2 ], then

V[E1,A1,B1] = T−1 ·V[E2,A2,B2], R
t
[E1,A1,B1]

= T−1 ·Rt
[E2,A2,B2]

.

Further, if[E1 , A1 , B1 ]
W,T,V,F
∼ f e [E2 , A2 , B2 ], then

V[E1,A1,B1] = T−1 ·V[E2,A2,B2], R
t
[E1,A1,B1]

= T−1 ·Rt
[E2,A2,B2]

,

and properties of controllability at infinity, impulse controllability, R-controllability,
behavioral controllability, behavioral stabilizability, complete controllability, com-
plete stabilizability, strong controllability and strongstabilizability are invariant un-
der system and feedback equivalence.

Remark 2 (Equivalence and minimality in the behavioral sense).

(i) Another equivalence concept has been introduced by WILLEMS in [160] (see
also [127, Def. 2.5.2]): Two systems[Ei ,Ai ,Bi ] ∈ Σki ,n,m, i = 1,2, are called
equivalent in the behavioral sense, if their behaviors coincide, i.e.,B[E1,A1,B1] = B[E2,A2,B2].
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Note that, in particular, two systems being equivalent in the behavioral sense do
not necessarily have the same number of equations. For instance, the following
two systems are equivalent in the behavioral sense:

[[0], [1], [0]],

[[

0
1

]

,

[

1
0

]

,

[

0
0

]]

.

(ii) It is shown in [127, Thm. 2.5.4] that for a unimodular matrix U(s) ∈ R[s]k,k

(that isU(s) has a polynomial inverse), and[E,A,B] ∈ Σk,n,m, it holds(x,u) ∈B[E,A,B] if, and only if,

U( d
dt )Eẋ(t) =U( d

dt )Ax(t)+U( d
dt )Bu(t),

where the differential operatorU( d
dt ) has to be understood in the distributional

sense. The unimodular matrixU(s) can particularly been chosen in a way that

U(s) ·
[

sE−A, −B
]

=

[

Rx(s) Ru(s)
0 0

]

,

where
[

Rx(s) Ru(s)
]

∈ R[s]l ,n+m has full row rank as a matrix in the field
R(s) [127, Thm.3.6.2]. It is shown thatRx(

d
dt )x+Ru(

d
dt )u = 0 is minimal in

the behavioral sense, i.e., it describes the behavior by a minimal number of
l differential equations among all behavioral descriptionsof B[E,A,B]. By us-
ing a special normal form, we will later remark that for any[E,A,B] ∈ Σk,n,m,
there exists a unimodular transformation from the left suchthat the resulting
differential-algebraic system is minimal in the behavioral sense.

(iii) Conversely, if two systems[Ei,Ai ,Bi ] ∈ Σki ,n,m, i = 1,2 are equivalent in the
behavioral sense, and, moreover,k1 = k2, then there exists some unimodular
U(s) ∈R[s]k1,k1, such that

U(s) ·
[

sE1−A1, −B1
]

=
[

sE2−A2, −B2
]

.

If [Ei ,Ai ,Bi ] i = 1,2, contain different numbers of equations (such as, e.g.,
k1 > k2), then one can first addk1−k2 equations of type “0= 0” to the second
system and, thereafter, perform a unimodular transformation leading from one
system to another.

(iv) Provided that a unimodular transformation ofEẋ(t)=Ax(t)+Bu(t) again leads
to a differential-algebraic system (that is, neither a derivative of the input nor
a higher derivative of the state occurs), the properties of controllability at infin-
ity, R-controllability, behavioral controllability, behavioral stabilizability, com-
plete controllability, complete stabilizability are invariant under this transfor-
mation. However, since the differential variables may be changed under a trans-
formation of this kind, the properties of impulse controllability, strong control-
lability and strong stabilizability are not invariant. We will see in Remark 12
that any[E,A,B]∈ Σk,n,m is, in the behavioral sense, equivalent to a system that
is controllable at infinity.
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In order to study normal forms under system and feedback equivalence we in-
troduce the following notation: Fork ∈ N we introduce the matricesNk ∈ Rk,k,
Kk,Lk ∈ Rk−1,k with

Nk =













0

1
. . .

. . .
. . .

1 0













, Kk =







1 0
. . .

. . .

1 0






, Lk =







0 1
. . .

. . .

0 1






.

Further, lete[k]i ∈ Rk be thei-th canonical unit vector, and, for some multi-index
α = (α1, . . . ,αl ) ∈Nl , we define

Nα =diag(Nα1, . . . ,Nαl ) ∈ R|α |,|α |,

Kα =diag(Kα1, . . . ,Kαl ) ∈ R|α |−l ,|α |,

Lα =diag(Lα1, . . . ,Lαl ) ∈R|α |−l ,|α |,

Eα =diag(e[α1]
α1 , . . . ,e[αl ]

αl
) ∈ R|α |,l .

KRONECKERproved [92] that any matrix pencilsE−A∈R[s]k,n can be put into
a certain canonical form, called Kronecker canonical form nowadays, of which a
more comprehensive proof has been provided by GANTMACHER [59]. In the fol-
lowing we may use the quasi-Kronecker form derived in [25], since in general the
Kronecker canonical form is complex-valued even though thegiven pencilsE−A
is real-valued, what we need to avoid. The obtained form thenis not canonical any-
more, but it is a normal form (see Remark 3).

Proposition 2 (Quasi-Kronecker form [25,59]).
For any matrix pencil sE−A ∈ R[s]k,n, there exist W∈ Glk(R), T ∈ Gln(R) such
that

W(sE−A)T =









sIns −As 0 0 0
0 sNα − I|α | 0 0
0 0 sKβ −Lβ 0
0 0 0 sK⊤

γ −L⊤
γ









(8)

for some As∈Rns,ns and multi-indicesα ∈Nnα , β ∈Nnγ , γ ∈Nnγ . The multi-indices
α,β ,γ are uniquely determined by sE−A. Further, the matrix As is unique up to
similarity.

The (components of the) multi-indicesα,β ,γ are often called minimal indices
and elementary divisors and play an important role in the analysis of matrix pen-
cils, see e.g. [59, 103, 104, 112], where the components ofα are the orders of the
infinite elementary divisors, the components ofβ are the column minimal indices
and the components ofγ are the row minimal indices. In fact, the number of column
(row) minimal indices equal to one corresponds to the dimension of kerRE∩kerR A
(kerR E⊤∩kerR A⊤), or, equivalently, the number of zero columns (rows) in a quasi-
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Kronecker form ofsE−A. Further, note thatsIns −As may be further transformed
into Jordan canonical form to obtain the finite elementary divisors.

Since the multi-indicesα ∈ Nnα , β ∈ Nnγ , γ ∈ Nnγ are well-defined by means
of the pencilsE−A and, furthermore, the matrixAs is unique up to similarity, this
justifies the introduction of the following quantities.

Definition 3 (Index of sE−A).
Let the matrix pencilsE−A∈R[s]k,n be given with quasi-Kronecker form (8). Then
the indexν ∈ N0 of sE−A is defined as

ν = max{α1, . . . ,αℓ(α),γ1, . . . ,γℓ(γ)}.

The index is larger or equal to the index of nilpotencyζ of Nα , i.e.,ζ ≤ ν, Nζ
α = 0

andNζ−1
α 6= 0. By means of the quasi-Kronecker form (8) it can be seen thatthe

index ofsE−A does not exceed one if, and only if,

imR A⊆ imRE+A ·kerR E. (9)

This is moreover equivalent to the fact that for some (and hence any) real matrixZ
with imR Z = kerRE, we have

imR[E,AZ] = imR[E,A]. (10)

Since each block insKβ −Lβ (sK⊤
γ −L⊤

γ ) causes a single drop of the column (row)
rank ofsE−A, we have

ℓ(β ) = n− rkR(s)(sE−A), ℓ(γ) = k− rkR(s)(sE−A). (11)

Further,λ ∈ C is a generalized eigenvalue ofsE−A if, and only if,

rkC(λE−A)< rkR(s)(sE−A).

3.2 A normal form under system equivalence

Using Proposition 2 it is easy to determine a normal form under system equivalence.
For regular systems this normal form was first discovered by ROSENBROCK[136].

Corollary 1 (Decoupled DAE).
Let [E,A,B] ∈ Σk,n,m. Then there exist W∈ Glk(R), T ∈ Gln(R) such that

[E,A,B]
W,T
∼se

















Ins 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K⊤

γ









,









As 0 0 0
0 I|α | 0 0
0 0 Lβ 0
0 0 0 L⊤

γ









,









Bs

Bf

Bu

Bo

















, (12)
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for some Bs∈Rns,m, Bf ∈R|α |,m, Bo ∈R|β |−ℓ(β ),m, Bu ∈R|γ|,m, As∈Rns,ns and multi-
indicesα ∈ Nnα , β ∈ Nnβ , γ ∈ Nnγ . This is interpreted, in terms of the DAE(1), as
follows: (x,u) ∈ B[E,A,B] if, and only if,

(

xs(·)
⊤,xf (·)

⊤,xu(·)
⊤,xo(·)

⊤
)⊤ := Tx(·)

with

xf (·) =







xf [1](·)
...

xf [ℓ(α)](·)






, xu(·) =







xu[1](·)
...

xu[ℓ(β )](·)






, xo(·) =







xo[1](·)
...

xo[ℓ(γ)](·)







solves the decoupled DAEs

ẋs(t) = Asxs(t)+Bsu(t), (13a)

Nαi
ẋf [i](t) = xf [i](t)+Bf [i]u(t) for i = 1, . . . , ℓ(α), (13b)

Kβi
ẋu[i](t) = Lβi

xu[i](t)+Bu[i]u(t) for i = 1, . . . , ℓ(β ), (13c)

K⊤
γi

ẋo[i](t) = L⊤
γi

xo[i](t)+Bo[i]u(t) for i = 1, . . . , ℓ(γ) (13d)

with suitably labeled partitions of Bf , Bu and Bo.

Remark 3 (Canonical and normal form).
Recall the definition of a canonical form: given a groupG, a setS , and a group
actionα : G×S → S which defines an equivalence relations

α
∼ s′ if, and only if,

∃U ∈G : α(U,s) = s′. Then a mapγ : S →S is called acanonical form forα [27]
if, and only if,

∀s,s′ ∈ S : γ(s) α
∼ s ∧

[

s
α
∼ s′ ⇔ γ(s) = γ(s′)

]

.

Therefore, the setS is divided into disjoint orbits (i.e., equivalence classes) and the
mappingγ picks a unique representative in each equivalence class. Inthe setup of
system equivalence, the group isG= Gln(R)×Gln(R), the considered set isS =
Σk,n,m and the group actionα

(

(W,T), [E,A,B]
)

= [WET,WAT,WB] corresponds

to
W−1,T−1

∼ . However, Corollary 1 does not provide a mappingγ. That means that the
form (12) is not a unique representative within the equivalence class and hence it is
not a canonical form. Nevertheless, we may call it anormal form, since every entry
is (at least) unique up to similarity.

Remark 4 (Canonical forms for regular systems).
For regular systems which are completely controllable two actual canonical forms of
[E,A,B] ∈ Σn,n,m under system equivalence have been obtained: the Jordan control
canonical form in [63] and, later, the more simple canonicalform in [68] based on
the Hermite canonical form for controllable ODEs[I ,A,B].
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Remark 5 (DAEs corresponding to the blocks in the quasi-Kronecker form).Corol-
lary 1 leads to the separate consideration of the differential-algebraic equations
(13a)-(13c):

(i) (13a) is an ordinary differential equation whose solution satisfies

xs(t) = eAstxs(0)+
∫ t

0
eAs(t−τ)Bsu(τ)dτ, t ∈R.

In particular, solvability is guaranteed byu ∈ L 1
loc(R;Rm). The initial value

xs(0) ∈ Rn can be chosen arbitrarily; the prescription ofu∈ L 1
loc(R;Rm) and

xs(0) ∈ Rn guarantees uniqueness of the solution.
(ii) The solutions of (13b) can be calculated by successive differentiation and pre-

multiplication withNαi , hence we have

0 = Nαi
αi x

(αi)
f [i] (t)

(13b)
= Nαi−1

αi xf [i](t)
(αi−1)+Nαi−1

αi Bf [i]u
(αi−1)(t)

= . . .= xf [i](t)+∑αi−1
j=0 N j

αi Bf [i]u
( j)(t),

whereu( j) denotes thej-th distributional derivative ofu. As a consequence, the
solution requires a certain smoothness of the input, expressed by

αi−1

∑
j=0

N j
αi Bf [i]u

( j) ∈ W
1,1

loc (R;Rαi ).

In particular, conditionu∈W
αi ,1

loc (R;Rαi ) guarantees solvability of the DAE (13b).
Note that the initial valuexf [i](0) cannot be chosen at all: It is fixed byu via
the relation

xf [i](0) = −

(

αi−1

∑
j=0

N j
αi Bf [i]u

( j)

)

(0).

On the other hand, for any (sufficiently smooth) input there exists a unique
solution for appropriately chosen initial value.

(iii) Writing

xu[i]− =







xu[i],1
...

xu[i],βi−1






,

(13c) is equivalent to

ẋu[i]− = N⊤
βi−1xu[i]−+e[βi−1]

βi−1 xu[i],βi
+Bu[i]u(t).

Hence, a solution exists for all inputsu∈L 1
loc(R;Rm) and allxu[i],βi

∈W
1,1

loc (R;R)
as well asxu[i],1(0) . . . ,xu[i],βi−1(0). This system is therefore under-determined
in the sense that one component as well as all initial values can be freely cho-
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sen. Hence any existing solution for fixed inputu and fixed initial valuexu[i](0)
is far from being unique.

(iv) Denoting

xo[i]+ =

[

01,1

xo[i]

]

,

(13d) can be rewritten as

N⊤
γi

ẋo[i]+ = xo[i]++Bo[i]u(t).

Hence we obtainxo[i]+(t) =−∑γi−1
j=0 (N

⊤
γi
) jBo[i]u

( j)(t), which gives

xo[i](t) =−[0(γi−1),1, Iγi−1]
γi−1

∑
j=0

(N⊤
γi
) jBo[i]u

( j)(t)

together with the consistency condition on the input:

(

e[γi ]
1

)⊤ γi−1

∑
j=0

(N⊤
γi
) jBo[i]u

( j)(t) = 0. (14)

The smoothness condition

γi−1

∑
j=0

(N⊤
γi
) jBo[i]u

( j) ∈ W
1,1

loc (R;Rγi )

is therefore not enough to guarantee existence of a solution; the additional
constraint formed by (14) has to be satisfied, too. Furthermore, as in (ii), the
initial valuexo[i](0) is fixed by the inputu. Hence, a solution does only exist if
the consistency conditions on the input and initial value are satisfied, but then
the solution is unique.

Remark 6 (Solutions on (finite) time intervals).
The solution of a DAE[E,A,B] ∈ Σk,n,m on some time intervalI (R can be defined
in a straightforward manner (compare (2)). By the considerations in Remark 5, we
can infer that any solution(x,u) on some finite time intervalI (R can be extended
to a solution on the whole real axis. Consequently, all concepts which have been
defined in Sec. 2 could be also made based on solutions on intervals I including
zero.

3.3 A normal form under feedback equivalence

A normal form under feedback transformation (6) was first studied for systems
governed by ordinary differential equations by BRUNOVSKÝ [31]. In this sec-
tion we present a generalization of the Brunovský form for general DAE sys-
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tems [E,A,B] ∈ Σk,n,m from [104]. For more details on the feedback form and a
more geometric point of view on feedback invariants and feedback canonical forms
see [86,104].

Remark 7 (Feedback for regular systems).
It is known [12, 62] that the class of regular DAE systems is not closed under the
action of state feedback. Therefore, in [142] the class of regular systems is divided
into the families

Σθ := { (E,A,B) ∈ Σn,n,m | det(cosθ E− sinθ A) 6= 0 } , θ ∈ [0,π),

and it is shown that any of these families is dense in the set ofregular systems and
the union of these families is exactly the set of regular systems. The authors of [142]
then introduce the “constant-ratio proportional and derivative” feedback onΣθ , i.e.

u= F(cosθ x− sinθ ẋ)+ v.

This feedback leads to a group action and enables them to obtain a generalization of
Brunovský’s theorem [31] on each of the subsets of completely controllable systems
in Σθ , see [142, Thm. 6].

GLÜSING-L ÜERSSEN[62] derived a canonical form under the unchanged feed-
back equivalence (6) on the set of strongly controllable (called impulse controllabil-
ity in [62]) regular systems, see [62, Thm. 4.7]. In particular it was shown that this
set is closed under the action of a feedback group.

Theorem 1 (Normal form under feedback equivalence [104]).
Let [E,A,B] ∈ Σk,n,m. Then there exist W∈ Glk(R),T ∈ Gln(R),V ∈ Glm(R),F ∈
Rm,n such that

[E,A,B]
W,T,V,F
∼ f e

































I|α | 0 0 0 0 0
0 Kβ 0 0 0 0
0 0 L⊤

γ 0 0 0
0 0 0 K⊤

δ 0 0
0 0 0 0 Nκ 0
0 0 0 0 0 Inc

















,

















N⊤
α 0 0 0 0 0
0 Lβ 0 0 0 0
0 0 K⊤

γ 0 0 0
0 0 0 L⊤

δ 0 0
0 0 0 0 I|κ | 0
0 0 0 0 0 Ac

















,

















Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

































,
(15)

for some multi-indicesα,β ,γ,δ ,κ and a matrix Ac ∈ Rnc,nc. This is interpreted, in
terms of the DAE(1), as follows:(x,u) ∈ B[E,A,B] if, and only if,

(

xc(·)
⊤,xu(·)

⊤,xob(·)
⊤,xo(·)

⊤,xf (·)
⊤,xc(·)

⊤
)⊤ := Tx(·),

(

uc(·)
⊤,uob(·)

⊤,us(·)
⊤
)⊤

:= V(u(·)−Fx(·)),

with
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xc(·) =







xc[1](·)
...

xc[ℓ(α)](·)






, uc(·) =







uc[1](·)
...

xc[ℓ(α)](·)






, xu(·) =







xu[1](·)
...

xu[ℓ(β )](·)






,

xob(·) =







xob[1](·)
...

xob[ℓ(γ)](·)






, uob(·) =







uob[1](·)
...

uob[ℓ(γ)](·)






, xo(·) =







xo[1](·)
...

xo[ℓ(δ )](·)






,

xf (·) =







xf [1](·)
...

xf [ℓ(κ)](·)







solves the decoupled DAEs

ẋc[i](t) = N⊤
αi

xc(t)+e[αi]
αi uc[i](t) for i = 1, . . . , ℓ(α) (16a)

Kβi
ẋu[i](t) = Lβi

xu[i](t) for i = 1, . . . , ℓ(β ), (16b)

L⊤
γi

ẋob[i](t) = K⊤
γi

xob[i](t)+e[γi ]
γi uob[i] for i = 1, . . . , ℓ(γ), (16c)

K⊤
δi

ẋo[i](t) = L⊤
δi

xo[i](t) for i = 1, . . . , ℓ(δ ), (16d)

Nκi ẋf [i](t) = xc(t) for i = 1, . . . , ℓ(κ) (16e)

ẋc(t) = Acxc(t). (16f)

Note that by Remark 3 the form (15) is a normal form. However, if we apply
an additional state space transformation to the block[Inc,Ac,0] which putsAc into
Jordan canonical form, and then prescribe the order of the blocks of each type, e.g.
from largest dimension to lowest (what would meanα1 ≥ α2 ≥ . . . ≥ αℓ(α) for α
for instance), then (15) becomes a canonical form.

Remark 8 (DAEs corresponding to the blocks in the feedback form).
The form in Theorem 1 again leads to the separate consideration of the differential-
algebraic equations (16a)-(16f):

(i) (16a) is given by[Iαi ,N
⊤
αi
,e[αi ]

αi ], and is completely controllable by the classical
results for ODE systems (see e.g. [149, Sec. 3.2]). This system has furthermore
the properties of being R-controllable, and both controllable and stabilizable in
the behavioral sense.

(ii) (16b) corresponds to an under-determined system with zero dimensional input
space. Sincexu[i] satisfies (16b) if, and only if, there exists somevi ∈L 1

loc(R;R)
with

ẋu[i](t) = N⊤
βi

xu[i](t)+e[βi ]
βi

vi(t),

this system has the same properties as (16a).
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(iii) Denoting

zob[i] =

[

xob[i]

uob[i]

]

,

then (16c) can be rewritten as

Nγi żob[i](t) = zob[i](t),

which has, by (ii) in Remark 5, the unique solutionzob[i] = 0. Hence,B
[L⊤γi ,K

⊤
γi ,e

[γi ]
γi ]

= {0}.

The system[L⊤
γi
,K⊤

γi
,e[γi ]

γi ] is therefore completely controllable if, and only if,
γi = 1. In the case whereγi > 1, this system is not even impulse controllable.

However, independent ofγi , [L⊤
γi
,K⊤

γi
,e[γi ]

γi ] is R-controllable, and both control-
lable and stabilizable in the behavioral sense.

(iv) Again, there holds B[K⊤
δi
,L⊤δi

,0δi ,0
] = {0},

whence, in dependence onδi , we can infer the same properties as in (iii).
(v) Due to B[Nκi ,Iκi ,0κi ,0]

= {0},

the system[Nκi , Iκi ,0κi ,0] is never controllable at infinity, but always R-controllable
and both controllable and stabilizable in the behavioral sense.[Nκi , Iκi ,0κi ,0] is
strongly controllable if, and only if,κi = 1.

(vi) The system[Inc,Ac,0c,0] satisfiesB[Inc ,Ac,0nc,0]
=
{

eAc ·x0
∣

∣ x0 ∈ Rnc
}

,

whence it is controllable at infinity, but neither strongly controllable nor con-
trollable in the behavioral sense nor R-controllable. The properties of being
complete and strong stabilizability and stabilizability in the behavioral sense
are attained if, and only if,σ(Ac)⊆ C−.

By using the implications shown in Proposition 1, we can deduce the following for
the systems arising in the feedback form:
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[Iαi ,N
⊤
αi
,e[αi ]

αi ] [Kβi
,Lβi

,0βi−1,0] [L
⊤
γi
,K⊤

γi
,e[γi ]

γi ] [K⊤
δi
,L⊤

δi
,0δi ,0] [Nκi , Iκi ,0κi ,0] [Inc,Ac,0c,0]

controllable
at infinity

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✓

impulse
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✓

completely
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✕

completely
reachable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕ ✕

strongly
controllable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✕

strongly
reachable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1 ✕

completely
stabilizable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ✕
⇔ σ(Ac)

⊆ C−

strongly sta-
bilizable

✓ ✓ ⇔ γi = 1 ⇔ δi = 1 ⇔ κi = 1
⇔ σ(Ac)

⊆ C−

R - control-
lable

✓ ✓ ✓ ✓ ✓ ✕

controllable
in the be-
havioral
sense

✓ ✓ ✓ ✓ ✓ ✕

stabilizable
in the be-
havioral
sense

✓ ✓ ✓ ✓ ✓
⇔ σ(Ac)

⊆ C−

Corollary 2.
A system[E,A,B] ∈ Σk,n,m with feedback form(15) is

(a) controllable at infinity if, and only if,γ = (1, . . . ,1), δ = (1, . . . ,1) andℓ(κ) = 0;
(b) impulse controllable if, and only if,γ = (1, . . . ,1), δ = (1, . . . ,1) and κ =

(1, . . . ,1);
(c) strongly controllable (and thus also strongly reachable) if, and only if,γ =

(1, . . . ,1), δ = (1, . . . ,1), κ = (1, . . . ,1) and nc = 0;
(d) completely controllable (and thus also completely reachable) if, and only if,γ =

(1, . . . ,1), δ = (1, . . . ,1) andℓ(κ) = nc = 0;
(e) R-controllable if, and only if, nc = 0;
(f) controllable in the behavioral sense if, and only if, nc = 0;
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(g) strongly stabilizable if, and only if,γ = (1, . . . ,1), δ = (1, . . . ,1), ℓ(κ) = 0, and
σ(Ac)⊆ C−;

(h) completely stabilizable if and only if,γ =(1, . . . ,1), δ =(1, . . . ,1), κ =(1, . . . ,1),
andσ(Ac)⊆ C−;

(i) stabilizable in the behavioral sense if, and only if,σ(Ac)⊆C−.

Remark 9 (Parametrization of the behavior of systems in feedback form).
With the findings in Remark 8, we may explicitly characterizethe behavior of sys-
tems in feedback form. Define

Vk(s) = [1,s, . . . ,sk]⊤ ∈ R[s]k,1

and, for some multi-indexµ = (µ1, . . . ,µl ) ∈ Nl ,

Vµ(s) = diag(Vµ1(s), . . . ,Vµl (s)) ∈ R[s]|µ|,ℓ(µ),

Wµ(s) = diag(sµ1, . . . ,sµl ) ∈ R[s]ℓ(µ),ℓ(µ).

Further letµ + k := (µ1+ k, . . . ,µl + k) for k∈ Z, and

W
µ,1

loc (R;R) := W
µ1,1

loc (R;R)×·· ·×W
µℓ(µ),1

loc (R;R).

Then the behavior of a system in feedback form can, formally,be written as

B[E,A,B] =





























Vα−1(
d
dt ) 0 0 0

0 Vβ−1(
d
dt ) 0 0

0 0 0 0
0 0 0 0
0 0 0 0
0 0 eAc· 0

Wα(
d
dt ) 0 0 0

0 0 0 0
0 0 0 I





























·













W
α ,1

loc (R;R)

W
β ,1

loc (R;R)

Rnc

L 1
loc(R;Rm−ℓ(α)−ℓ(γ))













,

where the sizes of the blocks are according to the block structure in the feedback
form (15) and the horizontal line is the dividing line between x- andu-variables. If
the system[E,A,B] ∈ Σk,n,m is not in feedback form, then a parametrization of the
behavior can be found by using the above representation and relation (7) expressing
the connection between behaviors of feedback equivalent systems.

For general differential behaviors, a parametrization of the above kind is called
image representation[127, Sec. 6.6].

Remark 10 (Derivative feedback).
A canonical form under proportional and derivative feedback (PD feedback) was
derived in [104] as well (note that PD feedback defines an equivalence relation on
Σk,n,m). The main tool for doing this is the restriction pencil (seeRemark 1(xi)):
Clearly, the system
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NEẋ = NAx,

u = B†(Eẋ−Ax)

is equivalent, via PD feedback, to the system

NEẋ = NAx,

u = 0.

Then puttingsNE−NA into Kronecker canonical form yields a PD canonical form
for the DAE system with a 5×4-block structure.
We may, however, directly derive this PD canonical form fromthe normal form (15).

To this end we may observe that the system[Iαi ,N
⊤
αi
,e[αi ]

αi ] can be written as

Kαi ẋc[i](t) = Lαi xc[i](t), ẋc[i],αi
(t) = uc[i](t),

and hence is, via PD feedback, equivalent to the system
[[

Kαi

0

]

,

[

Lαi

0

]

,

[

0
1

]]

.

On the other hand, the system[L⊤
γi
,K⊤

γi
,e[γi ]

γi ] can be written as

Nγi−1ẋob[i](t) = xob[i](t), ẋob[i],γi−1
(t) = uob[i](t),

and hence is, via PD feedback, equivalent to the system
[[

Nγi−1

0

]

,

[

Iγi−1

0

]

,

[

0
1

]]

.

A canonical form for[E,A,B] ∈ Σk,n,m under PD feedback is therefore given by

[E,A,B] ∼PD

























Kβ 0 0 0
0 K⊤

δ 0 0
0 0 Nκ 0
0 0 0 Inc

0 0 0 0













,













Lβ 0 0 0
0 L⊤

δ 0 0
0 0 I|κ | 0
0 0 0 Ac

0 0 0 0













,













0 0
0 0
0 0
0 0
Iζ 0

























,

whereAc is in Jordan canonical form, and the blocks of each type are ordered from
largest dimension to lowest.

Note that the properties of complete controllability, controllability at infinity and
controllability in the behavioral sense are invariant under PD feedback. However,
since derivative feedback changes the set of differential variables, the properties of
strong controllability as well as impulse controllabilitymay be lost/gained after PD
feedback.

Remark 11 (Connection to Kronecker form).
We may observe from (6) that feedback transformation may be alternatively consid-
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ered as a transformation of the extended pencil

sE −A =
[

sE−A, −B
]

, (17)

that is based on a multiplication from the left byW = W ∈ Glk(R), and from the
right by

T =

[

T 0
F V

]

∈ Gln+m(R).

This equivalence is therefore a subclass of the class which is induced by the pre- and
post-multiplication ofsE −A by arbitrary invertible matrices. Loosely speaking,
one can hence expect a normal form under feedback equivalence which specializes
the quasi-Kronecker form ofsE −A . Indeed, the latter form may be obtained from
the feedback form of[E,A,B] by several simple row transformationssE −A which
are not interpretable as feedback group actions anymore. More precisely, simple
permutations of columns lead to the separate considerationof the extended pencils
corresponding to the systems (16a)-(16f): The extended pencils corresponding to

[Iαi ,N
⊤
αi
,e[αi ]

αi ] and[Kβi
,Lβi

,0αi ,0] aresKαi −Lαi andsKβi
−Lβi

, resp. The extended

matrix pencil corresponding to the system[L⊤
γi
,K⊤

γi
,e[γi ]

γi ] is given bysNγi − Iγi . The
extended matrix pencils corresponding to the systems[K⊤

δi
,L⊤

δi
,0δi ,0], [Nκi , Iκi ,0κi ,0]

and[Inc,Ac,0c,0] are obviously given bysK⊤
δi
−L⊤

δi
, sNκi − Iκi andsInc −Ac, respec-

tively. In particular,λ ∈ C is a generalized eigenvalue ofsE −A , if, and only if,
λ ∈ σ(Ac).

Remark 12 (Minimality in the behavioral sense).

(i) According to Remark 2, a differential-algebraic system[E,A,B] ∈ Σk,n,m is
minimal in the behavioral sense, if, and only if, the extended pencilsE −A as
in (17) has full row rank as a matrix with entries in the fieldR(s). On the other
hand, a system[E,A,B] ∈ Σk,n,m with feedback form (15) satisfies

rkR(s)(sE −A ) = k− ℓ(δ ).

Using that rkR(s)(sE −A ) is invariant under feedback transformation (6), we
can conclude that minimality of[E,A,B] ∈ Σk,n,m in the behavioral sense cor-
responds to the absence of blocks of type (16d) in its feedback form.

(ii) The findings in Remark 5 imply that a system in feedback form is, in the be-
havioral sense, equivalent to
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
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This system can alternatively be achieved by multiplying the extended pen-
cil (17) in feedback form (15) from the left with the polynomial matrix

Z(s) = diag

(

I|α |, I|β |−ℓ(β ), −
νγ−1

∑
k=0

skNk
γ , Pδ (s), −

νκ−1

∑
k=0

skNk
κ , Inc

)

,

whereνγ = max{γ1, . . . ,γℓ(γ)}, νκ = max{κ1, . . . ,κℓ(κ)}, and

Pδ (s) = diag

([

0δi−1,1, −
δi−2

∑
k=0

sk(N⊤
δi−1

)k

])

j=1,...,ℓ(δ )

.

(iii) Let a differential-algebraic system[E,A,B] ∈ Σk,n,m be given. Using the nota-
tion from (15) and the previous item, a behaviorally equivalent and minimal
system[EM,AM,BM] ∈ Σk−ℓ(δ ),n,m can be constructed by

[

sEM −AM, −BM
]

= Z(s)W
[

sE−A, −B
]

.

It can be seen that this representation is furthermore controllable at infinity.
As well, it minimizes, among all differential-algebraic equations representing
the same behavior, the index and the rank of the matrix in front of the state
derivative (that is, loosely speaking, the number of differential variables). This
procedure is very much related toindex reduction[95, Sec. 6.1].

4 Criteria of Hautus type

In this section we derive equivalent criteria on the matrices E,A ∈ Rk,n, B ∈ Rk,m

for the controllability and stabilizability concepts of Definition 1. The criteria are
generalizations of the Hautus test (also called Popov-Belevitch-Hautus test, since
independently developed by POPOV [128], BELEVITCH [17] and HAUTUS [67]) in
terms of rank criteria on the involved matrices. Note that these conditions are not
new - we refer to the relevant literature. However, we provide new proofs using only
the feedback normal form (15).

First we show that certain rank criteria on the matrices involved in control sys-
tems are invariant under feedback equivalence. After that,we relate these rank cri-
teria to the feedback form (15).

Lemma 4.
Let [E1,A1,B1], [E2,A2,B2]∈Σk,n,m be given such that for W∈Glk(R), T ∈Gln(R),
V ∈ Glm(R) and F∈ Rm,n, there holds

[E1 , A1 , B1 ]
W,T,V,F
∼ f e [E2 , A2 , B2 ] .

Then
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imR E1+ imR A1+ imR B1 =W · (imR E2+ imRA2+ imR B2) ,

imR E1+A1 ·kerR E1+ imR B1 =W · (imR E2+A2 ·kerR E2+ imR B2) ,

imR E1+ imR B1 =W · (imR E2+ imRB2) ,

imC(λE1−A1)+ imC B1 =W · (imC(λE2−A2)+ imC B2) for all λ ∈ C,

imR(s)(sE1−A1)+ imR(s)B1 =W ·
(

imR(s)(sE2−A2)+ imR(s)B2
)

.

Proof. Immediate from (6). ⊓⊔

Lemma 5 (Algebraic criteria via feedback form).
For a system[E,A,B]∈ Σk,n,m with feedback form(15) the following statements hold
true:

(a)
imR E+ imR A+ imR B= imRE+ imR B

⇐⇒ γ = (1, . . . ,1), δ = (1, . . . ,1), ℓ(κ) = 0.

(b)
imR E+ imR A+ imRB= imR E+A ·kerR E+ imR B

⇐⇒ γ = (1, . . . ,1), δ = (1, . . . ,1), κ = (1, . . . ,1).

(c)
imC E+ imC A+ imR B= imC(λE−A)+ imC B

⇐⇒ δ = (1, . . . ,1), λ /∈ σ(Ac).

(d) For λ ∈C we have

dim
(

imR(s)(sE−A)+ imR(s)B
)

= dim
(

imC(λE−A)+ imC B
)

⇐⇒ λ /∈ σ(Ac).

Proof. It is, by Lemma 4, no loss of generality to assume that[E,A,B] is already in
feedback normal form. The results then follow by a simple verification of the above
statements by means of the feedback form. ⊓⊔

Combining Lemmas 4 and 5 with Corollary 2, we may deduce the following
criteria for the controllability and stabilizability concepts introduced in Definition 1.

Corollary 3 (Algebraic criteria for controllability/stab ilizability).
Let a system[E,A,B] ∈ Σk,n,m be given. Then the following holds:

[E,A,B] is if, and only if,

controllable at
infinity

imR E+ imRA+ imR B= imR E+ imRB.

impulse control-
lable

imR E+ imRA+ imR B= imR E+A ·kerR E+ imRB.
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completely con-
trollable

imR E+ imR A+ imRB= imR E+ imR B

∧ imC E+ imC A+ imCB= imC(λE−A)+ imC B ∀λ ∈C.

strongly control-
lable

imR E+ imR A+ imRB= A ·kerR E+ imR B

∧ imC E+ imC A+ imCB= imC(λE−A)+ imC B ∀λ ∈C.

completely stabi-
lizable

imR E+ imR A+ imRB= imR E+ imR B

∧ imC E+ imC A+ imCB= imC(λE−A)+ imC B ∀λ ∈C+.

strongly stabiliz-
able

imR E+ imR A+ imRB= imR E+A ·kerR E+ imR B

∧ imC E+ imC A+ imCB= imC(λE−A)+ imC B ∀λ ∈C+.

controllable in
the behavioral
sense

rkR(s)[sE−A,B] = rkC[λE−A,B] ∀λ ∈ C.

stabilizable in
the behavioral
sense

rkR(s)[sE−A,B] = rkC[λE−A,B] ∀λ ∈ C+.

The above result leads to the following extension of the diagram in Proposition 1.
Note that the equivalence of R-controllability and controllability in the behavioral
sense was already shown in Corollary 2.



34 Thomas Berger and Timo Reis

controllable
at infinity

completely
controllable

completely
reachable

completely
stabilizable

impulse con-
trollable

strongly con-
trollable

strongly
reachable

strongly sta-
bilizable

controllable
in the be-
havioral
sense

R-control-
lable

stabilizable
in the be-
havioral
sense

In the following we will consider further criteria for the concepts introduced in
Definition 1.

Remark 13 (Controllability at infinity).
Corollary 3 immediately implies that controllability at infinity is equivalent to

imR A⊆ imR E+ imRB.

In terms of a rank criterion, this is the same as

rkR[E,A,B] = rkR[E,B]. (18)

Criterion (18) has first been derived by GEERTS [60, Thm. 4.5] for the case
rk [E,A,B] = k, although he does not use the name “controllability at infinity”.

In the case of regularsE−A∈ R[s]n,n, condition (18) reduces to

rkR[E,B] = n.

Remark 14 (Impulse controllability).
By Corollary 3, impulse controllability of[E,A,B] ∈ Σk,n,m is equivalent to

imR A⊆ imR E+A ·kerR E+ imRB.

Another equivalent characterization is that, for one (and hence any) matrixZ with
imR(Z) = kerR(E), there holds

rkR[E,A,B] = rkR[E,AZ,B]. (19)
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This has first been derived by GEERTS[60, Rem. 4.9], again for the case rk[E,A,B] =
k. In [74, Thm. 3] and [70] it has been obtained that impulse controllability is equiv-
alent to

rkR

[

E 0 0
A E B

]

= rkR[E,A,B]+ rkRE,

which is in fact equivalent to (19). It has also been shown in [74, p. 1] that impulse
controllability is equivalent to

rkR(s)(sE −A ) = rkR[E,A,B].

This criterion can be alternatively shown by using the feedback form (15). Using
condition (10) we may also infer that this is equivalent to the index of the extended
pencilsE −A ∈R[s]k,n+m being at most one.

If the pencilsE−A is regular, then condition (19) reduces to

rkR[E,AZ,B] = n.

This condition can be also inferred from [48, Th. 2-2.3].

Remark 15 (Controllability in the behavioral sense and R-controllability).
The concepts of controllability in the behavioral sense andR-controllability are
equivalent by Corollary 2. The algebraic criterion for behavioral controllability in
Corollary 3 is equivalent to the extended matrix pencilsE −A ∈ R[s]k,n+m hav-
ing no generalized eigenvalues, or, equivalently, in the feedback form (15) it holds
nc = 0.

The criterion for controllability in the behavioral sense is shown in [127, Thm. 5.2.10]
for the larger class of linear differential behaviors. R-controllability for systems with
regularsE−A was considered in [48, Thm. 2-2.2], where the condition

rkC[λE−A,B] = n ∀λ ∈ C

was derived. This is, for regularsE−A, in fact equivalent to the criterion for behav-
ioral stabilizability in Corollary 3.

Remark 16 (Complete controllability and strong controllability).
By Corollary 3, complete controllability of[E,A,B]∈Σk,n,m is equivalent to[E,A,B]
being R-controllable and controllable at infinity, whereasstrong controllability of
[E,A,B] ∈ Σk,n,m is equivalent to[E,A,B] being R-controllable and impulse control-
lable.

BANASZUK et al. [12] already obtained the condition in Corollary 3 forcom-
plete controllability considering discrete systems. Complete controllability is called
H -controllability in [12]. Recently, ZUBOVA [170] considered full controllability,
which is just complete controllability with the additionalassumption that solutions
have to be unique, and obtained three equivalent criteria [170, Sec. 7], where the first
one characterizes the uniqueness and the other two are equivalent to the condition
for complete controllability in Corollary 3.
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For regular systems, the conditions in Corollary 3 for complete and strong con-
trollability are also derived in [48, Thm. 2-2.1 & Thm. 2-2.3].

Remark 17 (Stabilizability).
By Corollary 3, complete stabilizability of[E,A,B]∈ Σk,n,m is equivalent to[E,A,B]
being stabilizable in the behavioral sense and controllable at infinity, whereas strong
stabilizability of [E,A,B] ∈ Σk,n,m is equivalent to[E,A,B] being stabilizable in the
behavioral sense and impulse controllable.

The criterion for stabilizability in the behavioral sense is shown in [127, Thm. 5.2.30]
for the class of linear differential behaviors.

Remark 18 (Kalman criterion for regular systems).
For regular systems[E,A,B] ∈ Σn,n,m with det(sE−A) ∈ R[s]\ {0} the usual Hau-
tus and Kalman criteria can be found in a summarized form e.g.in [48]. Other
approaches to derive controllability criteria rely on the expansion of(sE−A)−1 as
a power series ins, which is only feasible in the regular case. For instance, in[114]
the numerator matrices of this expansion, i.e., the coefficients of the polynomial
adj(sE−A), are used to derive a rank criterion for complete controllability. Then
again, in [89] Kalman rank criteria for complete controllability, R-controllability
and controllability at infinity are derived in terms of the coefficients of the power
series expansion of(sE−A)−1. The advantage of these criteria, especially the last
one, is that no transformation of the system needs to be performed as it is usually
necessary in order to derive Kalman rank criteria for DAEs, see e.g. [48].

However, simple criteria can be obtained using only a left transformation of little
impact: if α ∈ R is chosen such that det(αE−A) 6= 0 then the system is complete
controllable if, and only if, [169, Cor. 1]

rkR

[

(αE−A)−1B,
(

(αE−A)−1E
)

(αE−A)−1B, . . .

. . . ,
(

(αE−A)−1E
)n−1

(αE−A)−1B
]

= n,

and it is impulse controllable if, and only if, [169, Thm. 2]

imR(αE−A)−1E+ ker(αE−A)−1E+ imR(αE−A)−1B= Rn.

The result concerning complete controllability has also been obtained in [40, Thm. 4.1]
for the caseA= I andα = 0.
Yet another approach was followed by KUČERA and ZAGALAK [93] who intro-
duced controllability indices and characterized strong controllability in terms of an
equation for these indices.

5 Feedback, stability and autonomous systems

State feedback is, roughly speaking, the special choice of the input being a function
of the state. Due to the mutual dependence of state and input in a feedback system,
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this is often referred to asclosed-loop control. In the linear case, feedback is the
imposition of the additional relationu(t) = Fx(t) for someF ∈Rm,n. This results in
the system

Eẋ(t) = (A+BF)x(t).

Feedback for linear ODE systems was studied by WONHAM [164], where it is
shown that controllability of[I ,A,B] ∈ Σn,n,m is equivalent to any setΛ ⊆ C which
has at mostn elements and is symmetric with respect to the imaginary axis(that is,
λ ∈ Λ ⇔ λ ∈ Λ ) being achievable by a suitable feedback, i.e., there exists some
F ∈ Rm,n with the property thatσ(A+BF) = Γ . In particular, the input may be
chosen in a way that the closed-loop system is stable, i.e., any state trajectory tends
to zero. Using theKalman decomposition[81] (see also Section 7), it can be shown
for ODE systems that stabilizability is equivalent to the existence of a feedback such
that the resulting system is stable.

These results have been generalized to regular DAE systems by COBB [42], see
also [48,56,101,102,120,122]. Note that, for DAE systems,not only the problem of
assignment of eigenvalues occurs, but also the index may be changed by imposing
feedback.

The crucial ingredient for the treatment of DAE systems withnon-regular pencil
sE−A will be the feedback form by LOISEAU et al. [104] (see Thm. 1).

5.1 Stabilizability, autonomy and stability

The feedback lawu(t) = Fx(t) applied to (1) results in a DAE in which the input
is completely eliminated. We now focus on DAEs without input, and we introduce
several properties and concepts. For matricesE,A∈ Rk,n, consider a DAE

Eẋ(t) = Ax(t). (20)

Its behavioris given byB[E,A] :=
{

x∈ W
1,1

loc (R;Rn)
∣

∣

∣
x satisfies (20) for almost allt ∈ R

}

.

Definition 4 (Stability/Stabilizability concepts for DAEs, autonomous DAEs).
A linear time-invariant DAE[E,A] ∈ Σk,n is called

(a) completely stabilizable

:⇔ ∀x0 ∈ Rn ∃x∈ B[E,A] : x(0) = x0 ∧ lim
t→∞

x(t) = 0.

(b) strongly stabilizable

:⇔ ∀x0 ∈ Rn ∃x∈ B[E,A] : Ex(0) = Ex0 ∧ lim
t→∞

x(t) = 0.

(c) stabilizable in the behavioral sense
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:⇔ ∀x∈ B[E,A] ∃x0 ∈ B[E,A] :
(

∀ t < 0 : x(t) = x0(t)
)

∧ lim
t→∞

x0(t) = 0.

(d) autonomous

:⇔ ∀x1,x2 ∈B[E,A] :
(

∀ t < 0 : x1(t) = x2(t)
)

⇒
(

∀ t ∈ R : x1(t) = x2(t)
)

.

(e) completely stable

:⇔
{

x(0)
∣

∣ x∈B[E,A]
}

=Rn ∧ ∀x∈ B[E,A] : lim
t→∞

x(t) = 0.

(f) strongly stable

:⇔
{

Ex(0)
∣

∣ x∈ B[E,A]

}

= imR E ∧ ∀x∈ B[E,A] : lim
t→∞

x(t) = 0.

(g) stable in the behavioral sense

:⇔ ∀x∈B[E,A] : lim
t→∞

x(t) = 0.

Remark 19 (Stabilizable and autonomous DAEs are stable).
The notion of autonomy is introduced by POLDERMAN and WILLEMS in [127,
Sec. 3.2] for general behaviors. For DAE systemsEẋ(t) = Ax(t) we can further
conclude that autonomy is equivalent to anyx∈B[E,A] being uniquely determined by
x(0). This gives also rise to the fact that autonomy is equivalentto dimRB[E,A] ≤ n
which is, on the other hand, equivalent to dimRB[E,A] <∞. Autonomy indeed means
that the DAE is not underdetermined.

Moreover, due to possible underdetermined blocks of type[Kβ ,Lβ ,0|β |−ℓ(β ),0], in
general there are solutionsx∈ B[E,A] which grow unboundedly. As a consequence,
for a quasi-Kronecker form of any completely stable, strongly stable or behavioral
stable DAE, it holdsℓ(β ) = 0. Hence, systems of this type are autonomous. In fact,
complete, strong and behavioral stability are equivalent to the respective stabiliz-
ability notion together with autonomy, cf. also Corollary 4.

In regard of Remark 5 we can infer the following:

Corollary 4 (Stability/Stabilizability criteria and quas i-Kronecker form).
Let [E,A] ∈ Σk,n and assume that the quasi-Kronecker form of sE−A is given by
(8). Then the following holds true:

[E,A] is if, and only if,

completely stabilizableℓ(α) = 0, γ = (1, . . . ,1) andσ(As)⊆ C−.

strongly stabilizable α = (1, . . . ,1), γ = (1, . . . ,1) andσ(As)⊆ C−.
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stabilizable in the
behavioral sense

σ(As)⊆ C−.

autonomous ℓ(β ) = 0.

completely stable ℓ(α) = 0, ℓ(β ) = 0, γ = (1, . . . ,1) andσ(As)⊆ C−.

strongly stable α = (1, . . . ,1), ℓ(β ) = 0, γ = (1, . . . ,1) andσ(As)⊆ C−.

stable in the
behavioral sense

ℓ(β ) = 0, σ(As)⊆ C−.

The subsequent algebraic criteria for the previously defined notions of stabiliz-
ability and autonomy can be inferred from Corollary 4 by using further arguments
similar to the ones of Section 4.

Corollary 5 (Algebraic criteria for stabilizability).
Let [E,A] ∈ Σk,n. Then the following holds true:

[E,A] is if, and only if,

completely stabilizable
imR A⊆ imR E and rkR(s)(sE−A) = rkC(λE−A)
for all λ ∈ C+.

strongly stabilizable
imR A⊆ imR E+A ·kerR E and rkR(s)(sE−A) =
rkC(λE−A) for all λ ∈ C+.

stabilizable in the
behavioral sense

rkR(s)(sE−A) = rkC(λE−A) for all λ ∈ C+.

autonomous kerR(s)(sE−A) = {0}.

Corollary 5 leads to the following implications:
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completely
stable

strongly sta-
ble

stable in the
behavioral
sense

completely
stabilizable

strongly sta-
bilizable

stabilizable in
the behavioral
sense

autonomous index at most
one

Remark 20.

(i) Strong stabilizability implies that the index ofsE−A is at most one. In the
case where the matrix[E,A] ∈ Rk,2n has full row rank, complete stabilizability
is sufficient for the index ofsE−A being zero.
On the other hand, behavioral stabilizability of[E,A] together with the index
of sE−A being not greater than one implies strong stabilizability of [E,A].
Furthermore, for systems[E,A] ∈ Σk,n with rkR[E,A] = k, complete stabiliz-
ability is equivalent to behavioral stabilizability together with the property that
the index ofsE−A is zero.
For ODEs the notions of complete stabilizability, strong stabilizability, stabiliz-
ability in the behavioral sense, complete stability, strong stability and stability
in the behavioral sense are equivalent.

(ii) The behaviour of an autonomous system[E,A] satisfies dimRB[E,A] = ns,
wherens denotes the number of rows of the matrixAs in the quasi-Kronecker
form (8) ofsE−A. Note that regularity ofsE−A is sufficient for autonomy of
[E,A].

(iii) Autonomy has been algebraically characterized for linear differential behaviors
in [127, Sec. 3.2]. The characterization of autonomy in Corollary 5 can indeed
be generalized to a larger class of linear differential equations.

5.2 Stabilization by feedback

A system[E,A,B] ∈ Σk,n,m can, via state feedback with someF ∈ Rm,n, be turned
into a DAE[E,A+BF]∈Σk,n. We now present some properties of[E,A+BF]∈Σk,n

that can be achieved by a suitable feedback matrixF ∈ Rm,n. Recall that the stabi-
lizability concepts for a system[E,A,B] ∈ Σk,n,m have been defined in Definition 1.
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Theorem 2 (Stabilizing feedback).
For a system[E,A,B] ∈ Σk,n,m the following holds true:

(a) [E,A,B] is impulse controllable if, and only if, there exists F∈ Rm,n such that
the index of sE− (A+BF) is at most one.

(b) [E,A,B] is completely stabilizable if, and only if, there exists F∈Rm,n such that
[E,A+BF] is completely stabilizable.

(c) [E,A,B] is strongly stabilizable if, and only if, there exists F∈ Rm,n such that
[E,A+BF] is strongly stabilizable.

Proof.

(a) Let [E,A,B] be impulse controllable. Then[E,A,B] can be put into feed-
back form (15), i.e., there existW ∈ Glk(R),T ∈ Gln(R) and F̃ ∈ Rm,n such
that

W(sE− (A+BF̃T−1)T

=

















sI|α |−N⊤
α 0 0 0 0 0

0 sKβ −Lβ 0 0 0 0
0 0 sL⊤γ −K⊤

γ 0 0 0
0 0 0 sK⊤

δ −L⊤
δ 0 0

0 0 0 0 sNκ − I|κ | 0
0 0 0 0 0 sInc −Ac

















.
(21)

By Corollary 2(b) the impulse controllability of[E,A,B] implies that γ =
(1, . . . ,1), δ = (1, . . . ,1) and κ = (1, . . . ,1). Therefore, we have that, with
F = F̃T−1, the pencilsE− (A+BF) has index at most one as the index is
preserved under system equivalence.
Conversely, assume that[E,A,B] is not impulse controllable. We show that for
all F ∈ Rm,n the index ofsE− (A+BF) is greater than one. To this end, let
F ∈ Rm,n and chooseW ∈ Glk(R),T ∈ Gln(R) and F̃ ∈ Rm,n such that (15)
holds. Then, partitioningV−1FT = [Fi j ]i=1,...,3, j=1,...,6 accordingly, we obtain

sẼ− Ã :=W(sE− (A+BF+BF̃T−1))T =W(sE− (A+BF̃T−1))T −WBVV−1FT

=

















sI|α |− (N⊤
α +EαF11) −EαF12 −EαF13 −EαF14 −EαF15 −EαF16

0 sKβ −Lβ 0 0 0 0
−EγF21 −EγF22 sL⊤γ − (K⊤

γ +EγF23) −EγF24 −EγF25 −EγF26

0 0 0 sK⊤
δ −L⊤

δ 0 0
0 0 0 0 sNκ − I|κ | 0
0 0 0 0 0 sInc −Ac

















.

(22)
Now the assumption that[E,A,B] is not impulse controllable leads toγ 6=
(1, . . . ,1), δ 6= (1, . . . ,1) or κ 6= (1, . . . ,1). We will now show that the index
of sE− (A+BF+BF̃T−1) is greater than one by showing this for the equiva-
lent pencil in (22) via applying the condition in (10): LetZ be a real matrix with
imR Z = kerR Ẽ. Then
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Z =

[

0 Z⊤
1 0 0 0 0

0 0 0 0Z⊤
2 0

]⊤

,

where imZ1 = kerKβ = imEβ and imZ2 = kerNκ = imEκ . Taking into account
that imR Eγ ⊆ imR L⊤

γ , we obtain that

imR

[

0|α |−ℓ(α)+|β |−ℓ(β ),k I|γ|+|δ |+|κ | 0k,nc

][

Ẽ ÃZ
]

= imR





L⊤
γ 0 0 EγF25Z2

0 K⊤
δ 0 0

0 0 Nκ Z2



 .

On the other hand, we have

imR

[

0|α |−ℓ(α)+|β |−ℓ(β ),k I|γ|+|δ |+|κ | 0k,nc

][

Ẽ Ã
]

= imR





L⊤
γ 0 0 K⊤

γ +EγF23 EγF24 EγF25

0 K⊤
δ 0 0 L⊤

δ 0
0 0 Nκ 0 0 I|κ |



 .

Since the assumption that at least one of the multi-indices satisfiesγ 6=(1, . . . ,1),
δ 6= (1, . . . ,1), or κ 6= (1, . . . ,1) and the fact that imZ2 = imEκ lead to

imR





L⊤
γ 0 0 Eγ F25Z2

0 K⊤
δ 0 0

0 0 Nκ Z2



( imR





L⊤
γ 0 0 K⊤

γ +EγF23 EγF24 EγF25

0 K⊤
δ 0 0 L⊤

δ 0
0 0 Nκ 0 0 I|κ |



 ,

and thus
imR

[

Ẽ ÃZ
]

( imR

[

Ẽ Ã
]

,

we find that, by condition (10), the index ofsE− (A+BF +BF̃T−1) has to
be greater than one. SinceF was chosen arbitrarily we may conclude thatsE−
(A+BF) has index greater than one for allF ∈Rm,n, which completes the proof
of (a).

(b) If [E,A,B] is completely stabilizable, then we may transform the system into
feedback form (21). Corollary 2(h) impliesγ =(1, . . . ,1), δ =(1, . . . ,1), ℓ(κ)=
0, andσ(Ac) ⊆ C−. Further, by [149, Thm. 4.20], there exists someF11 ∈
R|α |,ℓ(α) such thatσ(Nα +EαF11) ⊆ C−. SettingF̂ := [Fi j ]i=1,...,3, j=1,...,6 with
Fi j = 0 for i 6= 1 or j 6= 1, we obtain that withF = F̃T−1+VF̂T−1 the system
[E,A+BF] is completely stabilizable by Corollary 4 as complete stabilizability
is preserved under system equivalence.
On the other hand, assume that[E,A,B] is not completely stabilizable. We
show that for allF ∈ Rm,n the system[E,A+BF] is not completely stabiliz-
able. To this end, letF ∈ Rm,n and observe that we may do a transformation
as in (22). Then the assumption that[E,A,B] is not completely stabilizable
yieldsγ 6= (1, . . . ,1), δ 6= (1, . . . ,1), ℓ(κ)> 0, orσ(Ac) 6⊆C−. If γ 6= (1, . . . ,1),
δ 6= (1, . . . ,1) or ℓ(κ) > 0, then imR Ã 6⊆ imR Ẽ, and by Corollary 5 the sys-
tem [Ẽ, Ã] is not completely stabilizable. On the other hand, ifγ = (1, . . . ,1),
δ = (1, . . . ,1), ℓ(κ) = 0, andλ ∈ σ(Ac)∩C+, we find imC

(

λ Ẽ− Ã
)

( imC Ẽ,
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which implies

rkC(λ Ẽ− Ã)< rkC Ẽ = n− ℓ(β )− ℓ(κ)= n− ℓ(β ) (11)
= rkR(s)(sẼ− Ã).

Hence, applying Corollary 5 again, the system[Ẽ, Ã] is not completely stabiliz-
able. As complete stabilizability is invariant under system equivalence it follows
that[E,A+BF+BF̃T−1] is not completely stabilizable. SinceF was chosen ar-
bitrarily we may conclude that[E,A+BF] is not completely stabilizable for all
F ∈Rm,n, which completes the proof of (b).

(c) The proof is analogous to (b). ⊓⊔

Remark 21 (State feedback).

(i) If the pencilsE−A is regular and[E,A,B] is impulse controllable, then a feed-
backF ∈Rm,n can be constructed such that the pencilsE− (A+BF) is regular
and its index does not exceed one: First we chooseW,T, F̃ such that we can
put the system into the form (21). Now, impulse controllability implies that
γ = (1, . . . ,1), δ = (1, . . . ,1) andκ = (1, . . . ,1). Assumingℓ(δ ) > 0 implies
that any quasi-Kronecker form of the pencilsE− (A+BF̃T−1 +BF̂) fulfills
ℓ(γ)> 0 (in the form (8)), a feedback̂F ∈ Rm,n as the feedback cannot act on
this block, which contradicts regularity ofsE−A. Hence it holdsℓ(δ ) = 0 and
from k= n we further obtain thatℓ(γ) = ℓ(β ). Now applying another feedback
as in (22), where we chooseF22 = E⊤

β ∈ Rℓ(β ),|β | andFi j = 0 otherwise, we

obtain, taking into account thatEγ = I ell(γ) and that the pencil

[

sKβ −Lβ
−E⊤

β

]

is

regular, thatsE− (A+BF) is indeed regular with index at most one.
(ii) The matrixF11 in the proof of Theorem 2(b) can be constructed as follows: For

j = 1, . . . , ℓ(α), consider vectors

a j =−[a jα j−1, . . . ,a j0] ∈ R1,α j .

Then, for
F11 = diag(a1, . . . ,aℓ(α)) ∈Rℓ(α),|α |

the matrixNα +EαF11 is diagonally composed of companion matrices, whence,
for

p j(s) = sα j +a jα j−1sα j−1+ . . .+a j0 ∈ R[s]

the characteristic polynomial ofNα +EαF11 is given by

det(sI|α |− (Nα +EαF11)) =
ℓ(α)

∏
j=1

p j(s).

Hence, choosing the coefficientsa ji , j = 1, . . . , ℓ(α), i = 0, . . . ,α j such that
the polynomialsp1(s), . . . , pℓ(α)(s) ∈ R[s] are all Hurwitz, i.e., all roots of
p1(s), . . . , pℓ(α)(s) are inC−, we obtain stability.



44 Thomas Berger and Timo Reis

5.3 Control in the behavioral sense

The hitherto presented feedback concept consists of the additional application of the
relationu(t)=Fx(t) to the systemEẋ(t) =Ax(t)+Bu(t). Feedback can therefore be
seen as an additional algebraic constraint that can be resolved for the input. Control
in the behavioral sense, or, also called,control via interconnection[162] generalizes
this approach by also allowing further algebraic relationsin which the state not
necessarily uniquely determines the input. That is, for given (or to be determined)
K = [Kx,Ku] with Kx ∈ Rl ,n, Ku ∈ Rl ,m, we considerBK

[E,A,B] :=
{

(x,u) ∈ B[E,A,B]

∣

∣

∣ ∀ t ∈ R : (x(t)⊤,u(t)⊤)⊤ ∈ kerR(K)
}

= B[E,A,B]∩B[0l ,n,Kx,Ku].

We can alternatively write BK
[E,A,B] = B[EK ,AK ],

where

[EK ,AK ] =

[[

E 0
0 0

]

,

[

A B
Kx Ku

]]

.

The concept of control in the behavioral sense has its originin the works by
WILLEMS, POLDERMAN and TRENTELMAN [18,127,148,161,162], where differ-
ential behaviors and their stabilization viacontrol by interconnectionis considered.
The latter means a systematic addition of some further (differential) equations in
a way that a desired behavior is achieved. In contrast to these works we only add
equations which are purely algebraic. This justifies to speak of control by intercon-
nection using static control laws. We will give equivalent conditions for this type
of generalized feedback stabilizing the system. Note that,in principle, one could
make the extreme choiceK = In+m to end up with a behaviorBK

[E,A,B] = {0} which
is obviously autonomous and stable. This, however, is not suitable from a practical
point of view, since in this interconnection, the space of consistent initial differential
variables is a proper subset of the initial differential variables which are consistent
with the original system[E,A,B]. Consequently, the interconnected system does not
have the causality property - that is, the implementation ofthe controller at a certain
time t ∈ R is not possible, since this causes jumps in the differentialvariables. To
avoid this, we introduce the concept ofcompatibility.

Definition 5 (Compatible and stabilizing control).
The static controlK = [Kx,Ku], defined byKx ∈ Rl ,n, Ku ∈ Rl ,m, is called

(a) compatible, if for any x0 ∈ V diff
[E,A,B], there exists some(x,u) ∈ BK

[E,A,B] with

Ex(0) = Ex0.
(b) stabilizing, if [EK ,AK ] ∈ Σk+l ,n is stabilizable in the behavioral sense.

Remark 22 (Compatible control).
Our definition of compatible control is a slight modificationof the concept intro-
duced by JULIUS andVAN DER SCHAFT in [78] where an interconnection is called
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compatible, if any trajectory of the system without controllaw can be concatenated
with a trajectory of the interconnected system. This certainly implies that the space
of initial differential variables of the interconnected system cannot be smaller than
the corresponding set for the nominal system.

Theorem 3 (Stabilizing control in the behavioral sense).
Let [E,A,B]∈ Σk,n,m be given. Then there exists a compatible and stabilizing control
K = [Kx,Ku] with Kx ∈ Rl ,n, Ku ∈ Rl ,m, if, and only if,[E,A,B] is stabilizable in the
behavioral sense. In case of[E,A,B] being stabilizable in the behavioral sense, the
compatible and stabilizing control K can moreover be chosensuch that[EK ,AK ]
is autonomous, i.e., the interconnected system[EK ,AK ] is stable in the behavioral
sense.

Proof. Since, by definition,[E,A,B] ∈ Σk,n,m is stabilizable in the behavioral sense
if, and only if, forsE −A = [sE−A,−B], the DAE[E ,A ] ∈ Σk,n+m is stabilizable
in the behavioral sense, necessity follows from settingl = 0.

In order to show sufficiency, letK = [Kx,Ku] with Kx ∈ Rl ,n, Ku ∈ Rl ,m, be a
compatible and stabilizing control for[E,A,B]. Now the system can be put into
feedback form, i.e., there existW ∈ Glk(R), T ∈ Gln(R), V ∈ Glm(R) andF ∈Rm,n

such that
[

sẼ− Ã B̃
−K̃x K̃u

]

=

[

W 0
0 I

][

sE−A B
−Kx Ku

][

T 0
−F V

]

,

where[Ẽ, Ã, B̃] is in the form (15). Now the behavioral stabilizability of[EK ,AK ]

implies that the system[ẼK , ÃK ] :=

[[

Ẽ 0
0 0

]

,

[

Ã B̃
K̃x K̃u

]]

is stabilizable in the be-

havioral sense as well. Assume that[E,A,B] is not stabilizable in the behavioral
sense, that is, by Corollary 2(i), there existsλ ∈ σ(Ac) ∩ C+. Hence we find

x0
6 ∈ Rnc \ {0} such thatAcx0

6 = λx0
6. Then, withx(·) :=

(

0, . . . ,0,(eλ ·x0
6)

⊤
)⊤

, we
have that(x,0)∈B[Ẽ,Ã,B̃]. Asx(0)∈V diff

[Ẽ,Ã,B̃]
=T−1 ·V diff

[E,A,B], the compatibility of the

controlK implies that there exists(x̃, ũ) ∈BK
[E,A,B] with Ex̃(0) = ETx(0). This gives

(WET)T−1x̃(0)=WETx(0) and writingT−1x̃(t) = (x̃1(t)⊤, . . . , x̃6(t)⊤)⊤ with vec-
tors of appropriate size, we obtain ˜x6(0) = x0

6. Since the solution of the initial
value problem ˙y = Acy, y(0) = x0

6, is unique, we find ˜x6(t) = eλ tx0
6 for all t ∈ R.

Now (T−1x̃,−V−1FT−1x̃+V−1ũ) ∈ B[ẼK ,ÃK ] and as for all(x̂, û) ∈ B[ẼK ,ÃK ] with

(x̂(t), û(t)) = (T−1x̃(t),−V−1FT−1x̃+V−1ũ(t)) for all t < 0 we have ˆx6(t) = x̃6(t)
for all t ∈R, andx̃6(t) 6→t→∞ 0 sinceλ ∈C+, this contradicts that[ẼK , ÃK ] is stabi-
lizable in the behavioral sense.

It remains to show the second assertion, that is, for a system[E,A,B]∈ Σk,n,m that
is stabilizable in the behavioral sense, there exists some compatible and stabilizing
control K such that[EK ,AK ] is autonomous: Since, for[E1,A1,B1], [E2,A2,B2] ∈
Σk,n,m with

[E1 , A1 , B1 ]
W,T,V,F
∼ f e [E2 , A2 , B2 ] , K2 ∈ Rl ,n+m and K1 = K2

[

T 0
F V

]

,
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the behaviors of the interconnected systems are related by
[

T 0
F V

]BK1
[E1,A1,B1]

= BK2
[E2,A2,B2]

,

it is no loss of generality to assume that[E,A,B] is in feedback form (15), i.e.,

sE−A

=

















sI|α |−Nα 0 0 0 0 0
0 sKβ −Lβ 0 0 0 0
0 0 sK⊤

γ −L⊤
γ 0 0 0

0 0 0 sK⊤
δ −L⊤

δ 0 0
0 0 0 0 sNκ − I|κ | 0
0 0 0 0 0 sInc −Ac

















, B=

















Eα 0 0
0 0 0
0 Eγ 0
0 0 0
0 0 0
0 0 0

















.

Let F11 ∈ Rℓ(α),|α | such that det(sI|α |− (Nα +EαF11)) is Hurwitz. Then the DAE

[

I|α | 0
0 0

]

ż(t) =

[

Nα Eα
F11 −Iℓ(α)

]

z(t)

is stable in the behavioral sense. Furthermore, by reasoning as in Remark 21(ii), for

a j = [a jβ j−2, . . . ,a j0,1] ∈ R1,β j

with the property that the polynomials

p j(s) = sβ j +a jβ j−1sβ j−1+ . . .+a j0 ∈R[s]

are Hurwitz for j = 1, . . . , ℓ(α), the choice

Kx = diag(a1, . . . ,aℓ(β )) ∈ Rℓ(β ),|β |

leads to an autonomous system
[

Kβ
0

]

ż(t) =

[

Lβ
Kx

]

z(t),

which is also stable in the behavioral sense. Since, moreover, by Corollary 2(i), there
holdsσ(Ac)⊆ C−, the choice

K =

[

F11 0 0 0 0 0−Iℓ(α) 0 0
0 Kx 0 0 0 0 0 0 0

]

leads to a behavioral stable (in particular autonomous) system. Since the differential
variables can be arbitrarily initialized in any of the previously discussed subsystems,
the constructed control is also compatible. ⊓⊔
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6 Invariant subspaces

This section is dedicated to some selected results of the geometric theory of
differential-algebraic control systems. Geometric theory plays a fundamental role
in standard ODE system theory and has been introduced independently by WON-
HAM and MORSE and BASILE and MARRO, see the famous books [16, 165] and
also [149], which are the three standard textbooks on geometric control theory.
In [99] LEWIS gave an overview of the to date geometric theory of DAEs. As we
will do here he put special emphasis on the two fundamental sequences of subspaces
Vi andWi defined as follows:

V0 := Rn, Vi+1 := A−1(EVi + imR B)⊆ Rn, V
∗ :=

⋂

i∈N0

Vi ,

W0 := {0}, Wi+1 := E−1(AWi + imR B)⊆Rn, W
∗ :=

⋃

i∈N0

Wi .

The sequences(Vi)i∈N and(Wi)i∈N are calledaugmented Wong sequences. In [24,
25] the Wong sequences for matrix pencils (i.e.,B = 0) are investigated, the name
chosen this way since WONG [163] was the first one who used both sequences for
the analysis of matrix pencils. The sequences(Vi)i∈N and(Wi)i∈N are no Wong se-
quences corresponding to any matrix pencils, that is why we call them augmented
Wong sequences with respect to control systems (1). In fact,the Wong sequences
(with B = 0) can be traced back to DIEUDONNÉ [52], who focused on the first of
the two Wong sequences. BERNHARD [26] and ARMENTANO [6] used the Wong
sequences to carry out a geometric analysis of matrix pencils. They appear also
in [3,4,94,140].
In control theory, that is whenB 6= 0, the augmented Wong sequences have been
extensively studied by several authors, see e.g. [98,111,112,117,118,120,121,151]
for regular systems and [3, 11, 13, 14, 28, 29, 55, 99, 104, 119, 129] for general DAE
systems. FRANKOWSKA [57] did a nice investigation of systems (1) in terms of
differential inclusions [8, 9], however requiring controllability at infinity (see [57,
Prop. 2.6]). Nevertheless, she is the first to derive a formula for the reachabil-
ity space [57, Thm. 3.1], which was later generalized by PRZYŁUSKI and SOS-
NOWSKI [129, Sec. 4] (in fact, the same generalization has been announced in [104,
p. 296], [99, Sec. 5] and [11, p. 1510], however without proof); it also occurred
in [55, Thm. 2.5].

Proposition 3 (Reachability space [129, Sec. 4]).
For [E,A,B] ∈ Σk,n,m and limitsV ∗ andW ∗ of the augmented Wong sequences we
have

R[E,A,B] = V
∗∩W

∗.

It has been shown in [13] (for discrete systems), see also [11, 14, 28, 119], that
the limit V ∗ of the first augmented Wong sequence is the space of consistent initial
states. For regular systems this was proved in [98].
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Proposition 4 (Consistent initial states [13]).
For [E,A,B] ∈ Σk,n,m and limitV ∗ of the first augmented Wong sequence we have

V[E,A,B] = V
∗.

Various other properties ofV ∗ andW ∗ have been derived in [13] in the context
of discrete systems.

A characterization of the spacesV ∗ andW ∗ in terms of distributions is also given
in [129]:V ∗+kerR E is the set of all initial values such that the distributionalinitial
value problem [129, (3)] has a smooth solution(x,u); W ∗ is the set of all initial
values such that [129, (3)] has an impulsive solution(x,u); V ∗+W ∗ is the set of all
initial values such that [129, (3)] has an impulsive-smoothsolution(x,u).

For regular systems̈OZÇALDIRAN [118] showed thatV ∗ is the supremal
(A,E; imR B)-invariant subspace ofRn andW ∗ is the infimal restricted(E,A; imR B)-
invariant subspace ofRn. These concepts, which have also been used in [3, 13, 98,
112] are defined as follows.

Definition 6 ((A,E; imR B)- and (E,A; imR B)-invariance [118]).
Let [E,A,B] ∈ Σk,n,m. A subspaceV ⊆ Rn is called(A,E; imR B)-invariant if, and
only if,

AV ⊆ EV + imRB.

A subspaceW ⊆ Rn is calledrestricted(E,A; imR B)-invariant if, and only if,

W = E−1(AW + imR B).
It is easy to verify that the proofs given in [118, Lems. 2.1 & 2.2] remain the

same for generalE,A∈ Rk,n andB∈Rn,m - this was shown in [13] as well. ForV ∗

this can be found in [3], see also [112]. So we have the following proposition.

Proposition 5 (Augmented Wong sequences as invariant subspaces).
Consider[E,A,B] ∈ Σk,n,m and the limitsV ∗ andW ∗ of the augmented Wong se-
quences. Then the following statements hold true.

(a) V ∗ is (A,E; imR B)-invariant and for anyV ⊆ Rn which is (A,E; imR B)-
invariant it holdsV ⊆ V ∗;

(b) W ∗ is restricted(E,A; imRB)-invariant and for anyW ⊆Rn which is restricted
(E,A; imRB)-invariant it holdsW ∗ ⊆ W .

It is now clear how the controllability concepts can be characterized in terms of
the invariant subspacesV ∗ andW ∗. However, the statement about R-controllability
(behavioral controllability) seems to be new. The only other appearance of a sub-
space inclusion as a characterization of R-controllability that the authors are aware
of occurs in [40] for regular systems: ifA = I , then the system is R-controllable
if, and only if, imR ED ⊆ 〈ED|B〉, whereED is the Drazin inverse ofE, see Re-
mark 1(iv).

Theorem 4 (Geometric criteria for controllability).
Consider[E,A,B] ∈ Σk,n,m and the limitsV ∗ andW ∗ of the augmented Wong se-
quences. Then[E,A,B] is
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(a) controllable at infinity if, and only if,V ∗ = Rn;
(b) impulse controllable if, and only if,V ∗+ kerR E = Rn or, equivalently, EV ∗ =

imR E;
(c) controllable in the behavioral sense if, and only if,V ∗ ⊆ W ∗;
(d) completely controllable if, and only if,V ∗∩W ∗ = Rn;
(e) strongly controllable if, and only if,(V ∗∩W ∗)+ kerR E = Rn or, equivalently,

E(V ∗∩W ∗) = imR E.

Proof. By Propositions 3 and 4 it is clear that it only remains to prove (c). We
proceed in several steps.

Step 1: Let [E1,A1,B1], [E2,A2,B2] ∈ Σk,n,m such that for someW ∈ Glk(R), T ∈
Gln(R), V ∈ Glm(R) andF ∈ Rm,n it holds

[E1 , A1 , B1 ]
W,T,V,F
∼ f e [E2 , A2 , B2 ] .

We show that the augmented Wong sequencesV 1
i , W 1

i of [E1,A1,B1] and the aug-
mented Wong sequencesV 2

i , W 2
i of [E2,A2,B2] are related by

∀ i ∈N0 : V
1

i = T−1
V

2
i ∧ W

1
i = T−1

W
2

i .

We proof the statement by induction. It is clear thatV 1
0 = T−1V 2

0 . Assuming that
V 1

i = T−1V 2
i for somei ≥ 0 we find that, by (6),

V
1

i+1 = A−1
1 (E1V

1
i + imR B1)

=
{

x∈ Rn
∣

∣ ∃y∈ V
1

i ∃u∈ Rm : W(A2T +B2T)x=WE2Ty+WB2Vu
}

=
{

x∈ Rn
∣

∣ ∃z∈ V
2

i ∃v∈ Rm : A2Tx= E2z+B2v
}

= T−1(A−1
2 (E2V

1
i + imR B2)

)

= T−1
V

2
i+1.

The statement aboutW 1
i andW 2

i can be proved analogous.
Step 2: By Step 1 we may without loss of generality assume that[E,A,B] is given

in feedback form (15). We make the convention that ifα ∈ Nl is some multi-index,
thenα −1 := (α1−1, . . . ,αl −1). It not follows that

∀ i ∈ N0 : Vi = R|α |×R|β |× imR Ni
γ−1× imR(N

⊤
δ−1)

i × imR Ni
κ ×Rnc, (23)

which is immediate from observing thatK⊤
γ x= L⊤

γ y+Eγu for somex,y,u of appro-

priate dimension yieldsx= Nγ−1y andL⊤
δ x= K⊤

δ y for somex,y yieldsx= N⊤
δ−1y.

Note that in the caseγi = 1 or δi = 1, i.e., we have a 1×0 block, we find thatNγi−1

andNδi−1 are absent, so these relations are consistent.
On the other hand we find that

∀ i ∈ N0 : Wi = kerR Ni
α × kerRNi

β × kerR Ni
γ−1×{0}|δ |−ℓ(δ )× kerRNi

κ ×{0}nc,
(24)

which indeed needs some more rigorous proof. First observe that imR Eα = kerR Nα ,
kerR Kβ = kerR Nβ and (L⊤

γ )
−1(imR Eγ) = imR Eγ−1 = kerRNγ−1. Therefore we
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have

W1 =E−1(imRB)= kerR Nα ×kerR Nβ ×kerR Nγ−1×{0}|δ |−ℓ(δ )×kerR Nκ ×{0}nc.

Further observe thatNi
α N⊤

α = NαN⊤
α Ni−1

α for all i ∈N and, hence, ifx= N⊤
α y+Eαu

for somex,u andy∈ kerRNi−1
α it follows x∈ kerR Ni

α . Likewise, ifL⊤
γ x=K⊤

γ y+Eγu

for somex,u andy∈ kerRNi−1
γ−1 we findx=N⊤

γ−1y+E⊤
γ−1u and hencex∈ kerR Ni

γ−1.

Finally, if Kβ x = Lβ y for somex and somey∈ kerR Ni−1
β it follows that by adding

some zero rows we obtainNβ x = Nβ N⊤
β y and hence, as above,x ∈ kerR Ni

β . This
proves (24).

Step 3: From (23) and (24) it follows that

V
∗ = R|α |×R|β |× imR{0}|γ|−ℓ(γ)×{0}|δ |−ℓ(δ )×{0}|κ |×Rnc,

W
∗ = R|α |×R|β |× imRR

|γ|−ℓ(γ)×{0}|δ |−ℓ(δ )×R|κ |×{0}nc.

As by Corollary 2(f) the system[E,A,B] is controllable in the behavioral sense if,
and only if,nc = 0 we may immediately deduce that this is the case if, and only if,
V ∗ ⊆ W ∗. This proves the theorem. ⊓⊔

Remark 23 (Representation of the reachability space).
From Proposition 3 and the proof of Theorem 4 we may immediately observe that,
using the notation from Theorem 1, we have

R[E,A,B] = T−1
(

R|α |×R|β |× imR{0}|γ|−ℓ(γ)×{0}|δ |−ℓ(δ )×{0}|κ |×{0}nc

)

.

7 Kalman decomposition

Nearly fifty years ago KALMAN [81] derived his famous decomposition of linear
ODE control systems. This decomposition has later been generalized to regular
DAEs by VERGHESEat al. [154], see also [48]. A Kalman decomposition of gen-
eral discrete-time DAE systems has been provided by BANASZUK et al. [14] (later
generalized to systems with output equation in [11]) in a very nice way using the
augmented Wong sequences (cf. Section 6). They derive a system

[[

E11 E12

0 E22

]

,

[

A11 A12

0 A22

]

,

[

B1

0

]]

, (25)

which is system equivalent to given[E,A,B] ∈ Σk,n,m with the properties that the
system[E11,A11,B1] is completely controllable and the matrix[E11,A11,B1] has
full row rank (stronglyH -controllable in the notation of [14]) and, furthermore,
R[E22,A22,0] = {0}.

This last condition is very reasonable, as one should wonderwhat properties
a Kalman decomposition of a DAE system should have. In the case of ODEs the
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decomposition simply is
[[

A11 A12

0 A22

]

,

[

B1

0

]]

, where[A11,B1] is controllable.

Therefore, an ODE system is decomposed into a controllable and an uncontrol-
lable part, since clearly[A22,0] is not controllable at all. For DAEs however, the
situation is more subtle, since in a decomposition (25) with[E11,A11,B1] com-
pletely controllable (and[E11,A11,B1] full row rank) the conjectural “uncontrol-
lable” part[E22,A22,0] may still have a controllable subsystem, since systems of the
type [Kβ ,Lβ ,0] are always controllable. To exclude this and ensure that allcontrol-
lable parts are included in[E11,A11,B1] we may state the additional condition (as
in [14]) that

R[E22,A22,0] = {0}.

This then also guarantees certain uniqueness properties ofthe Kalman decomposi-
tion. Hence, any system (25) with the above properties whichis system equivalent to
[E,A,B] we may call a Kalman decomposition of[E,A,B]. We cite the result of [14],
but also give some remarks on how the decomposition may be easily derived.

Theorem 5 (Kalman decomposition [14]).
For [E,A,B] ∈ Σk,n,m, there exist W∈ Glk(R), T ∈ Gln(R) such that

[E,A,B]
W,T
∼se

[[

E11 E12

0 E22

]

,

[

A11 A12

0 A22

]

,

[

B1

0

]]

, (26)

with E11,A11 ∈ Rk1,n1, E12,A12 ∈ Rk1,n2, E22,A22 ∈ Rk2,n2 and B1 ∈ Rk1,m, such
that [E11,A11,B1] ∈ Σk1,n1,m is completely controllable,rkR[E11,A11,B1] = k1 and
R[E22,A22,0k2,m

] = {0}.

Remark 24 (Derivation of the Kalman decomposition).
Let [E,A,B]∈ Σk,n,m be given. The Kalman decomposition (26) can be derived using
the limitsV ∗ andW ∗ of the augmented Wong sequences presented in Section 6. It
is clear that these spaces satisfy the following subspace relations:

E(V ∗∩W
∗) ⊆ (EV

∗+ imR B)∩ (AW
∗+ imR B),

A(V ∗∩W
∗) ⊆ (EV

∗+ imR B)∩ (AW
∗+ imR B).

Therefore, if we choose any full rank matricesR1 ∈Rn,n1,P1∈Rn,n2,R2 ∈Rk,k1,P2 ∈
Rk,k2 such that

imR R1 = V ∗∩W ∗, imRR2 = (EV ∗+ imR B)∩ (AW ∗+ imRB),
imR R1⊕ imRP1 = Rn, imR R2⊕ imR P2 = Rk,

then[R1,P1]∈Gln(R) and[R2,P2]∈Glk(R), and, furthermore, there exists matrices
E11,A11 ∈ Rk1,n1, E12,A12 ∈ Rk1,n2, E22,A22 ∈ Rk2,n2 such that
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ER1 = R2E11, AR1 = R2A11,
EP1 = R2E12+P2E22, AP1 = R2A12+P2A22.

Since imRB⊆ (EV ∗+ imR B)∩ (AW ∗+ imR B) = imR R2, there existsB1 ∈ Rk1,m

such thatB= R2B1. All these relations together yield the decomposition (26)with
W = [R2,P2] andT = [R1,P1]

−1. The properties of the subsystems essentially rely
on the observation that by Proposition 3

R[E,A,B] = V
∗∩W

∗ = imRR1 = T−1(Rn1 ×{0}n2).

Remark 25 (Kalman decomposition).
It is important to note that a trivial reachability space does not necessarily imply that
B= 0. An intriguing example which illustrates this is the system

[E,A,B] =

[[

1
0

]

,

[

0
1

]

,

[

1
0

]]

. (27)

Another important fact we like to stress by means of this example is thatB 6= 0 does
no necessarily implyn1 6= 0 in the Kalman decomposition (26). In fact, the above
system[E,A,B] is already in Kalman decomposition withk1 = k2 = 1,n1 = 0,n2 =
1,m= 1 andE12 = 1, A12 = 0, B1 = 1 as well asE22 = 0, A22 = 1. Then all the
required properties are obtained, in particular rkR[E11,A11,B1] = rkR[1] = 1 and
the system[E11,A11,B1] is completely controllable as it is in feedback form (15)
with γ = 1; complete controllability then follows from Corollary 2.However,
[E11,A11,B1] is hard to view as a control system as no equation can be written down.
Nevertheless, the spaceR[E11,A11,B1] has dimension zero and obviously every state
can be steered to every other state.

We now analyze how two forms of type (26) of one system[E,A,B] ∈ Σk,n,m

differ.

Proposition 6 (Uniqueness of the Kalman decomposition).
Let [E,A,B] ∈ Σk,n,m be given and assume that, for all i∈ {1,2}, the systems

[Ei ,Ai ,Bi ]
Wi ,Ti∼se [E,A,B] with

sEi −Ai =

[

sE11,i −A11,i sE12,i −A12,i

0 sE22,i −A22,i

]

, Bi =

[

B1,i

0

]

where E11,i ,A11,i ∈Rk1,i ,n1,i , E12,i,A12,i ∈Rk1,i ,n2,i , E22,i,A22,i ∈Rk2,i ,n2,i , B1,i ∈Rk1,i ,m

satisfy
rkR

[

E11,i A11,i B1,i
]

= k1,i

and, in addition, [E11,i ,A11,i,Bc,i ] ∈ Σk1,i ,n1,i ,m is completely controllable and
R[E22,i ,A22,i ,0k2,i ,m

] = {0}.

Then k1,1 = k1,2, k2,1 = k2,2, n1,1 = n1,2, n2,1 = n2,2. Moreover, for some W11 ∈
Glk1,1(R), W12 ∈ Rk1,1,k2,1, W22 ∈ Glk2,1(R), T11 ∈ Gln1,1(R), T12 ∈ Rn1,1,n2,1, T22 ∈
Gln2,1(R), there holds
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W2W
−1
1 =

[

W11 W12

0 W22

]

, T−1
1 T2 =

[

T11 T12

0 T22

]

.

In particular, the systems[E11,1,A11,1,B1,1], [E11,2,A11,2,B1,2] and, respectively,
[E22,1,A22,1,0], [E22,2,A22,2,0] are system equivalent.

Proof. It is no loss of generality to assume thatW1 = Ik, T1 = In. Then we obtain

Rn1,1 ×{0}= R[E1,A1,B1] = T2R[E2,A2,B2] = T2
(

Rn1,2 ×{0}
)

.

This impliesn1,1 = n1,2 and

T2 =

[

T11 T12

0 T22

]

for someT11 ∈ Gln1,1, T12 ∈ Rn1,1,n2,1, T22 ∈ Gln2,1.

Now partitioning

W2 =

[

W11 W12

W21 W22

]

, W11∈Rk1,1,k1,2,W12∈Rk1,1,k2,2,W21∈Rk2,1,kc,2,W22∈Rk2,1,k2,2,

the block(2,1) of the equationsW1E1T1 = E2, W1A1T1 = A2 andW1B1 = B2 give
rise to

0=W21
[

E11,2 A11,2 B1,2
]

.

Since the latter matrix is supposed to have full row rank, we obtainW21 = 0. The
assumption ofW2 being invertible then leads tok1,1 ≤ k1,2. Reversing the roles of
[E1,A1,B1] and[E2,A2,B2], we further obtaink1,2 ≤ k1,1, whencek1,2 = k1,1. Using
again the invertibility ofW, we obtain that bothW11 andW22 are invertible. ⊓⊔

It is immediate from the form (26) that[E,A,B] is completely controllable if,
and only if,n1 = n. The following result characterizes the further controllability and
stabilizability notions in terms of properties of the submatrices in (26).

Corollary 6 (Properties induced from the Kalman decomposition).
Consider[E,A,B] ∈ Σk,n,m with

[E,A,B]
W,T
∼se

[[

E11 E12

0 E22

]

,

[

A11 A12

0 A22

]

,

[

B1

0

]]

such that[E11,A11,B1] ∈ Σk1,n1,m is completely controllable,rkR[E11,A11,B1] = k1

andR[E22,A22,0k2,m
] = {0}. Then the following statements hold true:

(a) rkR(s)(sE22−A22) = n2.
(b) If sE−A is regular, then both pencils sE11−A11 and sE22−A22 are regular. In

particular, it holds k1 = n1 and k2 = n2.
(c) If [E,A,B] is impulse controllable, then the index of the pencil sE22−A22 is at

most one.
(d) [E,A,B] is controllable at infinity if, and only if,imR A22 ⊆ imR E22.
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(e) [E,A,B] is controllable in the behavioral sense if, and only if,rkR(s)(sE22−
A22) = rkC(λE22−A22) for all λ ∈ C.

(f) [E,A,B] is stabilizable in the behavioral sense if, and only if,rkR(s)(sE22−

A22) = rkC(λE22−A22) for all λ ∈ C+.

Proof.

(a) Assuming that rkR(s)(sE22−A22) < n2, then, in a quasi-Kronecker (8) form of
sE22−A22, it holdsℓ(β ) > 0 by (11). By the findings of Remark 8(ii), we can
concludeR[E22,A22,0k2,m

] 6= {0}, a contradiction.
(b) We can infer from (a) thatn2 ≤ k2. We can further infer from the regularity of

sE−A thatn2 ≥ k2. The regularity ofsE11−A11 andsE22−A22 then follows
immediately from det(sE−A) = det(W ·T) ·det(sE11−A11) ·det(sE22−A22).

(c) Assume that[E,A,B] is impulse controllable. By Corollary 3 and the invariance
of impulse controllability under system equivalence this implies that

imR

[

A11 A12

0 A22

]

⊆ imR

[

E11 E12 B1 A11Z1+A12Z2

0 E22 0 A22Z2

]

,

whereZ= [Z⊤
1 ,Z

⊤
2 ]⊤ is a real matrix such that imR Z= kerR

[

E11 E12

0 E22

]

. The last

condition in particular implies that imR Z2 ⊆ kerRE22 and therefore we obtain

imR A22 ⊆ imR E22+A22 ·kerRE22,

which is, by (9), equivalent to the index ofsE22−A22 being at most one.
(d) Since rkR[E11,A11,B1] = k1 and the system[E11,A11,B1] is controllable at in-

finity, Corollary 3 leads to rkR[E11,B1] = k1. Therefore, we have

imR

[

E11 E12 B1

0 E22 0

]

= Rk1 × imRE22.

Analogously, we obtain

imR

[

E11 E12 A11 A12 B1

0 E22 0 A22 0

]

= Rk1 × (imRE22+ imR A22) .

Again using Corollary 3 and the invariance of controllability at infinity under
system equivalence, we see that[E,A,B] is controllable at infinity if, and only
if,

Rk1 × (imR E22+ imR A22) = Rk1 × imR E22,

which is equivalent to imRA22 ⊆ imR E22.
(e) Since rkR[E11,A11,B1] = k1 and[E11,A11,B1] ∈ Σk1,n1,m is completely control-

lable it holds
rkC[λE11−A11,B1] = k1 for all λ ∈ C.

Therefore, we have
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rkC[λE−A,B] = rkC

[

λE11−A11 λE12−A12 B1

0 λE22−A22 0

]

= k1+ rkC(λE22−A22),

and, analogously, rkR(s)[sE− A,B] = k1 + rkR(s)(sE22−A22). Now applying
Corollary 3 we find that[E,A,B] is controllable in the behavioral sense if, and
only if, rkR(s)(sE22−A22) = rkC(λE22−A22) for all λ ∈ C.

(f) The proof of this statement is analogous to (e). ⊓⊔

Remark 26 (Kalman decomposition and controllability).
Note that the condition of the index ofsE22−A22 being at most one in Corollary 6(c)
is equivalent to the system[E22,A22,0k2,m] being impulse controllable. Likewise, the
condition imR A22 ⊆ imR E22 in (d) is equivalent to[E22,A22,0k2,m] being control-
lable at infinity. Obviously, the conditions in (e) and (f) are equivalent to behavioral
controllability and stabilizability of[E22,A22,0k2,m], resp.
Furthermore, the converse implication in (b) does not hold true. That is, the index of
sE22−A22 being at most one is in general not sufficient for[E,A,B] being impulse
controllable. For instance, reconsider system (27) which is not impulse controllable,
but sE22−A22 = −1 is of index one. Even in the case wheresE−A is regular, the
property of the index ofsE22−A22 being zero or one is not enough to infer impulse
controllability ofsE−A. As a counterexample, consider

[E,A,B] =

[[

0 1
0 0

]

,

[

1 0
0 1

]

,

[

1
0

]]

.

Acknowledgements We are indebted to Harry L. Trentelman (University of Groningen) for pro-
viding helpful comments on the behavioral approach.

References

1. Adams, R.A.: Sobolev Spaces. No. 65 in Pure and Applied Mathematics. Academic Press,
New York, London (1975)

2. Anderson, B.D.O., Vongpanitlerd, S.: Network Analysis and Synthesis – A Modern Systems
Theory Approach. Prentice-Hall, Englewood Cliffs, NJ (1973)

3. Aplevich, J.D.: Minimal representations of implicit linear systems. Automatica21(3), 259–
269 (1985)

4. Aplevich, J.D.: Implicit Linear Systems. No. 152 in Lecture Notes in Control and Informa-
tion Sciences. Springer-Verlag, Berlin (1991)

5. Armentano, V.A.: Eigenvalue placement for generalized linear systems. Syst. Control Lett.
4, 199–202 (1984)

6. Armentano, V.A.: The pencil(sE−A) and controllability-observability for generalized linear
systems: a geometric approach. SIAM J. Control Optim.24, 616–638 (1986)

7. Ascher, U.M., Petzold, L.R.: Computer methods for ordinary differential equations and
differential-algebraic equations. SIAM Publications, Philadelphia (1998)

8. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory.
No. 264 in Grundlehren der mathematischen Wissenschaften.Springer-Verlag, Berlin-
Heidelberg-New York-Tokyo (1984)



56 Thomas Berger and Timo Reis

9. Aubin, J.P., Frankowska, H.: Set Valued Analysis. Birkh¨auser, Boston (1990)
10. Augustin, F., Rentrop, P.: Surveys in Differential-Algebraic Equations I,Differential-

Algebraic Equations Forum, vol. 2, chap. Numerical Methods and Codes for Differential
Algebraic Equations. Springer-Verlag (2012)
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