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Controlled invariance for DAEs
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We study the concept of locally controlled invariant submanifolds for nonlinear descriptor systems. In contrast to classical
approaches, we define controlled invariance as the property of solution trajectories to evolve in a given submanifold whenever
they start in it. It is then shown that this concept is equivalent to the existence of a feedback which renders the closed-loop
vector field invariant in the descriptor sense. This result is motivated by a preliminary consideration of the linear case.

Local controlled invariance leads to the concept of output zeroing submanifolds. We show that the outcome of the
differential-algebraic version of the zero dynamics algorithm yields a locally maximal output zeroing submanifold.
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1 Motivation - linear systems

We study controlled invariance for linear descriptor systems
governed by differential-algebraic equations (DAEs),

d
dtEx(t) = Ax(t) + Bu(t), (1.1)

where E,A ∈ Rl×n and B ∈ Rl×m. The set of these systems
is denoted by Σl,n,m and we write [E,A,B] ∈ Σl,n,m. Note
that we do not assume regularity of the pencil sE − A. The
functions u : R → Rm and x : R → Rp are called input and
state of the system, resp. The behavior of (1.1) is the set

B(1.1) := { (x, u) ∈ C(R;Rn × Rm) | Ex ∈ C1(R;Rl)
and (x, u) satisfies (1.1) for all t ∈ R }.

Definition 1.1 Let [E,A,B] ∈ Σl,n,m and V ⊆ Rn be a
subspace. Then V is called controlled invariant, if

∀x0 ∈ V ∃ (x, u) ∈ B(1.1) ∀ t ≥ 0 :

x ∈ C1(R;Rn) ∧ x(0) = x0 ∧ x(t) ∈ V .

For ODEs, characterizations of controlled invariance can
be found e.g. in [1]; the following is the DAE version.

Theorem 1.2 For [E,A,B] ∈ Σl,n,m and a subspace
V ⊆ Rn the following statements are equivalent:

(i) V is controlled invariant.
(ii) AV ⊆ EV + imB.

(iii) There exists F ∈ Rm×n such that (A + BF )V ⊆ EV .
For the proofs and more details on the results in the present

paper see [2]. Note that a subspace V satisfying property (ii)
in Theorem 1.2 is usually called a (A,E,B)-invariant sub-
space, see the survey [3] and the references therein.

2 Nonlinear systems

In this section we consider nonlinear descriptor systems gov-
erned by DAEs of the form

d
dtE(x(t)) = f(x(t))+g(x(t))u(t), y(t) = h(x(t)), (2.1)

where X ⊆ Rn is open, 0 ∈ X , f ∈ C(X;Rl), h ∈
C(X;Rp), E ∈ C1(X;Rl) such that f(0) = 0, h(0) = 0,

and g ∈ C(X;Rl×m). The set of these systems is denoted by
ΣX

l,n,m,p; and we write [E, f, g, h] ∈ ΣX
l,n,m,p.

A trajectory (x, u, y) ∈ C(I;X × Rm × Rp) is called a
solution of (2.1), if I = domx ⊆ R is an open interval,
E ◦ x ∈ C1(I;Rl) and (x, u, y) solves (2.1) for all t ∈ I .
A solution (x, u, y) of (2.1) is called maximal, if any other
solution (x̃, ũ, ỹ) of (2.1) satisfies

J:=dom x̃∩ domx 6= ∅ ∧ x̃|J = x|J ⇒ dom x̃ ⊆ domx.

The behavior of (2.1) is the set of maximal solutions

B(2.1) := { (x, u, y) ∈ C(I;X × Rm × Rp) | I ⊆ R open
interval, (x, u, y) is maximal solution of (2.1) }.

The concept of (locally) controlled invariant submanifolds
has been introduced by Isidori and Moog [4], see also the text-
books [5, 6]. Loosely speaking, a connected submanifold M
is locally controlled invariant, if it is invariant under the flow
of the closed-loop vector field f(x)+g(x)u(x) for some feed-
back u(x). We show that this “classical” definition in terms
of feedback is equivalent to the “natural” definition, that (lo-
cally) for any initial value in M there exists an input such
that the corresponding state trajectory remains in the subman-
ifold M for all times or reaches its boundary in finite time.

Definition 2.1 Let [E, f, g, h] ∈ ΣX
l,n,m,p and M be a con-

nected submanifold of X such that 0 ∈M . Then M is called
locally controlled invariant, if there exists an open neighbor-
hood U ⊆ X of the origin in Rn such that

∀x0 ∈M ∩ U ∃ (x, u, y) ∈ B(2.1), x ∈ C1(domx;Rn)

∃ t0 ∈ domx, x(t0) = x0 :(
∀ t ∈ domx, t ≥ t0 : x(t) ∈M ∩U

)
∨
(
∃ t̂ ∈ domx,

t̂ > t0 ∀ t ∈ [t0, t̂) : x(t) ∈M∩U ∧ x(t̂) ∈ ∂(M∩U)
)
.

Theorem 2.2 Let [E, f, g, h] ∈ ΣX
l,n,m,p be such that

E ∈ C2(X;Rl), f ∈ C1(X;Rl) and g ∈ C1(X;Rl×m)
and let M be a smooth connected submanifold of X such
that 0 ∈ M . Suppose that there exists an open neigh-
borhood V of 0 ∈ X such that both dimE′(x)TxM and
dim

(
E′(x)TxM + im g(x)

)
are constant for x ∈ M ∩ V .

Then the following statements are equivalent:
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(i) M is locally controlled invariant.

(ii) There exists an open neighborhood U of 0 ∈ X such that
f(x) ∈ E′(x)TxM + im g(x) for all x ∈M ∩ U .

(iii) There exists an open neighborhood U of 0 ∈ X and
u ∈ C1(M ∩ U ;Rm) such that f(x) + g(x)u(x) ∈
E′(x)TxM for all x ∈M ∩ U .

In the remainder of this paper we consider the zero dy-
namics of (2.1), which is the set of trajectories ZD(2.1) :=
{ (x, u, y) ∈ B(2.1) | y = 0 }. The concept of zero dynamics
goes back to Byrnes and Isidori [7] and is studied extensively
since then, see e.g. [5,6]. For linear DAEs, the zero dynamics
have been investigated in detail recently [8–11]. Zero dynam-
ics are related to the concept of output zeroing submanifolds.

Definition 2.3 Let [E, f, g, h] ∈ ΣX
l,n,m,p and M be a

connected submanifold of X such that 0 ∈ M . Then M is
called output zeroing, if M is locally controlled invariant and
h(x) = 0 for all x ∈ M . An output zeroing submanifold M
that is called locally maximal, if there exists an open neighbor-
hood U of 0 ∈ X such that any output zeroing submanifold
M̃ satisfies M̃ ∩ U ⊆M ∩ U .

We extend the zero dynamics algorithm developed in [4,
12] to nonlinear DAE systems (2.1).

Theorem 2.4 Let [E, f, g, h] ∈ ΣX
l,n,m,p be such that

E, f, g and h are smooth. Define M0 := h−1(0) and
for any k ∈ N the set Mk recursively as follows: Sup-
pose that for some open neighborhood Uk−1 of 0 ∈
X , Mk−1 ∩ Uk−1 is a submanifold, define M̃k−1 :=⋃
{Mk−1 ∩ U |U ⊆ X open, Mk−1 ∩ U is a submanifold },

let M c
k−1 be the connected component of M̃k−1

which contains 0 ∈ X and define Mk :={
x ∈M c

k−1
∣∣ f(x) ∈ E′(x)TxM

c
k−1 + im g(x)

}
.

Then we have the following:

(i) The sequence (Mk) is nested, terminates and satisfies

∃ k∗ ∈ N0 ∀ j ∈ N : M0 ) M1 ) . . . ) Mk∗

⊇ M c
k∗ = Mk∗+j = M c

k∗+j .

(ii) If Z∗ := M c
k∗ satisfies, for some open neighborhood U

of 0 ∈ R, that dimE′(x)TxZ
∗ and dim

(
E′(x)TxZ

∗ +

im g(x)
)

are both constant for x ∈ Z∗ ∩U , then Z∗ is a
locally maximal output zeroing submanifold.

(iii) There exists an open neighborhood U of 0 ∈ X such
that for all open O ⊆ U and all (x, u, y) ∈ B(2.1) with
x ∈ C1(domx;X) and x(t) ∈ O for all t ∈ domx

(x, u, y) ∈ ZD(2.1) ⇐⇒ x(t) ∈ Z∗∩O ∀ t ∈ domx.

If the system (2.1) is linear, then the sequence (Mk) be-
comes an augmented Wong sequence, see [3,13] and the refer-
ences therein, which is based on the Wong sequences [14–16]
and which have their origin in [17].

Output zeroing submanifolds can be exploited to study lo-
cally autonomous zero dynamics; the latter have been suc-
cessively used for the analysis of linear time-varying ODEs
in [18] and of linear time-invariant DAEs in [9]. Under the
assumption of locally autonomous zero dynamics we aim to

derive a local zero dynamics form for nonlinear DAE sys-
tems (2.1) which would provide the basis for the application
of adaptive control techniques. In particular, we aim to use the
results of [19] and show feasibility of funnel control for non-
linear descriptor systems which encompass nonlinear electri-
cal circuits, extending the results for the linear case [20].
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