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Fault tolerant funnel control
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A new approach to adaptive fault tolerant tracking control for uncertain linear systems is presented. Based on recent results in
funnel control and the time-varying Byrnes-Isidori form, we introduce a low-complexity model-free controller which achieves
prescribed performance of the tracking error for any given sufficiently smooth reference signal. Within the considered system
class, we allow for more inputs than outputs as long as a certain redundancy of the actuators is satisfied. An important role in
the controller design is played by the controller weight matrix, which is a rectangular input transformation chosen such that in
the resulting system the zero dynamics, which are assumed to be uniformly exponentially stable, are independent of the new
input.
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1 System class and control objective

We consider linear systems with time-varying and nonlinear
uncertainties and possible actuator faults of the form

ẋ(t) = Ax(t) +BL(t)u(t) + f
(
t, x(t), u(t)

)
,

y(t) = Cx(t)
(1.1)

with initial condition x(0) = x0 ∈ Rn, where A ∈ Rn×n,
B ∈ Rn×m, C ∈ Rp×n with m ≥ p, f ∈ C(R×Rn×Rm →
Rn) is bounded and the following properties are satisfied:

(P1) L ∈ C∞(R → Rm×m) such that L, L̇, . . . , L(n) are
bounded and rkBL(t) = q ≥ p for all t ∈ R, q ∈ N;

(P2) the system has (strict) relative degree r ∈ N, i.e.,
• CAkBL(·) = 0 and CAkf(·) = 0 for all k =
0, . . . , r − 2 and

• the “high-frequency gain matrix” Γ := CAr−1B ∈
Rp×m and L satisfy rk ΓL(t) = p for all t ∈ R.

The objective is fault tolerant tracking of a reference tra-
jectory yref ∈ Wr,∞(R≥0 → Rp) with prescribed per-
formance, i.e., we seek an output error derivative feedback
such that in the closed-loop system the tracking error e(t) =
y(t)−yref(t) evolves within a prescribed performance funnel,
i.e., φ(t)∥e(t)∥ < 1 for all t ≥ 0, where φ belongs to

Φr :=

φ ∈ Cr(R≥0 → R)

∣∣∣∣∣∣
φ, φ̇, . . . , φ(r) are bounded,
φ(τ) > 0 for all τ > 0,
and lim infτ→∞ φ(τ) > 0

 .

Furthermore, the state x and the input u in (1.1) should remain
bounded. We follow the framework of Funnel Control which
was developed in [1], see also the survey [2] and the refer-
ences therein. The funnel controller is an adaptive controller
of high-gain type and thus inherently robust, which makes it
a suitable choice for fault tolerant control tasks. The funnel
controller has been successfully applied e.g. in control of in-
dustrial servo-systems [3] and voltage and current control of
electrical circuits [4].

A certain redundancy of the actuators is necessary in (1.1),
thus m is usually much larger than p. A typical situation is
that rkB = p, i.e., the number of linearly independent ac-
tuators equals the number of outputs of the system; one may
think of p groups of actuators, where actuators in the same
group perform the same control task.

The (unknown) time-varying matrix function L from (P1)
describes the reliability of the actuators. We assume that the
system parameters A, B, C, L(·), f(·), x0 are unknown. We
only require knowledge of the relative degree r ∈ N. Fur-
thermore, we will derive a class of rectangular input transfor-
mations of the form u(t) = K(t)v(t), where K ∈ C∞(R →
Rm×p), such that in the resulting system the zero dynamics
(cf. [5–8]) are independent of the new input v. As a struc-
tural assumption, we will require that the zero dynamics of the
time-varying linear system (A,BL(·)K(·), C) are uniformly
exponentially stable for one (and hence any) K in this class;
it is hence independent of the choice of K. Some additional
knowledge of system parameters, such as the high-frequency
gain matrix Γ = CAr−1B from (P2), may be helpful for the
construction of K.

2 Normal form and control

We introduce the following for all t ∈ R:
B(t) :=

[
BL(t),

( d
dt −A

) (
BL(t)

)
,

. . . ,
( d

dt −A
)r−1 (

BL(t)
)]

∈ Rn×rm,

C :=
[
C⊤, A⊤C⊤, . . . , (Ar−1)⊤C⊤

]⊤
∈ Rrp×n.

Let ρ := rk C, choose V ∈ Rn×(n−ρ) such that imV = ker C
and define

N (t) := V †
[
In − B(t)

(
CB(t)

)†C] ∈ R(n−ρ)×n, t ∈ R,
where M† denotes the Moore-Penrose pseudoinverse of a ma-
trix M . Set
U(t) :=

[ C
N (t)

]
∈ R(n−ρ+pr)×n, t ∈ R. (2.1)

As shown in [9] we have that ρ = rk C = rk CB(t) = pr for
all t ∈ R, and hence U(·) as in (2.1) is invertible.

We call a matrix function M ∈ C1(R → Gln(R)) a Lya-
punov transformation, if M , M−1 and Ṁ are bounded.

Theorem 2.1 Consider a system (1.1) with (P1) and (P2)
such that U as in (2.1) is a Lyapunov transformation. Then

(Â, B̂, Ĉ) :=
(
(UA+ U̇)U−1, UBL,CU−1

)
,

f̂(t, z, u) := U(t)f
(
t, U(t)−1z, u

)
, (t, z, u) ∈ R1+n+m
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satisfy

Â(t) =


0 Ip 0 ··· 0 0
0 0 Ip 0

...
...

. . .
. . .

...
0 0 ··· 0 Ip 0

R1(t) R2(t) ··· Rr−1(t) Rr(t) S(t)
P1(t) P2(t) ··· Pr−1(t) Pr(t) Q(t)

 ,

B̂(t) =


0
0
...
0

ΓL(t)
N(t)

 , f̂(t, z, u) =


0
0
...
0

fr(t,z,u)
fη(t,z,u)

 ,

Ĉ = [ Ip 0 ··· 0 ] ,

(2.2)

where Q ∈ C∞(R → R(n−pr)×(n−pr)), Ri, Pi, S and N are
smooth, bounded, and of appropriate sizes and fr, fη are con-
tinuous, bounded, and of appropriate sizes. If, additionally,
q = p for q in (P1), then we have

P2 = P3 = . . . = Pr = 0 and N = 0.

The proof of the theorem can be found in [9].
The funnel control design that we introduce here extends

the recently developed funnel controller for systems with ar-
bitrary relative degree [10]. The controller is of the form

e0(t) = e(t) = y(t)− yref(t),

e1(t) = ė0(t) + k0(t) e0(t),

e2(t) = ė1(t) + k1(t) e1(t),
...

er−1(t) = ėr−2(t) + kr−2(t) er−2(t),

ki(t) =
1

1−φi(t)2∥ei(t)∥2 , i = 0, . . . , r − 1,

u(t) = −kr−1(t)K(t) er−1(t)

(2.3)

where the reference signal and funnel functions have the fol-
lowing properties:

yref ∈ Wr,∞(R≥0 → Rp),
φ0 ∈ Φr, φ1 ∈ Φr−1, . . . , φr−1 ∈ Φ1.

(2.4)

We choose the bounded controller weight matrix function
K ∈ C∞(R → Rm×p), if possible, such that

∃α > 0 : ΓL(t)K(t) +
(
ΓL(t)K(t)

)⊤ ≥ αIp
and N(t)K(t) = 0,

(2.5)

where we use the notation from Theorem 2.1.
We show feasibility of the controller (2.3) for every sys-

tem (1.1) which satisfies the assumptions (P1), (P2) and
(P3) U as in (2.1) is a Lyapunov transformation,
(P4) for Q(·) in (2.2), the system ẋ(t) = Q(t)x(t) is uni-

formly exponentially stable.
We stress that assumptions (P1)–(P4) are only of structural

nature and hold for a large class of systems.
Theorem 2.2 Consider a system (1.1) which satisfies as-

sumptions (P1)–(P4). Let yref , φ0, . . . , φr−1 be as in (2.4)
and x0 ∈ Rn be an initial value such that e0, . . . , er−1 as
defined in (2.3) satisfy
φi(0)∥ei(0)∥ < 1 for i = 0, . . . , r − 1. (2.6)

Assume that there exists a bounded K ∈ C∞(R → Rm×p)
such that (2.5) is satisfied. Then the funnel controller (2.3)
applied to (1.1) yields an initial-value problem which has a
solution, and every solution can be extended to a maximal so-
lution x : [0, ω) → Rn, ω ∈ (0,∞], which satisfies:

(i) The solution is global (i.e., ω = ∞).

(ii) The input u : R≥0 → Rm, the gain functions
k0, . . . , kr−1 : R≥0 → R and x : R≥0 → Rn are
bounded.

(iii) The functions e0, . . . , er−1 : R≥0 → Rp evolve in
their respective performance funnels and are uniformly
bounded away from the funnel boundaries in the sense:

∀i = 0, . . . , r−1 ∃ εi > 0 ∀t > 0 : ∥ei(t)∥ ≤ φi(t)
−1−εi.

The proof of the theorem can be found in [9].
We comment on the choice of K: If rkBL(t) = q > p,

then the system has an unnecessary high redundancy. Typi-
cally, there are q groups of actuators and p outputs. When it
can still be guaranteed that at least one actuator without total
fault remains in each group, then whole groups of actuators
may be switched off so that q = p is achieved. In this case,
under (P1)–(P3) it follows from Theorem 2.1 that we have
N = 0, so the second condition in (2.5) is satisfied for any
choice of K. In order to satisfy the first condition in (2.5), a
natural choice is K(t) = Γ⊤ and the requirement that

∃α > 0 ∀ t ∈ R : Γ
(
L(t) + L(t)⊤

)
Γ⊤ ≥ αIp.

This condition means that we have at least p linearly indepen-
dent actuators, the reliability of which does not converge to
zero. For this choice of K we have to assume that the high
frequency gain matrix Γ of (1.1) is known; apart from that, no
knowledge of the system parameters is required.

We stress that the derivatives of the output must be avail-
able for the controller. However, this is not satisfied in several
applications. A first approach to treat this problem using a
“funnel pre-compensator” has been developed in [11, 12] for
systems with relative degree r = 2 or r = 3.
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