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ABSTRACT. Given Hermitian matrices A € C"*™ and D € C™*™, and
k > 0, we characterize under which conditions there exists a matrix
K € C™™ with ||K|| < & such that the non-Hermitian block-matrix
A —AK
K4 D

has a positive (semi-)definite Schur complement with respect to its sub-
matrix A. Additionally, we show that K can be chosen such that di-
agonalizability of the block-matrix is guaranteed and we compute its
spectrum. Moreover, we show a connection to the recently developed
frame theory for Krein spaces.

1. INTRODUCTION

Given a matrix § € C(n+m)x(n+m) agqume it is partitioned as

A B
s=1e 5]

where A € C"*", B e C™*™ C € C™*" and D € C™*™. If A is invertible,
then the Schur complement of A in S is defined by

Sia=D—-CA'B.

This terminology is due to Haynsworth [12, 13], but the use of such a con-
struction goes back to Sylvester [18] and Schur [17]. The Schur complement
arises, for instance, in the following factorization of the block matrix S:

11 AB]l [ I, 0 A 0 I, A7'B
(1.1) C D| | cA!l I, 0 D-CA™'B 0 I, |’

which is due to Aitken [1]; note that I, denotes the identity matrix in C***.
It is a common argument in the proof of the Schur determinant formula [3]:

(1.2) det(S) = det(A) - det(S,4),
of the Guttman rank additivity formula [11], and of the Haynsworth inertia
additivity formula [14].

The Schur complement has been generalized for example to non-invertible

A. In this case, if AT is the Moore-Penrose inverse of A, then the Schur
complement S/, is defined by S;4 = D — CATB. Tt is a key tool not only
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in matrix analysis but also in applied fields such as numerical analysis and
statistics. For further details see [19].

If A is invertible and S is a Hermitian matrix, then C = B* and the Schur
complement of A in S'is S/4 = D — B*A7'B. Then (1.1) reads as

A Bl [I, A'B]"'[ A 0 I, A™'B
[B* D}_[ 0 In } [0 D—B*A—lBHo Im ]
which implies the following well-known criteria: S is positive definite if and
only if A and S, are both positive definite. This equivalence is not true
for positive semidefinite matrices, but Albert [2] showed that S is positive
semidefinite if and only if A and S,4 are both positive semidefinite and
R(B) C R(A), where R(X) stands for the range of a matrix X.

In this paper, given x > 0, a Hermitian matrix A € C™*" with eigenvalues
M > . >N >0> Mgy1 > ... > Ay, and a Hermitian matrix D € C™*™
with eigenvalues p; < ... < pp <0 < ppy1 < ... < gy, We investigate under
which conditions there exists a matrix K € C"*" with || K|| < k such that

(1.3) S = [ Kf}A _gK}

has a positive (semi-)definite Schur complement S,4 with respect to the
submatrix A. Note that

Sia=D+ K*(AATA)K = D + K*AK.

Interest in such non-Hermitian block-matrices arises, for instance, in the
recently developed frame theory in Krein spaces, see [7, 9]. There, block-
matrices as in (1.3) with a positive definite A, a Hermitian D and a positive
definite S/4 correspond to so-called J-frame operators, see Section 5.

In Theorem 3.3 below we show that this special structured matrixz com-
pletion problem has a solution if and only if

r<k and K2\ +p; >0 foralli=1,...,r—np,

where p = dim (ker D); this condition may be slightly relaxed if only posi-
tive semidefinite S/4 is required. We stress that S is not diagonalizable in
general, not even if S/, is positive definite. Under the above conditions,
we construct a particular matrix K, which depends on some parameters
€1,...,&r. In Theorems 4.2 and 4.4 we compute the eigenvalues of the cor-
responding block matrix S in terms of the eigenvalues of A and D and the
parameters €1,...,&.. A root locus analysis of the latter reveals that if
each ¢; is small enough, then S is diagonalizable and has only real eigenval-
ues, although S is non-Hermitian.

2. PRELIMINARIES

Given Hermitian matrices A, B € C"*", various different relations be-
tween the eigenvalues of A, B and A+ B can be obtained, see e.g. [4, 15, 16].
The following result was first proved by Weyl, see e.g. [4].
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Theorem 2.1. Let A, B € C"*™ be Hermitian matrices. Then,
X (At B) < N[(A) +X] ;1 (B) fori < j;

N(A+B) 2 X(A) + X (B) fori > j

where Aj(C’) denotes the j-th eigenvalue of C' (counted with multiplicities)
if they are arranged in nonincreasing order.

For a rectangular matrix A € C"™*" with rank (A) = r denote by
01(A) > 02(A) > ... >0,(A) >0

the singular values of A. Recall that o;(A) = )\f(\A]) fori=1,...,r, where
|A| = (A*A)Y/2. In particular ||A|| = o1(A) denotes the spectral norm of A.

Given A, B € C™*" the following inequalities hold. Ifi € {1,...,rank (A)}
and j € {1,...,rank (B)} are such that i + j — 1 < rank (AB*), then

(2.1) 0itj-1(AB") < 0i(A)o;(B),

see e.g. [16, Theorem 3.3.16]. As a consequence of these inequalities we have
the following well-known result; for completeness we include a short proof.

Proposition 2.2. Let A € C"*™ be Hermitian with exactly k positive eigen-
values (counted with multiplicities) and let K € C"*™. Then,

1 * 244 . . *
N (KTAK) < [[K["A5(A)  for j=1,...,min{k, m,rank (K*AK)}.

Proof. If K = 0, then the statement trivially holds, so assume that K # 0
and hence rank (K) > 1. Then, for all j =1,..., min{k, m,rank (K*AK)}

N(K*AK) <0j(K*AK) <oj(K* A)oy (K*) < o1(K*)?0;(A) = | K|* X (A),

because )\j(A) is positive for j =1,... k. O

3. POSITIVE (SEMI-)DEFINITENESS OF THE SCHUR COMPLEMENT

Throughout this work we consider non-Hermitian block matrices S as
in (1.3), where A € C™" and D € C™*™ are Hermitian matrices and
K € C™™. In this section we characterize the existence of a matrix K
such that S in (1.3) has a positive definite (positive semidefinite) Schur
complement.

Assumption 3.1. Let Ay > X o> ... 2> A > 02> A1 > ... > Ay, denote
the eigenvalues of A (counted with multiplicities) arranged in nonincreasing
order. Further, let p; < po < ... < pp <0 < pipy1 < oo. < pyy denote the
eigenvalues of D (counted with multiplicities) arranged in nondecreasing
order, and assume that dim (ker D) = p.
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Lemma 3.2. Let Assumption 3.1 hold. If r > k then there is no K € C™*™
such that D + K*AK is positive definite. Moreover, if 1 — p > k then there
is no K € C™™ such that D + K*AK 1is positive semidefinite.

Proof. Assume that r > k. Given K € C"*"™ let S; = ker (K*(A + |A])K)
and consider the subspace Sy of C'™ spanned by all eigenvectors of D corre-
sponding to non-positive eigenvalues. Observe that

dimS; = m —rank (K*(A + |A|)K) > m —rank (A+ |A]) =m — k.
By Assumption 3.1 we have that dim S = r and hence
dimS; +dimSy > (m —k)+r=m+ (r — k) > m.
Thus, S§1 N S2 # {0} and for any non-trivial vector v € S§; N Sy we have
(D+ K*AK)v,v) = (Dv,v) — (K*|A|Kv,v) <0,

because K*AKv = —K*|A|Kv. Therefore, D + K*AK cannot be positive
definite.

Moreover, assume that » — p > k and consider the subspace S3 of C™
spanned by all eigenvectors of D corresponding to negative eigenvalues.
Then, dim S3 = r — p and a similar argument shows that D 4+ K*AK cannot
be positive semidefinite. O

The next result characterizes under which conditions there exists a matrix
K € C™™ such that D + K*AK is positive (semi-)definite.

Theorem 3.3. Let Assumption 3.1 hold. Given k > 0, the following state-
ments hold.

(i) There exists K € C™ ™ with |K| < k such that D + K*AK is
positive definite if and only if
(3.1) r<k and KXNi+p; >0 foralli=1,...,r—p.
(ii) There ezists K € C™ ™ with |K| < k such that D + K*AK s
positive semidefinite if and only if
(32) r—p<k and KN+ >0 foralli=1,...,7r—p.
Proof. We show (i). Assume that there exists a matrix K € C"*"™ with

|K|| < k such that D + K*AK > 0. By Lemma 3.2, it is necessary that
r < k. On the other hand, by Theorem 2.1,
0 < XL (D + K*AK) < \{(D) + X}, _; 1 (K*AK),

for:=1,...,m. In particular, for i =m —r+p-+1,...,m we can combine
the above inequalities with Proposition 2.2 and obtain

0 < X(D) + |K 1PN, i1 (A) < pimit + K2 Amig-

Equivalently, we have that u; + /-;2>\j >0forj=1,...,r—p.
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Conversely, assume that r < k and x?\; 4+ p; > 0 for i =1,...,r —p. For
each i =1,...,7 —plet 0 < g; < k2 be such that g;\; + p; > 0, and for
j=r—p+1,...,rlet0<e; < k2 be arbitrary. Then, define E € C™*™ by

E = diag (\/aa cee \/5) Or,mfr
Onfr,r Onfr,mfr

where 0y, 4 is the null matrix in CP*¢. Further, let U € C**™ and V' € C"*™
be unitary matrices such that A = UD\U* and D =V D,V*, where

Dy =diag(A1,...,\,) and D, =diag(p1,..., tm)-
Then, for
(3.3) K .= UEV*,
it is straightforward to observe that | K| < x and
D+ K*AK =V (D, + E*UTAUE)V* =V (D, + E*D\E)V*
=V diag (51>\1 + p1, - ~a5r>\r +1U’T) Or,mfr
Omfr,r diag (MT+17 cee Hum)

is a positive definite matrix because €; was chosen in such a way that ;\; +
pi; >0fori=1,...,r—p,and gj\j + pu; =e;jA\; >0for j=r—p+1,...,7.

The proof of (ii) is analogous. If there is a matrix K € C"*™ with
|K|| < k such that D + K*AK is positive semidefinite, then » —p < k (see
Lemma 3.2) and following the same arguments as before it is easy to see

)

V*

that k?X\; +u; > 0fori=1,...,r —p. The converse can also be proved in a
similar way, but in this case £; may be equal to % for some i = 1,...,r —p
(and e; can also be zero for j =r —p+1,...,r). Therefore, ||[K|| < k and
D + K*AK is positive semidefinite. O

4. SPECTRUM OF THE BLOCK MATRIX

In the following, we consider the matrix K constructed in the proof of
Theorem 3.3 and investigate the location of the eigenvalues of S in (1.3).
The locations depend on the parameters €1,...,¢, and hence their study
resembles a root locus analysis. We start with a preliminary lemma.

Lemma 4.1. Let Assumption 3.1 and (3.2) hold and set

R
(4.1) ai::%, i=1,....,r—p.

K3

Then we have that

2
0<5<a; < (%) , foralli=1,...,7r —p.

Proof. Given i = 1,...,r — p it is straightforward that (\; — ;)% > —4u;\;.
If (3.2) holds, then \; > 0 for all i = 1,...,r — p and hence a; > —’)\‘—: > 0.
Furthermore,

Ni— i = (K24 DN — (k2N + ) < (52 + D,
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which implies that a; < (#)2 ([

In case that Assumption 3.1 and (3.2) hold, we describe the spectrum of
the block matrix S given in (1.3) for the matrix K defined in (3.3).

Theorem 4.2. Let Assumption 3.1 hold. Given k > 0, assume that (3.2)
also holds. Fori=1,...,7 —p choose 0 < g; < k? such that e;\; + ju; > 0,
and for j=r—p+1,...,r set ; = 0.

If K € C"™ is as defined in (3.3), then ||K|| < k and the spectrum of the
block matriz S € CHm)>*(+m) given in (1.3) consists of the real numbers

)\T—p+17"‘7)‘n7 Mr—p+1y -5 hm;, and
(4.2) nf:#i)\“/ai—ei, i=1,...,7—p,

where «; is given by (4.1). Moreover, fori € {1,...,r — p}, we have

if0<¢g; < _)\‘Z“, then X\; >nt > 0>n" > u;;

if —)\/jz < g; < oy, then max{\;+u;, 0} > 771'+ > ;7 > min {)\i_,_m’o}’.
if a; < i < K2, then i =n; € C\R;

if €5 = a;, then n” =10, = %()\z + p;) and there exists a Jordan
chain of length 2 corresponding to this eigenvalue.

a

o

o

)
)
)
)

(o}

Additionally, if e; # «; for alli=1,...,7 —p, then S is diagonalizable.

Proof. First note that by Lemma 4.1 the range for ¢; in case a) is non-empty
independently of k, but the same may not be true for cases b) and ¢). We
will discuss this later in Remark 4.3.
Using the notation from the proof of Theorem 3.3 we obtain
S [ A —AK } _ [ UD\U* —UD,EV* ] _
| K*A D - | VE*DU* VD, V* -

U o Dy -B][U 01" _ Dy —B ]
Lo vl e v Bl

where B € C™"*™ is given by
B := D\E = |: diag ()\1\/57 B )\rfp\/erfp) Or—pm—r+p :| :
On—r—i-p,r—p On—r+p,m—r+p

and W := [g 8] e Cltm)x(ntm) s ynitary. Then, if {e1,...,enim} de-

notes the standard basis of C"*™ it is easy to see that
13 SWe; = \;We; fori=r—p+1,...,n,
(4.3) and SWej=pj_n,We; forj=n+r—p+1,...,n+m,

which yields that A._,11,..., A\, and p—pi1, ..., t, are eigenvalues of S.
Now, define the following (r — p) x (r — p) diagonal matrices:

Fy\ :=diag (A1,..., \—p), F, = diag (p1, ..., tr—p),
G = dlag (Al\/aa ctty Ar—p\/‘ﬂ)a
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and observe that the remaining 2(r — p) eigenvalues of S coincide with the
spectrum of the submatrix S of W*SW given by

- [P -G
=[G w |

In order to calculate the eigenvalues of S, consider the matrix P, € C2(r—p)x2(r=p)
associated to the following permutation of the integers {1,2,...,2(r —p)}:

() 27 — 1, forj=1,...,r—p,
g =
J 2 —r+p), forj=r—p+1,....,2(r —p).

Then, we have that P? = Iy(—p) and P,SP, is a block diagonal matrix,
with 7 — p blocks of size 2 x 2 along the main diagonal:

A TAVE ] :
, J=1,...,r—p.
[ ANvVE
Thus, the characteristic polynomial of S is given by

T—p

a(n) = [ ((mi =N =) + ),

i=1
and n € C is a root of ¢(n) if and only if
0 — (i + i) + Aipi + eidi) = 0

for some i € {1,...,r — p}. This leads to the following eigenvalues of S:
(4.4) ’17?: = % + %\/()\1 — ,ui)Z — 461)\12 = % + )\i\/ai —&;

fori=1,...,7r — p. Hence, (4.2) follows and statement c) holds.
For statement a) we observe that if 0 < ¢; < 7)\—‘:1', then /o; — g; > %
Therefore,

+ o At Aitp — - At Aitii
n;m > gk 4 2)\1_‘20 and 7, <~k —Ai'%'go.

Furthermore,
77;_ < 7ZJQFM + Mo = 77“;“1 + A 12)\?2 =\,
— At it i —f4;
n; > S = Niyag = gk - AR =

On the other hand, if 5 < &; < oy, then Va; — &; < 252l and

— Aitp XNtps| -
ny > Ak —/\¢|2§f|—mln{>\¢+ui,0}y

"

IN

. . /\i 7
)\1‘5#1 + )\il 2‘;51 | — max {A; + 4,0},

and, clearly, n;" > % > 1, , which proves b).
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To show d), assume that ¢; = a; for some i € {1,...,r — p}. Since
nt =0 = %()\l + ;) and (/& = )‘121“, it is straightforward to compute

(g _ %()\Z + ,Ui)IQ(T—P)) ((1 + A}Q#z) fl) — <}CZ> )

i

(S — (N + Mz‘)f2r> (fl> =0,

%

using the standard basis {fi,..., fr—p} of C""P. The vectors above form a
Jordan chain of length 2 of S corresponding to the eigenvalue %(AZ + ).
Hence, a Jordan chain of S corresponding to the eigenvalue %(/\Z + 1;) can
also be constructed.

Finally, assume that ¢; # «; for all ¢ = 1,...,7 — p. In this case, the
space C"™™ has a basis consisting of eigenvectors of S. Indeed, this follows
from (4.3) together with

<§ - n;rlz(r—p)> <_/\1f\}52f2> =0, (5Y - 77;]2(T—P)) (-J}affL) =0

Hi—"; Hi=1;

fori=1,...,7r —p. O

We emphasize that if for all ¢ = 1,...,r — p the parameter g; in Theo-
rem 4.2 is chosen such that a) or b) holds, then the block matrix S in (1.3)
is diagonalizable and has only real eigenvalues, cf. Lemma 4.1.

Remark 4.3. Given x > 0, note that (#)2 > k2 and equality holds

if and only if K = 1. Hence, if K # 1 and % < a; < (#)2 for some
i € {1,...,7 — p}, then the corresponding eigenvalues nf and 7, are real,
because the range of values for ¢; in case ¢) is empty.

For k = 1, if there exists i € {1,...,r — p} such that \; + p; > 0, then

Ai = i = —(Ai + i) + 20 <2,

hence a; < 1 and we can choose the corresponding parameter €; such that S
has non-real eigenvalues.

Furthermore, if A is positive semidefinite, x < 1 and ¢; > _)\’jl for each
i=1,...,r—p, then A\;+u; > 0 and hence the eigenvalues of .S are contained
in the (closed) complex right half-plane.

In the remainder of this section, we calculate the eigenvalues of the block
matrix S under the assumption that its Schur complement is positive defi-
nite. Note that if Assumption 3.1 and (3.1) hold we may define o; as in (4.1)

foralli=1,...,7. In this case, 0 < 5 < oy < (#)2 fori=1,...,r—p,

andaj:iforj:r—p+1,...,r.
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Theorem 4.4. Let Assumption 3.1 hold. Given k > 0, assume that (3.1)
also holds. Fori=1,...,7 —p choose 0 < g; < k? such that e;\; + ju; > 0,
and for j=r—p+1,...,rlet 0 <¢g; < k2 be arbitrary.

If K € C™™ is as defined in (3.3), then | K|| < k and the spectrum of the
block matriz S € CrHm*(4m) given in (1.3) consists of the real numbers

)\T+17°"a)\n} Hr41y -+ Hm, and
(4.5) nE =200 4 Ny — e, i=1,...,7,

where «; is given by (4.1). Moreover, fori=1,...,r, we have
if0<e <, then N; >0t > 0>n7 > w;;
if S <& < oy, then max{\;+p;,0} > n >mn; > min {\+p,,0};
if a; < i < K2, then nm =n; € C\R;
if &, = «4, then nj =, = %()\z + p;) and there exists a Jordan
chain of length 2 corresponding to this eigenvalue;

e) ifi>r—pande; =0, thennf:)\i>0 and n; = pu; = 0.
Additionally, if €; # «; for alli=1,...,r, then S is diagonalizable.

a

=3

¢}

)
)
)
)

[o¥)

Proof. The proof is analogous to the proof of Theorem 4.2, the main differ-

ence is that in this case S = W [gi Bjﬂ W*, where

B = D/\E — |: dlag (/\1\/5, ceey Ar\/a) Or,m—r c (CnXm’

On—r,r On—r,m—r
which yields that Ary1,..., Ay and pp41,. .., 4y are eigenvalues of S. The
remaining 2r eigenvalues of S can be calculated in the same way as before.
Also, the only difference in the characterization of the eigenvalues nfc appears
in the case in whichi =7 —p—+1,...,r and ¢; = 0. But the proof of this
last case is straightforward. O

Example 4.5. We illustrate Theorem 4.4 with a simple example. Let n =
m =1, D = [0] and A = [a] with @ > 0. Then r = 1 and choosing K as
in (3.3) with 0 < & < 1 = k% gives K = [\/2]. In this case o = 1.

By Theorem 4.4, for ¢ = % there is a Jordan chain of length 2 correspond-

1
ing to the only eigenvalue §, and indeed we find that ( ) > , (}) form a

Jordan chain of S, hence S is not diagonalizable. ‘

On the other hand, for ¢ # % the block matrix S has eigenvalues n™ =

%4+ ay/t—candn” =% —ay/;—e. They are positive if ¢ < 1, and they

are non-real if i < & < 1. In these last two cases S is diagonalizable.

5. APPLICATION TO J-FRAME OPERATORS

In this section, we exploit Theorems 3.3 and 4.4 to investigate whether a
block matrix S as in (1.3) represents a so-called J-frame operator and when
it is similar to a Hermitian matrix. In the following we briefly recall the



10 T. BERGER, J. GIRIBET, F. MARTINEZ PERfA, AND C. TRUNK

concept of J-frame operators, which arose in [7, 9] in the context of frame
theory in Krein spaces.

In a finite-dimensional setting, every indefinite inner product space is a
(finite-dimensional) Krein space, see [10]. A map [-,] : C¥ x CF — C is
called an indefinite inner product in C¥, if it is a non-degenerate Hermitian
sesquilinear form. The indefinite inner product allows a classification of
vectors: x € CF is called positive if [z,z] > 0, negative if [z,2] < 0 and
neutral if [z, 2] = 0. Also, a subspace £ of C* is positive if every z € £\ {0}
is a positive vector. Negative and neutral subspaces are defined analogously.
A positive (negative) subspace of maximal dimension will be called maximal
positive (maximal negative, respectively).

It is well-known that there exists a Gramian (or Gram matrix) G € CF**,
which is Hermitian, invertible and represents |-, -] in terms of the usual inner
product in C*, ie., [z,y] = (Gz,y) for all 2,5 € C*F. The positive (resp.
negative) index of inertia of [-, -] is the number of positive (resp. negative)
eigenvalues of the Gramian G, and it equals the dimension of any maximal
positive (resp. negative) subspace of C¥. It is clear that the sum of the
inertia indices equals the dimension of the space.

A finite family of vectors F = {f;}%_, in C¥ is a frame for C*, if

span({f}1_,) = C*
(see, e.g., [5]) or, equivalently, if there exist 0 < a < /3 such that

q
ollF I <SP <BIfIP for every f e C.

i=1
The optimal set of constants 0 < a < 3 (the biggest o and the smallest 3)
are called the frame bounds of F. If

q
(5.1) F:Ct=CF f ) (1) f
i=1
is the associated frame operator, then the frame bounds of F are
a=|F" = X(F) and B =|F|=N(F),

see e.g. [5] and the references therein.
Roughly speaking, a J-frame is a frame which is compatible with the
indefinite inner product [-,-].

Definition 5.1. Let (C*,[-,]) be an indefinite inner product space. Then,
a frame F = {f;}’_, in C* is called a J-frame for CF, if

My :=span{f € F|[f, f] >0} and M_:=span{f e F|[[f f] <0}
are a maximal positive and a maximal negative subspace of C¥, respectively.

If [-,-] is an indefinite inner product with positive and negative index
of inertia n and m, respectively, then the maximality of M, and M_ is
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equivalent to dim M4 = n and dim M_ = m. Note that if F is a J-frame
for C*, then there are no (non-trivial) f € F with [f, f] = 0.

Given a J-frame F = {f;}_, for CF, its associated J-frame operator
S : Ck — CF is defined by

q
Sf=> oilf. fil fi feCF
i=1
where o; = sgn|[f;, fi] is the signature of the vector f;. S is an invertible
symmetric operator with respect to [-, -], i.e.,

[Sf.9)=1[f.Sg] forall fgecC~

Its relevance follows from the indefinite sampling-reconstruction formula:
Given an arbitrary f € CF,

q q
F=Y o[£ fi=D oilf. fi1S7
i=1 i=1

i.e., it plays a role analogous to the fame operator F' in equation (5.1).
In the following, we aim to apply the results from Sections 3 and 4, hence
we restrict ourselves to the following inner product on C*¥ = C"+™,

n m
(5.2) (@1, Tngm)s (Y15 -+ s Ynam)] = Z TiYi — an-i-jyn-&-j‘
i—1 =1

In [7, Theorem 3.1] a criterion was provided to determine if an (invertible)
symmetric operator is a J-frame operator. In our setting it says that an
invertible operator S in (CF,[-,-]), which is symmetric with respect to [-, ],
is a J-frame operator if and only if there exists a basis of C*¥ such that S
can be represented as a block-matrix
A  —AK

(5.3) s_[K*A A ]
where A € C™*" is positive definite, K € C™*™ is strictly contractive, and
D € C™™ is a Hermitian matrix such that D + K*AK is also positive
definite. Any block-matrix S € CM+™*(+m) of the form (5.3), which
satisfies these conditions will be called J-frame matrix.

Throughout this section we consider the following hypothesis.

Assumption 5.2. Assume that A € C"*" is positive definite and D €
C™*™ is a Hermitian matrix. Let g1 < po < ... < ptp <0 < ppy1 < ... <
tm denote the eigenvalues of D (counted with multiplicities) arranged in
nondecreasing order, and let A\; > Ay > ... > A, > 0 denote the eigenvalues
of A (counted with multiplicities) arranged in nonincreasing order.

Theorem 3.3 (for k = 1) provides a criterion to determine whether there
exists a strictly contractive matrix K € C"*™ (i.e., |K] < 1) such that §
as in (5.3) is a J-frame matrix.
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Theorem 5.3. Let Assumption 5.2 hold. Then there exists K € C™*™ with
|K| <1 such that S as in (5.3) is a J-frame matriz if and only if

(5.4) r<n and XN+pu; >0 fori=1...r.

We mention that the study of the spectral properties of a J-frame operator
is quite recent, see [7, 8]. In the case of J-frame matrices, for given A and
D, we always find conditions such that a strictly contractive K exists which
turns S into a matrix similar to a Hermitian one. The following result is a
direct consequence of Theorem 4.4 and Lemma 4.1.

Theorem 5.4. Let Assumption 5.2 and (5.4) hold. Then, there exists a
strictly contractive matriz K such that the matriz S given in (5.3) is a
J-frame matriz which is similar to a Hermitian matriz. In this case, all
eigenvalues of S are positive and there exists a basis of C*™™ consisting of
eigenvectors of S.

In the next paragraphs we recall how to construct J-frames for C**t™
with a prescribed J-frame matrix S. For K € C"*™ with ||K|| < 1 define

(55 M_={0}xC", M, ::{ (K{f) ‘fe(:” }

If C"*™ = C" x C™ is endowed with the indefinite inner product given
in (5.2), then it is immediate that M_ is a maximal negative subspace in
C™™ and M is maximal positive in C"*". The contraction K € C"*™
represents the angle between the two subspaces M and M_.

Moreover, if K with || K|| < 1is such that the block matrix S given in (5.3)
is a J-frame matrix, consider S = S; 4+ S_ with

A —AK 0 0
Then, the restriction of S} to (M4, [-,]) is a positive definite matrix. In-

deed, if f € C™\ {0}, then

() ()] = [ (e 205,)- ().
= (A(I = KK")f, f) = (KK"A(I - KK*) [, f)

(5.7) = ((I - KK*)A(I - KK*)f, f) > 0.

On the other hand, it is evident that the restriction of S_ to (M_,—[-,])
is just D + K*AK, which is also a positive definite matrix.

Therefore, it is possible to construct frames F for the (finite-dimensional)
Hilbert spaces (M, %[, ]) with these matrices as frame operators, see [6].
Moreover, the family Fy U F_ is a J-frame for C"™ with S as its J-frame
operator, see [9, Theorem 5.6].
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Proposition 5.5. Let Assumption 5.2 hold and let K € C™*™ with | K|| <
1 be such that S as in (5.3) is a J-frame matriz. Further, let My be as
in (5.5) and let Fy be frames for (My, L[, -]) with frame operator S+ given
n (5.6). Then, the frame bounds of F_ are

(5.8) a_ =X (D+K*AK)  and  B_ = M(D+ K*AK),

and the frame bounds of F1 are the boundary values of the numerical range
of the positive definite matriz C := (I — KK*)'/2A(I — KK*)Y/? ¢ ¢,

(5.9) ay =XH(C)  and By = X(O).

Proof. Recall g € M if and only if g = (K{f) for some f € C™. Then,

o1 = | () ()] = (0= mm2) = 0= B2

On the other hand, if h = (I — KK*)'/2f € C", by (5.7) we have that
[S+9,91 = (I = KK")A(I — KK*)f, f)
- <C’(I ~ KKV f (1 - KK*)1/2f> = (Ch,h).
Since ||h|| = ||lg]|, it is immediate that the numerical ranges of Sy and C
coincide. Therefore, (5.9) holds.

On the other hand, the desired characterization of the frame bounds a_
and [_ of F_ has been obtained in [7, Proposition 4.1]. O

Using Weyl’s inequalities and the inequalities for the singular values of a
product of matrices presented in (2.1) we can obtain the following a priori
estimates for the frame bounds of F; and F_.

Proposition 5.6. Let Assumption 5.2 and (5.4) hold and let K € C**™
with | K|| < 1 be such that S as in (5.3) is a J-frame matriz. Further, let
My be asin (5.5) and let F1 be frames for (Mg, %[, -]) with frame operator
Sy given in (5.6). If o1 > ... > o7 > 0 are the singular values of K, then
the frame bounds of F_ satisfy

0<a- < B <oiAL+ -
Furthermore, the frame bounds of F satisfy
(1= o)A <oy < By < (1—0f)A1.

Proof. By Proposition 5.5 we have a_ = A#(D—{—K *AK) > 0. Furthermore,
by Theorem 2.1 and Proposition 2.2 we have

B_ = M(D + K*AK) < (D) + M (K*AK)
< M(D) + [ KIPX(A) = pion + 1K [N = 03 A1 + pin-
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On the other hand, if C' = (I — KK*)Y2A(I — KK*)'/2, then oy = X\ (CO)
and B, = A(C). Hence, using (2.1) we obtain

" p —1/2)2 "
oy = N(C) = 0n(AVA(I = KK)'?)? = 2 0(AY2 (1 - KK*)'2)?

on((I— *\1/2)2 N
> el — N1 = KK (A) = (1= 0],
and further
By = X(0) = on(AVA(T — KE*)'2) < 0n(AY2 0 (T~ KK)V2)?
= XA~ KK = M1 - af),
which completes the proof. ([

Finally, let A € C"*™ and D € C™*™ satisfy Assumption 5.2 and assume
that (5.4) holds. For i = 1,...,7 choose 0 < &; < 1 such that g;\; + p; > 0.
If A=UD\U*, D =VD,V*and K € C"*™ is given by (3.3) then || K| < 1,

C=I-KK)?A(I - KK*Y? =

U diag((l —51))\1,...,(1 _57"))\1") Orjmfr U*

= Onrr diag Aty hn) | U
and

* _ diag (51)‘1 + UL, Er A T ) Or,m—r *
D+ K*'AK =V [ - ding (i) |V

Then, we can explicitly compute the frame bounds for F, and F_:

o oy =min{(1 —ep)A,..., (L =) A, A}

o B =max{(1 —e)A1,...., (L —&r) A\, A1 15

o o =min{et A1 + p1, .., e A + oy flrg1 )

o S5_ =max{ei A1 + 1, ..., ErAr + Uy fm }-

Observe that, since (1 —g;)A\; < Aj + p; and g;\; + p; < A\; + p; for each

i =1,...,r, we can obtain the following a priori estimates for the lower
frame bounds of F; and F_:

ay <min{Ay + p1, ..oy Ar + fory Ant,
and

a_ < min{>\1 + p1, - '7)\7“ + MTaMT+1}7

which are independent of the strictly contractive matrix K given in (3.3),
i.e. independent of the angle between the subspaces My and M_.
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