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Abstract

We show that the Kronecker canonical form (which is a canonical decomposition for pairs of
matrices) is the representation of a linear relation in a finite dimensional space. This provides a
new geometric view upon the Kronecker canonical form. Each of the four entries of the Kronecker
canonical form has a natural meaning for the linear relation which it represents. These four
entries represent the Jordan chains at finite eigenvalues, the Jordan chains at infinity, the so-called
singular chains and the multi-shift part. Or, to state it more concise: For linear relations the
Kronecker canonical form is the analogue of the Jordan canonical form for matrices.
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1 Introduction

Solutions of linear ordinary differential equations of the form

ẋ(t) = Ax(t)

can be completely characterized by the eigenvalues and generalized eigenvectors of the matrix A, i.e.,
by the Jordan canonical form of A. If E is an invertible matrix, the same applies to the equation

Eẋ(t) = Ax(t), (1.1)

and the solutions are encoded in the Jordan canonical form of

E−1A. (1.2)

The situation is more challenging when E is not invertible. Then (1.1) may contain purely algebraic
equations; for instance if E has a zero row, then the corresponding equation does not contain any
derivatives. Thus (1.1) is called a differential-algebraic equation (DAE), see e.g. [10, 18, 20]. A
characterization of the solutions of (1.1) (see e.g. [6]) is done via the Kronecker canonical form (KCF ).
The KCF is a canonical form for a matrix pair (E,A) (often considered in the form of a matrix pencil
sE−A) and, hence, a generalization of the Jordan canonical form. It has its origin in [17], see also [15].

But even in the case of a non-invertible matrix E, the expression (1.2) can be given a meaning. For
this we use the theory of linear relations (or, what is the same, of multi-valued mappings), see [1, 26]
for instance. Each matrix (or linear mapping) is considered via its graph as a subspace in Cn × Cn.
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Addition and multiplication of two subspaces are defined in analogy to the addition and multiplication
of two linear mappings, for details see Section 2. In the sense of linear relations, the inverse E−1 of a
non-invertible matrix E is given as the subspace of all tuples (Exx ) in Cn×Cn. Then expression (1.2)
has a natural meaning,

E−1A = { (x, y) ∈ Cn × Cn | Ax = Ey } ,

which was already studied in [4, 5]. An eigenvector at λ ∈ C of E−1A is a tuple of the form (x, λx) ∈
E−1A, x 6= 0, and thus satisfies Ax = λEx. It follows that the (point) spectrum of E−1A and the
(point) spectrum of the matrix pencil sE − A coincide. This shows a deep connection between the
matrix pair (E,A) and the linear relation E−1A.

It is the aim of the present paper to explore this connection. While the connection between the
(point) spectra (and the Jordan chains) of E−1A and the matrix pencil sE − A is quite obvious and
in a certain sense due to the “right” definition of Jordan chains of E−1A, another aspect is more
stunning and the main objective of this paper: The connection of the KCF of a matrix pair and the
linear relation A represented with the help of these matrices. For this we show in Section 3 that an
arbitrary linear relation A in Cn×Cncan be represented with matrices A,E, F,G in the following way

A = GF−1 = E−1A. (1.3)

We restrict ourselves to the representation A = GF−1 and show that the KCF of the matrix pair
(F,G) is indeed a canonical form for the linear relation A. We show that each of the four entries
of the KCF has a natural meaning for the linear relation A. These are the Jordan chains at finite
eigenvalues, the Jordan chains at infinity, the singular chains and the multishifts. This is the main
result of the present paper:

The Kronecker canonical form of a matrix pair (F,G)
is the canonical form for the linear relation A = GF−1.

This provides new geometric insight for the entries of the KCF. Moreover, as a byproduct, we
obtain a decomposition result for linear relations, which completes the considerations in [24].

The present paper can be viewed as the link between two different fields in linear algebra: linear
relations and matrix pairs (or matrix pencils).

The paper is organized as follows: In Section 2 we give a short but self-contained introduction
to the theory of linear relations which covers all relevant notions like Jordan chains, singular chains
and multishifts. In particular, for readers not so familiar with linear relations, we illustrate these
concepts with simple examples. In Section 3 we show that any linear relation has a representation of
the form (1.3) which is called image and kernel representation, respectively. The KCF is recalled in
Section 4 and its block entries are related to some properties of linear relations. Using the KCF of
the image representation of a linear relation, we obtain a full characterization of a linear relation in
terms of its Jordan chains at finite eigenvalues, its Jordan chains at infinity, its singular chains and its
multi-shift part. As a byproduct, a canonical decomposition for linear relations is shown. In Section 5
we recall the notion of Wong sequences and exploit them to derive representations for the root and
Jordan chain manifolds of a linear relation.

2 Preliminaries: Linear relations

Let H and G be linear spaces. A linear relation A in H×G is a (linear) subspace of H×G. A linear
relation A is usually viewed as a multivalued mapping. We restrict ourselves to finite dimensional
spaces H = Cn and G = Cm. Moreover, if H and G coincide, i.e., if H = G = Cn, then we briefly say
that A is a linear relation in Cn instead of Cn × Cn. Most of the definitions below remain valid for
infinite-dimensional spaces, see e.g. [13].
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Linear mappings (e.g. given via a matrix) are always identified with linear relations via their
graphs. For the general study of linear relations we refer to the monographs [12, 16], see also [1, 26].

It is usual to write the elements of A as (x, y) for x ∈ Cn and y ∈ Cm. In the older literature
it is also usual to write the elements of A as column vectors ( xy ). Here, we agree not to distinguish
between these two notions.

By domA and ranA we denote the domain and the range of a linear relation A in Cn × Cm,

domA = { x ∈ Cn | ∃ y ∈ Cm : (x, y) ∈ A }
and ranA = { y ∈ Cm | ∃x ∈ Cn : (x, y) ∈ A } .

Furthermore, kerA and mulA denote the kernel and the multivalued part of A,

kerA = { x ∈ Cn | (x, 0) ∈ A } and mulA = { y ∈ Cm | (0, y) ∈ A } .

A linear relation A is the graph of an operator if, and only if, mulA = {0}. The inverse A−1 is given
by

A−1 = { (y, x) ∈ Cm × Cn | (x, y) ∈ A } . (2.1)

For relations A and B in Cn × Cm the operator-like sum A+ B is the relation defined by

A+ B = { (x, y + z) ∈ Cn × Cm | (x, y) ∈ A, (x, z) ∈ B } .

and for λ ∈ C the relation λA is defined by

λA = { (x, λy) ∈ Cn × Cm | (x, y) ∈ A } ,

We illustrate the above definitions by a simple example.

Example 2.1. Let e1, e2 be the two linearly independent unit vectors in C2. Define

A := span {(0, e1), (e1, e2), (e2, 0)}, B := span {(e2, e1), (e1, 0)},
C := span {(e1, 2e1)} and D := span {(e1, e2)},

which are subspaces in C2 × C2, and hence linear relations in C2. We have

domA = C2 domB = C2 dom C = span {e1} domD = span {e1}
ranA = C2 ranB = span {e1} ran C = span {e1} ranD = span {e2}
kerA = span {e2} kerB = span {e1} ker C = {0} kerD = {0}
mulA = span {e1} mulB = {0} mul C = {0} mulD = {0}.

Moreover, A is not the graph of an operator whereas B is the graph of the linear mapping induced
by the matrix [ 0 1

0 0 ]. The relations C and D are the graphs of operators which are defined only on the
subset span {e1} ⊆ C2 and map e1 to 2e1, resp. e1 to e2. The inverses are given by

A−1 := span {(0, e2), (e2, e1), (e1, 0)}, B−1 := span {(0, e1)(e1, e2)},
C−1 := span {(e1, 12e1)} and D−1 := span {(e2, e1)},

and, the (operator-like) sum of A and C, the sum of C and 5D and the sum of C and D−1 are given by

A+ C = span {(0, e1), (e1, 2e1 + e2)},

C + 5D = span {(e1, 2e1 + 5e2)}, and C +D−1 = {0}.
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For relations A in Cn × Cm and B in Cp × Cn the product AB is defined as the relation

AB = { (x, y) ∈ Cp × Cm | (x, z) ∈ B, (z, y) ∈ A for some z ∈ Cn } . (2.2)

We recall the notion of eigenvalues, root manifolds and point spectrum of linear relations. There-
fore, let A be a linear relation in Cn, i.e., m = n. Then, with the notion of operator-like sum from
above, the expression A− λ stands for A− λI, where I is the identity operator on Cn,

A− λ = { (x, y − λx) ∈ Cn × Cn | (x, y) ∈ A } .

A point λ ∈ C is called an eigenvalue of A if ker (A − λ) 6= {0} and ∞ is called an eigenvalue of A
if mulA 6= {0}. The point spectrum σp(A) is the set of all eigenvalues λ ∈ C ∪ {∞} of A. The root
manifolds Rλ(A) and R∞(A) are defined by

Rλ(A) :=
⋃
i∈N

ker (A− λ)i, R∞(A) :=
⋃
i∈N

mulAi.

It is clear that ker (A− λ)k ⊆ ker (A− λ)k+1 and mulAk ⊆ mulAk+1 for any k ∈ N. By [25, Lemma
3.4] and the fact that A is a linear relation in a finite dimensional space Cn, there exists a natural
number n0 ≤ n such that ker (A− λ)k = ker (A− λ)k+1 for all k ≥ n0. A similar statement holds for
mulAk. For x ∈ ker (A− λ)l \ ker (A− λ)l−1, l ≥ 1, we find (cf. (2.2)) x1, . . . , xl−1 ∈ Cn such that

(x, xl−1), (xl−1, xl−2), . . . , (x2, x1), (x1, 0) ∈ A− λ

or, equivalently,

(x, xl−1 + λx), (xl−1, xl−2 + λxl−1), . . . , (x2, x1 + λx2), (x1, λx1) ∈ A. (2.3)

The vectors x1, . . . , xl−1, x ∈ Cn are linearly independent and (2.3) is called a Jordan chain at λ,
see [24, Lemma 2.1]. Moreover, we say that it is a Jordan chain of length l. Similarly, for y ∈
mulAm \mulAm−1, m ≥ 1, there are y1, . . . , ym−1 ∈ Cn such that

(0, y1), (y1, y2), . . . , (ym−2, ym−1), (ym−1, y) ∈ A. (2.4)

The vectors y1, . . . , yn−1, y ∈ Cn are linearly independent and (2.4) is called a Jordan chain at ∞ (cf.
[24, Lemma 2.1]). Moreover, we say that it is a Jordan chain of length m. Obviously, a chain of the
form (2.4) is a Jordan chain at ∞ (of length m) if, and only if,

(y, ym−1), (ym−1, ym−2), . . . , (y2, y1), (y1, 0)

is a Jordan chain of A−1 at 0 (of length m).

Example 2.2. For the linear relations B and C from Example 2.1 we have

σp(B) = {0}, and σp(C) = {2}.

In addition, for the linear relation B the chain (e2, e1), (e1, 0) is a Jordan chain of length two at 0 and
for C the chain (e1, 2e1) is a Jordan chain of length one at 2 with

R0(B) = C2, and R2(C) = span {e1}.

We define the Jordan chain manifold RJ(A) as the linear span of all root manifolds,

RJ(A) := span { Rλ(A) | λ ∈ σp(A) } ,

and the finite Jordan chain manifold Rf (A) as the linear span of all root manifolds Rλ(A) with
λ 6=∞,

Rf (A) := span { Rλ(A) | λ ∈ C } .
Obviously, if A is the graph of an operator in the finite dimensional space Cn, then Rf (A) = RJ(A) =
Cn. The converse is not true in general, which is illustrated by the following example.
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Example 2.3. The linear relation A from Example 2.1 is not the graph of an operator. Its chain
(e1, e2), (e2, 0) is a Jordan chain at 0 and (0, e1), (e1, e2) is a Jordan chain at ∞. Therefore 0,∞ ∈
σp(A). We have R0(A) = C2 and R∞(A) = C2, thus

Rf (A) = RJ(A) = C2.

Moreover, we obtain
R0(A) ∩R∞(A) 6= {0}. (2.5)

In the following example we compute the point spectrum of the linear relation A from Example
2.1.

Example 2.4. From Example 2.3 we conclude 0,∞ ∈ σp(A). For λ ∈ C \ {0} we have

(e1 + λ−1e2, λe1 + e2) = λ(0, e1) + (e1, e2) + λ−1(e2, 0) ∈ A,

and, hence, e1 + λ−1e2 ∈ ker (A− λ). This implies λ ∈ σp(A) and we conclude

σp(A) = C ∪ {∞}.

It is well-known [24, Proposition 3.2 and Theorem 4.4] that it is the property in (2.5) which is
equivalent to σp(A) = C ∪ {∞}. We recall this important fact from [24] in the following lemma.

Lemma 2.5. Let A be a linear relation in Cn. Then σp(A) = C ∪ {∞} if, and only if, R0(A) ∩
R∞(A) 6= {0}.

In the sequel the set R0(A) ∩ R∞(A) is useful in the study of linear relations and it is called the
singular chain manifold,

Rc(A) := R0(A) ∩R∞(A).

Moreover, A is called completely singular, if

A = A ∩ (Rc(A)×Rc(A)). (2.6)

For any x ∈ Rc(A) \ {0} there exist linearly independent x1, . . . , xk ∈ Cn (see [24, Lemma 3.1]) such
that x = xj for some j ∈ {1, . . . , k} and

(0, x1), (x1, x2), . . . , (xk−1, xk), (xk, 0) ∈ A. (2.7)

A chain of this form is called a singular chain. Moreover, we say that it is a singular chain of length
k. A linear relation A is completely singular if, and only if, it is the span of singular chains of the
form (2.7), see [24, Section 7].

If Rc(A) = {0} (and hence σp(A) 6= C∪{∞} by Lemma 2.5), then (see e.g. [24, Theorem 4.6]) the
number of eigenvalues in σp(A) is bounded by the dimension of the linear subspace A. If, in addition,
the linear relation A consists only of Jordan chains at the (finitely many) eigenvalues, then we call A
a Jordan relation.

Apart from linear relations in Cn with finite point spectrum and with point spectrum equal to
C ∪ {∞} there exist also linear relations with no point spectrum.

Example 2.6. For the linear relation D from Example 2.1 we have mulD = {0} and hence∞ /∈ σp(D).
Moreover, for λ ∈ C,

D − λ = span {(e1, e2 − λe1)}.
As e1, e2 are linearly independent unit vectors, we have e2 − λe1 6= 0 for all λ ∈ C, thus λ /∈ σp(A)
which implies

σp(A) = ∅. (2.8)

We use property (2.8) for the definition of a subclass of all linear relations: A linear relation A in
Cn with σp(A) = ∅ is called a multishift (see, e.g., [24, Section 8]).
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3 Image and kernel representations of linear relations

In this section we derive two representations for a linear relation A in Cn. It is well-known that if
there exists a complex number µ with ran (A − µ) = Cn and ker (A − µ) = {0}, then the inverse of
A − µ is a linear mapping defined on Cn, that is (A − µ)−1 can be identified with a matrix in Cn×n
and A admits a representation of the form (see, e.g., [14, Proposition 2.2])

A =
{

((A− µ)−1x, (I + µ(A− µ)−1)x) ∈ Cn × Cn
∣∣ x ∈ Cn

}
. (3.1)

Definition 3.1. A representation of a linear relation A in Cn of the form

A =
{

(Fz,Gz) ∈ Cn × Cn
∣∣∣ z ∈ Cd

}
= ran

[
F
G

]
with d ∈ N and matrices F,G ∈ Cn×d is called an image representation of A. A representation of A
of the form

A = { (x, y) ∈ Cn × Cn | Ax = Ey } = ker [A,−E]

with matrices A,E ∈ Cr×n and r ∈ N is called a kernel representation of A.

Observe that (3.1) is a special case of an image representation where d = n.
Let us consider a linear relation A in Cn with image and kernel representation as in Definition 3.1.

As usual, we identify the matrices F and G with the corresponding relations via their graphs,

F =
{

(x, Fx) ∈ Cd × Cn
∣∣∣ x ∈ Cd

}
and G =

{
(y,Gy) ∈ Cd × Cn

∣∣∣ y ∈ Cd
}
.

We have, see (2.1), F−1 =
{

(Fy, y) ∈ Cn × Cd
∣∣ y ∈ Cd

}
and with (2.2)

GF−1 =
{

(x, y)
∣∣ (x, z) ∈ F−1, (z, y) ∈ G for some z ∈ Cd

}
=

{
(x,Gz)

∣∣ (z, x) ∈ F, (z,Gz) ∈ G for some z ∈ Cd
}

=
{

(Fz,Gz)
∣∣ z ∈ Cd

}
= ran

[
F
G

]
= A.

(3.2)

Similarly, if we identify A and E with the corresponding relations A = { (x,Ax) ∈ Cn × Cr | x ∈ Cn }
and E = { (y,Ey) ∈ Cn × Cr | y ∈ Cn }, then, with E−1 = { (Ey, y) ∈ Cr × Cn | y ∈ Cn } and with
(2.2), we obtain

E−1A =
{

(x, y)
∣∣ (x, z) ∈ A, (z, y) ∈ E−1 for some z ∈ Cr

}
= { (x, y) ∈ Cn × Cn | Ax = Ey } = ker [A,−E] = A.

(3.3)

We have thus proved the following result.

Lemma 3.2. Let A be a linear relation in Cn with image and kernel representation as in Definition 3.1.
Then we have

A = GF−1 = E−1A.

In the following we show that for every relation in Cn an image and a kernel representation exist.

Theorem 3.3. Let A be a linear relation in Cn with dimA = d. Then there exist matrices F,G ∈ Cn×d
with

rk

[
F
G

]
= d (3.4)

such that

A =
{

(Fz,Gz) ∈ Cn × Cn
∣∣∣ z ∈ Cd

}
= ran

[
F
G

]
= GF−1. (3.5)

6



Moreover, for r = 2n− d there exist matrices A,E ∈ Cr×n with

rk [A,E] = r

such that
A = { (x, y) ∈ Cn × Cn | Ax = Ey } = ker [A,−E] = E−1A. (3.6)

Proof. The third equality in (3.5) and in (3.6) follows from Lemma 3.2. We have A⊕A⊥ = Cn ×Cn
and dimA⊥ = r. Therefore, we find vector space isomorphisms

V : Cd → A and W : Cr → A⊥. (3.7)

Denote by P1 and P2 the orthogonal projection in Cn × Cn onto the first and second component,
respectively. Then we obtain

A = ran

[
P1V
P2V

]
and A⊥ = ran

[
P1W
P2W

]
(3.8)

and (3.5) is shown. In order to show (3.6) we continue with

A =

(
ran

[
P1W
P2W

])⊥
= { (y, z) ∈ Cn × Cn | ∀x ∈ Cr : y∗P1Wx+ z∗P2Wx = 0 }

= ker [(P1W )∗, (P2W )∗] = ker [W ∗P1,W
∗P2].

The kernel representation (3.6) of a linear relation A was already considered in [4, 5] using the
notation

E\A := { (x, y) ∈ Cn × Cn | Ax = Ey } .

However, Lemma 3.2 and Theorem 3.3 show

E\A = E−1A.

Remark 3.4. It seems natural to single out the cases when A allows an image representation (a kernel
representation) with square matrices F and G (A and E, respectively). Obviously, if dimA ≤ n, then
we can choose in (3.7) a mapping V : Cn → A such that V is surjective but not necessarily injective.
Note that in this case V is an isomorphism if, and only if, dimA = n. Then we obtain as in (3.8) an
image representation with square matrices. Conversely, if A has an image representaion with square
matrices F,G ∈ Cn×n, then

dimA = dim ran

[
F
G

]
≤ n.

Therefore there exists an image representation of A with square matrices if, and only if, dimA ≤ n.
By similar arguments, there exists a kernel representation of A with square matrices if, and only if,
dimA ≥ n.

4 Kronecker canonical form

In this section we recall the KCF and show how it is related to the decomposition of an associated
linear relation. We introduce the following notation: Let α be a multi-index, α = (α1, . . . , αl) ∈ Nl.
As usual, the absolute value of α is |α| =

∑l
i=1 αi. For k ∈ N we define the matrices

Nk =

[
0
1

1 0

]
∈ Ck×k, Nα = diag (Nα1 , . . . , Nαl) ∈ C|α|×|α|
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For k ∈ N, k > 1, we define the rectangular matrices

Kk =
[
1 0

1 0

]
, Lk =

[
0 1

0 1

]
∈ C(k−1)×k.

For some multi-index α = (α1, . . . , αl) ∈ Nl, with αj > 1 for all j = 1, . . . , l, we define

Kα = diag (Kα1 , . . . ,Kαl), Lα = diag (Lα1 , . . . , Lαl) ∈ C(|α|−l)×|α|. (4.1)

We extend the above notion to multi-indices α = (α1, . . . , αl) ∈ Nl where some entries are equal to
1 but α 6= (1, 1, . . . , 1). In this case, we define Kα and Lα in the following way: Collect in a multi-
index α0 all entries of α which are larger than 1, α0 = (αj1 , . . . , αjk) with 1 ≤ k ≤ l − 1. We have
|α0| − k = |α| − l and Kα0 (Lα0) is defined via (4.1) and is of size (|α0| − k)× |α0|. Then Kα (Lα,
respectively) is defined by augmenting Kα0 (Lα0 , respectively) by |α| − |α0| zero columns without
changing the number of rows in such a way that to each entry αj = 1 in α there corresponds a zero
column located at the j-th position. Then Kα and Lα are of size (|α| − l)× |α|. As an example
consider

K(1,2) :=
[
0 1 0

]
and K(1,2,1,3) :=

0 1 0 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

 .
Moreover, we extend the above notion to the case α = (1, 1, . . . , 1) ∈ Nl, if Kα and Lα are diagonal
blocks entries of a larger matrix with other proper defined matrix elements. For instance, let M ∈
Cm×n, α = (1, 1, . . . , 1) ∈ Nl. Then we define

diag (M,Kα) := [M, 0m×l] ∈ Cm×(n+l), diag (Kα,M) := [0m×l,M ] ∈ Cm×(n+l),

diag (M,Lα) := [M, 0m×l] ∈ Cm×(n+l), diag (Lα,M) := [0m×l,M ] ∈ Cm×(n+l).

Similarly,

diag (M,K>α ) :=

[
M

0l×n

]
∈ C(m+l)×n, diag (M,L>α ) :=

[
M

0l×n

]
∈ C(m+l)×n.

Finally, we define for β = (1, 1, . . . , 1) ∈ Nl and γ = (1, 1, . . . , 1) ∈ Nm

diag (Kβ,K
>
γ ) = 0m×l ∈ Cm×l.

Some of the properties of the matrices Kα, Lα and Nα are collected in the following lemma.

Lemma 4.1. For α ∈ Nl we have

rkKα = rkLα = rkNα = |α| − l.

Furthermore, for all λ ∈ C,
rk(λKα − Lα) = |α| − l,

and in particular
kerK>α = ker (λK>α − L>α ) = {0}.

Kronecker proved in [17] that any pair of matrices F , G can be transformed into a canonical form,
see also [8, 9, 15]. Here we refer to the version in [15].
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Theorem 4.2 (Kronecker canonical form). For any pair of matrices F,G ∈ Cn×d there exist invertible
matrices W ∈ Cn×n and T ∈ Cd×d such that

WFT =


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ

 and WGT =


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ

 (4.2)

for some A0 ∈ Cn0×n0 in Jordan canonical form and multi-indices α ∈ Nnα, β ∈ Nnβ , γ ∈ Nnγ . The
multi-indices α, β, γ are unique up to a permutation of their respective entries. Further, the matrix
A0 is unique up to a permutation of its Jordan blocks.

The entries of the multi-indices α, β, γ are called minimal indices and elementary divisors and play
an important role in the analysis of matrix pairs (F,G), see e.g. [8, 9, 21, 22, 23], where the entries
of α are the orders of the infinite elementary divisors, the entries of β are the column minimal indices
and the entries of γ are the row minimal indices.

In what follows, we investigate the relationship between a linear relation A and the KCF of the
matrices F and G from its image representation (cf. Definition 3.1). Then with the notation from
Theorem 4.2 we find

A = ran

[
F
G

]
= ran



W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ




. (4.3)

In the following proposition we collect some properties of the multi-index β from Theorem 4.2 and
obtain a characterization of the dimension of A in terms of the indices which appear in the KCF (4.2).

Proposition 4.3. Let A be a linear relation in Cn with dimA = d ≥ 1. Let F,G ∈ Cn×d with
rk
[
F
G

]
= d be such that A = ran

[
F
G

]
and let W ∈ Cn×n, T ∈ Cd×d be invertible matrices such that

WFT and WGT are in KCF (4.2). Then the following statements hold.

(i) Either nβ = 0 or βi ≥ 2 for all i = 1, . . . , nβ.

(ii) The dimension of A satisfies dimA = n0 + |α|+ |β|+ |γ| − nγ .

(iii) We have dimA ≥ n if, and only if, nβ ≥ nγ.

(iv) We have dimA ≤ n if, and only if, nβ ≤ nγ.

Proof. Since the entries of the multi-index β which equal 1 correspond to zero columns in
[
F
G

]
,

statement (i) follows from rk
[
F
G

]
= d. In order to show (ii), observe that for k > 1[

Kk

Lk

]
∈ C2(k−1)×k and

[
K>k

L>k

]
∈ C2k×(k−1)

with

rk

[
Kk

Lk

]
= k and rk

[
K>k

L>k

]
= k − 1.
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Therefore, for β ∈ Nnβ and γ ∈ Nnγ and with (i) we see

rk

[
Kβ

Lβ

]
= |β| and rk

[
K>γ

L>γ

]
= |γ| − nγ .

Then (ii) follows from (4.3). As n is the number of rows in the KCF (4.2),

n = n0 + |α|+ |β| − nβ + |γ|.

and a comparison with (ii) yields (iii) and (iv)

The properties of the linear relation A are encoded in the different blocks of the KCF. We start
with the following simple example.

Example 4.4. Let A be a linear relation in Cn in the form (4.3). Assume, for simplicity, that W
and T in (4.2) are equal to the identity map.

(i) Assume that in (4.2) only the first row appears, i.e. the matrices F and G are of the form

F = In0 and G = A0,

for some A0 ∈ Cn0×n0 in Jordan canonical form. Then A is given by

A = ran

[
F
G

]
= ran

[
In0

A0

]
=

{ [
x
A0x

] ∣∣∣∣ x ∈ Cn0

}
.

For λ ∈ C and x ∈ Cn0 \ {0} we have A0x = λx if, and only if, (x, λx) ∈ A. This is equivalent
to (x, 0) ∈ A− λ, hence

σp(A) = σ(A0),

where σ(A0) denotes the spectrum of the matrix A0. In particular, the point spectrum of A
consists of finitely many points.

(ii) Assume that in (4.2) only the second row appears, i.e., the matrices F and G are of the form

F = Nα and G = I|α|

and we have

A = ran

[
F
G

]
= ran

[
Nα

I|α|

]
=

{ [
Nαy
y

] ∣∣∣∣ y ∈ C|α|
}
.

The matrix Nα has only the eigenvalue zero. Hence

A−1 = ran

[
I|α|
Nα

]
=

{ [
y

Nαy

] ∣∣∣∣ y ∈ C|α|
}

has only the eigenvalue zero and A is a Jordan relation with only eigenvalue ∞.

(iii) Assume that in (4.2) only the third row appears and that the multi-index β consists of one entry
only, β = k for some k ∈ N, k > 1,

F = Kk and G = Lk.

Then

A = ran

[
F
G

]
= ran

[
Kk

Lk

]
=

{ [
Kkx
Lkx

] ∣∣∣∣ x ∈ Ck
}
.
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For standard unit vectors ei ∈ Ck we calculate Kkek = 0 = Lke1 and for i = 1, . . . , k − 1 we
denote the unit vectors in Ck−1 by êi and obtain

Kkei = êi, Lkei+1 = êi.

Therefore,

(0, êk−1) = (Kkek, Lkek) ∈ A,
(êk−1, êk−2) = (Kkek−1, Lkek−1) ∈ A,

...

(ê2, ê1) = (Kke2, Lke2) ∈ A,
(ê1, 0) = (Kke1, Lke1) ∈ A,

which is a singular chain in A.

(iv) Finally, assume that in (4.2) only the fourth row appears and that the multi-index γ consists of
one entry only, γ = k for some k ∈ N, k > 1,

F = K>k and G = L>k .

Then

A = ran

[
F
G

]
= ran

[
K>k

L>k

]
=

{ [
K>k y

L>k y

] ∣∣∣∣∣ y ∈ Ck−1
}
.

For λ ∈ C we have (x, λx) ∈ A with x 6= 0 if, and only if, there exists y ∈ Ck−1 \ {0} with
x = K>k y and λx = L>k y. This is equivalent to ker (λK>k − L>k ) 6= {0}. But Lemma 4.1 implies
ker (λK>k − L>k ) = {0} for all λ ∈ C, thus

ker (A− λ) = {0}.

Similarly, x ∈ mulA if, and only if, there exists y ∈ Ck−1 with 0 = K>k y and x = L>k y. But
Lemma 4.1 implies kerK>k = {0} and hence mulA = {0}. Therefore, σp(A) = ∅ and A is a
multishift.

Example 4.4 indicates that in the first block of the KCF the (finite) eigenvalues of A = ran
[
F
G

]
are

encoded. The second block represents the eigenvalue ∞, the third block the singular chains and the
fourth the multishifts. This relationship is exploited in all details (i.e., with emphasis on the number
and length of the chains of different types) in the next theorem which is the main result of this paper.
In what follows two chains are called linearly independent if their entries are linearly independent.

Theorem 4.5. Let A be a linear relation in Cn with dimA = d ≥ 1. Let F,G ∈ Cn×d with rk
[
F
G

]
= d

be such that A = ran
[
F
G

]
and let W ∈ Cn×n, T ∈ Cd×d be invertible matrices such that WFT and

WGT are in KCF (4.2) with α = (α1, . . . , αnα), β = (β1, . . . , βnβ ), and γ = (γ1, . . . , γnγ ).

(i) For the singular chain manifold we have

Rc(A) = W−1
(
{0}n0 × {0}|α| × C|β|−nβ × {0}|γ|

)
.

Moreover, A∩
(
Rc(A)×Rc(A)

)
is spanned by nβ linearly independent singular chains of lengths

β1 − 1, β2 − 1, . . . , βnβ − 1.

11



(ii) For the root manifold at ∞ we have

R∞(A) = W−1
(
{0}n0 × C|α| × C|β|−nβ × {0}|γ|

)
.

Moreover, A ∩
(
R∞(A) × R∞(A)

)
is spanned by nα + nβ linearly independent chains with nβ

singular chains of lengths β1 − 1, β2 − 1, . . . , βnβ − 1 and nα Jordan chains at ∞ of lengths
α1, α2, . . . , αnα.

(iii) For the finite Jordan chain manifold we have

Rf (A) = W−1
(
Cn0 × {0}|α| × C|β|−nβ × {0}|γ|

)
.

Moreover, A ∩
(
Rf (A) × Rf (A)

)
is spanned by a set of linearly independent chains consisting

of nβ singular chains of lengths β1 − 1, β2 − 1, . . . , βnβ − 1 and the Jordan chains constituted by
the Jordan chain vectors of the matrix A0. In particular, we have σ(A0) ⊆ σp(A).

(iv) For the Jordan chain manifold we have

RJ(A) = W−1
(
Cn0 × C|α| × C|β|−nβ × {0}|γ|

)
.

Moreover, A ∩
(
Rf (A) × Rf (A)

)
is spanned by a set of linearly independent chains consisting

of nβ singular chains of lengths β1− 1, β2− 1, . . . , βnβ − 1 and nα Jordan chains at ∞ of lengths
α1, α2, . . . , αnα and the Jordan chains constituted by the Jordan chain vectors of the matrix A0.

Proof. Step 1

We show (i). Let x ∈ Rc(A) \ {0}. Then there exists a singular chain of the form (2.7) with linearly
independent x1, . . . , xk ∈ Cn and x = xj for some j ∈ {1, . . . , k}. By A = ran

[
F
G

]
there exist

z1, . . . , zk+1 ∈ Cd such that
(0, x1) = (Fz1, Gz1),

(x1, x2) = (Fz2, Gz2),
...

(xk−1, xk) = (Fzk, Gzk),
(xk, 0) = (Fzk+1, Gzk+1).

(4.4)

For i ∈ {1, . . . , k + 1} define yi = T−1zi. Partitioning yi = (y>i,1, . . . , y
>
i,4)
> with yi,1 ∈ Cn0 , yi,2 ∈ C|α|,

yi,3 ∈ C|β|, yi,4 ∈ C|γ|−nγ according to the decomposition (4.2), we obtain from the first equation
in (4.4) that

0 = Fz1 = W−1(WFT )T−1z1 = W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



y1,1
y1,2
y1,3
y1,4


and hence y1,1 = 0 and K>γ y1,4 = 0, thus, by Lemma 4.1, y1,4 = 0. Furthermore,

x1 = Gz1 = W−1(WGT )T−1z1

= W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ



y1,1
y1,2
y1,3
y1,4

 = W−1


0
y1,2
Lβy1,3

0

 .
(4.5)
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The second equation in (4.4) gives

x1 = Fz2 = W−1(WFT )T−1z2 = W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



y2,1
y2,2
y2,3
y2,4


and a comparison with (4.5) yields y2,1 = 0 and K>γ y2,4 = 0, thus, by Lemma 4.1, y2,4 = 0. Further-
more,

x2 = Gz2 = W−1(WGT )T−1z2

= W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ



y2,1
y2,2
y2,3
y2,4

 = W−1


0
y2,2
Lβy2,3

0

 .

Proceeding in this way, we see

xi = W−1


0
yi,2
Lβyi,3

0

 , i = 1, . . . , k. (4.6)

From the last equation in (4.4) we conclude that

0 = Gzk+1 = W−1(WGT )T−1zk+1 = W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ



yk+1,1

yk+1,2

yk+1,3

yk+1,4


and hence yk+1,2 = 0 and L>γ yk+1,4 = 0, thus, by Lemma 4.1, yk+1,4 = 0. Furthermore,

xk = Fzk+1 = W−1(WFT )T−1zk+1

= W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



yk+1,1

yk+1,2

yk+1,3

yk+1,4

 = W−1


yk+1,1

0
Kβyk+1,3

0

 .

Proceeding in this way gives

xi = W−1


yi+1,1

0
Kβyi+1,3

0

 , i = 1, . . . , k,

and together with (4.6) we find

W−1


0
yi,2
Lβyi,3

0

 = xi = W−1


yi+1,1

0
Kβyi+1,3

0


for all i = 1, . . . , k. This implies that

x = xj = W−1


0
0

Lβyj,3
0

 ∈W−1 ({0}n0 × {0}|α| × C|β|−nβ × {0}|γ|
)
.
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Conversely, let us start with the case that Kβ and Lβ consist of one block only. That is, nβ = 1
and β = k with some k ∈ N, k ≥ 2, cf. Proposition 4.3. Define

y1 :=


0
0
...
0
1

 , y2 :=


0
...
0
1
0

 , . . . , yk :=


1
0
...
0
0

 ∈ Ck. (4.7)

Then 0 = Kky1, Lkyk = 0, and

Lky1 = Kky2 =


0
...
0
1

 ∈ Ck−1, . . . , Lkyk−1 = Kkyk =


1
0
...
0

 ∈ Ck−1. (4.8)

Set
x0 := 0, xi := W−1(0, 0, (Lkyi)

>, 0)>, for i = 1, . . . , k − 1, and xk := 0.

As WFT , WGT are in KCF (4.2), we find that, invoking (4.8),

(
xi−1
xi

)
=



W−1


In0 0 0 0
0 Nα 0 0
0 0 Kk 0
0 0 0 K>γ



W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lk 0
0 0 0 L>γ






0
0
yi
0

 =

[
F
G

]
T


0
0
yi
0

 ∈ ran

[
F
G

]
= A

for i = 1, . . . , k, and hence

(0, x1), (x1, x2), . . . , (xk−2, xk−1), (xk−1, 0) ∈ A. (4.9)

We see from (4.8) that Lky1, . . . , Lkyk−1 are the unit vectors in Ck−1. Hence, x1, . . . , xk−1 are linearly
independent and (4.9) constitutes a singular chain as in (2.7). Therefore, if the multi-index β has only
one entry and if this entry equals k, then (4.9) is a singular chain of length k − 1 and in particular

Rc(A) = W−1
(
{0}n0 × {0}|α| × Ck−1 × {0}|γ|

)
.

This, (4.3), and the fact that [yk, . . . , y1] = Ik ∈ Ck×k yield

A ∩
(
Rc(A)×Rc(A)

)

= ran



W−1


0
0
Kk

0



W−1


0
0
Lk
0




[yk, . . . , y1] = ran



W−1


0
0

[Lkyk−1, . . . , Lky1, 0]
0



W−1


0
0

[0, Lkyk−1, . . . , Lky1]
0




= span {(0, x1), (x1, x2), . . . , (xk−2, xk−1), (xk−1, 0)}.
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In the general case β ∈ Nnβ with nβ > 1 we have nβ decoupled blocks in Kβ and Lβ and for each
block the above construction leads to a singular chain of A. In this manner we obtain nβ linearly
independent singular chains of lengths β1−1, β2−1, . . . , βnβ−1, resp., which spanA∩

(
Rc(A)×Rc(A)

)
.

Step 2

We show (ii). Let y ∈ R∞(A). Then there exists a Jordan chain at ∞ of the form (2.4) with linearly
independent y1, . . . , ym−1, y ∈ Cn. Set ym := y. As in the proof of (4.6) it follows that for some
z1,2, . . . , zm,2 ∈ C|α|, z1,3, . . . , zm,3 ∈ C|β| we have

yi = W−1


0
zi,2
Lβzi,3

0

 , i = 1, . . . ,m.

This proves y ∈W−1
(
{0}n0 × C|α| × C|β|−nβ × {0}|γ|

)
.

Conversely, let z2 ∈ C|α|, z3 ∈ C|β|−nβ and set x := W−1(0, z>2 , z
>
3 , 0)>. It follows from (i) that

W−1(0, 0, z>3 , 0)> ∈ Rc(A) ⊆ R∞(A).

Assume that Nα consists of one block only. That is, nα = 1 and α = k for some k ≥ 1. Choose
y1, . . . , yk as in (4.7). Then

0 = Nky1, y1 = Nky2, . . . , yk−1 = Nkyk. (4.10)

Set x0 := 0, xi := W−1(0, y>i , 0, 0)> for i = 1, . . . , k, we obtain with (4.2) and (4.10),

(
xi−1
xi

)
=



W−1


In0 0 0 0
0 Nk 0 0
0 0 Kβ 0
0 0 0 K>γ



W−1


A0 0 0 0
0 Ik 0 0
0 0 Lβ 0
0 0 0 L>γ






0
yi
0
0

 =

[
F
G

]
T


0
yi
0
0

 ∈ ran

[
F
G

]
= A

for i = 1, . . . , k and therefore

(0, x1), (x1, x2), . . . , (xk−2, xk−1), (xk−1, xk) ∈ A. (4.11)

The vectors y1, . . . , yk in (4.7) are linearly independent and then the same holds for x1, . . . , xk.
Thus, (4.11) constitutes a Jordan chain of A at ∞ of length k. In particular, since z2 ∈
span {y1, . . . , yk} it follows that x ∈ Rc(A) + span {x1, . . . , xk} and thus we have shown that

R∞(A) = W−1
(
{0}n0 × Ck × C|β|−nβ × {0}|γ|

)
.
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This and the first step of this proof yield

A ∩
(
R∞(A)×R∞(A)

)
= ran



W−1


0 0
Nk 0
0 Kβ

0 0



W−1


0 0
Ik 0
0 Lβ
0 0





= A ∩
(
Rc(A)×Rc(A)

)
u ran



W−1


0
Nk

0
0



W−1


0
Ik
0
0




[yk, . . . , y1],

where we used that [yk, . . . , y1] = Ik ∈ Ck×k and A u B denotes the direct sum of two subspaces A
and B with A ∩ B = {0}. Therefore

A ∩
(
R∞(A)×R∞(A)

)

= A ∩
(
Rc(A)×Rc(A)

)
u ran



W−1


0

[yk−1, . . . , y1, 0]
0
0



W−1


0

[yk, . . . , y2, y1]
0
0




= A ∩

(
Rc(A)×Rc(A)

)
u span {(0, x1), (x1, x2), . . . , (xk−1, xk)},

Hence, (ii) is proved in the case nα = 1 and α = k. In general, if α ∈ Nnα , then there are nα decoupled
blocks in Nα. For each block the above construction leads to a Jordan chain of A at ∞ and we obtain
nα linearly independent Jordan chains at ∞ of lengths α1, . . . , αnα , respectively, which lead, together
with the singular chains, to the span of A ∩

(
R∞(A)×R∞(A)

)
.

Step 3

We show (iii). Let x ∈ Rf (A). Since Rf (A) has a finite basis, there exist k ∈ N and pairwise distinct
λ1, . . . , λk ∈ C such that

x ∈
k∑
i=1

Rλi(A).

Therefore, we find
vi ∈ ker (A− λi)n, i = 1, . . . , k,
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such that x = v1 + . . . + vk. We show that vi ∈ W−1
(
Cn0 × {0}|α| × C|β|−nβ × {0}|γ|

)
for all i =

1, . . . , k. For simplicity, let v := vi and λ := λi for some i ∈ {1, . . . , k}. By (2.3) there exist
v1, . . . , vn−1 ∈ Cn such that

(v, vn−1 + λv), (vn−1, vn−2 + λvn−1), . . . , (v2, v1 + λv2), (v1, λv1) ∈ A,

where, for simplicity, we do not assume that the vectors v1, . . . , vn−1, v are linearly independent. Set
vn := v. We obtain from A = ran

[
F
G

]
the existence of z1, . . . , zn ∈ Cd such that

(vn, vn−1 + λvn) = (Fzn, Gzn),

(vn−1, vn−2 + λvn−1) = (Fzn−1, Gzn−1),

...

(v2, v1 + λv2) = (Fz2, Gz2), (4.12)

(v1, λv1) = (Fz1, Gz1). (4.13)

Define yi := T−1zi for i = 1, . . . , n. Partitioning yi = (y>i,1, . . . , y
>
i,4)
> with yi,1 ∈ Cn0 , yi,2 ∈ C|α|,

yi,3 ∈ C|β|, yi,4 ∈ C|γ|−nγ according to the decomposition (4.2), we obtain from (4.13)

v1 = Fz1 = W−1(WFT )T−1z1 = W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



y1,1
y1,2
y1,3
y1,4


and

λv1 = Gz1 = W−1(WGT )T−1z1 = W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ



y1,1
y1,2
y1,3
y1,4

 .

Therefore,
(λNα − I|α|)y1,2 = 0 and (λK>γ − L>γ )y1,4 = 0,

thus, by invertibility of λNα − I|α| and Lemma 4.1, y1,2 = 0 and y1,4 = 0. Similarly (4.12) gives

(λNα − I|α|)y2,2 = −Nαy1,2 = 0 and (λK>γ − L>γ )y2,4 = −K>γ y1,4 = 0,

and hence y2,2 = 0 and y2,4 = 0. Solving the remaining equations successively, we obtain finally
yn,2 = 0 and yn,4 = 0, which implies

v = vn = Fzn = W−1


yn,1
0

Kβyn,3
0

 ∈W−1 (Cn0 × {0}|α| × C|β|−nβ × {0}|γ|
)

and Rf (A) ⊆W−1
(
Cn0 × {0}|α| × C|β|−nβ × {0}|γ|

)
follows.

We prove the converse inclusion. From (i) it follows

W−1
(
{0}n0 × {0}|α| × C|β|−nβ × {0}|γ|

)
= Rc(A) ⊆ R0(A) ⊆ Rf (A).

We show W−1
(
Cn0 × {0}|α| × {0}|β|−nβ × {0}|γ|

)
⊆ Rf (A). The space Cn0 has a basis consisting of

Jordan chains of the matrix A0. Let v1, . . . , vk be a Jordan chain of A0 at λ ∈ C of length k. Then
v1, . . . , vk are linearly independent and satisfy

(A0 − λ)vk = vk−1, (A0 − λ)vk−1 = vk−2, . . . , (A0 − λ)v2 = v1, (A0 − λ)v1 = 0. (4.14)
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Set
xj := W−1((vj)

>, 0, 0, 0)> for j = 1, . . . , k.

Then we obtain

xj = W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



vj
0
0
0

 = FT


vj
0
0
0


and we see with (4.14) that for j = 2, . . . , k,

λxj + xj−1 = W−1


λvj + vj−1

0
0
0

 = W−1


A0vj

0
0
0



= W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ



vj
0
0
0

 = GT


vj
0
0
0


and for j = 1

λx1 = W−1


λv1
0
0
0

 = W−1


A0v1

0
0
0



= W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ



v1
0
0
0

 = GT


v1
0
0
0

 .

Therefore, for j = 2, . . . , k,(
xj

λxj + xj−1

)
∈ ran

[
F
G

]
and

(
x1
λx1

)
∈ ran

[
F
G

]
,

hence
(xk, λxk + xk−1), (xk−1, λxk−1 + xk−2), . . . , (x2, λx2 + x1), (x1, λx1) ∈ A. (4.15)

The vectors x1, . . . , xk are linear independent because W is invertible and the vectors v1, . . . , vk are
linear independent. Therefore, (4.15) constitutes a Jordan chain of A at λ of length k. Since the
Jordan chain v1, . . . , vk was arbitrary we have shown that

Rf (A) = W−1
(
Cn0 × {0}|α| × C|β|−nβ × {0}|γ|

)
.

The remaining statements of (iii) follow from (i), the construction of (4.15) above and the observation
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that

A ∩
(
Rf (A)×Rf (A)

)

= ran



W−1


In0 0
0 0
0 Kβ

0 0



W−1


A0 0
0 0
0 Lβ
0 0




= A ∩

(
Rc(A)×Rc(A)

)
u ran



W−1


In0

0
0
0



W−1


A0

0
0
0




.

In particular, we see that σ(A0) ⊆ σp(A).

Step 4

We show (iv). Since RJ(A) = R∞(A) +Rf (A) it follows from (i) and (iii) that

RJ(A) = W−1
(
Cn0 × C|α| × C|β|−nβ × {0}|γ|

)
.

The remaining statements of (iv) follow from

A ∩
(
RJ(A)×RJ(A)

)

= ran



W−1


In0 0 0
0 Nα 0
0 0 Kβ

0 0 0



W−1


A0 0 0
0 I|α| 0

0 0 Lβ
0 0 0




= A ∩

(
Rf (A)×Rf (A)

)
u ran



W−1


In0

0
0
0



W−1


A0

0
0
0




and the same arguments for the Jordan chains of A0 as in Step 3.

Corollary 4.6. With the notation from Theorem 4.5 we have

n0 = dimRf (A)− dimRc(A),

|α| = dimR∞(A)− dimRc(A),

|β| − nβ = dimRc(A),

|γ| = n− dimRJ(A).

Corollary 4.7. With the notation from Theorem 4.5 we have

σp(A) =


C ∪ {∞}, if nβ 6= 0,

σ(A0) ∪ {∞}, if nβ = 0 and nα 6= 0

σ(A0), if nβ = nα = 0

∅, if nβ = nα = n0 = 0.

(4.16)
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Proof. First observe that by Lemma 2.5, σp(A) = C ∪ {∞} if, and only if, Rc(A) 6= {0}. By Theo-
rem 4.5 and Proposition 4.3, this is equivalent to nβ 6= 0 and the first line in (4.16) is shown.

For the rest of the proof we assume nβ = 0. A complex number λ ∈ C belongs to σp(A) if, and
only if, there exists x ∈ Cn \{0} with (x, λx) ∈ A. Equivalently, by Theorem 4.5, there exist y1 ∈ Cn0 ,
y2 ∈ C|α| and y4 ∈ C|γ|−nγ such that at least one of them is non-zero, with

x = W−1

 y1
Nαy2
K>γ y4

 and λx = W−1

A0y1
y2

L>γ y4

 .

With Lemma 4.1 we see that this is equivalent to y2 = y4 = 0, y1 6= 0 and A0y1 = λy1, or, what is the
same, λ ∈ σ(A0). Hence, in the case nβ = 0, we have

σp(A) \ {∞} = σ(A0). (4.17)

It remains to consider the point ∞. By definition, ∞ ∈ σp(A) if, and only if, R∞(A) 6= {0} which
is, by Theorem 4.5, equivalent to nα 6= 0. This and (4.17) show the second and third line in (4.16),
whereas the last line in (4.16) is now obvious.

Using Theorem 4.5 we may derive a characterization for A being completely singular, a Jordan
relation or a multishift.

Proposition 4.8. With the notation from Theorem 4.5 we have that the linear relation A is

(i) completely singular (see (2.6)) if, and only if, n0 = nα = 0 and γ = (1, . . . , 1);

(ii) a Jordan relation if, and only if, nβ = 0 and γ = (1, . . . , 1);

(iii) a multishift if, and only if, n0 = nα = nβ = 0.

Proof. We show (i). By (2.6) A is completely singular if, and only if, A = A ∩ (Rc(A) × Rc(A)).
Invoking Theorem 4.5 and (4.3) this is equivalent to

ran



W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ



W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ




= ran



W−1


0
0
Kβ

0



W−1


0
0
Lβ
0




.

This is true if, and only if,
n0 = nα = 0 and γ = (1, . . . , 1).

We show (ii). By definition (cf. Section 2), A is a Jordan relation if, and only if, Rc(A) = {0} and
A = A ∩ (RJ(A)×RJ(A)). Invoking Theorem 4.5 this is equivalent to nβ = 0 and

ran



W−1


In0 0 0
0 Nα 0
0 0 0
0 0 K>γ



W−1


A0 0 0
0 I|α| 0

0 0 0
0 0 L>γ




= ran



W−1


In0 0
0 Nα

0 0
0 0



W−1


A0 0
0 I|α|
0 0
0 0




.
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Similar to (i), this is true if, and only if, nβ = 0 and γ = (1, . . . , 1), thus (ii) follows.
We show (iii). By definition, A is a multishift if, and only if, σp(A) = ∅. Then (iii) follows from

Corollary 4.7.

The KCF leads to a decomposition of a linear relation A in a natural way. For this we introduce
the following notion. Here “u” stands for the direct sum of subspaces.

Definition 4.9. Let A be a linear relation in Cn. A decomposition A = A1 u . . . uAk, k ∈ N, of a
linear relation A is called completely reduced, if there exist subspaces V1, . . . ,Vk of Cn such that

(i) V1 u . . .u Vk = Cn and

(ii) Aj = A ∩ (Vj × Vj) for all j = 1, . . . , k.

In [24] it is shown that any linear relation can be decomposed into a direct sum of a Jordan
relation, a completely singular relation and a multishift. However, this decomposition is in general
not completely reduced. The KCF resolves this problem.

Proposition 4.10. With the notation from Theorem 4.5 define

AS := ran



W−1


0
0
Kβ

0



W−1


0
0
Lβ
0




, AJ := ran



W−1


In0 0
0 Nα

0 0
0 0



W−1


A0 0
0 I|α|
0 0
0 0




,

AM := ran



W−1


0
0
0
K>γ



W−1


0
0
0
L>γ




.

Then AS is completely singular, AJ is a Jordan relation, AM is a multishift and

A = AS uAJ uAM

is a completely reduced decomposition.

Proof. We show that the decomposition is completely reduced. Set

V1 := Rc(A) = W−1
(
{0}n0 × {0}|α| × C|β|−nβ × {0}|γ|

)
,

V2 := W−1
(
Cn0 × C|α| × {0}|β|−nβ × {0}|γ|

)
,

V3 := W−1
(
{0}n0 × {0}|α| × {0}|β|−nβ × C|γ|

)
.
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Then it is clear that V1 u V2 u V3 = Cn and

AS = A ∩ (V1 × V1), AJ = A ∩ (V2 × V2), AM = A ∩ (V3 × V3).

It is clear that Rc(AS) = Rc(A) = V1 and hence AS is completely singular. Furthermore, Rc(AJ) =
{0} and RJ(AJ) = V2, thus AJ is a Jordan relation. Finally, it follows from Corollary 4.7 that
σp(AM ) = ∅ and hence AM is a multishift.

5 Wong sequences

Recently, see [7, 8, 9], Wong sequences are used to prove the KCF and compared to the proof by
Gantmacher [15] they provide some geometrical insight. The Wong sequences have their origin in
Wong [27]. Wong sequences are also useful to describe the different parts of a linear relation. In this
section we derive representations for the root and Jordan chain manifolds of a linear relation in terms
of the Wong sequences.

For E,A ∈ Cr×n the Wong sequences are defined as the sequences of subspaces (Vi) and (Wi),

V0 = Cn, Vi+1 = { x ∈ Cn | Ax ∈ EVi } , i ∈ N0,

W0 = {0}, Wi+1 = { x ∈ Cn | Ex ∈ AWi } , i ∈ N0.

The limits of the Wong sequences are denoted by

V∗ =
⋂
i∈N0

Vi and W∗ =
⋃
i∈N0

Wi.

For F,G ∈ Cn×d alternative Wong sequences are defined by the sequences (V̂i) and (Ŵi),

V̂0 = Cn, V̂i+1 =
{
Fx

∣∣∣ x ∈ Cd, Gx ∈ V̂i
}
, i ∈ N0,

Ŵ0 = {0}, Ŵi+1 =
{
Gx

∣∣∣ x ∈ Cd, Fx ∈ Ŵi

}
, i ∈ N0,

with corresponding limits

V̂∗ =
⋂
i∈N0

V̂i and Ŵ∗ =
⋃
i∈N0

Ŵi.

Theorem 5.1. Let A be a linear relation in Cn with dimA = d and let A,E ∈ Cr×n, r = 2n − d,
with rk [A,E] = r and F,G ∈ Cn×d with rk

[
F
G

]
= d be such that

A = ker [A,−E] = ran
[
F
G

]
.

Then we have
V∗ ∩W∗ = V̂∗ ∩ Ŵ∗ = Rc(A),

V∗ = V̂∗ = Rf (A) = domAn,

W∗ = Ŵ∗ = R∞(A),

V∗ +W∗ = V̂∗ + Ŵ∗ = RJ(A).

Proof. We show that, for all i ∈ N0,

domAi = Vi = V̂i, (5.1)

mulAi =Wi = Ŵi. (5.2)
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We prove the first equality in (5.1) by induction. For i = 0 the statement is true, so assume that it
holds for some i ∈ N0. Then

domAi+1 =
{
x ∈ Cn

∣∣ ∃ y ∈ Cn : (x, y) ∈ A = ker [A,−E] and y ∈ domAi
}

= { x ∈ Cn | ∃ y ∈ Cn : Ax = Ey and y ∈ Vi } = Vi+1.

The second equality in (5.1) follows from

domAi+1 =
{
x ∈ Cn

∣∣∣ ∃ y ∈ Cn : (x, y) ∈ A = ran
[
F
G

]
and y ∈ domAi = V̂i

}
=
{
x ∈ Cn

∣∣∣ ∃ y ∈ Cn ∃ z ∈ Cd : x = Fz and y = Gz and y ∈ V̂i
}

=
{
x ∈ Cn

∣∣∣ ∃ z ∈ Cd : x = Fz and Gz ∈ V̂i
}

= V̂i+1.

The proof of (5.2) is analogous and omitted. From (5.1) and (5.2) and the fact that, by finite

dimensionality, V∗ = Vn, V̂∗ = V̂n, W∗ =Wn, Ŵ∗ = Ŵn it now follows that

domAn = V∗ = V̂∗ and R∞(A) =W∗ = Ŵ∗.

Next we show that V̂∗ = Rf (A). To this end, let W ∈ Cn×n, T ∈ Cd×d be invertible matrices such
that WFT and WGT are in KCF (4.2). We prove that

∀ i ∈ N0 : V̂i = W−1
(
Cn0 × ranN i

α × C|β|−nβ × ran(N>γ )i
)
.

For i = 0 the statement is true. Assume that the statement is true for some i ∈ N0. We obtain

V̂i+1 =
{
Fx

∣∣∣ x ∈ Cd, Gx ∈ V̂i
}

=

 FTy

∣∣∣∣∣∣∣∣ W−1


A0 0 0 0
0 I|α| 0 0

0 0 Lβ 0
0 0 0 L>γ

 y ∈ V̂i


Now, by assumption, V̂i = W−1
(
Cn0 × ranN i

α × C|β|−nβ × ran(N>γ )i
)

and we have

V̂i+1 = W−1


In0 0 0 0
0 Nα 0 0
0 0 Kβ 0
0 0 0 K>γ




y1
y2
y3
y4


∣∣∣∣∣∣∣∣
y1 ∈ Cn0 , y2 ∈ ranN i

α,

y3 ∈ C|β|, L>γ y4 ∈ ran(N>γ )i


= W−1

(
Cn0 × ranN i+1

α × C|β|−nβ × ran(N>γ )i+1
)
,

where for the last equality we need to show that{
K>γ y4

∣∣∣ L>γ y4 ∈ ran(N>γ )i
}

= ran(N>γ )i+1.

Observe that N>γ L
>
γ = K>γ and N>γ K

>
γ = K>γ N

>
γ−1, where γ − 1 = (γ1 − 1, . . . , γnγ − 1) and if γj = 1

for some j ∈ {1, . . . , nγ}, then we define

Nγ−1 = diag (Nγ1 , . . . , Nγj−1, Nγj+1, . . . , Nγnγ ).

Furthermore, we have that for any j, k ∈ N, k ≥ 2, and v ∈ Ck−1, v = (v1, . . . , vk−1)
>,

L>k v ∈ ran(N>k )j ⇐⇒ vk−j = . . . = vk−1 = 0 ⇐⇒ v ∈ ran(N>k−1)
j ,
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from which it follows that{
v ∈ C|γ|−nγ

∣∣∣ L>γ v ∈ ran(N>γ )j
}

= ran(N>γ−1)
j .

Now we are in the position to infer that

ran(N>γ )i+1 = ran(N>γ )i+1L>γ = ran(N>γ )iK>γ

= ranK>γ (N>γ−1)
i =

{
K>γ v

∣∣∣ L>γ v ∈ ran(N>γ )i
}
.

Since Nn
α = 0 and (N>γ )n = 0 it now follows with Theorem 4.5 that

domAn = V̂∗ = W−1
(
Cn0 × {0}|α| × C|β|−nβ × {0}|γ|

)
= Rf (A).

The remaining statements can now be concluded from Theorem 4.5.

Equations (5.1) and (5.2) provide a direct connection between the Wong sequences and the corre-
sponding linear relation A. In [8] it is shown how the Wong sequences can be used to define a basis
transformation which puts the matrix pair (F,G), where A = ran

[
F
G

]
, into KCF. Moreover, in [8, 9]

it is shown that certain Wong sequences completely determine the KCF. In this sense, the KCF of F
and G is completely determined by the linear relation A = ran

[
F
G

]
.

6 Conclusion

We have shown how the Kronecker canonical form provides a natural decomposition of a linear relation
into a completely singular relation, a Jordan relation and a multishift. Furthermore, the KCF can be
used for a complete description of the structure of a linear relation up to the structure of the multishift
part. In this sense we have derived an analogue to the Jordan canonical form for matrices; this is new
for linear relations. On the other hand, the KCF of a given matrix pair is completely described by
the corresponding linear relation, which can be established using Wong sequences.

The KCF is widely used in the study of matrix pairs or, what is the same, in the investigation
of DAEs. A famous unsolved problem in the theory of matrix pairs is the distance to the nearest
singular pair, see [11]. It is possible to characterize regularity and singularity in terms of the induced
linear relation. For linear relations, the effect of perturbations can be studied using the gap metric,
see [3, 19], or by utilizing results for finite dimensional perturbations, see e.g. [2]. In future research
one may use the deep connection between linear relations and matrix pencils presented in the present
paper. In particular, existing perturbation theory for linear relations is now available for the study of
matrix pencils and DAEs.
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