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Example: electrical RLC network

Z(s)i(s) = vs(s),

Z(s) = s−1
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RLC networks: impedance/admittance modeling

Z(s)i(s) = vs(s), Y (s)v(s) = is(s)

Z(s), Y (s) : W (s) = sL+ s−1C +R

impedance modeling (loop analysis):

L: mass, spring, inductor
C: inertor, capacitor
R: damper, resistor

• element present in i-th loop (node) ⇒ its value is added to
(i, i) position of the respective matrix

• element common to i-th and j-th loop (node) ⇒ its value is
added to (i, i) and (j, j) positions, substracted from (i, j) and
(j, i) positions
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Problem: effect of single element changes on the corresponding
natural frequencies of the network

special cases: RC and RL networks → W (s) = sL+ s−1C +R
becomes symmetric matrix pencil:

W (s) =

{
RL: sL+R
RC: ŝC +R, ŝ = s−1

}
= sF +G, F = F>, G = G>

here: det
(
s(F + xbb>) +G

)
b = ei or b = ei − ej , i 6= j
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W (s) = s

[
L1+L4 −L4 0
−L4 L2+L4 0
0 0 L3

]
+

[
R1 −R1 0
−R1 R1+R2+R3 −R3
0 −R3 R3+R4

]

detW (s) = detWL4=0(s)︸ ︷︷ ︸
=p(s)

+ sL4z(s)

z(s) =
(
(sL2 +R2 +R3)(sL3 +R3 +R4)

+ sL1(sL3 +R3 +R4)−R2
3

)

detW (s) = 0 ⇐⇒ 1 + L4
sz(s)

p(s)
= 0
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Reformulation as root locus problem
[Binet-Cauchy-Theorem]

det
(
s(F + xbb>) +G

)
= det

(
[sF +G, Ik]

[
Ik

sxbb>

])
= g(s;F,G)>p(sx; b), x ∈ R

det
(
s(F + xbb>) +G

)
= det(sF +G) + sx z(s; b)

root locus problem: 1 + x
s z(s; b)

det(sF +G)
= 0
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Theorem (Properties of the root locus)

1 + x
s z(s; b)

det(sF +G)
= 0 x ∈ R, Assumption: G is invertible

• all branches of root locus are restricted to the real axis; for x > 0
all branches are restricted to the negative real axis

• ∃ p < 0 ∃µ ∈ N, µ ≥ 2 : det(sF +G) = η(s)(s− p)µ =⇒
z(s; b) = ζ(s)(s− p)µ−1

• rk(F + bb>) = rkF + 1 =⇒ deg det(sF +G) = deg z(s; b)

• rk(F + bb>) = rkF =⇒ deg det(sF +G) = deg z(s; b) + 1
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F + xbb> =

[
C1 + x 0

0 0

]
, G =

[
1/R1 0
0 1/R2

]

det(sF +G) + x sz(s; b) = 1/R2(s(C1 + x) + 1/R1)

p(x) = −1/(R1(C1 + x)) :

lim
x↘−C1

p(x) = −∞ lim
x→∞

p(x) = 0 lim
x↗−C1

p(x) =∞

“p(−C1) =∞” “p(−C1) =∞”
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Theorem (Behaviour of the root locus)

x > 0:

• p pole of multiplicity µ =⇒ µ or µ− 1 of these poles do not
change and at most one pole moves to the right

• ∃ pole p(x) s.t. limx→∞ p(x) = 0

• if rk(F + bb>) = rkF :

• if rk(F + bb>) = rkF + 1, then an infinite pole becomes finite
and moves to the right as x increases
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F + xbb> =

[
C1 0
0 x

]
, G =

[
1/R1 0
0 1/R2

]

det(sF +G) + x sz(s; b) = (sC1 + 1/R1)(sx+ 1/R2)

det(sF +G) = 1/R2(sC1 + 1/R1) =⇒ p1 = −1/(C1R1)

sz(s) = sx(sC1 + 1/R1) =⇒ z1 = −1/(C1R1), z2 = 0
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x < 0:

• p pole of multiplicity µ =⇒ µ or µ− 1 of these poles do not
change and at most one pole moves to the left

• if rk(F + bb>) = rkF + 1, then an infinite pole becomes finite
and moves to the left on the positive real axis as x decreases,
reaching 0 for x→ −∞

Single element changes in electrical networks Root locus problem

Thomas Berger, George Halikias and Nicos Karcanias (City University London)
Institute of Mathematics, Ilmenau University of Technology Page 11 / 13



• if rk(F + bb>) = rkF , then the smallest pole p1(x) moves to the
left towards −∞ and

∃ κ > 0 : ∀ − κ < x < 0 : p1(x) < p1(0) ∧ lim
x↘−κ

p1(x) = −∞,

“p(−κ) =∞”,

∀x < −κ : p1(x) > 0 ∧ lim
x→−∞

p1(x) = 0
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Summary

RLC networks: special cases of RC and RL → natural frequencies

single element changes → root locus problem 1 + x s z(s;b)
det(sF+G) = 0

x > 0: • all poles move to the right
• if rk(F + bb>) = rkF + 1, then an infinite pole
becomes finite

x < 0: • all poles move to the left
• if rk(F + bb>) = rkF + 1, then an infinite pole
becomes finite
• if rk(F + bb>) = rkF , then a finite pole
becomes infinite for a single value of x
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