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Abstract

We study the regularization problem for linear differential-algebraic systems. As an improvement of former results we show that any
system can be regularized by a combination of state-space and input-space transformations, behavioral equivalence transformations
and a reorganization of variables. The additional state feedback which is needed in earlier publications is shown to be superfluous.
We provide an algorithmic procedure for the construction of the regularization and discuss computational aspects.
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1. Introduction

We study linear descriptor systems given by differential-
algebraic equations (DAEs) of the form

d
dt Ex(t) = Ax(t)+Bu(t) (1)

where E,A ∈ Rl×n, B ∈ Rl×m. The set of systems (1) is de-
noted by Σl,n,m and we write [E,A,B] ∈ Σl,n,m. DAE systems of
the form (1) naturally occur when modeling dynamical systems
subject to algebraic constraints; for a further motivation we re-
fer to [4, 8, 11, 12, 14] and the references therein. The system
[E,A,B] is called regular, if the matrix pencil sE−A is regular,
that is, l = n and det(sE−A) ∈ R[s]\{0}.

The functions x : R→Rn and u : R→Rm are usually called
state and input of the system, resp. However, in the general
case, u might be constrained and some of the state variables
can play the role of an input. In the present paper we will take
the viewpoint of the behavioral approach due to Willems [16],
see also [17, 18]. Within this framework, the variables of the
system do not have the interpretation of states and inputs un-
til an analysis of the system reveals the free variables. These
free variables should then be interpreted as inputs, since “they
can be viewed as unexplained by the model and imposed on
the system by the environment” [13]. This approach obeys the
physical meaning of the system variables and it may turn out
that in the original model the choice of states and inputs was
inappropriate.

The behavior of the DAE system (1) is introduced as the
following set of solutions of (1):

B[E,A,B] := {(x,u) ∈L 1
loc(R;Rn×Rm) | Ex ∈A C (R;Rl),

(x,u) satisfies (1) for almost all t ∈ R },
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where L 1
loc and A C denote the space of locally (Lebesgue) in-

tegrable and absolutely continuous functions, resp. DAE con-
trol systems based on the above behavior have been studied in
detail e.g. in [4].

Nowadays, the modeling of huge industrial problems and
complex physical systems is often performed using automatic
modeling tools such as Modelica (https://www.modelica.org/).
This approach naturally leads to differential-algebraic systems
of the form (1). Since in the automatically generated models
it is quite common that redundant equations appear and state
and input variables are chosen inappropriately, the system (1)
is not regular in general, while the physical background tells
that a regular model must exist. Therefore, a remodeling, or a
regularization, is often required, see [9].

In the present paper we study the regularization of DAE
systems, which relies on a procedure developed in [9] and re-
visited in [3]. In [9] it is shown that, given any DAE system
[E,A,B] ∈ Σl,n,m, by a combination of behavioral equivalence
transformation, proportional state feedback and reorganization
of variables (due to a possibly inappropriate initial choice of
states and inputs) a new system [Ereg,Areg,Breg] can be obtained
where sEreg−Areg is regular and has index at most one. In the
linear case, explicit transformations and a characterization of
the regularized system have been obtained in [7]. In the present
paper, we improve the results of [9, 7] by showing that an appli-
cation of state feedback is not necessary. Furthermore, we de-
rive a numerically stable algorithm of cubic complexity which
establishes the regularization of the system.

The paper is organized as follows: In Section 2 we intro-
duce some preliminary concepts and notation and give a pre-
cise problem formulation. The regularization algorithm, which
is the main result of the paper, is presented in Section 3 and
proved to be feasible for any given system. Numerical relia-
bility and the computational speed of the regularization algo-
rithm is discussed in Section 4. In Section 5 provide a detailed
comparison of our algorithm with the method proposed in [9]
and in Section 6 we demonstrate the regularization algorithm
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by means of a numerical example. Conclusions are given in
Section 7.

2. Preliminaries and problem formulation

In the present paper we use the following notation: R and
C denote the fields of real and complex numbers, resp.; R[s]
is the ring of polynomials with coefficients in R; Rn×m is the
set of n×m matrices with entries in a ring R; On denotes the
set of orthogonal real n× n matrices. A polynomial matrix
U(s) ∈R[s]n×n is called unimodular, if it is invertible over R[s]
or, equivalently, if detU(s) is a nonzero constant.

The rank of a matrix M ∈Kn×m, where K=R or K=C, is
denoted by rkM. If M ∈ Rn×m with rkM = r, then, using QR
factorization with pivoting [10], there exists T ∈ On such that

T M =

[
Σr
0

]
,

where Σr ∈ Rr×m with rkΣr = r, see also [1]. We will call T a
row compression of the matrix M. Similarly, we call S ∈ Om a
column compression, if

MS = [Σ̂r,0],

where Σ̂r ∈ Rn×r with rk Σ̂r = r.
The index ν ∈ N0 of a regular matrix pencil sE − A ∈

R[s]n×n is defined via its (quasi-)Weierstraß form [5, 11, 12]:
if for some invertible S,T ∈ Rn×n

S(sE−A)T =

[
sIr− J 0

0 sN− In−r

]
, N nilpotent,

then ν :=
{

0, if r = n,
min

{
k ∈ N0

∣∣ Nk = 0
}
, if r < n.

The index is independent of the choice of S,T .
Finally, we recall the concept of behavioral equivalence

which has been introduced for general behaviors in [13].
Roughly speaking, two systems are behaviorally equivalent, if
their behaviors coincide.

Definition 2.1. Two systems [Ei,Ai,Bi] ∈ Σl,n,m, i = 1,2, are
called behaviorally equivalent, if

B[E1,A1,B1]∩C ∞(R;Rn×Rm) =B[E2,A2,B2]∩C ∞(R;Rn×Rm),

where C ∞ denotes the space of infinitely times differentiable
functions; we write

[E1,A1,B1] 'B [E2,A2,B2].

In order to obtain a behaviorally equivalent system, it is al-
lowed that some of the equations in (1) are differentiated (and
hence we require smooth solutions). This leads to a trans-
formation of the form U( d

dt )(
d
dt E − A)x(t)−U( d

dt )Bu(t) = 0
with some U(s) ∈ R[s]l×l . Furthermore, since the behaviors
must coincide (on C ∞) the transformation U(s) must be re-
versible, i.e., U(s) must be unimodular. As shown in [13,

Thms. 2.5.4 & 3.6.2] this is exactly the set of transformations
that characterizes behavioral equivalence; this is summarized in
the following lemma.

Lemma 2.2. Let [Ei,Ai,Bi] ∈ Σl,n,m, i = 1,2. Then
[E1,A1,B1] 'B [E2,A2,B2] if, and only if, there exists a uni-
modular U(s) ∈ R[s]l×l such that

[sE1−A1,−B1] =U(s)[sE2−A2,−B2].

Note that in initial value problems (1), x(0) = x0, where u∈
C ∞(R;Rm) is given, the consistency of the initial value x0 ∈Rn,
i.e., existence of x ∈ C ∞(R;Rn) such that (x,u) ∈B[E,A,B] and
x(0) = x0, is preserved under behavioral equivalence.

In the present paper we consider the following regulariza-
tion problem.

Problem 2.3. For a given system [E,A,B] ∈ Σl,n,m, find a uni-
modular matrix U(s) ∈ R[s]l×l , orthogonal state space and in-
put space transformations T ∈ On, V ∈ Om and a permutation
matrix P ∈ On+m such that

[sE−A,−B]
[

T 0
0 V

]
P =U(s)

[
0 0

sEreg−Areg −Breg

]
, (2)

where sEreg−Areg ∈ R[s]n̂×n̂ is regular and has index at most
one.

Each kind of the transformations in Problem 2.3 have an
interpretation in terms of their physical meaning:

(i) T and V represent coordinate changes in state space and
input space respectively,

(ii) U(s) represents an equivalence transformation which
does not change the behavior of the system,

(iii) P represents a permutation of state and input variables.
Here, we seek a permutation of free state variables with
constraint input variables, so that in the resulting system
the free variables are exactly the input variables. This
may be viewed as a reinterpretation of certain states as
inputs and vice versa.

At first glance it may be surprising that (2) in Problem 2.3
does not read

W (s)[sE−A,−B]
[

T 0
0 V

]
P =

[
0 0

sEreg−Areg −Breg

]
, (3)

where W (s) ∈ R[s]l×l is unimodular. The reason is that U(s)
in (2) may be easier to compute than W (s) in (3). In fact, we
show in Section 3 that U(s) has degree 1, i.e., it is a matrix
pencil, and it is obtained with cubic complexity. On the other
hand, the inverse W (s) = U(s)−1 may have higher degree and
can only be obtained with quartic complexity in general, see
Section 4.
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3. Regularization algorithm

In this section we provide a step by step procedure for the
derivation of the regularization of a descriptor system as in (2).

Initialization. Let [E,A,B] ∈ Σl,n,m be given.
Step 1. Compute a row compression S1 ∈ Ol such that

S1B =
[ 0

B2

]
, where B2 has full row rank r. Consider

S1[sE−A,−B] =
[

sE1−A1 0
sE2−A2 −B2

]
,

where sE1−A1 ∈ R[s](l−r)×n,sE2−A2 ∈ R[s]r×n.
Step 2. Compute orthogonal S2 ∈ Ol−r,T2 ∈ On that take

sE1−A1 into staircase form

S2(sE1−A1)T2

=


sEη −Aη 0 0 0
∗ sE∞−A∞ 0 0
∗ ∗ sE f −A f 0
∗ ∗ ∗ sEε −Aε

 ,
where

(i) Eη ,Aη ∈ Rlη×nη , lη > nη , are such that rk(λEη −Aη) =
nη and rkEη = nη ;

(ii) E∞,A∞ ∈ Rn∞×n∞ , A∞ is invertible and A−1
∞ E∞ is nilpo-

tent;

(iii) E f ,A f ∈ Rn f×n f and E f is invertible;

(iv) Eε ,Aε ∈ Rlε×nε , lε < nε , are such that rk(λEε −Aε) = lε
and rkEε = lε .

This form can be computed by a numerically stable algorithm,
see [15, 1].

Step 3. Compute an embedding of the pencil sEη − Aη ,
i.e., K ∈ Rlη×(lη−nη ) such that [K,sEη −Aη ] is unimodular. A
numerically stable algorithm for the solution of this embedding
problem using the staircase form is given in [2]. Define the
unimodular matrix

U1(s) :=−
[

K sEη −Aη 0
0 ∗ sE∞−A∞

]
∈ R[s](lη+n∞)×(lη+n∞)

and consider

[
sE−A −B

][T2 0
0 Im

]
= S>1

[
S>2 0
0 Ir

][
U1(s) 0

0 Il−lη−n∞

]

×


0 0 0

−Inη+n∞
0 0

∗ sE f −A f 0
∗ ∗ sEε −Aε

∗ ∗ ∗

∣∣∣∣∣∣∣∣∣∣
0
0
0
0
−B2


︸ ︷︷ ︸

=:
[
sE−A −B

]
Step 4. Compute column compressions T3 ∈ Onε

, V3 ∈ Om
such that

Eε T3 = [Σ1,0], B2V3 = [Σ2,0],

where Σ1 ∈ Rlε×lε and Σ2 ∈ Rr×r are invertible. Consider

[
sE−A −B

] In−nε
0 0

0 T3 0
0 0 V3



=


0 0 0 0

−Inη+n∞
0 0 0

sE31−A31 sE f −A f 0 0
sE41−A41 ∗ sΣ1−A43 −A44
sE51−A51 ∗ ∗ sE54−A54

∣∣∣∣∣∣∣∣∣∣
0 0
0 0
0 0
0 0
−Σ2 0


︸ ︷︷ ︸

=:
[
sÊ− Â −B̂

]
Step 5. Define the unimodular matrix

U2(s) :=


Ilη−nη

0 0 0 0
0 Inη+n∞

0 0 0
0 −sE31 +A31 In f 0 0
0 −sE41 +A41 0 Ilε 0
0 −sE51 +A51 0 0 Ir

 ∈ R[s]l×l .

Step 6. Compute a singular value decomposition of E54 ∈
Rr×(nε−lε ), i.e., S4 ∈ Or, T4 ∈ Onε−lε such that

S4E54T4 =

[
Σ3 0
0 0

]
,

where Σ3 ∈Rq×q is invertible. Compute, using QR factorization
(without pivoting), a column operation V4 ∈ Or such that

S4Σ2V4 =

[
Σ21 0
∗ Σ22

]
,

where Σ21 ∈ Rq×q,Σ22 ∈ R(r−q)×(r−q) are invertible. Then

[
sÊ− Â −B̂

] In+lε−nε
0 0 0

0 T4 0 0
0 0 V4 0
0 0 0 Im−r

=U2(s)
[

Il−r 0
0 S>4

]

×


0 0 0 0 0

−Inη+n∞
0 0 0 0

0 sE f −A f 0 0 0
0 ∗ sΣ1−A43 −Ã44 −Ã45
0 ∗ ∗ sΣ3− Ã54 −Ã55
0 ∗ ∗ −Ã64 −Ã65

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0
0 0 0
0 0 0
0 0 0
−Σ21 0 0
∗ −Σ22 0

︸ ︷︷ ︸
=:
[
sẼ− Ã −B̃

]

.

Step 7. Define the permutation matrix

P :=


Inη+n∞+n f +lε+q 0 0 0 0

0 0 0 Inε−lε−q 0
0 0 Iq 0 0
0 Ir−q 0 0 0
0 0 0 0 Im−r

 ∈ On+m.
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Then[
sẼ− Ã −B̃

]
P =

0 0 0 0 0
−Inη+n∞ 0 0 0 0

0 sE f−A f 0 0 0
0 ∗ sΣ1−A43 −Ã44 0
0 ∗ ∗ sΣ3−Ã54 0
0 ∗ ∗ −Ã64 −Σ22

∣∣∣∣∣∣∣∣∣
0 0 0
0 0 0
0 0 0
0 −Ã45 0
−Σ21 −Ã55 0
∗ −Ã65 0


=:
[

0(lη−nη )×n̂ 0(lη−nη )×m
sEreg−Areg −Breg

]
where it should be noted that the system on the right hand side
has other dimensions of state space and input space than the
system on the left hand side.

Theorem 3.1. Let [E,A,B] ∈ Σl,n,m and let [Ereg,Areg,Breg] ∈
Σn̂,n̂,m̂ be the result of the regularization algorithm. Then
sEreg−Areg ∈ R[s]n̂×n̂ is regular and has index at most one.

Proof. Denote

sEreg−Areg =


−Inη+n∞ 0 0 0 0

0 sE f−A f 0 0 0
0 sE42−A42 sΣ1−A43 −Ã44 0
0 sE52−A52 sE53−A53 sΣ3−Ã54 0
0 sE62−A62 sE63−A63 −Ã64 −Σ22


and observe that

det
(
sEreg−Areg

)
= (−1)nη+n∞+r−q det(Σ22)det(sE f −A f )

×det
([

sΣ1−A43 −Ã44
sE53−A53 sΣ3− Ã54

])
,

which is a nonzero polynomial since
[

Σ1 0
E53 Σ3

]
is invertible. This

shows regularity of sEreg−Areg. To show that the index does not
exceed one, we use that by [6, Eq. (3.4)] the index of sEreg−
Areg is at most one if, and only if,

imAreg ⊆ imEreg +Areg kerEreg.

It is a simple calculation that

kerEreg = im

Inη+n∞
0

0 0
0 Ir−q


and hence

imEreg +Areg kerEreg

= im

 0
In f +lε+q

∗

+ im

Inη+n∞
0

0 0
0 Σ22

= Rl .

This shows that sEreg−Areg has index at most one.

Note that the outcome of the regularization algorithm in par-
ticular improves [7, Thm. 5.1], because here we show that the
additional state feedback used in [7] is not necessary. In other
words, we may always choose F = 0 in [7, Thm. 5.1].

4. Computational aspects

In this section we discuss the numerical reliability and the
computational speed of the regularization algorithm presented
in Section 3.

The computations in Steps 1 and 4–7 are certainly numer-
ically stable, since they are based on the singular value de-
composition and QR factorization (with pivoting) or they are
mere definitions using the data at hand. The staircase form in
Step 2 can also be computed by a numerically stable algorithm,
see [15, 1]. For the computation of the unimodular embedding
U1(s) in Step 3, we propose to use the numerically stable algo-
rithm developed in [2].

We analyze the computational complexity for each step of
the regularization algorithm separately:

Step 1. The computation of the row compression relies on a QR
factorization with pivoting [10], which has a computa-
tional cost of O(m(l2 +m2)) flops in the worst case ac-
cording to [1]. Here, “flop” means floating point opera-
tion, which is a scalar addition or multiplication.

Step 2. By [1] the computation of the staircase form is possible
with a cost of O(l2n) flops.

Step 3. According to [2] the computation of the embedding,
which also uses the staircase form, has a computational
cost of O(l(l2 +n2)+ l2n) flops.

Step 4. The computation of the column compressions again use
QR factorization with pivoting and requires O(n(l2+n2))
and O(m(l2 +m2)) flops in the worst case, resp.

Step 5. U2(s) is obtained at no cost.

Step 6. The singular value decomposition has a cost of O(n(l2 +
n2)) flops in the worst case according to [10], and the QR
factorization of the invertible matrix S4Σ2 has a cost of
O(m3) flops.

Step 7. P is obtained at no cost.

Summarizing, the computational cost of the regularization
algorithm for a given system [E,A,B] ∈ Σl,n,m is

O
(
l2(l +n+m)+n2(l +n)+m3),

and hence the algorithm is cubic in the dimensions of the sys-
tem.

Remark 4.1. If a relation of the form (3) is sought for the solu-
tion of the regularization problem, then U(s) as in (2) computed
by the regularization algorithm needs to be inverted. First recall
that U(s) = sU1+U2 ∈R[s]l×l is a matrix pencil. For the inver-
sion of this pencil an algorithm is proposed in [2]. Again, the
staircase form is used for the computation of W (s) = U(s)−1,
however the inversion of a triangular matrix is required as well.
This cannot be avoided in general, see also the discussion in [2].
Hence, the algorithm is numerically stable up to the feasibility
of this inversion problem.
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Concerning computational complexity, the computation of
W (s) needs O(ql3) flops, where q = degW (s). As discussed
in [2] it is important to keep the degree q as small as possible.
However, even if q is chosen minimal, in the worst case it may
be as large as l−1 and hence the computation of W (s) has quar-
tic complexity in general. Note that q is also the index of the
pencil sU1 +U2, which is regular and equivalent to a pencil of
the form sN− I for some nilpotent matrix N. This index is also
revealed by the application of the staircase form.

Remark 4.2. We like to stress that rank decisions are an impor-
tant issue in the computation of the regularization. The compu-
tation of the staircase form, which is used in Steps 2 and 3 of
the regularization algorithm, involves a sequence of rank deci-
sions, which in case of “bad” data with very small singular val-
ues close to the truncation tolerance, may lead to a wrong rank
decision. This problem is unavoidable in general. However, it
is desirable to keep the number of rank decisions as small as
possible. Therefore, depending on the application, it may be
recommendable to use condensed forms based on derivative ar-
rays (see e.g. [3, 11] and the references therein) instead of the
staircase form.

5. Comparison with [9]

In this section we provide a detailed comparison of our reg-
ularization algorithm with the method proposed in [9]. At first
glance, a main difference is that we formulate the regulariza-
tion in terms of explicit equivalence transformations performed
on the pencil [sE−A,−B] and additional column permutations,
while in [9] a principle procedure is described. A detailed list
of advantages and disadvantages of the method in [9] compared
to our method is given below. After that we illustrate the differ-
ence by means of a short example.

Advantages of the method by Campbell et al. [9]:

+ It only uses variable transformations when unavoidable; the
original variables are kept as long as possible.

+ It is made explicit where the physical background of the con-
sidered system can be exploited.

+ Regularization of the initial conditions can be done using the
original state and input variables.

+ Fewer rank decisions are required in general.1

Disadvantages of the method by Campbell et al. [9]:

- The transformations leading to a strangeness free system are
no equivalence transformations and not reversible in general.

- No explicit transformations for the reinterpretation of vari-
ables are provided. The decision for the choice of variables
is left to the user and should “depend on the physical back-
ground of the system”.

1However, if condensed forms are used in our regularization algorithm in-
stead of the staircase form, the number of rank decisions may be equally small,
cf. Remark 4.2.

- During the reinterpretation it is possible that variables that are
differentiated are selected as inputs. This requires the intro-
duction of new variables, e.g. ũ = u̇.

- The application of feedback is necessary in general.

- The result of the regularization method is not unique in gen-
eral as it depends on the choice of variables performed by the
user.

- Computational complexity of the method is not yet investi-
gated.

Example 5.1. We illustrate the different behavior of the meth-
ods by means of the system (1) with

E =

[
1 1
0 0

]
, A =

[
0 0
0 0

]
, B =

[
0
1

]
.

Method by Campbell et al. [9]: Since the system (in the
variables x and u) is strangeness free (in the sense of [9], see
also [11]) with d = 1 and a = 1, a reinterpretation of variables
does not take place. In the last step, a feedback is applied to the
system, i.e., with F = [0,1] the closed-loop system

E =

[
1 1
0 0

]
, A+BF =

[
0 0
0 1

]
,

is constructed and clearly sE− (A+BF) is regular with index
at most one. We have[

sEreg−Areg −Breg
]

=
[
sE− (A+BF) −B

]
=

[
s s 0
0 −1 −1

]
.

Our method: In Step 1 we have S1 = I2 and sE1−A1 = [s,s].
For the staircase form in Step 2 we find S2 = I2 and T2 =

[
1 −1
0 1

]
and hence

S2(sE1−A1)T2 = [s,0],

which is in staircase form with lη = nη = n∞ = 0, n f = 1
and E f = [1],A f = [0], and lε = 0,nε = 1, i.e., Eε ,Aε ∈ R0×1.
Steps 3–5 are not necessary and in Step 6 we find q = 0 because
sE54−A54 = [0]. Furthermore, S4 = T4 = [1] and Σ22 = [1], thus

[
sẼ− Ã −B̃

]
=

[
s 0 0
0 0 −1

]
.

In Step 7 we choose

P =

1 0 0
0 0 1
0 1 0


and hence the regularization is[

sEreg−Areg −Breg
]

=
[
sE−A −B

][T2 0
0 1

]
P =

[
s 0 0
0 −1 0

]
.
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We clearly see that the results of the respective regularization
procedure are different; there are several possibilities for the
regularization in general, depending on the allowed transforma-
tions. Furthermore, it can be seen that the method by Campbell
et al. [9] requires feedback, while we exclude the class of feed-
back transformations in our method. In the present paper we
have shown that it is always possible to avoid feedback. In the
above example, the number of differential variables (d = 1) and
the number of algebraic variables (a = 1) sum up to the number
of state variables (n = 2) and hence the method by Campbell
et al. [9] does not recognize that a reinterpretation of variables
would be appropriate.

Finally, we like to stress, and this is shown by the above
example, that state space and input space transformations are
unavoidable for the regularization in general, i.e., it is not pos-
sible to choose T = I and V = I in Problem 2.3. In [9] this is
avoided, if possible, by augmenting the state space as explained
in the list of disadvantages.

6. Numerical experiments

In this section we give numerical experiments illustrating
the regularization algorithm presented in Section 3. For the im-
plementation of the regularization algorithm in Matlab we used
a simplified variant of the staircase algorithm described in [15].

For our example the original system [E,A,B] ∈ Σ10,9,2 was
based on the data[

sE0−A0 B0
]
=

−1 0 0 0 0 0 0 0 0 0 0
s −1 0 0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0 0 0 0
0 s 0 0 0 0 0 0 0 0 0
0 0 s 0 0 0 0 0 0 0 0
0 0 0 s−2 0 0 0 0 0 0 0
0 0 0 0 s −1 0 0 0 0 0
0 0 0 0 0 s −2 0 0 0 0
0 0 0 0 0 0 s −3 0 6 0
0 0 0 0 0 0 0 −4 −5 7 8


to which we applied random orthogonal transformations[

sE−A B
]

:=
[
Ql · (sE0−A0) ·Qr Ql ·B0 ·Qb

]
in order to make the system dense and “hide” the Kronecker
structure.

Note that the pencil
[
sE0−A0 B0

]
is in staircase form and

has a full column rank part (η-block) of dimension 5× 3, an
ODE part ( f -block) of dimension 1× 1, and a full row rank
part (ε-block) of dimension 4× 7 (including the columns of
B). We used a tolerance of 100 ∗ ε where ε is the machine ac-
curacy (≈ 10−16 for our machine running with IEEE double
precision standard). We ran our regularization algorithm to see
if we recover correctly the different substructures. The result
of our algorithm is given in Figure 1, with the embedded con-
stant columns in front in gray color. Whenever computed data

were within tolerance level of an integer value, we rounded it
to make the result more readable. Note that this was obtained
by orthogonal transformations only.

The leading 5×5 submatrix in Figure 1 is clearly unimod-
ular since it can be permuted to a block lower triangular matrix
with constant invertible diagonal blocks:

1 0 0 0 0
0 −1 0 0 0

0.963s 0.268s 0.188 −0.982 0
0.268s −0.963s 0.982 0.188 0

0 0 0 −s 1


The new trailing 5× 5 submatrix in Figure 1 is regular and of
index at most 1 as is easily seen from its upper triangular form

s−2 0 0 0 0
0 −s −1 0 0
0 0 s −2 0
0 0 0 s 0
0 0 0 0 −8

 .
The Matlab codes can be found in the supplementary material
to the present article.

7. Conclusion

In the present paper we have presented a numerically stable
algorithm for the computation of the regularization of a linear
descriptor system by a combination of behavioral equivalence
transformation, orthogonal state-space and input-space trans-
formation and a permutation of variables. The latter is nec-
essary since the initial choice of variables may not have been
appropriate within the framework of the behavioral approach.
A consequence of our algorithm is that the application of ad-
ditional state feedback used in earlier publications [9, 7] is not
necessary. We show that the regularization algorithm requires
O(p3) operations, where p is the largest dimension of the de-
scriptor system. A detailed comparison with the method pro-
posed in [9] as well as a numerical example is provided.
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