Funnel control for electrical circuits

Thomas Berger and Timo Reis (Universität Hamburg)

System class

We consider passive linear time-invariant RLC circuits which are modelled by modified nodal analysis as a differential-algebraic system of the form

$$\frac{\mathrm{d}}{\mathrm{d}t}Ex(t) = Ax(t) + Bu(t), \quad y(t) = Cx(t), \quad (1)$$

where

$$sE-A = \begin{bmatrix} sA_{\mathcal{C}}CA_{\mathcal{C}}^{\top} + A_{\mathcal{R}}GA_{\mathcal{R}}^{\top} & A_{\mathcal{L}} & A_{\mathcal{V}} \\ -A_{\mathcal{L}}^{\top} & sL & 0 \\ -A_{\mathcal{V}}^{\top} & 0 & 0 \end{bmatrix}, \quad B = C^{\top} = \begin{bmatrix} -A_{\mathcal{I}} & 0 \\ 0 & 0 \\ 0 & -I_{n_{\mathcal{V}}} \end{bmatrix},$$

$$\mathbf{x} = (\eta^{\top}, i_{\mathcal{L}}^{\top}, i_{\mathcal{V}}^{\top})^{\top}, \quad \mathbf{u} = (i_{\mathcal{I}}^{\top}, \mathbf{v}_{\mathcal{V}}^{\top})^{\top}, \quad \mathbf{y} = (-\mathbf{v}_{\mathcal{I}}^{\top}, -i_{\mathcal{V}}^{\top})^{\top},$$

and

 $C \in \mathbb{R}^{n_C,n_C}$, $G \in \mathbb{R}^{n_G,n_G}$, $L \in \mathbb{R}^{n_L,n_L}$,

$$A_{\mathcal{C}} \in \mathbb{R}^{n_{e},n_{\mathcal{C}}}, A_{\mathcal{R}} \in \mathbb{R}^{n_{e},n_{\mathcal{G}}}, A_{\mathcal{L}} \in \mathbb{R}^{n_{e},n_{\mathcal{L}}}, A_{\mathcal{V}} \in \mathbb{R}^{n_{e},n_{\mathcal{V}}}, A_{\mathcal{I}} \in \mathbb{R}^{n_{e},n_{\mathcal{I}}},$$

$$n=n_e+n_{\mathcal{L}}+n_{\mathcal{V}}, \quad m=n_{\mathcal{I}}+n_{\mathcal{V}}.$$

 $A_{\mathcal{C}}$, $A_{\mathcal{R}}$, $A_{\mathcal{L}}$, $A_{\mathcal{V}}$, $A_{\mathcal{I}}$ — element-related incidence matrices

 \mathcal{C} , \mathcal{G} , \mathcal{L} — consecutive relations of capacitances, resistances and inductances

 $\eta(t)$ — vector of node potentials

 $i_{\mathcal{L}}(t)$, $i_{\mathcal{V}}(t)$, $i_{\mathcal{I}}(t)$ — vectors of currents through inductances, voltage and current sources

 $v_{\mathcal{V}}(t)$, $v_{\mathcal{I}}(t)$ — voltages of voltage and current sources

Passivity of the system implies

$$\mathcal{C} = \mathcal{C}^{\top} > 0$$
, $\mathcal{L} = \mathcal{L}^{\top} > 0$, $\mathcal{G} + \mathcal{G}^{\top} > 0$.

Control objective

- $\varphi \in \mathcal{C}^{\infty}(\mathbb{R}_{\geq 0}; \mathbb{R})$ s.t. $\varphi, \frac{\mathrm{d}}{\mathrm{d}t}\varphi$ are bounded, $\varphi(0) = 0$, $\varphi(t) > 0$ for t > 0 and $\liminf_{t \to \infty} \varphi(t) > 0$ (the set of these functions is denoted by Φ);
- $y_{\text{ref}} \in \mathcal{B}^{\infty}(\mathbb{R}_{\geq 0}; \mathcal{S})$, i.e., $y_{\text{ref}} \in \mathcal{C}^{\infty}(\mathbb{R}_{\geq 0}; \mathcal{S})$ and $y_{\text{ref}}^{(k)}$ is bounded for all $k \geq 0$; $\mathcal{S} \subseteq \mathbb{R}^m$ is a subspace.

We seek that the tracking error $e=y-y_{\text{ref}}$ evolves within the performance funnel $\mathcal{F}_{\varphi}:=\{(t,e)\in\mathbb{R}_{\geq 0}\times\mathbb{R}^m\mid \varphi(t)\|e\|<1\}$. To ensure error evolution within the funnel, we introduce the *funnel controller*:

$$u(t) = -k(t) e(t), \quad k(t) = \frac{1}{1 - \varphi(t)^2 ||e(t)||^2}.$$
 (2)

We call $\lambda \in \mathbb{C}$ an *invariant zero* of (1) if

$$\mathsf{rk}_{\mathbb{C}}egin{bmatrix} \lambda E - A - B \ - C & 0 \end{bmatrix} < \mathsf{rk}_{\mathbb{R}(s)}egin{bmatrix} s E - A - B \ - C & 0 \end{bmatrix}.$$

Main result

Theorem. Assume that all invariant zeros of (1) are in \mathbb{C}_- . Let $Z_{\mathcal{CRLI}}$ be a matrix with full column rank such that

$$\operatorname{im} Z_{\mathcal{CRLI}} = \ker \left[\mathsf{A}_{\mathcal{C}} \, \mathsf{A}_{\mathcal{R}} \, \mathsf{A}_{\mathcal{L}} \, \mathsf{A}_{\mathcal{I}} \right]^{ op}$$

and let y_{ref} be a reference trajectory satisfying

$$y_{\mathsf{ref}} \in \mathcal{B}^{\infty}\left(\mathbb{R}_{\geq 0}; \mathsf{im}\,\mathsf{A}_{\mathcal{I}}^{ op} imes \mathsf{ker}\, Z_{\mathcal{CRLI}}^{ op} \mathsf{A}_{\mathcal{V}}
ight)$$
 .

Let $\varphi \in \Phi$ and $x^0 \in \mathbb{R}^n$ be a consistent initial value. Then (2) applied to (1) has a global solution $x \in L^{\infty}$, $k \in L^{\infty}$ such that

$$\exists \varepsilon > 0 \ \forall t > 0 :$$

$$\|e(t)\| \le \varphi(t)^{-1} - \varepsilon.$$

$$\|e(t)\|$$

$$t$$

Simulation

$$n=50$$
, $\mathcal{C}_T=\mathcal{R}_T=\mathcal{G}_T=\mathcal{L}_T=1$, $y_{\text{ref}}=(\sin,\cos)^{\top}$ $arphi:\mathbb{R}_{\geq 0} o\mathbb{R}_{\geq 0}$, $t\mapsto 0.5$ $te^{-t}+2$ arctan t

Thomas Berger

- Education
 - PhD in mathematics, TU Ilmenau
 - Research stay in London
 - PostDoc at U Hamburg
- Research Interests
 - Control of differential-algebraic equations
 - Analysis and control of electrical circuits