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Abstract

We study linear differential-algebraic control systemd avestigate decompositions with respect to controligbil
properties. We show that the augmented Wong sequences exploéed for a transformation of the system into a
Kalman controllability decomposition (KCD). The KCD degies the system into a completely controllable part, an
uncontrollable part given by an ordinary differential etioimand an inconsistent part, which is behaviorally cdntro
lable but contains no completely controllable part. Thisaieposition improves a known KCD from a behavioral
point of view. We conclude the paper with some features oKi@i® in the case of regular systems.

Keywords: differential-algebraic systems; descriptor systemstrodiability; Kalman decomposition; Wong
sequences.

1. Introduction

We consider linear constant coefficient descriptor systgisen by differential-algebraic equations (DAES) of the
form
Ex(t) = Ax(t) + Bu(t) 1)

whereE, Ac R'*", B R'*™, The set of system models given by (1) is denoted!fj and we write(E, A, B) € =
DAE systems of the form (1) naturally occur when modelingaiyical systems subject to algebraic constraints; for
a further motivation we refer to [8, 10, 12] and the refereritrerein. The systerfE, A B) is calledregularif | = n
and detsE— A) € R[g]\ {0}; otherwise it is calledsingular. We stress at this point that our main result concerning
the Kalman controllability decomposition (KCD) holds ftwetregular as well as for the singular case.

There is a canonical equivalence notion for DAEZi" given by

(E,AB)=~(E,AB) <= 3SeGL,TeGLy: (SET,SAT,SB = (E,AB),

whereGL | denotes the space of invertible real-vallkedk matrices;= is also often called system equivalence, first
ST
studied by Rosenbrock [13]. If we want to highlight the inwed transformation matricesand T we also write2

instead of~2. The desired KCD, presented later, is a special representatthe corresponding equivalence class
where controllability properties can easily be read off.

The functionu: R — R™ is usually callednput of the system, although one should keep in mind, that in the
singular case might be constrained and some of the state variables cart@ayle of an input.

The tuple(x,u) : R — R" x R™is said to be &olutionof (1) if, and only if, it belongs to theehaviorof (1):

Beap) =1 (XU) € #o(R—R") x L4 (R—RM) | (x,u) satisfies (1) for almost alle R },

Where.,iﬂkl)c and%/k}c denote the space of locally (Lebesgue) integrable or wediilgrentiable functions with locally
integrable derivatives (see [1, Chap. 1]), respectivelye €quivalence of DAE systems translates to an equivalence
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of solutions as follows:

ST . . .
(E,AB) = (EAB) = | (xueBeap < (TXUWEBeag |

in particular the input is not altered.

Note that it is possible to consider a slightly larger s@ntspace by only requiring thate .,iﬁgc andExe %Olc,
see [3]; in particular, it is not necessary to assume xhigt continuous. However, this leads to some technical
difficulties when studying (complete) controllability atiderefore we restrict our attention to the above solution
concept.

In the present paper we are interested in a KCD for generaligésr systems of the form (1). Recall the well-
known result that for linear time-invariant control systegiven by ordinary differential equations (ODESs) of the
form

X(t) = Ax(t) + Bu(t)

the KCD is given by

2(t) = [Aél ﬁij 2(t) + [E(ﬂ ut), @

wherex — Tz=T (%) is a suitable coordinate transformation such that the OBEesyz; (t) = A11z1(t) + Byu(t) is
controllable. In particular, the KCD separates the ODE atwntrollable and an uncontrollable part. At first glance,
a satisfying generalization of (2) is also available for BAEven in the singular case), see [5, Thm. 7.1] (which is
based on a result for the discrete time case in [2]): Thers exiertible matrice$andT such that

ST ([Exr E12] [Ai1 As2| [Br

ene (5 8 [0 & [3])
where the DAE systen(E;1,A11,B1) is completely controllable (see the forthcoming DefinitdAd) and the only
reachable state from the origin for the DAE;», Az, 0) is the origin itself. Seemingly, we again have a decomparsiti
into a controllable and an uncontrollable part. Howevetthie behavioral approach (see e.g. [11]) the trivial DAE
0= xgiven by(0,1,0) is controllable (because any two trajectories can be cenestd within the behavior), but the
above KCD would only consist of the uncontrollable part. sTisi an unsatisfactory situation and is due to the fact,
that for DAE systems (both regular and singular) certaitestaan be inconsistent and it doesn’t really make sense to

label those controllable or uncontrollable. We therefaxppse the following more detailed KCD (our results were
inspired by the results for the regular case presented i:[14

Ein E1o Ez| |Ar A Agz| |Bg
(SET,SAT,SB = 0 Ex2 B3|, 0 Ax Ax|,|O0
0O O Essl |0 0 As| |O

where, as before&sandT are invertible matrices and the DAE system given(By;, A11,B1) is completely control-
lable. Furthermoret;; is invertible and the DAEEz3,Az3,0) is such that it only has the trivial solution. Hence, we
now have the decomposition into a (completely) controigidrt, a classical uncontrollable part (given by an ODE)
and an inconsistent part (which is behaviorally contrdédiut contains no completely controllable part). We beiev
that this KCD is much more adequate for the analysis of DAErobeystems as it takes into account the special DAE
feature of possible inconsistent states which play a spesl@with respect to controllability. When restrictingeth
attention to the case of regular DAEs, we obtain a furthepdgaosition of the completely controllable part into a
classical controllable part (given by a controllable ODEY an instantaneously controllable part (correspondirag to
controllable “pure” DAE).

The paper is organized as follows: In Section 2 we introdbeecbncepts of complete and behavioral controlla-
bility considered in the present paper. We also recall tiggreanted Wong sequences as the crucial geometric tool
for our investigations and some connections of these segsemith the controllability concepts, the reachable space
and the space of consistent initial values. The KCD for diag(E, A, B) is proved in Section 3 and uniqueness of
the decomposition with respect to the equivale®ds discussed. Finally, Section 4 is devoted to the case ofaeg
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systems and some features of the KCD are highlighted. Incpéat, the connection between the augmented Wong
sequences and the original Wong sequenBes Q) is shown; this is also illustrated in Figure 1.

2. Controllability notions

We recall the concepts of complete and behavioral conbitilaand their geometric characterizations in terms
of augmented Wong sequences. Our presentation followdyibstsurvey [5].

Definition 2.1 (Controllability concepts) A system(E,A,B) € 31" is called

(i) completely controllablé, and only if,
VXo,Xs € R" 3ty >03(x,u) € Bieap - X0)=x A X(tt) =Xg,
i.e., itis possible to control the staté) from any given initial valueg to any final value;.
(i) behaviorally controllabléf, and only if,

(xl(t),ul(t)), ift<O,

V (X1, U1), (X2,U2) € Bgap) 3tr > 03 (X,U) € B ap) : (X(1),u(t)) = {(xz(t) b(t), ift>t

i.e., itis possible to connect any two feasible trajectovi a third feasible trajectory.

Both controllability notions are equivalent for ODE systenhowever, for DAEs (singular as well as regular)
complete controllability is stronger than behavioral cohability as the latter does not require that the reachabl
space (see the forthcoming Definition 2.4) is the whole sp#de defined within the context of the behavioral
approach [11] and hence respects the underlying algeboaistraints. We illustrate the introduced controllability
concepts by the following example.

Example 2.2. Consider the systetfE, A, B) € 353 with

1 00 0 0O 10
0 0O 010 00
E=1o 1 0 A= |o 0 o' B=|o 1|
0 01 0 01 00
which consists of the three decoupled systems
X1(t) = ug(t) (3a)
OZXz(t),

Xa(t) = Ua(t), (3b)
X3(t) = Xa(t). (3c)

System (3a) is completely and behaviorally controllabjstem (3b) is behaviorally controllable, but not complgtel
controllable, and system (3c) is neither behaviorally rampletely controllable.

In order to geometrically characterize controllabilityetaugmented Wong sequences are an important tool (see [5]
and the references therein) and are defined as follows:

"V(?E,A,B) =R", VIEJriB (E7/EAB +imB) CR", EAB) =N /VEAB
ieNp

W(%,A,B) = {0}, Wg/is = 71(A7/(iE,A,B) +imB) CR", Y Enp) = U WEAB
ieNp
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Recall that, for some matriM € R'*", M. = { xeR' | xe . } denotes the image o’ C R" underM and
M1 = {xcR" | Mx€.¥ } denotes the preimage of C R' underM.

The sequence(gQiE’A,B))ieN and(”//(‘E,A’B))ieN are calledaugmented Wong sequenaisce they are based on the
Wong sequence®B(= 0) used in [4, 6, 7] and which have their origin inONG [18] who was the first using both
sequences (witB = 0) for the analysis of matrix pencils.

The augmented Wong sequences allow a characterizatioe abttitrollability concepts as follows.

Lemma 2.3(Geometric criteria for controllability [5]) Consider(E, A, B) € =x" and the limitsy/:

(EAB) and”//(*
of the augmented Wong sequences. TlieA, B) is

E,AB)

(a) completely controllable if, and only 'rf,/(*é,A’B) N W(E,A’B) =R"
(b) behaviorally controllable if, and only ifl/(*E’A,B) C W(*E,A’B).

Before we can state the Kalman controllability decompositive also need the notion of the reachable space
which is crucial for the proof of the decomposition.

Definition 2.4 (Reachable space, for details see [3pr (E,A,B) € =x" thereachable spacis defined as
REeap) ={x €R" |3ty >03(x,u) € Beap) : X(0) =0 A X(t) =x¢ }.

Note that any reachable statee R" can be reached from the origin in arbitrary tibae> O (i.e., in the definition
above 9ts > 0” can be replaced byt > 07).

Remark 2.5. In [5] it is shown that%Z g a ) = 7/(*E‘A‘B) N ”//(EA‘B), hence complete controllability can also be char-

acterized by the intuitive conditio# g s g) = R". Furthermore, itis proved in [5] that the space of consisiatial
valuesiis given by/(i g, i.6.,{ X0 € R" | 3(x,u) € Beap) :X(0) =X0 } = ¢ pp)-

3. Kalman controllability decomposition

In this section we present our main result about a genedbii{aéman controllability decomposition (KCD) which
respects the special features of DAE control systems. The Is@efined as follows.

Definition 3.1 (Kalman controllability decomposition)A system(E, A, B) € " is said to be irkalman controlla-
bility decomposition (KCDif, and only if,

Eix Ei2 Eiz| |[Aur A Aiz| (B
(E,AB) = 0 Ex Ex3|,| 0 Ax Ax|,|O0 (4)
0 0 Ess 0 0 Ass 0
where
(i) (E11,A11,B1) € Z'nﬁxnl with 13 = rk[Ej1, B1] < n;+mis completely controllable,
(i) (E22,A22,0) € Z'n%xnz with |, = ny andEy» is invertible,
(iii) (Ess,As3,0) € Z'r%X”3 with I3 > nz satisfies rik(AEzz— Asz) = nzforall A € C.
Some remarks on the above definition are warrant.

Remark 3.2. (i) The full row rank of[Ej1,Bs] in property (i) of the KCD (4) does not already follow from the
complete controllability of E11,A11,B1). This is due to the fact, that any completely controllableEDgystem
can be augmented by zero rows (i.e., addiag @) without altering its solution behavior at all. Howeverthe
KCD these zero rows will occur as additionakD blocks in(Ezs, Az, 0). In fact, the systent[3],[3], [3])
isin KCD, wherely xnp=1x1,l, xnp=0x0,andlzgx ng=1x0.
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(ii) In contrast to the above, an additional row=00 for some new inputi {not increasing the state space) will
occur in the blockEj1,A11,B1) in the KCD and lead to the fact that possilly> n;; for instance the system
([3].19].[39]) is in KCD with only a(E11,A11,B1) block. However, it is always true that< ny +m.

(iif) While 1, = np = 0 just means that the corresponding blocks in the KCD (4) atepresent, we have seen
above thahz = 0 does not imply that the corresponding blocks are not ptesiesy just have zero columns.
Analogously); = 0 does also not imply that the corresponding blocks are restgmt, because there might still
be 0x 1 blocks present in the KCD (corresponding to free and heoogptetely controllable variables). For
example, the KCD of the DAK[0],[0], [0]) consists of blocks of the sizésxn; =0x 1,l,xn;=0x 0 and
I3 x ng=1x 0; in particular, rkE11,B1] = 0= 1.

(iv) Furthermore, as we have seen in item (ii) above, alse- 0 does not imply that the corresponding block in
the KCD is not present, since e.g. the DAE systéif], [9],[3]) is already in KCD with blocks of sizes
l1 xn1=1x0,l;xnp=0x0andl3z x n3=1x1;in particular, rkE11,B1] =rkB; = 1=1;.

(v) From property (i) of (4) it follows that%g,, ., 0) = {0} and that({Eél Egﬂ , {Aél ﬁ;ﬂ , [%1]) as well as
(Ess,As3,0) are behaviorally controllable. The remaining “uncontible” subsysteniEz;, Azz, 0) is described
by an ODE sinceEy; is invertible. This is remarkable, since the perstil— A € R[S]'X” is not necessarily
regular.

We show that the KCD (4) can be obtained form the augmentecgWeguences of the original system, which
also yield a simple procedure to obtain the basis transftiomaln view of Remark 2.5, this basis transformation
can intuitively be obtained from Lemma 2.3: the subsp“qgeA g //(* EAB) yields the completely controllable part,
any complement df/E AB) mV/(EAm in 4//(*E AB) yields an uncontrollable part (smdé(‘EAB C %EAm is equivalent
to "V*EAB N W’EAB "V(E,A,B ), and any complement Of’ EAB) yields a behaviorally controllable part that is not
completely controllable (i.e., a subspace of inconsisim'tial values)

Theorem 3.3(Kalman controllability decomposition)Consider(E, A, B) € /X" and the IimitsV(*E’A,B) and W(E,A’B)

of the augmented Wong sequences. Choose any full rank gsfgic R™™ P, e R™™ Q, e R™M R, e R P, e
R'*l2. Q, € R'*3 such that

MRy =Yg ag) N 7(E Ap): MRy = (E¥(g og) +1MB) N (AZ[g og)+IMB),
MRy & IMPL= ¥g pp); MRy ®iMP, = EY[g 55 +IMB,
m[Ry, Pi]@imQy = R", im[Ry, P, &imQy =R

Then T:= [Ry, P, Q1] € GLp, Si= [Ro, P>, Q2] "1 € GL; and (SET,SAT,SB) is in KCD (4).

Proof. Step 1First observe that the subspace inclusions

E(Yeap N7 Enp) € (EVgap +IMB)N(AYg pp) +iMB),
AV eas N Enp) € (EVgag +IMB)N(AYg og) +iMB),
EY A S EY/(Enp +iMB,
A7 e S EYgap TIMB,

imply existence o1, ...,EzzandAss,...,Asz such that

ERy = RoEqy, ARy = RoAy3,
EPL = RoE12+ PoE»), AP = RoA12 + PoAgy, )
EQ: = RoE1z+ PoEoz+ QoEzz, AQy = RoA13+ PoAgz+ QrAgs.

Since imB C (E¥*+imB)N (A% * +imB) =imRy, there exist8; € R'1*M sych thaB = R;B;. All these relations
together yield the decomposition (4).



Step 2 We show (i) by proceeding in several steps.
Step 2aWe show thatE;1,A11,B1) is completely controllable.
By Remark 2.5 we have for the reachable space that

Zens) = Ve ¥ Eap =iMRL=T(RMx {0}72110).
Since any(z u) € B(seTsatsg With 2= (2{,2,,2]) " € #3.(R — R") andz(0) = 0 satisfies

E1121(t) + E102(t) 4+ E13z3(t) = A1az1(t) + A1o2o(t) 4+ Agaza(t) + Byu(t),
Exozo(t) + Esza(t) = Avozo(t) + Anaza(t),
Ezsz3(t) = Asszs(t),

the assumption that
vVt >0: Z(t) € %(SET,SAT,SB) = Til%(E’A,B) =R™M x {0}n2+n3

leads taz, = 0 andzz = 0. This implies that
A (seTsATSE = (€1 A8y X 10}

and hence we find?(g,, a,, 8,) = R™, which according to Remark 2.5 is equivalent(E1,A11,B1) € bl being

completely controllable.
Step 2bWe ShowE(¥/g o) N # (g pg)) +IMB = (EY[g o +IMB)N (AW"EAB)+imB).

The inclusion C” was already observed in Step 1. Fap™ Iet X € (E”//EAB) +imB)N (AW(E,A’B) +imB), i.e

X = Ev+ by = Aw+ b, for somev 4//(EAB) we WEAB b1,b, € imB. Then
veEE H{AW+by—bi} CETHAY/ g og) +IMB) = #E pp).

Thereforey € ”VEAB QWEAB) N, +imB.

Step 2cWe show that rl€11,B1] = I1.

Since iIMRE11 =IMER; = E(”i/(g Ap) " W(E AB

and hencex=Ev+b; € E(¥/:

(E.AB) EAB)

)) we find that
imR;[Eq1,B1] = E(y/(E,A,B) N %E,A,B)) +imB=IimRy,

where the latter equality follows from Step 2b. Therefoudl,dolumn rank ofR; implies imE;1,B1] = R't and hence
1 = rk[Ell, Bj_] <rkEj1+rkB; <ni+m.
Step 3 We show (ii).
Step 3aWe show tha{ E(
Clearly,

EAB)QVI/(EAB))+|mB)EB|mEF?L EY(gap) TiMB.

EYgap +imB= E((ﬁf/(EAB)m//(EAB))@'mPl) +iMmB=E(Ygap N ¥ Enap) +IMER+IMB.

It remains to be shown that the intersection is trivial. Tis #nd, letx € (E (7/(’{5 ag g, AB)) +imB)NiIMER, i.e.,
x=Ey=Ev+bforsomey cimP,ve Yeap) "V Ens) b €imB. ThenE(y—v) =band hence

y—veE b} CE"XimB) = W(EA,B) I

This impliesy € #* NimP, = {0} and thusx = 0.
Step 3b We show that, = n,.



We have that

l2=rkP, = dim(EYg 5 +iMB) —dim((E¥g o) +imB) N (A¥g ) +iMB))

Step 2b . . " " .
iM(EY (g ap) +IMB) —diM(E(¥g a5 N #(g ap) +1MB)

Step3a « . % . .
dim ((E(¥(g ap) N (£ ap) +IMB) ©®IMER) — dim(E(¥g o) N #(£ ag)) +iIMB)

= tkEP, =rkP, =ny,

where rkE P, = rk P, follows from the facts that kgre C WE AB) andW(EA,B) NimP, = {0}.
Step 3cWe show thaEy; is invertible.
Letx € R™ be such thaEyox = 0. Then it follows from (5) thaE Pix = RyEjox and henc& P x € imEP.Nim R, = {0}
by Step 3a. This implies= 0 since rkE P, = n, by Step 3b.
Step 4 We show (iii).
Assume that there i € C andx € C" such tha{A Ez3— Ag3)x = 0. Then (5) implies that

(AE — A)Q1X = Ry(AE13— A13)X+ Po(AEz — Ag3)X.

Considering the real and imaginary part of the above equatia writingA = g +1iv, X = X3 +ix for u,v € R,
X1,%2 € R" we obtain, invoking that ifR,, ] = E¥ ¢ +imB,

(E,AB)
(ME—A)Qux1 —VEQiX; € E¥[g pp) +iMB A (HE—A)Quxo+ VEQiX1 € E¥[g o) +iMB.
Hence there existy, v, € "V(*E’A,B) andby, by € imB such that
(LE—A)Q1xg —VEQixo =Evi + by, (ME—A)Qixp+ VEQixg =Ew+by. (6)
ThenAQix1 = E(uQ1X1 — vQixz — Vi) — b, AQixp = E(Q1x2 + vQ1X3 — V2) — by and hence

Qux1, Qixz € A Y(iME +imB) = 7/(EAB)

Again invoking (6) and noting that bothQ;x; — vQ1x2 — v1 and pQixe + vQ1x; — Vo are contained n‘V/E AB) T
”//*E AB) “//(E Ap) We obtain

Qux1,Qux2 € A H(E¥(g ) +iMB) = 7/(EAB)

Repeating this procedure yiel@¥x1, Q1% € 7/(E Ap) imQq = {0} and sinceQ; has full column rank it follows
X1 = X = 0 and hence = 0. Note that the resulting full column rank 8§z also implies thats > nz. This finishes
the proof of the theorem. O

Remark 3.4 (KCD and strong controllability) The KCD (4) and the transformation matrices obtained from th
augmented Wong sequences in Theorem 3.3 leading to the K&€becturther refined to also decouple the strongly
controllable part of E, A B) € ZX". Recall [5] thatE, A, B) is strongly controllabléf, and only if,

Vxo,xf € R" 3ty >03(x,u) € Beag : EX0)=Ex A EXtr) =Ex.

Strong controllability is equally important as completatollability in applications and concentrates on the colat
lability of the differential variable&x(t) rather than the controllability of the variabled). For instance, in optimal
control of descriptor systems, strong controllabilityriggortant to guarantee solvability of the optimal contrailpr
lem.

It is proved in [5] that(E, A, B) is strongly controllable if, and only |fQ"VEAB N W(E A.B)) + kerkE = "V(EA B T
kerE = R". This leads to an extension of the result of Theorem 3.3 MSI Usmg the notation from Theorem 3.3



we redefineQ; = [Q5, QY] andQ, = [Q5, QY] with Q5 € R™M, Q5 e R, Q0 e R™™, @8 e R as follows

im[Ry, PL] ©imQ} = ¥ g + kerE, im[Ry, Py, Q5] @imQ? =R",
iM[Ry, P] M Q3 = (E¥(f o) +IMB) + AkerE,  im[Ry, P, Q3] &imQS =R,

Taking into account ket C W(*E’A,B) andAkerE C AW(E’A’B) +imB we arrive at the following refined KCD:

Ei1 Ei12 Eiz Eis| [Ar Az Az Ag| |Br
0 Ex@x 0 Ep 0 Apn 0 A 0 7)
0 0 0 Esz|’| O 0 As3zs Azs|’|O
0 0 0 Eum 0 0 0 Au 0

where

(i) (Epr1,A11,B1) € Si*™ with Iy = rk[E11, By] < np + mis completely controllable,
(i) (E22,A22,0) € Z'n%xnz with |, = ny andEy; is invertible,
(ili) (0,Ag3,0) € 3™ with I = n§ andAgs is invertible,
(iv) (Eas,A44,0) € z'éi*”g with 18 > n§ satisfies rk (A Esq— Asq) = n3 for all A € C.

In the form (7), the subsyster@['%1 B3], [Aél ﬁ;ﬂ , [%1]) is strongly controllable, but not completely controllable
(if n§ > 0), and satisfies

Ei1 E: A11 A B
ric [ (BB, [ hs] L (3] =5
i.e., any redundant equations (e.g. of the form='0") are contained in the blocl€E44, Aus,0).

Note that, properties (iii) and (iv) do not uniquely detemmthe dimensioni§ x n§ andlg X ng (in contrast to the
Lo i 0 1 _[T00 10 .
constructloh via the augmented Wong—sgquences), for ebm(rrﬁp 8 (1)} , { -% (ﬂ) = ({o 0 %} , [o 1 J) .c:an elthefr be
decoupled into a X 1 and 2x 2 block or into a 2x 2 and a 1x 1 block, in both cases conditions (iii) and (iv) are

satisfied. Nevertheless, the sums= n$ + n3 andlz =I5 + 15 are uniquely determined.
Theorem 3.5(Uniqueness of KCD) Let (E,A,B) € sMand §,$ € GLy, Ty, T € GLj, be such that for i= 1,2
ST Ei1i Ei2i Eizi| |Ai Aw2i Asgi| |Bui

(E,A,B) = (E,A,Bj) = 0 Exi EBExsif|,| 0 Axi Axif|,| 0
0 0  Esgj 0 0 Agszj 0

where(E;, A, B;) is in KCD (4) with corresponding block sizes given by, hyj,12;,n2;,13i,n3;.
Then !Ll = |1,2, |2!1 = |272,|371 = |371, N1 =MN12,M21="N22,N31="N32 and, moreover, for some S GL|1‘1,S_22 S

that
. Si1 Sz Si3 ) Tin Tz Tas
£S5 =10 S S|, Ty To=|0 T Taf.
0 0 S33 0 0 Ta3
In particular,

(E11,1,A111,B11) = (E112,A112,B12), (E221,A221,0) = (E222,A222,0), (E331,A331,0) = (E332,A332,0).

Proof. Without loss of generality we assume tisat= 1, and T, = I.
Step 1 Invoking Remark 2.5 we have

R™1 x {0} = A (E1,A0,B1) = 122 (E,P0,8) = To(R™2 < {0}),
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and this impliesi; ; = n; > as well as

Tin T2 T3
To=| 0 Ty Ts| forTiieGly,,,Top € R™21%M2 T35 ¢ RM1%M32
0 Ta Tas3
andTyo, Tr3, Tos, Tzo Of appropriate size. Furthermore, we have
RM1MR21 % {0} = 7/(9&1,A1,Bl) = T27/(E27A2752) = To(RM2722 % {0}),
which together witm; ; = ny > gives thatnz ; = ny 2, N33 =Nz and
T32=0, T2€GLln,;, Taz3€ Glpgy;.
Step 2 Partitioning

S S22 Si3
S1 S S3
S S S3

and off-diagonal block matrices of appropriate size, we fivat the equationS;E; T, = E; and$;B; = B, yield that

S = for S5 € R|1.2X|1,17 = RIZZX'M, Si3€ R'e.zX's,l7

[Zﬂ [E111T11,B1] =0,

and the full row rank ofEj11,Bs] then givesS; = 0 andSz; = 0. SinceS; is invertible it follows thatl; 1 <17 5.
Reversing the roles @1, A1, B1) and(E, A2, By) givesly 1 > 112, whencdy 1 = |1 2. We further have the equation

S$oE221 T2 =0

which by invertibility of To, andEy, 1 gives thatSz; = 0. This finally implieslo s =12 = np1 =N, 131 = I3,
S2€ GLy,, andSz3 € GL,,, and finishes the proof. O

4. KCD for the regular case

Regularity of the systen(E, A, B) implies that equation (1) has a solution for any (sufficigstinooth) inputu
and each such solution is uniquely determined by the inia#liex(0). Therefore, regularity is often assumed for
the analysis and numerical simulation. Due to its importame like to highlight some features of the KCD for the
regular case. For the solution theory of DAES, the originah@/sequences (with = 0) play a fundamental role and
we also present the connection between the original Wongesegs and the KCD.

In the following we denote witH/(E,A) and”//(*E,A) the limits of the original Wong sequences given by

Ven =R, 7/?/&) =A (B e ), €N,
= E7

(E,
Van =10}, HExn=E A¥gn), €N,

ie., "V(*E.,A) = 7/(E,A,0) and%/(*E’A) = %E’A,O). The original Wong sequences can be used to obtain the teisrstrass
form (QWF) (or quasi-Kronecker form in the singular case7p,

Proposition 4.1(Quasi-Weierstrass form, [17], [4])The DAE control systerfE, A B) € " is regular if, and only

' ern¥ (3 3.3 9L



where Ne R™*™ 0 < n, < n is nilpotent and = R™*M B; € R*M B, € R™*M n; := n—ny,. Furthermore, the
transformation matrices F [Ty, T»] € GL, and Se GL, achieve the QWES) if, and only if,

iMTy=7g ), IMT2=%¢,, S=[ET,AL ™"

By Proposition 4.1, the original Wong sequences yield a dpliag of the DAE into an ODE(t) = Jv(t) + Byu(t)
and a so called pure DABWY(t) = w(t) + Bpu(t), where the latter has the unique solutior= — 372, Ni (Bou)(®;
note that by definition of3 g 4 gy we only haveu € iﬁgc, butw e V/lolc and(w,u) being a solution trajectory enforces
higher differentiability of the input componerBsu, see [3, Sec. 2.4.2].

The Wong sequences are coordinate free in the sense thaitiéschoice off; andT; is not relevant. Once the
QWEF is obtained for a specific choice of the coordinate tramsétionT it is not difficult to obtain a KCD for each
block separately (see e.qg. [9]):

Proposition 4.2(QWF-KCD). Consider regula(E, A, B) € =", Then

I 0 Juir 2 B11
0 I 0 Jxo 0
E.AB) = 9
( ) ) ) Nll N12 ) I O ) le ) ( )
0 N 0 1 0

where ! 0 , Ju 0 , B11 is completely controllable and{Nand N, are nilpotent.
0 Nll 0 | 521

Proof. Assume the DAEE,A,B) is transformed in QWF (8) with block sizeg x n; andny x np andT = [T, Ty],
S= [ET1,AT,] L. Then choos@1, Tiz, To1, T2z as follows

imTy = iI'T1<\],Bl>7 im(J,Bl)@imleanl,
imT21:im<N,Bz>, im(N,Bz>@imT22:R”2,

where(A B) = [B,AB,A?B, ......A"B] for A € R™" andB € R™™. The transformation matrices

-1
B Tiy Tio O 0 B Tiz Ti2 O 0
T=[MT] { 0 0 T Tzz] S= <[ET1’AT2] [ 0 0 T» TzzD

then yield the desired QWF-KCD, for details see [9]. O

Clearly, the QWF-KCD (9) obtained via the QWF matches theegalrKCD (4) after a simple rearrangement of
the corresponding blocks, in particular

| 0 J 0 B
(E11,A11,B1) = <[O Nlj , [ (1)1 J , [B;iD ; (E22,A22,0) = (1,J22,0), (Ez3,Ag3,0) = (N22,1,0).

However, the form (9) is not really satisfactory as its dation needs two separate coordinate transformations: first
one needs to transform the DAE, A, B) into QWF and then the ODE and pure DAE parts have to be tramgfr
again. In particular, the latter transformation dependtherchosen coordinate transformation for the QWF (because
J andN depend orl) and is therefore not coordinate free. Furthermore, ther@igeometric insight because the
connection to the augmented Wong sequences is not clear.

Now we present a more geometric approach. To this end, wetoéetloduce certain projectors, defined in terms
of the Wong sequences, cf. [15].

Definition 4.3 (Consistency, differential and impulse projectovith the notation of Proposition 4.1 define the con-
sistency projector

. (0]
I'I(E,A).:T{O O}T ,
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the differential projector

gt ._ I O
and the impulse projector
i 00
imp .
Mew =T [o J >

where the block matrix sizes correspond to the block sizésdQWF. Furthermore, let

Note that the consistency projector is a projection O*EEOA) along%/(*ElA), but the differential and impulse projec-
tors are notidempotent and hence are not projectors in tred sense. Furthermore, itis easy to see that all projectors
(and consequentigdiff Bdifft Eimp BIMPY 4o not depend on the specific choice of the transformatianiceaT andS
(and only on the spac@é‘(*E’A), W(EA)). Finally, observe that

imA™ € Yg . IMBM CHg ), IME™P C A ) imB™P C A .

With the help of these matrices the connection between igamat and augmented Wong sequences can be established
as follows.

Theorem 4.4(Connection between Wong sequencdst (E,A,B) € 1" be regular. Denote WitW/(*E‘A), W(EA),
“//(*E,A’B), W(E,A’B) the limits of the original and augmented Wong sequencepeatively. Using the notation from
Definition 4.3, we have

EAB = VEAND im(E™,B™)  and Yenrs = en® im(ATT B,

Proof. Step 1We shovW/(EA B) = 7/(*E.A) & im(EmP, BimP)
From Remark 2.5 we know th&f(*E AB) equals the space of consistent initial values. On the otherd hfrom the

solution formula in [16, Thm. 6.4.4] it follows that alk, u) € B g a g) satisfy

v-1 o .
X(0) =NEac— Z)(E"“p)' (B™u)V(0),

for somec € R" andv € N such tha{E'™P) = 0 and(E™P)V~1 +£ 0, where it follows fromx € #;1. and [3, Sec. 2.4.2]

thatB™Pu e Wk‘)’c’l. Since the derivatives &™Pu att = 0 can be chosen independently of each other it follows that

Xp is consistent < Xg € imI‘I<E’A)+im<Eimp7Bimp>_

By construction infll g ») = ¥
is shown.

Step 2 We shoW%/(E,A’B) = W(*E,A) & im(Adiff gdiffy

First observe that/ s rgprsg = T*lyﬂ(*EyA’B), W setsan = T*ly/(*E’A), (SAT)I = T-IAdMT and (S =

I'I?gﬁET,SAnSB: T-1BYf for any invertibleSandT; in particular, we have the following equivalences:

py» IM(E™P,BIP) C im M|

Ea) € 7 (& a @Y (g 4 N o = {0}, hence the claim

(E’A,B) — W(*E,A) @im<Adiﬁ,Bdiﬁ> PN TilW(*E,A’B) :Til%E’A) @Tflim<Adiff7Bdiff>
& Wisersatsy = ¥ (setsan S IM{(SA i (sgUm).
Hence we can assume in the following tiBt A, B) is in QWF (8). Itis then easy to see that
e =1{0}xR? and imA" B) —im(J,By) x {0}
11



and it remains to be shown that
W(*E,A’B) =im(J,B;) x R".

With an inductive argument it is easy to see that

i %
W(IE,A,B) = { (W)
in particular,

* %
W(E,A,B) = W(E,A,B) = { <W>

b b b € RM: V:JilelblﬁLJiizBlbzﬁL...+Blbi, }
1,02, i .

N'w = Byb; +NByby + ... + N " 1Byby

b b b. c RM: V= JnlBlb1+anBlb2+...+Blbn}
1,U2,-.-,n .

N"w = Byby + NByby + ...+ N"1Bsby,

b1
=q V| |Vv= JnilBlbl-i-\]nizBlbz-‘r...—f—Blbn, € keI’[Bz,NBz,... ,NnBz] X an,
bn
becausé\" = 0. In fact, it holds that 8= N"2 = N"2t1 = .. = N", which implies thabtn_n,+1,bn—n,+2,...,bn are
free and hence, invoking Cayley-Hamilton, we arrive at
Y (&.ap) =IM{J,Bz) x R, O

Recalling the observations in Remark 2.5 and the findingsigofem 4.4, we obtain the following.
Corollary 4.5. With the notation of Theorem 4.4 the following holds:
(i) The consistency space @A, B) is given by/(g , g = ¥(g o) @ im(EmP_BImP),

(i) The reachable space 6E,A,B) is given byZ g ag) = im(A%™ BIM) & im(EMP, BMP), in particular, (E, A, B)
is completely controllable if, and only if,

(iii) (E,A,B) is behaviorally controllable if, and only if,

im(Ad gdifty — (EA) OF equivalently, im(AdT BdTy o Ve n =R

Proof. Property (i) was already established in the proof of Theotetn Properties (ii) and (iii) follow directly from
Lemma 2.3 and Theorem 4.4 taking into account the followirzgspace relationships (see also Figure 1):

im(A™ BY) C ¥ o) C Vg agy IMET™B™) CHE N C W any Viem Y =R" O

Finally, we may obtain the KCD directly in terms of the origirsystem’s matrices (and in the original coordinate
system) as follows.

Corollary 4.6 (Regular KCD) Use the notation from Definition 4.3 and Theorem 4.4. ChoaBedlumn rank
matrices i, P,, R, Q as follows:

imPy =im(A% BY) - im (AN BIT) g imR= ¢ ),
imP, = im(E™,B™),  im(E™,B™) &imQ =¥/t 5.

Then T= [[P,P:],R Q] € GL and S= [[ER,AR],ERAQ~! € GL, transform the DAE syster(E,A,B) into

12



Rn

Figure 1: The relationship between the spatgs, , #/¢ »). im(Adiff Bdiffy im(gimp gimpy

KCD (4) with some additional zero blocks:

{ I 0 } [O} [ 0 Jii O Ji2 0 Bi1

ST][0Nua| [0 [Ni2 o 1] |o] |o Bar

(E’A7 B) - I 0 ) J22 0 b 0 b)
N2 I 0

where ! 0 , Ju 0 , By is completely controllable and{Nand N, are nilpotent.
0 Nll 0 | le

Proof. Let T = [P, R P2, Q] andS= [EP,ER AR, Q] be rearranged basis matrices. Then (using the notation from
Proposition 4.2) _ _
T-H(AdM B —im(J,B;) x {0} =im(Jy1,B11) x {0} € R™ x {0},

T-HEMP B™P) = {0} x im(N,By) = {0} x im(Ny1,Bz1) C {0} x R"™,

and the claim follows from Proposition 4.2 with transforinatmatricesi and$. O

5. Conclusion

We have presented a new Kalman controllability decomposftir linear time-invariant (not necessarily regular)
differential-algebraic systems. This decomposition debes the original DAE control system into an completely
controllable part, a classical uncontrollable part (gibgnan ODE) and an inconsistent part which is behaviorally
controllable but contains no completely controllable pahe corresponding coordinate transformations can elasily
obtained via the augmented Wong sequences. For the regskatte construction further simplifies and nice subspace
relations become apparent. In particular, a connectiowdst the augmented and the original Wong sequences is
established.
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