
Proceedings in Applied Mathematics and Mechanics, 8 April 2019

Funnel control for linear non-minimum phase systems
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We consider tracking control for linear non-minimum phase systems with known relative degree. For a given reference signal
we design a low-complexity controller which achieves that the tracking error evolves within a prescribed performance funnel.
We present a novel approach where a new output is constructed, with respect to which the system has a higher relative degree,
but the unstable part of the internal dynamics is eliminated. Using recent results in funnel control, we then design a controller
for this new output, which also incorporates a new reference signal. The original output stays within a prescribed performance
funnel around the original reference trajectory and all signals in the closed-loop system are bounded.
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1 System class and control objective

We consider linear systems given by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (1.1)

where x(0) = x0 ∈ Rn, A ∈ Rn×n and B,C> ∈ Rn×m. We
assume that (1.1) has strict relative degree r ∈ N, that is

CB = CAB = . . . = CAr−2B = 0, CAr−1B ∈ Gln(R).

We do not assume that (1.1) is minimum phase or, equiva-
lently, its zero dynamics (cf. [1–4]) are asymptotically stable,
which would mean that rk

[
A−λIn B
C 0

]
= n + m for all λ ∈

C−. As an important tool we recall the Byrnes-Isidori form
for linear systems (1.1). As shown in [5, Lem. 3.5], if (1.1)
has strict relative degree r, then there exists U ∈ Gln(R)

such that Ux(t) =
(
y(t)>, ẏ(t)>, . . . , y(r−1)(t)>, η(t)>

)>
,

where η : R≥0 → Rn−rm, transforms (1.1) into

y(r)(t) =
∑r

i=1
Riy

(i−1)(t) + Sη(t) + Γu(t),

η̇(t) = Py(t) +Qη(t),
(1.2)

where Ri ∈ Rm×m for i = 1, . . . , r, S, P> ∈ Rm×(n−rm),
Q ∈ R(n−rm)×(n−rm) and Γ := CAr−1B. Further-
more, (1.1) is minimum phase if, and only if, σ(Q) ⊆ C−.
The second equation in (1.2) represents the internal dynamics
of the linear system (1.1).

Systems (1.1) which are non-minimum phase are a main
obstacle for feedback controllers, since the unstable parts of
the internal dynamics may impose fundamental limitations on
the transient tracking performance as shown in [6]. Some ap-
proaches to resolve these limitations are discussed in the lit-
erature, see e.g. [7–10], however none of the available ap-
proaches is able to achieve tracking with prescribe perfor-
mance for non-minimum phase systems.

To treat non-minimum phase systems (1.1) we need to as-
sume that the system parameters A,B,C are known and the
state x can be measured at all times and is available to the
controller. However, we stress that knowledge of the initial
value x0 is not required for the presented controller design.
Therefore, the objective is to design a dynamic state feedback
such that tracking of a sufficiently smooth reference signal

yref : R≥0 → Rm is achieved so that in the closed-loop sys-
tem the tracking error e(t) = y(t) − yref(t) evolves within
a prescribed performance funnel, i.e., ϕ(t)‖e(t)‖ < 1 for all
t ≥ 0, where ϕ belongs to

Φr :=

ϕ ∈ Cr(R≥0 → R)

∣∣∣∣∣∣
ϕ, ϕ̇, . . . , ϕ(r) are bounded,
ϕ(τ) > 0 for all τ > 0,
and lim infτ→∞ ϕ(τ) > 0

 .

Furthermore, all signals should remain bounded, even
though (1.1) is non-minimum phase. We follow the frame-
work of Funnel Control which was developed in [11], see
also the survey [12] and the references therein. The funnel
controller is an adaptive controller of high-gain type and has
been successfully applied e.g. in control of industrial servo-
systems [13] and underactuated multibody systems [14], volt-
age and current control of electrical circuits [15], temperature
control of chemical reactor models [16] and adaptive cruise
control [17].

In the approach that we present here we define a new out-
put for the system such that the unstable part of the internal
dynamics is completely removed, but the relative degree is
increased eventually. A suitable redefinition of the reference
signal then guarantees that the funnel controller developed in
the recent work [18] may be applied. By an appropriate choice
of the design parameters it can be achieved that the original
output stays within a prescribed performance funnel around
the original reference trajectory.

We stress that a main feature of funnel control is that it is
model-free and hence inherently robust. Moreover, it was re-
cently shown that even for higher relative degree systems fun-
nel control is feasible using output error feedback only, and
no derivatives of the output are required, see [19, 20]. These
features are lost when dealing with non-minimum phase sys-
tems, where knowledge of the system parameters (apart from
the initial value) and measurement of the complete state is re-
quired in general.

2 Trackability and controller

It is revealed in [9] that for tracking non-minimum systems
certain trackability assumptions are necessary. Here we make
the following assumptions:
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(A1) There exists T ∈ Gln−rm(R) and ` ∈ N such that

TQT−1 =
[
Q̂1 Q̂2

0 Q̃

]
, TP =

[
P̂
P̃

]
,

where Q̂1 ∈ Rk×k, Q̂2 ∈ Rk×`m, Q̃ ∈ R`m×`m,
P̂ ∈ Rk×m, P̃ ∈ R`m×m, k = n − rm − `m ≥ 0 with
σ(Q̂1) ⊆ C− and [P̃ , Q̃P̃ , . . . , Q̃`−1P̃ ] ∈ Gl`m(R).

(A2) Let yref ∈ Wr−1,∞(R≥0 → Rm) be a given reference
signal and W ∈ Gl`m(R) be such that

WQ̃W−1 =

[
Q1 0 0
0 Q2 0
0 0 Q3

]
,

where Qj ∈ Rkj×kj , j = 1, 2, 3, and σ(Q1) ⊆ C−,
σ(Q2) ⊆ C+ and σ(Q3) ⊆ iR. Then the equation

η̇3(t) = Q3η3(t) + P3yref(t), η3(0) = 0

has a bounded solution η3 : R≥0 → Rk3 .

Now, let Tη = (η>1 , η
>
2 )> and

K := [0, . . . , 0,Γ−1][P̃ , Q̃P̃ , . . . , Q̃`−1P̃ ]−1 ∈ Rm×`m,

then we define the new output by ynew(t) := Kη2(t). Then
we find that

y(r+`)new (t) =
∑r+`

i=1
R̂i y

(i−1)
new (t) + S1η1(t) + u(t),

η̇1(t) =
∑`+1

i=1
P̂i y

(i−1)
new (t) + Q̂1η1(t),

where the matrices involved are of appropriate sizes. The new
reference signal ŷref is generated by
η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t), η2,ref(0) = η02,ref ,

ŷref(t) = Kη2,ref(t).
(2.1)

We may show the following result: If yref ∈
Wr−1,∞(R≥0 → Rm), assumption (A2) holds and

η02,ref = W−1
[
0k1×k2

−Ik2
0k3×k2

] ∫ ∞
0

e−Q2sP2yref(s) ds , (2.2)

then the initial value problem (2.1) has a unique global solu-
tion such that ŷref ∈ Wr+`,∞(R≥0 → Rm).

The generator (2.1) of the new reference signal is incorpo-
rated as a dynamic part into the controller design and the fun-
nel controller from [18] is applied to system (1.1) with new
output ynew. The final controller design is given by:

η̇2,ref(t) = Q̃η2,ref(t) + P̃ yref(t), η2,ref(0) = η02,ref ,

ŷref(t) = Kη2,ref(t),

e0(t) = ynew(t)− ŷref(t),
e1(t) = ė0(t) + k0(t) e0(t),

e2(t) = ė1(t) + k1(t) e1(t),
...

er+`−1(t) = ėr+`−2(t) + kr+`−2(t) er+`−2(t),

ki(t) = 1
1−ϕi(t)2‖ei(t)‖2 , i = 0, . . . , r + `− 1,

u(t) = −kr+`−1(t) er+`−1(t),

(2.3)

where the initial value η02,ref is as in (2.2) and the reference
signal and funnel functions have the following properties:

yref ∈ Wr−1,∞(R≥0 → Rm),
ϕ0 ∈ Φr+`, ϕ1 ∈ Φr+`−1, . . . , ϕr+`−1 ∈ Φ1.

(2.4)

The novel funnel controller design (2.3) is feasible for
every system (1.1) which satisfies the assumptions (A1)
and (A2).

Theorem 2.1 Consider a linear system (1.1) with strict
relative degree r ∈ N, which satisfies assumptions (A1)
and (A2). Let ` ∈ N be the smallest number such that (A1)
is satisfied. Further let yref , ϕ0, . . . , ϕr+`−1 be as in (2.4)
and x0 ∈ Rn be an initial value such that e0, . . . , er+`−1
as defined in (2.3) satisfy ϕi(0)‖ei(0)‖ < 1 for all i =
0, . . . , r + `− 1.

Then the controller (2.3) applied to (1.1) yields a closed-
loop system which has a unique global solution (x, η2,ref) :
[0,∞)→ Rn+`m such that all involved signals x(·), η2,ref(·),
u(·), k0(·), . . . , kr+`−1(·) are bounded and the errors evolve
uniformly within the respective performance funnels in the
sense
∀ i=0, . . . , r+`−1 ∃ εi>0 ∀ t≥0 : ‖ei(t)‖≤ϕi(t)−1−εi.

The proof of the theorem as well as further details on ob-
taining a prescribed performance for the original tracking er-
ror can be found in [21].
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