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Disturbance decoupling for descriptor systems by behavioral feedback

Thomas Berger1,∗
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We study disturbance decoupling for linear descriptor systems. Compared to previous approaches, where state feedback
is used, we use the concept of behavioral feedback which allows to study a larger class of systems. We derive geometric
characterizations for solvability of the disturbance decoupling problem following the classical approach. Exploiting the
freedom in the choice of the behavioral feedback we show that whenever disturbance decoupling can be achieved by behavioral
feedback we may additionally achieve autonomous zero dynamics.
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1 Disturbance decoupled systems

We study disturbance decoupling for linear descriptor systems
governed by differential-algebraic equations (DAEs),

Eẋ(t) = Ax(t) + Bu(t) , y(t) = Cx(t) , (1.1)

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n. The set of sys-
tems (1.1) is denoted by Σl,n,m,p and we write [E,A,B,C] ∈
Σl,n,m,p. Note that we do not assume regularity of the pencil
sE − A. The tuple (x, u, y) : R→Rn × Rm × Rp is said to
be a solution of (1.1), if it belongs to the behavior of (1.1):

B[E,A,B,C] :={
(x, u, y) ∈
C∞(R→Rn×Rm×Rp)

∣∣∣∣(x, u, y) satisfies (1.1)
}
.

Based on the above behavior, DAE control systems have been
studied in detail e.g. in [1]. We assume that the states, inputs
and outputs of the systems in Σl,n,m,p are fixed a priori by the
designer. This is different from other approaches based on the
behavioral setting, see [2–4].

For given Q ∈ Rl×q we consider the disturbed system

Eẋ(t) = Ax(t)+Bu(t)+Qd(t) , y(t) = Cx(t) , (1.2)

where d ∈ C∞(R → Rq) represents a smooth disturbance,
which may be due to noise, modeling or measuring errors, or
higher terms in linearization.

Definition 1.1 For a system [E,A,B,C] ∈ Σl,n,m,p, we
call the set-valued map

Φ[E,A,B,C] : C∞(R→Rm)→P
(
C∞(R→Rp)

)
,

u 7→
{
y ∈ C∞(R→Rp)

∣∣∣∣ ∃x ∈ C∞(R→Rn) :
(x, u, y) ∈ B[E,A,B,C]

}
,

the input-output map of [E,A,B,C]. Here P(M) denotes
the power set of a setM.

Definition 1.2 Let [E,A, 0, C] ∈ Σl,n,0,p and Q ∈ Rl×q .
Then we call [E,A,Q,C] disturbance decoupled, if

∀w1, w2 ∈ C∞(R→Rq) :

Φ[E,A,Q,C](w1) = Φ[E,A,Q,C](w2).

Roughly speaking, [E,A,Q,C] is disturbance decoupled,
if any two disturbances cannot be distinguished using knowl-
edge of the output.

The crucial geometric tools for the characterization of dis-
turbance decoupling are the generalized Wong sequences

V0
[E,A,B,C] = kerC,

Vi+1
[E,A,B,C] = A−1(EVi

[E,A,B,C] + imB) ∩ kerC,

W0
[E,A,B,C] = {0},

Wi+1
[E,A,B,C] = E−1(AWi

[E,A,B,C] + imB) ∩ kerC.

The sequence (Vi
[E,A,B,C])i∈N0 is non-increasing and

(Wi
[E,A,B,C])i∈N0

is non-decreasing and both sequences ter-
minate after finitely many steps, thus we may set

V∗[E,A,B,C] =
⋂
i∈N0

Vi
[E,A,B,C], W

∗
[E,A,B,C] =

⋃
i∈N0

Wi
[E,A,B,C].

In [6–8] the Wong sequences for matrix pencils (B = 0 and
C = 0) are investigated, the name chosen this way since
Wong [9] was the first who used both sequences for the anal-
ysis of matrix pencils. In [3,10,11] the case C = 0 is consid-
ered and the sequences are called augmented Wong sequences;
similarly, for the case B = 0 considered in [12] the sequences
are called restricted Wong sequences.

Theorem 1.3 Let [E,A, 0, C] ∈ Σl,n,0,p, Q ∈ Rl×q . Then

[E,A,Q,C] is disturbance decoupled
⇐⇒ imQ ⊆ EV∗[E,A,0,C] + AW∗[E,A,0,C].

For the proofs and more details we refer to [5].

2 Disturbance decoupling

In this section we consider the disturbance decoupling prob-
lem (DDP) by the application of feedback. The classical re-
sult, see [13, Thm. 4.2], states that there exists F ∈ Rm×n

such that [I, A + BF,Q,C] is disturbance decoupled if, and
only if, imQ ⊆ V∗[I,A,B,C]. This has been generalized to
DAEs in [14] (see also [15,16]) using proportional state feed-
back of the form u = Fx as well. However, using the be-
havioral approach we find that the input variables are not the
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free variables of the system, i.e., some of them may already be
constrained, and on the other hand free state variables may be
present. Therefore, the use of proportional state feedback is
limited for DAE systems, and actually a feedback in terms of
the free variables is needed. A setup where this is allowed
is provided by the use of behavioral feedback of the form
K1x+K2u = 0, where K = [K1,K2] ∈ Rk×n×Rk×m. The
interconnection of system (1.2) with the behavioral feedback
is depicted in Figure 1.

Eẋ(t) = Ax(t) + Bu(t) + Qd(t)

y(t) = Cx(t)

K1x(t) + K2u(t) = 0

x(t)

d(t)

u(t)

y(t)

Fig. 1: Interconnection of system and behavioral feedback

The closed-loop system of (1.2) with the behavioral feed-
back K1x + K2u = 0 is given by

[EK , AK , QK , CK ] =

[[
E 0
0 0

]
,

[
A B
K1 K2

]
,

[
Q
0

]
, [C, 0]

]
with state ( x

u ), input d and output y. If [K1,K2] = [F,−Im],
then [EK , AK , QK , CK ] is equivalent to [E,A + BF,Q,C]
and we are in the case of proportional state feedback.

Definition 2.1 Let [E,A,B,C] ∈ Σl,n,m,p. A control ma-
trix K = [K1,K2] ∈ Rk×n × Rk×m is called compatible for
[E,A,B,C], if

∀ (x, u, y) ∈ B[E,A,B,C] ∃ (x̃, ũ) ∈ B[EK ,AK ,0l×0,00×n] :

Ex(0) = Ex̃(0).

Theorem 2.2 Let [E,A,B,C] ∈ Σl,n,m,p and Q ∈ Rl×q .
Then there exists a control K = [K1,K2] ∈ Rk×n × Rk×m

compatible for [E,A,B,C] such that [EK , AK , QK , CK ] is
disturbance decoupled if, and only if,

imQ ⊆ EV∗[E,A,B,C] + AW∗[E,A,B,C] + imB.

In fact, in Theorem 2.2 the freedom in choosing the control
[K1,K2] is not exploited. Therefore, we consider additional
properties and introduce the zero dynamics defined by

ZD[E,A,B,C] :=
{

(x, u, y) ∈ B[E,A,B,C]

∣∣ y = 0
}
.

For linear DAE systems the zero dynamics have been well in-
vestigated, see [17–20]. The zero dynamics of (1.1) are called
autonomous, if

∀w ∈ ZD[E,A,B,C] ∀ I ⊆ R open intvl. : w|I =0 ⇒ w=0.

Theorem 2.3 Let [E,A,B,C] ∈ Σl,n,m,p and Q ∈ Rl×q .
Then there exists a control K = [K1,K2] ∈ Rk×n × Rk×m

compatible for [E,A,B,C] such that [EK , AK , QK , CK ] is
disturbance decoupled andZD[EK ,AK ,0,CK ] are autonomous
if, and only if,

imQ ⊆ EV∗[E,A,B,C] + AW∗[E,A,B,C] + imB.

The behavioral feedback approach to disturbance decou-
pling opens the door for the study of various related problems
and extensions such as disturbance decoupled state estima-
tion and disturbance decoupling by dynamic feedback con-
trollers. In the absence of disturbances these problems have
already been treated using the framework of behavioral feed-
back, see [10, 21].

References
[1] T. Berger, On differential-algebraic control systems, PhD the-

sis, Institut für Mathematik, Technische Universität Ilmenau,
Universitätsverlag Ilmenau, Germany, 2014.

[2] T. Berger and P. Van Dooren, Syst. Control Lett. 86, 48–53
(2015).

[3] T. Berger and T. Reis, Syst. Control Lett. 78, 40–46 (2015).
[4] S. L. Campbell, P. Kunkel, and V. Mehrmann, Regularization

of linear and nonlinear descriptor systems, in: Control and
Optimization with Differential-Algebraic Constraints, Ad-
vances in Design and Control Vol. 23 (SIAM, Philadelphia,
2012), pp. 17–36.

[5] T. Berger, Disturbance decoupling by behavioral feedback for
linear differential-algebraic systems, Submitted to Automat-
ica, preprint available from the website of the author, 2015.

[6] T. Berger, A. Ilchmann, and S. Trenn, Linear Algebra Appl.
436(10), 4052–4069 (2012).

[7] T. Berger and S. Trenn, SIAM J. Matrix Anal. & Appl. 33(2),
336–368 (2012).

[8] T. Berger and S. Trenn, SIAM J. Matrix Anal. & Appl. 34(1),
94–101 (2013).

[9] K. T. Wong, J. Diff. Eqns. 16, 270–280 (1974).
[10] T. Berger and T. Reis, Controllability of linear differential-

algebraic systems - a survey, in: Surveys in Differential-
Algebraic Equations I, Differential-Algebraic Equations Fo-
rum (Springer-Verlag, Berlin-Heidelberg, 2013), pp. 1–61.

[11] T. Berger and S. Trenn, Syst. Control Lett. 71, 54–61 (2014).
[12] T. Berger, T. Reis, and S. Trenn, Observability of linear

differential-algebraic systems, in: Surveys in Differential-
Algebraic Equations IV, Differential-Algebraic Equations Fo-
rum (Springer-Verlag, Berlin-Heidelberg, 2016), to appear.

[13] W. M. Wonham, Linear Multivariable Control: A Geometric
Approach, 3rd edition (Springer-Verlag, New York, 1985).
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