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OBSERVERS AND DYNAMIC CONTROLLERS FOR LINEAR
DIFFERENTIAL-ALGEBRAIC SYSTEMS∗
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Abstract. In the present paper we study state-estimation and stabilization by dynamic feedback
for linear differential-algebraic systems which are not necessarily regular. We show that the observer
synthesis approach for behavioral systems in [M.E. Valcher and J.C. Willems, IEEE Trans. Automat.
Control, 44 (1999), pp. 2297–2307] can be applied to differential-algebraic systems in a closed form;
i.e., the observers and dynamic controllers are again differential-algebraic systems. The concept of
an (asymptotic, exact) observer is introduced, and existence is characterized. Since initialization of
the observer is an important issue, we investigate regular and freely initializable observers, whose
existence can be guaranteed by impulse observability of the plant. The observers are then exploited
for the construction of dynamic controllers. We show that there exists a stabilizing controller if and
only if the given system is both behaviorally stabilizable and behaviorally detectable.
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Notation.

N, N0 the set of natural numbers, N0 = N ∪ {0}

`(α), |α| length `(α) = l and absolute value |α| =
∑l

i=1 αi of a multi-index
α = (α1, . . . , αl) ∈ Nl

C+(C−) open set of complex numbers with positive (negative) real part,
resp.,

R[s],R(s) the ring of polynomials with coefficients in R and its quotient
field, resp.,

Rn×m the set of n×m matrices with entries in a ring R

imA, kerA, rkR A image, kernel, and rank of the matrix A ∈ Rn×m, resp.,

Gln(R) the group of invertible matrices in Rn×n

σ(A) the spectrum of A ∈ Rn×n

‖x‖ =
√
x>x, the Euclidean norm of x ∈ Rn

M closure of the set M

L1
loc(R; Rn) the set of locally Lebesgue integrable functions f : R → Rn,

where
∫

K
‖f(t)‖ dt <∞ for all compact K ⊆ R

AC(R; Rn) the set of locally absolutely continuous functions f : R→ Rn

ḟ (f (i)) the (ith) weak derivative of f ∈ L1
loc(R; Rn), i ∈ N0; see [1,

Chap. 1]
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f
a.e.= g the functions f, g ∈ L1

loc(R; Rn) are equal “almost everywhere”;
i.e., f(t) = g(t) for almost all (a.a.) t ∈ R

ess supI ‖f‖ the essential supremum of the measurable function f : R → Rn

over I ⊆ R

f |I the restriction of the function f : R→ Rn to I ⊆ R

1. Introduction. We study state-estimation and stabilization of linear time-
invariant systems (the plant) given by differential-algebraic equations (DAEs) of the
form

(1.1)
d
dt
Ex(t) = Ax(t) +Bu(t) ,

y(t) = Cx(t) +Du(t) ,

where E,A ∈ Rl×n, B ∈ Rl×m, C ∈ Rp×n, D ∈ Rp×m. Systems of that type are also
called descriptor systems. The set of systems (1.1) is denoted by Σl,n,m,p, and we
write [E,A,B,C,D] ∈ Σl,n,m,p. DAE systems of the form (1.1) naturally occur when
modeling dynamical systems subject to algebraic constraints; for a further motivation
we refer the reader to [5, 24, 42, 44, 52] and the references therein. In the present
paper we put special emphasis on the nonregular case; i.e., we do not assume that
sE −A is regular, which would mean that l = n and det(sE −A) ∈ R[s] \ {0}.

The functions u : R → Rm and y : R → Rp are called input and output of the
system, resp. A trajectory (x, u, y) : R → Rn × Rm × Rp is said to be a solution
of (1.1) if it belongs to the behavior of (1.1):

B[E,A,B,C,D] :=
{

(x, u, y) ∈ L1
loc(R; Rn × Rm × Rp)

∣∣∣∣ Ex ∈ AC(R; Rl) and (x, u, y)
solves (1.1) for a.a. t ∈ R

}
.

For the notation we refer the reader to the list that precedes this introductory section.
Recall that Ex ∈ AC(R; Rl) implies continuity of Ex (though x itself may be discon-
tinuous). For the analysis of DAE systems in Σl,n,m,p we assume that the states,
inputs, and outputs of the system are fixed a priori by the designer. This is different
from other approaches based on the behavioral setting [12, 26, 58].

In the present paper we aim to construct a stabilizing feedback controller that
does not have direct access to the state of the plant but only uses information about
its output. This is motivated by practice: An operator of the system has access
only to the external variables of the system. The state is an internal variable which
in general cannot be measured directly. We follow the classical approach: First we
construct a dynamical system whose input is composed of the input u and output y of
the plant. The output of the to-be-built dynamical system will be a variable z which
approximates the state x in a certain sense. Such a system will be called observer,
and we assume that it is itself a DAE,

(1.2)

d
dt
Eoxo(t) = Aoxo(t) +Bo

(
u(t)
y(t)

)
,

z(t) = Coxo(t) +Do

(
u(t)
y(t)

)
,

with [Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n. Obvious applications for observers are diag-
nosis and error detection [38]. In the case of feedback control, the approximate state
produced by the observer is used for stabilization of the system by feedback.
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For linear ODE systems (i.e., E = I) the above described procedure is well known
(see the textbook [56]) and goes back to the work by Luenberger [47, 48]. In this case,
roughly speaking, an observer is a dynamical system with the property that a zero
initial observation error implies a zero observation error for all times. It can be shown
that this leads to the general structure of an observer as depicted in Figure 1.

ẋ(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

ẋo(t) =(A+LC)xo(t)+ [B+LD,−L] u(t)
y(t)

z(t) =xo(t)

u(t) y(t)

z(t)

Fig. 1. Observer for ODE systems.

Therefore, the observer only depends on the choice of the matrix L ∈ Rn×p.
If L is chosen such that σ(A + LC) ⊆ C−, i.e., the pair [A,C] is detectable, then
the observation error decays exponentially for any initial value; the observer is then
called an asymptotic observer. If additionally [A,B] is stabilizable, then there exists
F ∈ Rm×n such that σ(A + BF ) ⊆ C−. Together with an asymptotic observer
the feedback law u(t) = Fz(t) leads to an asymptotically closed-loop system (see
Figure 2) and thus solves the stabilization problem. Conversely, if there exists a
stabilizing feedback controller, then [A,B,C] is stabilizable and detectable.

ẋ(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

ẋo(t) =(A+LC)xo(t)+ [B+LD,−L] u(t)
y(t)

z(t) =xo(t)
u(t) =Fz(t)

u(t) y(t)

Fig. 2. Controller for ODE systems.

In the present paper we generalize the above theorem to the case of DAE systems;
see Theorem 4.2. To this end, we introduce in subsection 3.2 an observer design, which
is new even for ODE systems, since the observer is a DAE system in general. In view
of implementability of the observer, we investigate the notions of regularity and free
initializability. As for the design of stabilizing dynamic controllers, special care with
their compatibility has to be taken.
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The paper is organized as follows: In section 2 we collect the concepts used in
the present paper and some results on their algebraic characterization. In section 3
we introduce the concepts of (asymptotic, exact) observers for DAE systems and
characterize their existence in terms of observability and detectability. We also give
sufficient criteria for DAE observers being regular or freely initializable. The observers
are exploited in section 4 for the construction of stabilizing dynamic controllers for
DAE systems; special care has to be taken with the compatibility of the controllers.
It is shown in Theorem 4.2 that there exists a stabilizing controller if and only if the
given plant is both behaviorally stabilizable and behaviorally detectable. We show
that in the regular case the controller structure simplifies to some well-known results.

2. Preliminaries. We consider different notions of observability, detectability,
and stabilizability for DAE systems. For the definitions of these concepts in time
domain and for a detailed discussion and a comparison with the literature we refer
the reader to the surveys [11, 14]; for some early references on regular DAE systems
see [27, 29]. In the following we state their algebraic characterizations from [11,
Cor. 4.3] and [14, Prop. 6.1 and Cor. 9.5].

Proposition 2.1. A system [E,A,B,C,D] ∈ Σl,n,m,p is
(i) impulse observable if and only if kerR E ∩A−1(imR E) ∩ kerR C = {0};

(ii) behaviorally observable if and only if kerC(λE − A) ∩ kerC C = {0} for all
λ ∈ C;

(iii) behaviorally detectable if and only if kerC(λE − A) ∩ kerC C = {0} for all
λ ∈ C+;

(iv) strongly detectable if and only if kerR E ∩ A−1(imR E) ∩ kerR C = {0} and
kerC(λE −A) ∩ kerC C = {0} for all λ ∈ C+; and

(v) behaviorally stabilizable if and only if rkR(s)[sE−A,B] = rkC[λE−A,B] for
all λ ∈ C+.

Note that behavioral detectability and behavioral stabilizability are not dual con-
cepts; see also [14] for a comprehensive discussion of this issue.

For E,A ∈ Rl×n we consider the homogeneous system

(2.1)
d
dt
Ex(t) = Ax(t);

the set of those systems is denoted by Σl,n. The behavior of (2.1) is given by

B[E,A] :=
{
x ∈ L1

loc(R; Rn)
∣∣∣ Ex ∈ AC(R; Rl) and x satisfies (2.1) for a.a. t ∈ R

}
.

From [5, 11] we recall the following concepts.

Definition 2.2. A DAE [E,A] ∈ Σl,n is called
(a) behaviorally stable

:⇐⇒ ∀x ∈ B[E,A] : lim
t→∞

ess sup[t,∞) ‖x‖ = 0 and

(b) autonomous

:⇐⇒ ∀x1, x2 ∈ B[E,A] : x1|(−∞,0)
a.e.= x2|(−∞,0) =⇒ x1

a.e.= x2.

For a further discussion of autonomy of DAE systems see [12, Rem. 3.3]. Here we
recall the important equivalent characterization that
(2.2)

[E,A] ∈ Σl,n is autonomous ⇐⇒ ∀x ∈ B[E,A] :
(
Ex(0) = 0 ⇒ x

a.e.= 0
)
.
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The following result is an immediate consequence of [11, Cor. 5.2].

Lemma 2.3. Let [E,A] ∈ Σl,n. Then the following hold true:
(i) [E,A] is behaviorally stable if and only if rkC(λE −A) = n for all λ ∈ C+.

(ii) [E,A] is autonomous if and only if rkR(s)(sE −A) = n.
(iii) x

a.e.= 0 for all x ∈ B[E,A] if and only if rkC(λE −A) = n for all λ ∈ C.

3. Observers. In this section we first present rigorous definitions of the con-
cept of an (asymptotic, exact) observer. To this end, we use the approach in [58] for
the more general class of behaviors described by linear constant coefficient differen-
tial equations of possibly higher order. Thereafter, we consider observer design and
characterize the existence of (asymptotic, exact) observers. In principle, we present
“DAE versions” of the results in [58]. Though we treat a smaller class than [58],
there is a certain benefit and novelty to our results: Observers for DAE systems can
be chosen to be DAE systems themselves. Thereafter, we introduce the classes of
“freely initializable” and “regular observers.” The first means that the plant does not
influence the set of consistent initial values of the observer. The latter means that
the observer is neither under- nor overdetermined in a certain sense.

3.1. Definitions. First of all, an observer, i.e., a dynamical system which aims
to reconstruct the state, should be able to process the signals of the plant without
influencing the plant itself. This is the subject of the following definition.

Definition 3.1 (acceptor). Consider a system [E,A,B,C,D] ∈ Σl,n,m,p. Then
[Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,po is called an acceptor for [E,A,B,C,D] if for all
(x, u, y) ∈ B[E,A,B,C,D] there exist x0 ∈ L1

loc(R; Rno), z ∈ L1
loc(R; Rpo) such that

(xo, (
u
y ) , z) ∈ B[Eo,Ao,Bo,Co,Do].

The above definition means there is a one-directed signal flow from [E,A,B,C,D]
to its acceptor [Eo, Ao, Bo, Co, Do] via input and output (see Figure 3). That is,
[E,A,B,C,D] may influence [Eo, Ao, Bo, Co, Do] but not vice versa. Also compare
the general structure in Figure 3 with the ODE case depicted in Figure 1.

d

dt
Ex(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

d

dt
Eoxo(t) =Aoxo(t)+Bo

u(t)
y(t)

z(t) =Coxo(t)+Do
u(t)
y(t)

u(t) y(t)

z(t)

Fig. 3. Interconnection with an acceptor.

Definition 3.2 (observer). Consider the system [E,A,B,C,D] ∈ Σl,n,m,p. Then
[Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n is called
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(a) an observer for [E,A,B,C,D] if it is an acceptor for [E,A,B,C,D] and

∀ (x, u, y, xo, z) ∈ L1
loc(R; Rn × Rm × Rp × Rno × Rn) :(x, u, y) ∈ B[E,A,B,C,D] ∧ (xo, (

u
y ) , z) ∈

B[Eo,Ao,Bo,Co,Do]
∧ Ez(0) = Ex(0)

 =⇒ z
a.e.= x;

(b) an asymptotic observer for [E,A,B,C,D] if it is an observer for [E,A,B,C,D]
and

∀ (x, u, y, xo, z) ∈ L1
loc(R; Rn × Rm × Rp × Rno × Rn) :(

(x, u, y) ∈ B[E,A,B,C,D] ∧ (xo, (
u
y ) , z) ∈ B[Eo,Ao,Bo,Co,Do]

)
=⇒ lim

t→∞
ess sup[t,∞) ‖z − x‖ = 0; and

(c) an exact observer for [E,A,B,C,D] if it is an acceptor for [E,A,B,C,D]
and

∀ (x, u, y, xo, z) ∈ L1
loc(R; Rn × Rm × Rp × Rno × Rn) :(

(x, u, y) ∈ B[E,A,B,C,D] ∧ (xo, (
u
y ) , z) ∈ B[Eo,Ao,Bo,Co,Do]

)
=⇒ z

a.e.= x.

Remark 3.3 (observer).
(a) We have the following implications for [E,A,B,C,D] ∈ Σl,n,m,p and

[Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n:

[Eo, Ao, Bo, Co, Do]
is an observer for
[E, A, B, C, D]

[Eo, Ao, Bo, Co, Do]
is an asymptotic
observer for
[E, A, B, C, D]

[Eo, Ao, Bo, Co, Do]
is an exact
observer for
[E, A, B, C, D]

(b) The property of an observer being an acceptor is natural: As the name sug-
gests, an observer shall only observe and not influence the system. The further
property says that once the observer matches the state of the plant, it does
not lose track.
For an asymptotic observer, the state trajectory of the plant is further at-
tractive: Independent of the past of the observer, the observation error

(3.1) e(t) = z(t)− x(t)

tends to zero for t→∞, whereas an exact observer matches the overall state
trajectory.

(c) Our definition of an observer differs slightly from the one for behavioral sys-
tems by Valcher and Willems [58, Def. 3.1], where, adapted to our DAE setup,
[Eo, Ao, Bo, Co, Do] is called an observer for [E,A,B,C,D] if

(3.2)
(x, u, y) ∈ B[E,A,B,C,D] ∧ (xo, ( u

y ) , z) ∈ B[Eo,Ao,Bo,Co,Do] ∧ z|(−∞,0]
a.e.= x|(−∞,0]

=⇒ z
a.e.= x.

Our definition therefore seems to be stronger at a glance. We will, however,
see in Remark 3.6 that for DAE systems, our definition is equivalent to the
one in [58].
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(d) We stress that, different from asymptotic observers, sometimes the concept of
an estimator is considered, which is an acceptor that satisfies the condition in
Definition 3.2(b), but it is not an observer in general. For instance, the system
[1,−1, 0, 1, 0] ∈ Σ1,1,1,1 is an estimator for the ODE system [1,−2, 0, 0, 0] ∈
Σ1,1,0,1 but not an observer.

3.2. Observer design. We now consider the construction of (asymptotic, exact)
observers for a given system [E,A,B,C,D] ∈ Σl,n,m,p. In [51, p. 351] Polderman and
Willems give a preeminently nice and picturesque interpretation for observers, which
we would like to quote completely here:

“How then should we choose the equations governing a state observer? The
design that we put forward has a very appealing logic. The two central
ideas are:

1. the observer contains a copy of the plant, called an internal model.
2. the observer is driven by the innovations, by the error feedback, that

is, by a signal that expresses how far the actual observed output
differs from what we would have expected to observe.

This logic functions not unlike what happens in daily life. Suppose that
we meet a friend. How do we organize our thoughts in order to deduce
his or her mood, or other latent properties, from the observed manifest
ones? Based on past experience, we have an “internal model” of our friend
in mind, and an estimate of the “associated state” of his/her mood. This
tells us what reactions to expect. When we observe an action or hear a
response, then this may cause us to update the state of this internal model.
If the observed reaction agrees with what we expected from our current
estimate, then there is no need to change the estimate. The more the
reaction differs from our expectations, the stronger is the need to update.
The difference between what we actually observe and what we had expected
to observe is what we call the innovations. Thus it is logical to assume that
the updating algorithm for the estimate of the internal model is driven by
the innovations. We may also interpret the innovations as the surprise
factor.”

We propose a new observer which thoroughly matches this exegesis: Given a plant
[E,A,B,C,D] ∈ Σl,n,m,p, let k ∈ N0, Lx ∈ Rl×k, and Ly ∈ Rp×k, and consider the
following observer design, where u and y act as inputs to the observer (cf. (1.2) and
Figure 3) and z, d are the states:

(3.3)

d
dt
Ez(t) = Az(t) +Bu(t) +Lxd(t) ,

y(t) = Cz(t) +Du(t) +Lyd(t)︸ ︷︷ ︸
internal model

︸ ︷︷ ︸
innovations

or, in terms of (1.2),
(3.4)

[Eo, Ao, Bo, Co, Do] =
[
[E 0

0 0 ] ,
[
A Lx
C Ly

]
,
[
B 0
D −Im

]
, [ In 0 ] , 0n,m+p

]
∈ Σl+p,n+k,m+p,n.

The observer is additively composed of an internal model, i.e., a copy of the plant (or
friend), and a further term which involves the variable d ∈ L1

loc(R; Rk) and takes the
role of the innovations term (or surprise summand). Loosely speaking, the smaller
the d, the better the variables in the internal model of the plant (which is part of
the observer) in coincidence with the variables in the actual plant (and the better
the actual state matched by the approximate state). The only difference is that our
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innovations term is not an error feedback that is driven by a signal which expresses how
far the actual observed output differs from what we would have expected to observe.
The variable d(t) is rather a measure for the correctness of the overall internal model
at time t. We will show in Remark 3.9 that if sE −A is square, the innovations term
is indeed a feedback.

We would like to stress that (3.4) is always a DAE system in general, even if
E = I, i.e., the plant is an ODE system. The reason is that the output equation
y(t) = Cz(t) + Du(t) is always part of the state equations of the observer in (3.3);
see (3.4).

The interconnection of [E,A,B,C,D] and [Eo, Ao, Bo, Co, Do] is described by the
control system

(3.5)
d
dt


E 0 0 0
0 0 0 0
0 0 E 0
0 0 0 0



x(t)
y(t)
z(t)
d(t)

 =


A 0 0 0
C −I 0 0
0 0 A Lx
0 −I C Ly



x(t)
y(t)
z(t)
d(t)

+


B
D
B
D

u(t).

Now considering the observation error e(t) = z(t) − x(t) and multiplying (3.5) from
the left with

W =


Il 0 0 0
0 Ip 0 0
−Il 0 Il 0
0 −Ip 0 Ip

 ,
we obtain

(3.6)
d
dt


E 0 0 0
0 0 0 0
0 0 E 0
0 0 0 0



x(t)
y(t)
e(t)
d(t)

 =


A 0 0 0
C −I 0 0
0 0 A Lx
0 0 C Ly



x(t)
y(t)
e(t)
d(t)

+


B
D
0
0

u(t).

In particular, the error satisfies the DAE

(3.7)
d
dt

[
E 0
0 0

](
e(t)
d(t)

)
=
[
A Lx
C Ly

](
e(t)
d(t)

)
.

Theorem 3.4. Consider the system [E,A,B,C,D] ∈ Σl,n,m,p, and let k ∈ N0,
Lx ∈ Rl×k, and Ly ∈ Rp×k be such that

(3.8) rk
[
Lx
Ly

]
= k.

Then we have the following for the system [Eo, Ao, Bo, Co, Do] as in (3.4):
(a) [Eo, Ao, Bo, Co, Do] is an acceptor for [E,A,B,C,D].
(b) [Eo, Ao, Bo, Co, Do] is an observer for [E,A,B,C,D] if and only if

(3.9) rkR(s)

[
−sE +A Lx

C Ly

]
= n+ k.

(c) [Eo, Ao, Bo, Co, Do] is an asymptotic observer for [E,A,B,C,D] if and only
if

(3.10) rkC

[
−λE +A Lx

C Ly

]
= n+ k ∀λ ∈ C+.
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(d) [Eo, Ao, Bo, Co, Do] is an exact observer for [E,A,B,C,D] if and only if

(3.11) rkC

[
−λE +A Lx

C Ly

]
= n+ k ∀λ ∈ C.

Proof.
(a) The system [Eo, Ao, Bo, Co, Do] in (3.4) is an acceptor for [E,A,B,C,D],

since for all (x, u, y) ∈ B[E,A,B,C,D] we have

(( x0 ) , ( uy ) , x) ∈ B[Eo,Ao,Bo,Co,Do].

(b) ⇒: Suppose that [Eo, Ao, Bo, Co, Do] in (3.4) is an observer for [E,A,B,C,D].
Consider a solution ( ed ) of the DAE (3.7) with

(3.12) [E 0
0 0 ]

(
e(0)
d(0)

)
= ( 0

0 ) .

By (3.5) and (3.6), we have

(3.13) (0, 0, 0) ∈ B[E,A,B,C,D] ∧ (( ed ) , ( 0
0 ) , e) ∈ B[Eo,Ao,Bo,Co,Do].

The definition of an observer together with (3.12) implies e a.e.= 0. Then
we obtain from (3.7) and (3.8) that d a.e.= 0. We may now conclude that the
DAE (3.7) is autonomous, and hence we may infer from Lemma 2.3 that (3.9)
holds.
⇐: Assume that (3.9) is satisfied, and consider (x, u, y) ∈ B[E,A,B,C,D] and
(( zd ) , ( uy ) , z) ∈ B[Eo,Ao,Bo,Co,Do] with Ez(0) = Ex(0). Then the definition
of the observation error leads to Ee(0) = 0, and thus [E 0

0 0 ]
( e(o)
d(o)

)
= 0. Again

using Lemma 2.3, the assumption (3.9) gives autonomy of the DAE (3.7).
Then it follows from (2.2) that e a.e.= 0 or, equivalently, x a.e.= z. This means
that [Eo, Ao, Bo, Co, Do] in (3.4) is an observer for [E,A,B,C,D].

(c) ⇒: Assume that [Eo, Ao, Bo, Co, Do] in (3.4) is an asymptotic observer for
[E,A,B,C,D]. Consider a solution ( ed ) of the DAE (3.7). Then the relations
in (3.13) again hold true. The definition of an asymptotic observer gives
limt→∞ ess sup[t,∞) ‖e‖ = 0. Hence, for all solutions ( ed ) of (3.7) we have

lim
t→∞

ess sup[t,∞)

∥∥∥[E 0
0 0 ]

(
e(t)
d(t)

)∥∥∥ = 0.

Since (3.7) is furthermore autonomous by (b), it follows from [11, Cor. 5.1]
that (3.7) is behaviorally stable. Then we obtain from Lemma 2.3 that (3.10)
holds true.
⇐: Now assume that (3.10) is satisfied and consider (x, u, y) ∈ B[E,A,B,C,D]
and (( zd ) , ( uy ) , z) ∈ B[Eo,Ao,Bo,Co,Do]. By (3.6), ( ed ) satisfies (3.7). Using
Lemma 2.3, we see that (3.10) implies

lim
t→∞

ess sup[t,∞) ‖( ed )‖ = 0.

The system [Eo, Ao, Bo, Co, Do] in (3.4) is therefore an asymptotic observer
for [E,A,B,C,D].

(d) ⇒: Assume [Eo, Ao, Bo, Co, Do] in (3.4) is an exact observer for [E,A,B,C,D].
Consider a solution ( ed ) of the DAE (3.7). Then the relations in (3.13) again
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hold true. The definition of an exact observer yields e a.e.= 0, whence, by (3.7)
and (3.8), we have d a.e.= 0. Hence, the solutions of the DAE (3.7) vanish
almost everywhere, and we obtain from Lemma 2.3 that (3.11) holds true.
⇐: Now assume (3.11) is satisfied and consider (x, u, y) ∈ B[E,A,B,C,D] and
(( zd ) , ( uy ) , z) ∈ B[Eo,Ao,Bo,Co,Do]. By (3.6), ( ed ) satisfies (3.7). Lemma 2.3 to-
gether with (3.11) then implies in particular that e a.e.= 0, i.e., x a.e.= z. In other
words, [Eo, Ao, Bo, Co, Do] in (3.4) is an exact observer for [E,A,B,C,D].

Note that the properties (3.9)–(3.11) in Theorem 3.4 are related to the so-called
zero dynamics of the system [E,A,Lx, C, Ly] ∈ Σn,l,k,p (see [6, 7, 8, 9] for linear
DAEs). It is shown in [6] that (using the terminology of [6])

(3.9) ⇐⇒ the zero dynamics of [E,A,Lx, C, Ly] are autonomous,
(3.10) ⇐⇒ the zero dynamics of [E,A,Lx, C, Ly] are asymptotically stable,
(3.11) ⇐⇒ the zero dynamics of [E,A,Lx, C, Ly] are trivial.

3.3. Existence of observers. Here the special observer [Eo, Ao, Bo, Co, Do] ∈
Σl+p,n+k,m+p,n in (3.4) is shown to have a universal property in a certain sense: If an
(asymptotic, exact) observer exists, then it can be constructed to be of the form (3.4)
with k = 0; we would like to stress that, although the innovations are not necessary
to obtain an (asymptotic, exact) observer, they will be necessary when regularity and
free initializability of the observer are sought; see subsection 3.4.

Theorem 3.5 (characterization of existence of observers). For [E,A,B,C,D] ∈
Σl,n,m,p the following hold true:

(a) There exists an observer for [E,A,B,C,D] if and only if

(3.14) rkR(s)

[
−sE +A

C

]
= n.

(b) There exists an asymptotic observer for [E,A,B,C,D] if and only if

(3.15) rkC

[
−λE +A

C

]
= n ∀λ ∈ C+.

(c) There exists an exact observer for [E,A,B,C,D] if and only if

(3.16) rkC

[
−λE +A

C

]
= n ∀λ ∈ C.

Proof. We start with proving “⇐” for (a), (b), and (c) together: Consider the acceptor
[Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n in (3.4) with k = 0, Lx = 0l,0, and Ly =
0p,0. Then, by Theorem 3.4(a) (resp., (b), (c)), [Eo, Ao, Bo, Co, Do] is an (asymptotic,
exact) observer if (3.14) (resp., (3.15), (3.16)) holds true.

It remains to prove “⇒” for (a), (b), and (c):
(a) Suppose [Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n is an observer for [E,A,B,C,D].

Consider x ∈ L1
loc(R; Rn) with Ex ∈ AC(R; Rl), Ex(0) = 0, and

(3.17)
d
dt

[
E
0

]
x =

[
A
C

]
x.

Then (x, 0, 0) ∈ B[E,A,B,C,D] and

(3.18) (0, ( 0
0 ) , 0) ∈ B[Eo,Ao,Bo,Co,Do].



3574 THOMAS BERGER AND TIMO REIS

Since [Eo, Ao, Bo, Co, Do] is an observer for [E,A,B,C,D] we obtain x
a.e.=

0. This proves that (3.17) is an autonomous DAE, whence Lemma 2.3
yields (3.14).

(b) Suppose that [Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n is an asymptotic observer
for [E,A,B,C,D]. Consider x ∈ L1

loc(R; Rn) with Ex ∈ AC(R; Rl) which
satisfies (3.17). Then (x, 0, 0) ∈ B[E,A,B,C,D]. Again consider the trivial
trajectory (3.18) of the observer. The assumption that [Eo, Ao, Bo, Co, Do] is
an asymptotic observer leads to

lim
t→∞

ess sup[t,∞) ‖x− 0‖ = 0.

This shows that the DAE (3.17) is behaviorally stable. Then Lemma 2.3
implies (3.15).

(c) Suppose that [Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n is an exact observer for
[E,A,B,C,D]. Consider x ∈ L1

loc(R; Rn) with Ex ∈ AC(R; Rl) which sat-
isfies (3.17). Again we have (x, 0, 0) ∈ B[E,A,B,C,D], and we can consider
the trivial trajectory (3.18) of the observer. Now using the assumption that
[Eo, Ao, Bo, Co, Do] is an exact observer, we obtain x

a.e.= 0. This shows that
all solutions of the DAE (3.17) vanish almost everywhere. Then we obtain
from Lemma 2.3 that (3.16) holds true.

Note that condition (3.14) is equivalent to [[E0 ] , [AC ]] ∈ Σl+p,n being autonomous,
condition (3.15) is equivalent to [E,A,B,C,D] being behaviorally detectable, and
condition (3.16) is equivalent to [E,A,B,C,D] being behaviorally observable.

Remark 3.6 (observers II).
(a) Recall from Remark 3.3(c) that the observer definition in [58] is slightly dif-

ferent from ours. Namely, it is characterized by (3.2) in the case where
both the plant and observer behavior are represented by DAEs. As stated
in Remark 3.3(c), an observer according to our Definition 3.2 is an observer
according to [58, Def. 3.1]. Here we state that also the converse is true for
the observer [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4): If Ee(0) = 0,
then the autonomy of the DAE (3.7) implies that e a.e.= 0 (in the case of an
observer according to [58, Def. 3.1], autonomy of (3.7) can be shown similar
to the proof of Theorem 3.4(b)) and, in particular, that e|(−∞,0]

a.e.= 0. The
general reason is that, for an autonomous DAE, an initial state completely
describes the future behavior. This is no longer true for the behavioral sys-
tems treated in [51, 58], since these are described by differential equations of
possibly higher order.

(b) In [58], the more general framework of linear time-invariant behaviors de-
scribed by equations of the form R1( d

dt )w1 = R2( d
dt )w2 is considered, where

R1( d
dt ) and R2( d

dt ) are polynomial matrices in the differential operator. The
solution concept coincides with ours. In the framework of [58], the func-
tion w2 is composed of the measured variables, whereas w1 contains the in-
ternal variables. In our case, the measured variables are input and output;
w1 takes the role of the state trajectory. Observer design in [58] consists in
the construction of a system Q( d

dt )ŵ1 = R( d
dt )w2, such that ŵ1 is an ap-

proximation of w1 in the sense of Definition 3.2. A direct application of the
results from [58] to our setup would give rise to existence of observers of the
form Q( d

dt )z = Ru( d
dt )u+Ry( d

dt )y. Our results guarantee that observers can
indeed be chosen to be differential-algebraic systems. Further note that our
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criteria for existence of (asymptotic, exact) DAE observers are equivalent to
those obtained for behaviors in [58, Prop. 3.2].

(c) As in [58], we consider solutions in the set of locally integrable functions. We
note that an extension to solutions in the set of distributions D′(R; Rk) is
possible as well: By considering the distributional behavior

BD
′

[E,A,B,C,D] :=
{

(x, u, y) ∈ D′(R; Rn × Rm × Rp)
∣∣∣∣ Eẋ = Ax+Bu,
y = Cx+Du

}
the definition of an acceptor can be straightforwardly generalized to distribu-
tions. Within this solution concept, a DAE observer can be defined by being
an acceptor together with the property
(3.19)
∀ (x, u, y, xo, z) ∈ D′(R; Rn × Rm × Rp × Rno × Rn) :(x, u, y) ∈ BD

′

[E,A,B,C,D] ∧ (xo, (
u
y ) , z) ∈

BD
′

[Eo,Ao,Bo,Co,Do]
∧ supp(x− z) ⊆ R≥0

 =⇒ z = x,

where supp(x − z) denotes the support of the distribution x − z; see [53,
page 149]. A suitable definition of an asymptotic observer is that the obser-
vation error distribution x− z is a function which tends to zero as t tends to
infinity. Further, an exact observer in the distributional sense is one which
enforces the error to be the zero distribution. Note that using this observer
definition for distributional systems, it can be verified that the statement from
Theorem 3.4 still holds. As a consequence, the existence result for observers
in Theorem 3.5 is still valid in the distributional sense.

3.4. Regular and freely initializable observers. As the name suggests, an
exact observer is not ideal from a practical point of view: The typical situation is that
an observer will be turned on at an initial moment. If [Eo, Ao, Bo, Co, Do] is an exact
observer for [E,A,B,C,D], then a consistent initialization of [Eo, Ao, Bo, Co, Do] re-
quires the full information about the initial value of [E,A,B,C,D]. As a consequence,
we have a certain redundancy in the observation problem: The goal of an observer is
to approximate the state trajectory x of [E,A,B,C,D] by means of u and y. On the
other hand, by a combination of Lemma 2.3 and Theorem 3.5(a), the state trajectory
is, in case of existence of an observer, completely determined by u, y, and Ex(0).
That is, initialization of an exact observer already consists of the problem that needs
to be solved by the observer itself.

In terms of the metaphoric explanation in [51, page 351] (see also the beginning
of subsection 3.2), there is no space for innovations at all. An exact observer needs
to have a complete picture of his/her friend’s mood already at the beginning!

Another problem in the construction of the exact observer in the proof of The-
orem 3.5 (i.e., [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n in (3.4) with k = 0, Lx = 0l,0,
and Ly = 0p,0) concerns robustness issues: [Eo, Ao, Bo, Co, Do] is no longer an ac-
ceptor if the system [E,A,B,C,D] is slightly perturbed (in terms of the explanation
in [51, page 351], and this may be a slightly false estimation of the character of the
friend).

Further note that systems which are not freely initializable usually involve dif-
ferentiation of u and y. For an observer this may be problematic when noise is
present in the measurement of the output. The above findings lead to the wish
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for a design of observers whose initialization is not influenced by the initial state of
(x, u, y) ∈ B[E,A,B,C,D] at all.

Definition 3.7 (regular/freely initializable observer). Let system [E,A,B,C,D]
∈ Σl,n,m,p be given, and let [Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n be an observer for
[E,A,B,C,D]. Then we call [Eo, Ao, Bo, Co, Do]

(a) regular if lo = no and sEo −Ao is regular and
(b) freely initializable if for all (x, u, y) ∈ B[E,A,B,C,D] and x0

o ∈ Rno there exist
xo ∈ L1

loc(R; Rno), z ∈ L1
loc(R; Rn) such that

(xo, (
u
y ) , z) ∈ B[Eo,Ao,Bo,Co,Do] and Eoxo(0) = Eox

0
o.

In order to study the above concepts we need to introduce the notion of an index of
a regular matrix pencil: The index ν ∈ N0 of a regular matrix pencil sE−A ∈ R[s]n×n
is defined via its (quasi-)Weierstraß form [10, 42, 44]: If for some S, T ∈ Gln(R)

S(sE −A)T =
[
sIr − J 0

0 sN − In−r

]
, then ν :=

{
0 if r = n,
min

{
k ∈ N

∣∣ Nk = 0
}

if r < n,

where N is nilpotent. The index is independent of the choice of S, T and can be
computed via the Wong sequences corresponding to sE −A as shown in [10].

Next we give sufficient conditions for the existence of regular and freely initializ-
able observers. In particular, it will turn out that an observer exists if and only if a
regular observer exists.

Theorem 3.8 (existence of regular and freely initializable observers). Let a sys-
tem [E,A,B,C,D] ∈ Σl,n,m,p be given.

(a) If (3.14) holds true (equivalently, an observer exists; see Theorem 3.5(a)),
then there exist k ∈ N0, Lx ∈ Rl×k, and Ly ∈ Rp×k such that [Eo, Ao, Bo,
Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is a regular observer for [E,A,B,C,D].

(b) If (3.15) holds true (equivalently, an asymptotic observer exists; see The-
orem 3.5(b)), then there exist k ∈ N0, Lx ∈ Rl×k, and Ly ∈ Rp×k such
that [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is a regular asymptotic
observer for [E,A,B,C,D].

(c) If [E,A,B,C,D] is impulse observable, then there exist k ∈ N0, Lx ∈ Rl×k,
and Ly ∈ Rp×k such that the pencil

(3.20)
[
−sE +A Lx

C Ly

]
is square and regular and its index is at most one.
In this case, the observer [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is
regular and freely initializable.

(d) If [E,A,B,C,D] is strongly detectable, then there exist k ∈ N0, Lx ∈ Rl×k,
and Ly ∈ Rp×k such that the pencil (3.20) is square and regular, and its index
is at most one and satisfies (3.10).
In this case, [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is a regular and
freely initializable asymptotic observer for [E,A,B,C,D].

Proof.
(a) We show the existence of k ∈ N0, Lx ∈ Rl×k, and Ly ∈ Rp×k such that

the pencil in (3.20) is square and regular. For the proof we introduce the
following notation: For j ∈ N let

Nj =
[0

1

1 0

]
∈ Rj×j , Kj =

[1 0

1 0

]
, Lj =

[0 1

0 1

]
∈ R(j−1)×j .
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Further, let e[j]
i ∈ Rj be the ith canonical unit vector, and, for some multi-

index α = (α1, . . . , αr) ∈ Nr, we define

Nα = diag(Nα1 , . . . , Nαr ) ∈ R|α|×|α|,

Kα = diag(Kα1 , . . . ,Kαr ) ∈ R(|α|−`(α))×|α|,

Lα = diag(Lα1 , . . . , Lαr ) ∈ R(|α|−`(α))×|α|,

Eα = diag(e[α1]
α1

, . . . , e[αr]
αr ) ∈ R|α|×`(α).

By [14, Thm. 4.4] there exist S ∈ Gll(R), T ∈ Gln(R), V ∈ Glp(R), and
L ∈ Rl×p such that

(3.21) [SET , SAT − LCT , V CT ]

=



I|α| 0 0 0 0 0

0 K>β 0 0 0 0
0 0 Lγ 0 0 0
0 0 0 Kε 0 0
0 0 0 0 N>κ 0
0 0 0 0 0 Ino

 ,

Nα 0 0 0 0 0
0 L>β 0 0 0 0
0 0 Kγ 0 0 0
0 0 0 Lε 0 0
0 0 0 0 I|κ| 0
0 0 0 0 0 Ao

 , [E>α 0 0 0 0 0
0 0 E>γ 0 0 0
0 0 0 0 0 0

]
for some multi-indices α, β, γ, ε, κ and a matrix Ao ∈ Rno×no . Observe that,
for all Fα ∈ R`(α)×|α|, the system

(3.22)
d
dt

[
I|α| 0
0 0

]
z(t) =

[
Nα F>α
E>α −I`(α)

]
z(t)

is regular and has index at most one, since

deg det
[
−sI|α| +Nα F>α

E>α −I`(α)

]
= |α| = rk

[
I|α| 0
0 0

]
.

We choose Fα = 0 here. Furthermore, for

aj = [aj0, . . . , ajβj−2, 1]> ∈ Rβj

with the property that the polynomials

pj(s) = sβj + ajβj−1s
βj−1 + · · ·+ aj0 ∈ R[s]

are Hurwitz for j = 1, . . . , `(β), the choice

Bβ = diag(a1, . . . , a`(β)) ∈ R|β|×`(β)

leads to the system

(3.23)
d
dt

[K>β , 0]
(
z(t)
u(t)

)
= [L>β , Bβ ]

(
z(t)
u(t)

)
.

We see that the input u is uniquely determined by u = −E>β−1z, where
β − 1 = (β1 − 1, . . . , β`(β) − 1) and if βj = 1 for some j, then the respective
x-component does not exist and the equation simply reads as uj = 0. With
Bβ−1 = diag(ã1, . . . , ã`(β)), where ãj = [aj0, . . . , ajβj−2]>, a permutation of
rows in (3.23) and insertion of u give

ż(t) = (Nβ−1 −Bβ−1E
>
β−1)z(t),

u(t) = E>β−1z(t).
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It is now clear that the pencil s[K>β , 0]− [L>β , Bβ ] in system (3.23) is regular
and has index at most one. Furthermore, the characteristic polynomial of
Nβ−1 +Bβ−1E

>
β−1 (which is a block diagonalization of companion matrices)

is given by

det
(
sI − (Nβ−1 +Bβ−1E

>
β−1)

)
=
`(β)∏
j=1

pj(s),

which is Hurwitz, since all pj(s) are Hurwitz. Therefore, (3.23) is also behav-
iorally stable. Finally, observe that

∀λ ∈ C : rkC

−λLγ +Kγ 0
E>γ 0
0 −λN>κ + I|κ|

 = |γ|+ |κ|,

and hence the above pencil is square and regular and satisfies (3.10). Now,
assumption (3.14) implies `(ε) = 0, and hence the choice
(3.24)

k = `(α) + `(β) + (p− `(α)− `(γ)),

L̃x =


F>α 0 0
0 Bβ 0
0 0 0
0 0 0
0 0 0

 ∈ Rl×k, L̃y =

−I`(α) 0 0
0 0 0
0 0 Ip−`(α)−`(γ)

 ∈ Rp×k

leads to

n+ k =
(
|α|+ |β| − `(β) + |γ|+ |κ|+no

)
+
(
`(α) + `(β) + (p− `(α)− `(γ))

)
=
(
|α|+ |β|+ |γ| − `(γ) + |κ|+ no

)
+ p = l + p,

by which the pencil[
−sSET + SAT − LCT L̃x

V CT L̃y

]

= P1



−sI|α|+Nα F>α 0 0 0 0 0 0

E>α −I`(α) 0 0 0 0 0 0

0 0 −sK>β +L>β Bβ 0 0 0 0
0 0 0 0 −sLγ+Kγ 0 0 0

0 0 0 0 E>γ 0 0 0

0 0 0 0 0 −sN>κ +I|κ| 0 0
0 0 0 0 0 0 −sIno

+Ao 0
0 0 0 0 0 0 0 Ip−`(α)−`(γ)


P2

is square and regular, where P1, P2 are appropriate block permutation matri-
ces. Therefore, with

(3.25) Lx = S−1L̃x + LV −1L̃y, Ly = V −1L̃y,

the pencil (3.20) is square and regular. We can further conclude from Theo-
rem 3.4(b) that [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is an observer
for [E,A,B,C,D].

(b) If (3.15) is true, then [E,A,B,C,D] is behaviorally detectable and by [14,
Cor. 9.3] we find `(ε) = 0 and σ(Ao) ⊆ C− in (3.21). By [56, Thm. 4.20],
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there exists Fα ∈ R`(α)×|α| such that, using the same notation as in (a),
σ(N>α + EαFα) ⊆ C−. Therefore, system (3.22) is additionally behaviorally
stable. Then, using the same choice as in (3.24) and (3.25), it follows from the
fact that the systems (3.22) and (3.23) are regular and behaviorally stable
that the pencil in (3.20) is square and regular and satisfies (3.10). Then,
by Theorem 3.4(c), [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is an
asymptotic observer for [E,A,B,C,D].

(c) Impulse observability implies, invoking [14, Lem. 5.1], that |γ| = `(γ), `(ε) =
0 and |κ| = `(κ) in (3.21). Then, using the same choice as in (3.24) and (3.25),
it follows from the fact that the systems (3.22) and (3.23) are regular and of
index at most one that the pencil in (3.20) is square and regular and its index
is at most one. Next we prove that [Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as
in (3.4) is a freely initializable observer for [E,A,B,C,D]:
Let (x, u, y) ∈ B[E,A,B,C,D] and z0 ∈ Rn. Since the pencil (3.20) is square
and regular and its index is at most one, there exist e ∈ L1

loc(R; Rn) and
d ∈ L1

loc(R; Rk) such that Ee ∈ AC(R; Rl), Ee(0) = E(z0 − x(0)), and the
DAE (3.7) is satisfied for a.a. t ∈ R. Now consider z := x+ e ∈ L1

loc(R; Rn).
Then, by Ex ∈ AC(R; Rl), we obtain Ez ∈ AC(R; Rl) and

Eo

(
z(0)
d(0)

)
=
(
Ex(0) + Ee(0)

0

)
= Eoz

0.

By (x, u, y) ∈ B[E,A,B,C,D] and (3.7) we obtain that (3.6) holds true. Hence,
the DAE (3.5) is satisfied. In particular, we have

(( zd ) , ( uy ) , z) ∈ B[Eo,Ao,Bo,Co,Do].

(d) Strong detectability implies, invoking [14, Cor. 9.3], that |γ| = `(γ), `(ε) = 0,
|κ| = `(κ), and σ(Ao) ⊆ C− in (3.21). As in (b) we may choose Fα ∈ R`(α)×|α|

such that σ(N>α + EαFα) ⊆ C−, and hence system (3.22) is behaviorally
stable. Then, using the same choice as in (3.24) and (3.25), it follows from
the fact that the systems (3.22) and (3.23) are regular, of index at most one
and behaviorally stable, that the pencil in (3.20) is square and regular, and
its index is at most one and it satisfies (3.10). Then, by Theorem 3.4(c),
[Eo, Ao, Bo, Co, Do] ∈ Σl+p,n+k,m+p,n as in (3.4) is an asymptotic observer
for [E,A,B,C,D]. Regularity and free initializability of [Eo, Ao, Bo, Co, Do]
follow from (c).

It has recently been shown in [13] that the converse implications in Theorem 3.8(c)
and (d) are not true in general. Instead of impulse observability (and, additionally,
behavioral detectability) it is necessary and sufficient for existence of an (asymptotic)
regular and freely initializable observer that the completely controllable part of the
plant in terms of a Kalman controllability decomposition (see [15]) is impulse observ-
able (and, additionally, the plant is behaviorally detectable).

Remark 3.9 (regular observers for square systems). Let a system [E,A,B,C,D] ∈
Σn,n,m,p be given.

(a) If sE − A ∈ R[s]n×n is regular, then [E,A,B,C,D] has property (3.14),
whence a regular observer exists by Theorem 3.8(a).

(b) By [14, Thm. 9.8], the following hold true:
(i) If [E,A,B,C,D] is impulse observable, then there exists some L ∈ Rn×p

such that sE − (A+ LC) is regular and its index is at most one.
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(ii) If [E,A,B,C,D] is behaviorally detectable, then there exists some L ∈
Rn×p such that sE−(A+LC) is regular and [E,A+LC] is behaviorally
stable.

(iii) If [E,A,B,C,D] is strongly detectable, then there exists some L ∈ Rn×p
such that sE− (A+LC) is regular, its index is at most one, and [E,A+
LC] is behaviorally stable.

As a consequence, if sE −A is square, we may conclude from

(3.26)
[
In L
0 Ip

] [
−sE +A −L

C Ip

] [
In 0
−C Ip

]
=
[
−sE +A+ LC 0

0 Ip

]
that we can make the choice Ly = Ip, Lx = −L for the matrices in Theo-
rem 3.8 and (3.20) is square and regular. Therefore, we have

d(t) = Cz(t) +Du(t)− y(t)

in the observer realization (3.3). Inserting this into the first equation in (3.3)
we can eliminate the auxiliary variable d, and we obtain

(3.27)
d
dt
Ez(t) = (A+ LC)z(t) + (B + LD)u(t)− Ly(t).

Hence, we find that regular (asymptotic, freely initializable) observers for
square systems can always be chosen of the form (3.27), i.e.,

(3.28) [Eo, Ao, Bo, Co, Do] = [E,A+ LC, [B + LD , −L] , In, 0n,m+p] .

3.5. Notes and references. Observers for differential-algebraic systems have
been considered in various publications. The existing results (as well as ours) all rely
on the principal idea by Luenberger in the seminal works [47, 48] for systems governed
by ODEs. It has been first observed by Wang and Dai [59, 60] that the classical
Luenberger observer straightforwardly generalizes to DAE systems [E,A,B,C,D] ∈
Σn,n,m,p with regular sE−A (this is a special case of Remark 3.9). Further aspects of
observer design for [E,A,B,C,D] ∈ Σn,n,m,p with regular sE−A have been presented
in [35, 37, 49, 54, 65]. These results have been applied to models for mechanical
multibody systems in [40].

Articles [34, 39] treat observer design for general DAE systems [E,A,B,C,D] ∈
Σl,n,m,p with the property

rk

E A
0 C
0 E

 = n+ rkE;

i.e., impulse observable systems are considered. It has been proved in [34] that
systems with this property admit observers which can be realized by ODEs. This
corresponds to our result in Theorem 3.8(c), where we have proved that observers
[Eo, Ao, Bo, Co, Do] ∈ Σlo,no,m+p,n can be constructed with lo = no and a regular
pencil sEo − Ao whose index is at most one. By resolving the algebraic constraints,
this observer can indeed be reformulated as an ODE.

The results for the regular case have been generalized in [19, 20, 21, 22] to input-
output systems which are governed by DAEs with variable coefficients. Observer
design for classes of nonlinear DAEs has been treated in [2, 23, 25, 33, 43, 66]. In
particular, the article [43] gives criteria for the existence of observers with index at
most one.

Numerical aspects of observer design for DAEs are presented in [16, 17, 36, 46, 50].
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4. Dynamic controllers. In the present section we consider the problem of
dynamic compensation, that is, a suitable interconnection with a controller system
which only uses the knowledge of the output to stabilize a given plant [E,A,B,C,D] ∈
Σl,n,m,p. We will consider design of stabilizing controllers and present equivalent
conditions for their existence.

4.1. Definitions. We use the concept of control in the behavioral sense which
has its origin in the works by Willems, Polderman, and Trentelman (see [4, 51, 57, 63,
64]), where differential behaviors and their stabilization via control by interconnection
are considered. The latter means a systematic addition of some further (differential)
equations such that a desired behavior is achieved; see Figure 4.

d

dt
Ex(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

d

dt
Ecxc(t) =Acxc(t)+Bcy(t)
u(t) =Ccxc(t)+Dcy(t)

u(t) y(t)

Fig. 4. Interconnection with a controller.

Note that if y = x, one could make the extreme choice Ec = 0, Ac = 0, Bc =
I, Cc = 0, Dc = 0 for the controller, which would result in an interconnected sys-
tem where each trajectory vanishes. This, however, is not suitable from a practical
point of view, since in this interconnection, the space of consistent initial differential
variables is a proper subset of the initial differential variables which are consistent
with the original system [E,A,B,C,D]. Consequently, the interconnected system
does not have the causality property; that is, the implementation of the controller
at a certain time t ∈ R is not possible, since this causes jumps in the differential
variables. To avoid this, we introduce the concept of compatibility. In order to define
compatibility we need to introduce the space of consistent initial differential variables
for [E,A,B,C,D] ∈ Σl,n,m,p:

Vdiff
[E,A,B,C,D] =

{
x0 ∈ Rn

∣∣ ∃ (x, u, y) ∈ B[E,A,B,C,D] : Ex(0) = Ex0 } .
Definition 4.1 (compatible/stabilizing/freely initializable controller). Let a sys-

tem [E,A,B,C,D] ∈ Σl,n,m,p be given. Then we call a system [Ec, Ac, Bc, Cc, Dc] ∈
Σlc,nc,p,m

(a) a compatible controller for [E,A,B,C,D] if

∀x0 ∈ Vdiff
[E,A,B,C,D] ∃ (x, u, y) ∈ B[E,A,B,C,D] ∃xc ∈ L1

loc(R; Rnc) :

Ex(0) = Ex0 ∧ (xc, y, u) ∈ B[Ec,Ac,Bc,Cc,Dc];
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(b) a stabilizing controller if it is a compatible controller and

∀ (x, u, y) ∈ B[E,A,B,C,D] ∀xc ∈ L1
loc(R; Rnc) :(

(xc, y, u) ∈ B[Ec,Ac,Bc,Cc,Dc] =⇒ lim
t→∞

ess sup[t,∞)

∥∥∥∥( x
u
y
xc

)∥∥∥∥ = 0
)

; and

(c) a freely initializable controller if

∀x0 ∈ Vdiff
[E,A,B,C,D] ∀x0

c ∈ Rnc ∃ (x, u, y) ∈ B[E,A,B,C,D] ∃xc ∈ L1
loc(R; Rnc) :

Ex(0) = Ex0 ∧ Ecxc(0) = Ecx
0
c ∧ (xc, y, u) ∈ B[Ec,Ac,Bc,Cc,Dc].

Note that the above definition of compatibility is a slight modification of the con-
cept introduced by Julius and van der Schaft in [41], where an interconnection is called
compatible if any trajectory of the system without control law can be concatenated
with a trajectory of the interconnected system. This certainly implies that the space
of initial differential variables of the interconnected system cannot be smaller than
the corresponding set for the nominal system. The above compatibility definition also
generalizes the compatibility concept introduced in [5, 11] for DAE control systems.

We would like to stress that any freely initializable controller is, in particular,
compatible.

4.2. Controller design and existence. In the following we show that the ex-
istence of a stabilizing controller is equivalent to behavioral stabilizability and behav-
ioral detectability. We also investigate when a stabilizing controller is freely initializ-
able. Our main result, Theorem 4.2, can be viewed as a “DAE version” of [4, Thm. 6]
derived for the class of linear behaviors (the same class as considered in [58]). The
benefit and novelty of Theorem 4.2 are that we show that stabilizing controllers for
DAE systems can be chosen to be DAE systems themselves.

Theorem 4.2 (stabilizing controllers). Let [E,A,B,C,D] ∈ Σl,n,m,p be given.
Then there exists a stabilizing controller for [E,A,B,C,D] if and only if [E,A,B,C,D]
is both behaviorally stabilizable and behaviorally detectable.

Proof of necessity in Theorem 4.2. Let [Ec, Ac, Bc, Cc, Dc] ∈ Σlc,nc,p,m be a sta-
bilizing controller for [E,A,B,C,D].

Step 1. We prove that [E,A,B,C,D] is behaviorally stabilizable. Let (x, u, y) ∈
B[E,A,B,C,D]; then x0 ∈ Vdiff

[E,A,B,C,D]. By compatibility of [Ec, Ac, Bc, Cc, Dc] for
[E,A,B,C,D], there exists some (x̃, ũ, ỹ) ∈ B[E,A,B,C,D] with Ex̃(0) = Ex(0) and
some xc ∈ L1

loc(R; Rnc) such that (xc, ỹ, ũ) ∈ B[Ec,Ac,Bc,Cc,Dc]. Since [Ec, Ac, Bc, Cc, Dc]
is stabilizing we further obtain that

lim
t→∞

ess sup[t,∞) ‖x̃‖ = 0.

We have shown that

∀ (x, u, y) ∈ B[E,A,B,C,D] ∃ (x̃, ũ, ỹ) ∈ B[E,A,B,C,D] :
Ex̃(0) = Ex(0) ∧ lim

t→∞
ess sup[t,∞) ‖x̃‖ = 0.

Using the same arguments as in, for instance, [11, Rem. 3.7] it can be shown that the
above property is equivalent to behavioral stabilizability of [E,A,B,C,D].
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Step 2. We prove that [E,A,B,C,D] is behaviorally detectable. Let (x, 0, 0) ∈
B[E,A,B,C,D]. Then, by using (0, 0, 0) ∈ B[Ec,Ac,Bc,Cc,Dc] and the property that
[Ec, Ac, Bc, Cc, Dc] is a stabilizing controller, we obtain

lim
t→∞

ess sup[t,∞) ‖x‖ = 0.

This proves that [E,A,B,C,D] is behaviorally detectable.

The proof of sufficiency in Theorem 4.2 is based on a construction of a suitable
controller for a given behaviorally stabilizable and behaviorally detectable system
[E,A,B,C,D] ∈ Σl,n,m,p: If full information on the state is available (i.e., C = In),
then a stabilizing controller can be constructed with Ec = 0 (i.e., it is actually no
longer dynamic); see [11, Thm. 5.4]. To this end, let Kx ∈ Rlc×n and Ku ∈ Rlc×m be
such that the DAE

d
dt

[
E 0
0 0

](
x(t)
u(t)

)
=
[
A B
Kx Ku

](
x(t)
u(t)

)
is behaviorally stable.

For the general case, we use the basic strategy in the classical approach [48]: We
couple the plant with an observer to approximate the state. The approximate state is
then used (as if it were the state) to determine an input which stabilizes the system.

d
dt
Ex(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

d
dt
Eoxo(t) =Aoxo(t)+Bo

y(t)
u(t)

z(t) =Coxo(t)+Do
y(t)
u(t)

0= Kxz(t)+Kuu(t)

y(t)u(t)

z(t)

Dynamic controller

Fig. 5. Controller structure.

More precisely, we add the static relation

(4.1) Kxz(t) +Kuu(t) = 0

to the model of the plant coupled with an asymptotic observer of the form (3.4),
the output of which is the approximate state z; see Figure 5. Then we obtain the
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closed-loop system described by the DAE

(4.2)
d
dt


E 0 0 0 0
0 0 0 0 0
0 0 E 0 0
0 0 0 0 0
0 0 0 0 0



x(t)
y(t)
z(t)
d(t)
u(t)

 =


A 0 0 0 B
C −Ip 0 0 D
0 0 A Lx B
0 −Ip C Ly D
0 0 Kx 0 Ku



x(t)
y(t)
z(t)
d(t)
u(t)

 .

By using
Il 0 0 0 0
0 0 0 0 Ilc

−Il 0 Il 0 0
0 −Ip 0 Ip 0
0 Ip 0 0 0




−sE + A 0 0 0 B
C −I 0 0 D
0 0 −sE + A Lx B
0 −I C Ly D
0 0 Kx 0 Ku




In 0 0 0 0
0 0 0 0 Ip

In 0 In 0 0
0 0 0 Ik 0
0 Im 0 0 0



=


−sE + A B 0 0 0

Kx Ku Kx 0 0
0 0 −sE + A Lx 0
0 0 C Ly 0
C D 0 0 −Ip

 ,

we obtain that x, u, y, z, d solve (3.5) if and only if y(t) = Cx(t) + Du(t) and, using
the observation error e(t) = z(t)− x(t), we have

(4.3)
d
dt


E 0 0 0
0 0 0 0
0 0 E 0
0 0 0 0



x(t)
u(t)
e(t)
d(t)

 =


A B 0 0
Kx Ku Kx 0
0 0 A Lx
0 0 C Ly



x(t)
u(t)
e(t)
d(t)

 .

Next we analyze the properties of the previously introduced controller. To this end,
for given [E,A,B,C,D] ∈ Σl,n,m,p, consider
(4.4)

[Ec, Ac, Bc, Cc, Dc]

=

E 0 0
0 0 0
0 0 0

 ,
 A Lx B
C Ly D
Kx 0 Ku

 ,
 0
−Ip

0

 , [0 0 Im
]
, 0m,p

 ∈ Σl+p+lc,n+k+m,p,m.

By an interconnection of this system with [E,A,B,C,D] as depicted in Figure 4, we
see that the state of the controller contains a copy of the input u. The closed-loop
system is therefore described by the DAE (4.2).

In the following we analyze the properties of the controller (4.4) in terms of
the following properties of [E,A,B,C,D] ∈ Σl,n,m,p and the matrices Kx ∈ Rlc×n,
Ku ∈ Rlc×m, Lx ∈ Rn×k, Ly ∈ Rp×k:

(C1) [0,Ku,Kx, Im, 0] is a compatible controller for [E,A,B, In, 0].
(C2) The DAE

[
[E 0

0 0 ] ,
[
A B
Kx Ku

]]
is behaviorally stable.

(C3) For all f ∈ L1
loc(R; Rlc), x0 ∈ Vdiff

[E,A,B,C,D], there exist x ∈ L1
loc(R; Rn),

u ∈ L1
loc(R; Rm) with Ex ∈ AC(R; Rl), Ex(0) = Ex0 and, for a.a. t ∈ R,

d
dt

[
E 0
0 0

](
x(t)
u(t)

)
=
[
A B
Kx Ku

](
x(t)
u(t)

)
+
(

0
f(t)

)
.

(C4) [Eo, Ao, Bo, Co, Do] as in (3.4) (for some k ∈ N0) with (3.8) is an asymptotic
observer for [E,A,B,C,D].
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(C5) [Eo, Ao, Bo, Co, Do] as in (3.4) (for some k ∈ N0) with (3.8) is a freely initial-
izable observer for [E,A,B,C,D].

Note that (C4) is equivalent to behavioral detectability of [E,A,B,C,D] and (C5)
implies strong detectability of [E,A,B,C,D].

Before we present the main result on properties of the controller (4.4), we show
that for a behaviorally stabilizable system we can always find Kx ∈ Rlc×n, Ku ∈
Rlc×m with the properties (C1)–(C3).

Lemma 4.3. Let [E,A,B,C,D] ∈ Σl,n,m,p be behaviorally stabilizable. Then there
exist lc ∈ N0, Kx ∈ Rlc×n, and Ku ∈ Rlc×m with the properties (C1), (C2), and (C3).

Proof. Properties (C1) and (C2) are an immediate consequence of [5, Thm. 3.4.10].
Property (C3) follows from the fact that in the construction used in the proof of [5,
Thm. 3.4.10] the inhomogeneity f is only applied to a regular subsystem which has
index at most one, and thus solutions exist for all inhomogeneities of this form and
all consistent initial values.

Theorem 4.4. Let [E,A,B,C,D] ∈ Σl,n,m,p, and let k, lc ∈ N0 and Kx ∈ Rlc×n,
Ku ∈ Rlc×m, Lx ∈ Rn×k, and Ly ∈ Rp×k. Then for [Ec, Ac, Bc, Cc, Dc] we have the
following as in (4.4):

(a) If (C1) holds, then [Ec, Ac, Bc, Cc, Dc] is a compatible controller for [E,A,B,
C,D].

(b) If (C1), (C2), and (C4) hold, then [Ec, Ac, Bc, Cc, Dc] is a stabilizing con-
troller for [E,A,B,C,D].

(c) If (C1)–(C5) hold, then [Ec, Ac, Bc, Cc, Dc] is a freely initializable stabilizing
controller for [E,A,B,C,D].

Proof.
(a) Assume x0 ∈ Vdiff

[E,A,B,C,D]; then by (C1) there exists (x, u) ∈ B[
[E 0

0 0 ],
[
A B
Kx Ku

]]
with Ex(0) = Ex0. Then we obtain that the DAE (4.2) is satisfied for
y = Cx+Du, z = x, and d = 0. Therefore, we have (x, u, y) ∈ B[E,A,B,C,D],
Ex(0) = Ex0, and (xc, y, u) ∈ B[Ec,Ac,Bc,Cc,Dc] for

xc =

x0
u

 .

This shows compatibility of the controller [Ec, Ac, Bc, Cc, Dc].
(b) Assume (C1), (C2), and (C4) hold true. Compatibility of [Ec, Ac, Bc, Cc, Dc]

is a consequence of statement (a). Next we show, using (C2) and (C4),
that the closed-loop system is behaviorally stable. By (C2) together with
Lemma 2.3 and (C4) together with Theorem 3.4(c), we have

∀λ ∈ C+ : rkC

[
−λE +A B

Kx Ku

]
= n+m ∧ rkC

[
−λE +A Lx

C Ly

]
= n+ k,

and thus

∀λ ∈ C+ : rkC


−λE +A B 0 0

Kx Ku Kx 0
0 0 −λE +A Lx
0 0 C Ly

 = 2n+m+ k.

Then Lemma 2.3 implies that the DAE (4.3) is behaviorally stable. Now,
let (x, u, y) ∈ B[E,A,B,C,D] and xc ∈ L1

loc(R; Rnc) such that (xc, y, u) ∈
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B[Ec,Ac,Bc,Cc,Dc]. Write

xc =

zd
u


according to the decomposition in (4.4). Then, for e = z − x, (x, u, d, e)
solves (4.3), and hence, by behavioral stability,

lim
t→∞

ess sup[t,∞)

∥∥∥∥∥∥∥∥

x
u
d
e


∥∥∥∥∥∥∥∥ = 0.

Therefore, invoking also y = Cx+Du, we further find that

lim
t→∞

ess sup[t,∞) ‖y‖ = 0 ∧ lim
t→∞

ess sup[t,∞) ‖xc‖ = 0.

This shows that [Ec, Ac, Bc, Cc, Dc] is a stabilizing controller.
(c) Assume that (C1)–(C5) hold true. By (b), we obtain that [Ec, Ac, Bc, Cc, Dc]

is a stabilizing controller for [E,A,B,C,D]. To prove statement (c), it there-
fore suffices to show that for all x0 ∈ Vdiff

[E,A,B,C,D] and z0 ∈ Rn, there exists
a solution of the DAE (4.2) with Ex(0) = x0 and Ez(0) = Ez0.
Assume that x0 ∈ Vdiff

[E,A,B,C,D] and z0 ∈ Rn. By (C5), [Eo, Ao, Bo, Co, Do]
as in (3.4) is a freely initializable observer for [E,A,B,C,D]. Thus, by an
application of the definition of freely initializable observers to the trivial tra-
jectory (0, 0, 0) ∈ B[E,A,B,C,D], we obtain that there exists some solution (e, d)
of the DAE (3.7) with Ee(0) = E(z0 − x0). Moreover, by (C3), there exists
a solution (x, u) of the DAE

d
dt

[
E 0
0 0

](
x(t)
u(t)

)
=
[
A B
Kx Ku

](
x(t)
u(t)

)
+
(

0
Kxe(t)

)
, Ex(0) = Ex0.

Hence, the DAE (4.3) is solved by (x, u, e, d). Therefore, x, u, z = x + e, d,
and y = Cx+Du satisfy (4.2) with Ex(0) = Ex0 and

Ez(0) = Ex(0) + Ee(0) = Ex0 + E(z0 − x0) = Ez0.

This proves the desired result.

We are now in the position to finish the proof of Theorem 4.2.

Proof of sufficiency in Theorem 4.2. The assertion follows from Theorem 4.4(b)
together with Lemma 4.3 and Theorem 3.4(c).

Remark 4.5 (controllers).
(a) Assume that [E,A,B,C,D] ∈ Σl,n,m,p is behaviorally stabilizable. By the

Kalman decomposition from [14, Thm. 13.1] (see also [3]) there exist W ∈
Gll(R), T ∈ Gln(R) such that

W (sE−A)T =
[
sE11 −A11 sE12 −A12

0 sE22 −A22

]
, WB =

[
B1
B2

]
, CT =

[
0 C2

]
,

where [E22, A22, B2, C2, D] ∈ Σlo,no,m,p is completely observable (in the sense
of [14]) and behaviorally stabilizable, and where rk

[
E22
C2

]
= no. There-

fore, [E22, A22, B2, C2, D] is, in particular, strongly detectable. From Theo-
rem 3.8(d), Lemma 4.3, and Theorem 4.4(c) we may then conclude that there
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exists a freely initializable stabilizing controller [Ec2, Ac2, Bc2, Cc2, Dc2] ∈
Σlc2,nc2,p,m for [E22, A22, B2, C2, D].

(b) As we have pointed out below Figure 4, compatibility of a controller means
that it is possible to turn on the controller at t = 0. Consequently, the
following definition can be used for compatibility of controllers, where the
distributional solution framework as introduced in Remark 3.6(c) is used:
We call a controller compatible in the distributional sense if

∀ (x, u, y) ∈ BD
′

[E,A,B,C,D] ∃ (x̄, ū, ȳ) ∈ BD
′

[E,A,B,C,D] ∃xc ∈ D′(R; Rnc) :

supp(x− x̄, u− ū, y − ȳ) ⊆ R≥0 ∧ (xc, ȳ, ū) ∈ BD
′

[Ec,Ac,Bc,Cc,Dc].

A controller, in the distributional sense, is defined to be stabilizing if the
restriction of (x̄, ū, ȳ) to R>0 is a function tending to zero as t tends to
infinity. We note that again the controller (4.4) can be used to stabilize the
system. In particular, the criteria for the existence of a stabilizing controller
in the distributional sense are the same as those in the function sense in
Theorem 4.2.

Remark 4.6 (controllers for regular systems). Let a behaviorally stabilizable and
behaviorally detectable system [E,A,B,C,D] ∈ Σn,n,m,p be given such that sE−A ∈
R[s]n×n is regular. Then, by Remark 3.9, we can make the choice Ly = Ip, Lx = −L in
the observer realization (3.4). Elimination of the variable d gives rise to an asymptotic
observer (3.27). If [E,A,B,C,D] is additionally impulse observable, then, invoking
Remark 3.9, L can be chosen such that (3.27) is a regular and freely initializable
observer. By regularity of sE − A and behavioral stabilizability of [E,A,B,C,D],
there exists some F ∈ Rm×n such that rkC

(
λE − (A + BF )

)
= n for all λ ∈ C+ (in

particular, sE − (A+BF ) is regular). By using[
In −B
0 Ip

] [
−sE +A B
−F Im

] [
In 0
F Ip

]
=
[
−sE +A+BF 0

0 Ip

]
together with regularity of sE−(A+BF ), we now obtain that (C1)–(C3) hold true for
Kx = −F and Ku = Im. In other words, we add the feedback relation u(t) = Fz(t)
to the observer (3.27). Altogether, this means that u(t) = Fz(t) and

d(t) = Cz(t) +Du(t)− y(t) = (C +DF )z(t)− y(t),

and thus we can eliminate the variables d and the copy of the input in the controller
realization (4.4) to obtain the following simplified controller realization:

d
dt
Ez(t) = (A+ LC +BF + LDF )z(t)− Ly(t),

u(t) =Fz(t);

see Figure 6.

4.3. Notes and references. Dynamic controllers are also called dynamic com-
pensators or output regulators in the literature. Research on generalization of Luen-
berger’s ideas for ODEs to the DAE case started in the 1980’s.

Dai and Wang used the following approach for strongly stabilizable and strongly
detectable systems [E,A,B,C, 0] ∈ Σn,n,m,p with regular sE −A ∈ R[s]n×n (see [28,
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d

dt
Ex(t) =Ax(t)+Bu(t)
y(t) =Cx(t)+Du(t)

d

dt
Ez(t) =(A+LC+BF+LDF)z(t)−Ly(t)
u(t) =Fz(t)

u(t) y(t)

Fig. 6. Controller for regular systems.

30, 61, 62]): First, it is shown that there exists a proportional output feedback u(t) =
Ky(t) + v(t) for some K ∈ Rm×p, such that for the closed-loop system

[EK , AK , BK , CK , DK ] = [E,A+BKC,B,C, 0]

we have that sEK − AK is regular and its index is at most one. Thereafter, a real-
ization of this system by an ODE is considered and an ordinary stabilizing controller
[Inc , Ac, Bc, 0] ∈ Σnc,nc,p,m according to Luenberger’s approach is applied. A stabi-
lizing controller is then given by [Inc , Ac, Bc,K].

The more direct approach for regular systems as described in Remark 4.6 has
been presented in [18, 31, 32, 45, 55, 67].

To the best of our knowledge, controller design for systems with singular sE −A
has not been studied before.

5. Conclusions. In this paper we have studied existence and design of observers
for linear time-invariant differential-algebraic systems which are not necessarily regu-
lar. To this end, we followed the definition of (asymptotic, exact) observers for behav-
ioral systems from [58]. In particular, the novel observer design (3.3), (3.4) is again
a DAE system. Existence of observers has been characterized in terms of behavioral
detectability and observability of the plant, resp. In view of implementability of the
observer, we have investigated its regularity and free initializability; these properties
can be guaranteed provided that the plant is impulse observable.

We have used the results on observers for design of stabilizing controllers for DAE
systems. Existence of stabilizing controllers was proved to be equivalent to behavioral
stabilizability and behavioral detectability of the plant, which generalizes well-known
results. The existence and design of compatible and freely initializable controllers was
studied as well.
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E. J. W. ter Maten, and P. C. Müller, eds., Springer-Verlag, Berlin, Heidelberg, 2014,
pp. 21–45.

[8] T. Berger, A. Ilchmann, and T. Reis, Normal forms, high-gain, and funnel control for lin-
ear differential-algebraic systems, in Control and Optimization with Differential-Algebraic
Constraints, Adv. Des. Control 23, L. T. Biegler, S. L. Campbell, and V. Mehrmann, eds.,
SIAM, Philadelphia, 2012, pp. 127–164, https://doi.org/10.1137/9781611972252.ch7.

[9] T. Berger, A. Ilchmann, and T. Reis, Zero dynamics and funnel control of linear differential-
algebraic systems, Math. Control Signals Systems, 24 (2012), pp. 219–263.

[10] T. Berger, A. Ilchmann, and S. Trenn, The quasi-Weierstraß form for regular matrix
pencils, Linear Algebra Appl., 436 (2012), pp. 4052–4069.

[11] T. Berger and T. Reis, Controllability of linear differential-algebraic systems—a survey, in
Surveys in Differential-Algebraic Equations I, Differ.-Algebr. Equ. Forum, A. Ilchmann and
T. Reis, eds., Springer-Verlag, Berlin, Heidelberg, 2013, pp. 1–61.

[12] T. Berger and T. Reis, Regularization of linear time-invariant differential-algebraic systems,
Systems Control Lett., 78 (2015), pp. 40–46.

[13] T. Berger and T. Reis, ODE observers for DAE systems, Internat. J. Systems Sci., submitted.
[14] T. Berger, T. Reis, and S. Trenn, Observability of linear differential-algebraic systems: A

survey, in Surveys in Differential-Algebraic Equations IV, Differ.-Algebr. Equ. Forum, A.
Ilchmann and T. Reis, eds., Springer, Cham, 2017, pp. 161–219.

[15] T. Berger and S. Trenn, Kalman controllability decompositions for differential-algebraic
systems, Systems Control Lett., 71 (2014), pp. 54–61.

[16] N. Biehn, S.L. Campbell, F. Delebecque, and R. Nikoukhah, Observer design for linear
time varying descriptor systems: Numerical algorithms, in Proceedings of the 37th IEEE
Conference on Decision and Control, 1998, pp. 3801–3806.

[17] N. Biehn, S. L. Campbell, R. Nikoukhah, and F. Delebecque, Numerically constructible
observers for linear time-varying descriptor systems, Automatica, 37 (2001), pp. 445–452.

[18] F. Blanchini, Eigenvalue assignment via state observer for descriptor systems, Kybernetika,
27 (1991), pp. 384–392.

[19] K. Bobinyec, Observer Construction for Systems of Differential Algebraic Equations Using
Completions, Ph.D. dissertation, Department of Mathematics, North Carolina State Uni-
versity, Raleigh, NC, 2013.

[20] K.S. Bobinyec and S.L. Campbell, Linear differential algebraic equations and observers, in
Surveys in Differential-Algebraic Equations II, Differ.-Algebr. Equ. Forum, A. Ilchmann
and T. Reis, eds., Springer-Verlag, Berlin, Heidelberg, 2014, pp. 1–67.

[21] K. Bobinyec, S.L. Campbell, and P. Kunkel, Maximally reduced observers for linear time
varying DAEs, in Proceedings of the 2011 IEEE Multi-conference on Systems and Control,
Denver, CO, 2011, pp. 1373–1378.

[22] K. Bobinyec, S.L. Campbell, and P. Kunkel, Constructing observers for linear time varying
DAEs, in Proceedings of the 51st IEEE Conference on Decision and Control, Maui, HI,
2012, pp. 5749–5754.

[23] D. Boutat, G. Zheng, L. Boutat-Baddas, and M. Darouach, Observers design for a class
of nonlinear singular systems, in Proceedings of the 51st IEEE Conference on Decision
and Control, Maui, HI, 2012, pp. 7407–7412.

[24] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, North–Holland, Amsterdam, 1989.

[25] S.L. Campbell, F. Delebecque, and R. Nikoukhah, Observers design for linear time varying
descriptor systems, in Proceedings of Control Industrial Systems (CIS97), Belfort, France,
1997, pp. 507–512.

[26] S. L. Campbell, P. Kunkel, and V. Mehrmann, Regularization of linear and nonlinear
descriptor systems, in Control and Optimization with Differential-Algebraic Constraints,
Adv. Des. Control 23, L. T. Biegler, S. L. Campbell, and V. Mehrmann, eds., SIAM,
Philadelphia, 2012, pp. 17–36, https://doi.org/10.1137/9781611972252.ch2.

[27] J. D. Cobb, Controllability, observability and duality in singular systems, IEEE Trans. Au-
tomat. Control, 29 (1984), pp. 1076–1082.

[28] L. Dai, Normal Compensators for Linear Singular Systems, Master Thesis, Institute of Systems
Science, Academia Sinica, Beijing, China, 1986.

https://doi.org/10.1137/9781611972252.ch7
https://doi.org/10.1137/9781611972252.ch2


3590 THOMAS BERGER AND TIMO REIS

[29] L. Dai, Singular Control Systems, Lecture Notes in Control and Inform. Sci. 118, Springer-
Verlag, Berlin, 1989.

[30] L. Dai and C. Wang, Normal dynamical compensators for singular systems, Acta Math.
Scientia, 7 (1987), pp. 273–282.

[31] L. Dai and C. Wang, Stable and structurally stable regulators for singular systems, Acta Math.
Appl. Sin., 3 (1987), pp. 122–135.

[32] L. Dai and C. Wang, Structurally stable normal compensators for singular systems, J. Systems
Sci. Math. Sci., 7 (1987), pp. 89–93.

[33] M. Darouach and L. Boutat-Baddas, Observers for a class of nonlinear singular systems,
IEEE Trans. Automat. Control, 53 (2008), pp. 2627–2633.

[34] M. Darouach and M. Boutayeb, Design of observers for descriptor systems, IEEE Trans.
Automat. Control, 40 (1995), pp. 1323–1327.

[35] M. Darouach, M. Zasadzinski, and M. Hayar, Reduced-order observer design for descriptor
systems with unknown inputs, IEEE Trans. Automat. Control, 41 (1996), pp. 1068–1072.

[36] M. El-Tohami, V. Lovass-Nagy, and R. Mukundan, On the design of observers for gen-
eralized state space systems using singular value decomposition, Internat. J. Control, 38
(1983), pp. 673–683.

[37] M. M. Fahmy and J. O’Reilly, Observers for descriptor systems, Internat. J. Control, 49
(1989), pp. 2013–2028.

[38] Z. Gao and H. Wang, Descriptor observer approaches for multivariable systems with mea-
surement noises and application in fault detection and diagnosis, Systems Control Lett.,
55 (2006), pp. 304–313.

[39] M. Hou and P.C. Müller, Observer design for descriptor systems, IEEE Trans. Automat.
Control, 44 (1999), pp. 164–168.
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Solution, EMS, Zürich, Switzerland, 2006.

[43] D. Labisch and U. Konigorski, Design of causal observers for nonlinear descriptor systems,
in Progress in Differential-Algebraic Equations, Differ.-Algebr. Equ. Forum, S. Schöps, A.
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