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Funnel control for linear non-minimum phase systems
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We consider tracking control for linear non-minimum phase systems with known relative degree. For a given reference signal
we design a low-complexity controller which achieves that the tracking error evolves within a prescribed performance funnel.
We present a novel approach where a new output is constructed, with respect to which the system has a higher relative degree,
but the unstable part of the internal dynamics is eliminated. Using recent results in funnel control, we then design a controller
for this new output, which also incorporates a new reference signal. The original output stays within a prescribed performance
funnel around the original reference trajectory and all signals in the closed-loop system are bounded.

1 System class and control objective
We consider linear systems given by
y(t) = Ca(t), (1.1)

where z(0) = 2° € R", A € R™" and B,CT € R™™. We
assume that (1.1) has strict relative degree r € N, that is

&(t) = Ax(t) + Bu(t),

CB=CAB=...=CA"2B=0, CA""'B e GL,(R).

We do not assume that (1.1) is minimum phase or, equiva-
lently, its zero dynamics (cf. [1-4]) are asymptotically stable,
which would mean that tk [ 42" B] = n+ mforall A €
C_. As an important tool we recall the Byrnes-Isidori form
for linear systems (1.1). As shown in [5, Lem. 3.5], if (1.1)
has strict relative degree r, then there exists U € GI,(R)
such that Uz(t) = (y)T,9(t)T,...,y"= @), n1)T) ",
where 7 : R>¢ — R®™"™, transforms (1.1) into

T

yO () =3 Riy" V() + Sn(t) + Tu(t),
0(t) = Py(t) + Qn(t),

where R; € R™*" fori = 1,...,r, S,PT € Rmx(n—rm)
Q € RO=—rm)x(n=rm) and I' := CA"'B. Further-
more, (1.1) is minimum phase if, and only if, o(Q) C C_.
The second equation in (1.2) represents the internal dynamics
of the linear system (1.1).

Systems (1.1) which are non-minimum phase are a main
obstacle for feedback controllers, since the unstable parts of
the internal dynamics may impose fundamental limitations on
the transient tracking performance as shown in [6]. Some ap-
proaches to resolve these limitations are discussed in the lit-
erature, see e.g. [7-10], however none of the available ap-
proaches is able to achieve tracking with prescribe perfor-
mance for non-minimum phase systems.

To treat non-minimum phase systems (1.1) we need to as-
sume that the system parameters A, B, C' are known and the
state = can be measured at all times and is available to the
controller. However, we stress that knowledge of the initial
value z is not required for the presented controller design.
Therefore, the objective is to design a dynamic state feedback
such that tracking of a sufficiently smooth reference signal

(1.2)
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Yref : R>0 — R™ is achieved so that in the closed-loop sys-
tem the tracking error e(t) = y(t) — yret(t) evolves within
a prescribed performance funnel, i.e., ¢(t)|le(t)]] < 1 for all
t > 0, where ¢ belongs to

.., (") are bounded,

P,
O, =0 pelC"(Rsg = R) | (1) >0forall T > 0,

and liminf, . o(7) >0
Furthermore, all signals should remain bounded, even

though (1.1) is non-minimum phase. We follow the frame-
work of Funnel Control which was developed in [11], see
also the survey [12] and the references therein. The funnel
controller is an adaptive controller of high-gain type and has
been successfully applied e.g. in control of industrial servo-
systems [13] and underactuated multibody systems [14], volt-
age and current control of electrical circuits [15], temperature
control of chemical reactor models [16] and adaptive cruise
control [17].

In the approach that we present here we define a new out-
put for the system such that the unstable part of the internal
dynamics is completely removed, but the relative degree is
increased eventually. A suitable redefinition of the reference
signal then guarantees that the funnel controller developed in
the recent work [18] may be applied. By an appropriate choice
of the design parameters it can be achieved that the original
output stays within a prescribed performance funnel around
the original reference trajectory.

We stress that a main feature of funnel control is that it is
model-free and hence inherently robust. Moreover, it was re-
cently shown that even for higher relative degree systems fun-
nel control is feasible using output error feedback only, and
no derivatives of the output are required, see [19,20]. These
features are lost when dealing with non-minimum phase sys-
tems, where knowledge of the system parameters (apart from
the initial value) and measurement of the complete state is re-
quired in general.

2 Trackability and controller

It is revealed in [9] that for tracking non-minimum systems
certain trackability assumptions are necessary. Here we make
the following assumptions:
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(A1) There exists T € Gl,,_,,,, (R) and ¢ € N such that
- Q1 Q _ | P
rert=[4%]. = [f],

where Q1 S Rka Q c ]kafm Q c Rimx[m
P e RF>xm, PeReme k=n—rm—{m > 0 with
0(Q1) CC_and [P,QP,...,Q" *P] € Glyy, (R).

(A2) Let yper € W’”_LOO(RZO — R™) be a given reference
signal and W € Gly,,(R) be such that

Q1 0 0:|
0 Q20 |,
0 0 Qs

where ; € RFixki| j = 1,2,3, and 0(Q1) C C_,
0(Q2) € C4 and (Q3) C iR. Then the equation

wWow—! = {

n3(t) = Qana(t) + Psyret(t), 13(0) =0
has a bounded solution 73 : R>o — RFs.
Now, let T = (n{ ,n5 ) " and
K:=[0,...,0,T7Y[P,QP,...,Q" 1 P]~! € Rm**m

then we define the new output by ynew (t) := Kna(t). Then
we find that

yr(:;#)(t) Z’f*f Ry ylSD (1) + S (8) + ulo),
=3 BN (1) + Qum ),

ynew
where the matrices 1nv01ved are of appropriate sizes. The new
reference signal ¢,¢r iS generated by

M2,ref (1) = C~2772,ref(t) + Pyref(t)> N2,vef (0) = ng,ref’ @2.1)
Gret (1) = K res(t)-
We may show the following result: If Yot S

Wr=12(Rso — R™), assumption (A2) holds and
ng7ref = W_l |: :| / e_Q2SP2yref(5) dSa (22)
0

then the initial value problem (2.1) has a unique global solu-
tion such that e € W6 (R5o — R™).

The generator (2.1) of the new reference signal is incorpo-
rated as a dynamic part into the controller design and the fun-
nel controller from [18] is applied to system (1.1) with new
output Ynew. The final controller design is given by:

Okq x ko
71k2
Okg x ko

772 ref(t) Q772 ref( ) + Pyref(t)a 772,ref(0) = ng,refv
yref(t) K772 ref( )
eO(t) ynew( ) yref(t)a
e1(t) = éo(t) + ko(t) eo(t),
€o (t) 1(t> + k‘l (t) €1<t), (23)
er+€—1(t) = er+€—2(t) + kr+€—2(t) 6T+€—2(t)a
kl(t)zm, Z':(),...,T—'—é—l,
u(t) = —kpye—1(t) erye—1(t),

where the initial value 79 . is as in (2.2) and the reference
signal and funnel functions have the following properties:

Yref € Wr_l’oo(Rzo — Rm),
0o € Prye, 1 € Pryp1, ..

24
y Prge—1 € Pq. 24)

The novel funnel controller design (2.3) is feasible for
every system (1.1) which satisfies the assumptions (Al)
and (A2).

Theorem 2.1 Consider a linear system (1.1) with strict
relative degree v € N, which satisfies assumptions (Al)
and (A2). Let { € N be the smallest number such that (Al)
is satisfied. Further let yyof, 0o, ..., 0r+e—1 be as in (2.4)
and z° € R™ be an initial value such that ey, . . ., €rti—1
as defined in (2.3) satisfy ¢;(0)]|e;(0)]] < 1 for all i =
0,....,7m+¢—1

Then the controller (2.3) applied to (1.1) yields a closed-
loop system which has a unique global solution (x, ﬁg,ref) :
[0, 00) — R 4™ such that all involved signals x(+), N vet (),
u(-), ko(+), .-, krye—1(-) are bounded and the errors evolve
uniformly within the respective performance funnels in the

sense
Vi=0, lea()l i) ™" —ei.

The proof of the theorem as well as further details on ob-
taining a prescribed performance for the original tracking er-
ror can be found in [21].

Lr+l—13deg;>0Vt>0:
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