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Abstract

Differential-algebraic equations are becoming increasingly important in a lot of techni-

cal areas, such as electrical engineering. Since they are not explicitly solvable in most

cases, or have hardly manageable solutions, and solutions even need not to be unique,

one focuses on qualitative statements about the system behavior. Stability of linear

time-varying differential-algebraic equations of the form E(t)ẋ = A(t)x+f(t) is studied

in this thesis. A detailed investigation of such systems without any restrictions seems

not to be available. A main goal of this thesis is to develop a relationship between

the stability behavior of the solutions of this system and the stability behavior of the

trivial solution of its associated homogeneous system. Furthermore, we develop, via

a Lyapunov-approach, conditions for a restricted form of exponential stability. More-

over, we give a detailed investigation of the solution and stability theory of systems

which are transferable into standard canonical form. Regarding this we state a repre-

sentation of the general solution and a condition under which it exists. We introduce

consistent initial values and, for homogeneous systems, the generalized transition ma-

trix and determine properties of it, which can be seen as direct generalizations of the

properties of the transition matrix of an ordinary linear differential equation. Further-

more, we introduce the projected generalized time-varying Lyapunov-equation, and

derive necessary and sufficient conditions for exponential stability utilizing this equa-

tion. In this context the solvability of the Lyapunov-equation as well as the uniqueness

and representation of its solution is investigated.
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Zusammenfassung

Differential-algebraische Gleichungen gewinnen in vielen technischen Gebieten, wie

zum Beispiel der Elektrotechnik, immer mehr an Bedeutung. Da sie aber in den

meisten Fällen nicht explizit lösbar sind, oder schwer handhabbare Lösungen be-

sitzen, und die Lösungen auch nicht eindeutig sein müssen, konzentriert man sich auf

qualitative Aussagen über das Systemverhalten. Die Stabilität linearer zeitvarianter

differential-algebraischer Gleichungen der Form E(t)ẋ = A(t)x + f(t) wird in dieser

Arbeit studiert. Eine detailierte Untersuchung solcher Systeme ohne irgendwelche Ein-

schränkungen scheint bisher nicht verfügbar zu sein. Ein zentrales Ziel dieser Arbeit

ist es eine Verbindung zwischen dem Stabilitätsverhalten der Lösungen dieses Systems

und dem Stabilitätsverhalten der trivialen Lösung des zugehörigen homogenen Systems

herzustellen. Weiterhin entwickeln wir, mittels einer Lyapunov-Methode, Bedingungen

für eine eingeschränkte Form von exponentieller Stabilität. Des Weiteren führen wir

eine detailierte Untersuchung der Lösungs- und Stabilitätstheorie von Systemen, die

sich in Standard-Normalform überführen lassen durch. Dies betreffend geben wir eine

Darstellung der allgemeinen Lösung an und eine Bedingung unter der diese existiert.

Wir führen konsistente Anfangswerte und, für homogene Systeme, die verallgemein-

erte Übergangsmatrix ein und bestimmen ihre Eigenschaften, welche als direkte Ver-

allgemeinerungen der Eigenschaften der Übergangsmatrix einer gewöhnlichen linearen

Differentialgleichung angesehen werden können. Weiterhin führen wir die projizierte

verallgemeinerte zeitvariante Lyapunov-Gleichung ein und leiten unter der Benutzung

dieser notwendige und hinreichende Bedingungen für exponentielle Stabilität her. In

diesem Zusammenhang untersuchen wir auch die Lösbarkeit der Lyapunov-Gleichung

sowie die Eindeutigkeit und Darstellung der Lösung.
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Nomenclature

N the set of the natural numbers {1, 2, 3, ...}
R the set of the real numbers

Rn the vector space of the real vectors of length n

Rm×n the set of the real (m× n)-matrices

‖x‖ :=
√
x>x, the Euclidean norm of the vector x ∈ Rn

Bδ(x0) := { x ∈ Rn | ‖x− x0‖ < δ }, the open ball of radius δ > 0 around

x0 ∈ Rn

‖A‖ := sup { ‖Ax‖ | ‖x‖ = 1 }, the spectral norm of the matrix A ∈ Rm×n

A> the transpose of the matrix A ∈ Rm×n

I = In :=

[
1

1

]
, the identity matrix of dimension n

kerA the kernel of the matrix A ∈ Rm×n

imA the image of the matrix A ∈ Rm×n

Ck(J → Rn) the set of all k-times continuously differentiable functions mapping

from J to Rn, k ∈ N

dom f the domain of the function f

f |M the restriction of the function f on a set M⊆ dom(f)

For matrices A,B ∈ Rn×n we will shortly write A ≤ B, if for all x ∈ Rn the condition

x>Ax ≤ x>Bx holds. And for C,D : (τ,∞)→ Rn×n, τ ∈ [−∞,∞), U ⊆ (τ,∞)× Rn

we will write C(·) ≤U D(·), if

∀ (t, x) ∈ U : x>C(t)x ≤ x>D(t)x.

We introduce “ =U ” in the same way. Furthermore, let

PU :=

 M : (τ,∞)→ Rn×n

∣∣∣∣∣∣ M is continuous and symmetric,

∃ m1,m2 > 0 : m1In ≤U M(·) ≤U m2In


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Chapter 1

Introduction

1.1 Motivation

In a lot of areas of physics or engineering stability theory plays a fundamental role.

Differential equations are the central tool for describing time-varying processes. Unfor-

tunately a lot of these equations can not be solved explicitly, or have hardly manageable

solutions. With the help of numerical methods the solutions can be approximated very

well on fixed time intervals, but more often one is interested in a qualitative behavior

of the solutions. A primary topic of this qualitative theory of differential equations is

the stability theory, as studied in this master thesis.

Since the stability theory of ordinary differential equations is well investigated, we con-

sider differential-algebraic equations, which have come to some importance in technical

areas like electrical engineering during the last decades. The most general form of a

differential-algebraic equation is an implicit differential equation of the form

F (t, x, ẋ) = 0, (1.1)

where the function F : G → Rn is continuous on the open and connected set

G ⊆ R1+n+n, G 6= ∅, n ∈ N, see also [BCP89, Sec. 1.1]. ∂F
∂y

(t, x, y) may be singular at

some points (t, x, y) ∈ G. In many cases, some of the relations within (1.1) do not

involve ẋ at all, hence they are pure algebraic equations. This motivates to call (1.1)

a differential-algebraic equation.

Thomas Berger
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1.2 Implicit differential equations

Consider the implicit differential equation (1.1).

By a solution of (1.1) we mean a continuously differentiable function x : J →
Rn, which solves (1.1) for all t ∈ J , and J is an open interval such that

{ (t, x(t), ẋ(t)) | t ∈ J } ⊆ G.

Further we need a concept of extendability of solutions. Hence we define right maxi-

mal and global solutions, similar to [Ama90, Sec. 5] where it was done for (explicit)

ordinary differential equations, as follows.

1.2.1 Definition (Right maximal/global solutions). A solution x̃ : (a, b̃) → Rn of

(1.1) is called a (right) extension of a solution x : (a, b) → Rn of (1.1), if b̃ ≥ b and

x = x̃ |(a,b).
A solution x : (a, b)→ Rn of (1.1) is called right maximal, if b = b̃ for every extension

x̃ : (a, b̃) → Rn of it. It is called right global, if b = sup T (G), where T (G) :=

{ t ∈ R | ∃ x, x̃ ∈ Rn : (t, x, x̃) ∈ G }, and, if (a, b) = T (G), x(·) is called global. �

For a right maximal solution x : (a, b) → Rn of (1.1) which is not right global, i.e.

b < sup T (G), we further consider the following two cases:

(i) If lim supt↗b ‖x(t)‖ =∞, then x(·) is said to have a finite escape time.

(ii) If x(·) has no finite escape time, then x(·) is called non-extendable.

Note that the notion “non-extendable” is often used for solutions which are right

maximal in our terms, see e.g. [Ama90,Har82].

Define

S(t0, x0) :=

 x : J → Rn

∣∣∣∣∣∣ J open interval, t0 ∈ J , x(t0) = x0,

x(·) is a right maximal solution of (1.1)


to be the set of all right maximal solutions x(·) of (1.1) with x(t0) = x0. In the

following we define the concepts of Lyapunov-stability studied in this work.

Thomas Berger
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1.2.2 Definition (Stability). Let x : (τ,∞) → Rn, τ ∈ [−∞,∞), be a right global

solution of (1.1).

x(·) is stable :⇐⇒

∀ ε > 0 ∀ t0 > τ ∃ δ > 0 ∀ y0 ∈ Bδ(x(t0)) ∀ y(·) ∈ S(t0, y0) :

[t0,∞) ⊆ dom y ∧ ∀ t ≥ t0 : y(t) ∈ Bε(x(t)).

x(·) is attractive :⇐⇒

∀ t0 > τ ∃ η > 0 ∀ y0 ∈ Bη(x(t0)) ∀ y(·) ∈ S(t0, y0) :

[t0,∞) ⊆ dom y ∧ lim
t→∞

(y(t)− x(t)) = 0.

x(·) is asymptotically stable :⇐⇒ x(·) is stable and attractive.

x(·) is exponentially stable :⇐⇒

∃α, β > 0 ∀ t0 > τ ∃ η > 0 ∀ y0 ∈ Bη(x(t0)) ∀ y(·) ∈ S(t0, y0) :

[t0,∞) ⊆ dom y ∧ ∀ t ≥ t0 : ‖y(t)− x(t)‖ ≤ αe−β(t−t0)‖y(t0)− x(t0)‖.

1.2.3 Remark. Note that stability does not imply that every initial value problem

is solvable in the neighborhood of the considered solution. Furthermore, a possibly

existing solution does not have to be unique. The only requirement is that every

existing solution in a neighborhood of the considered one stays in an ε-neighborhood

of it. �

1.2.4 Remark (Exponential stability). Our definition of exponential stability is often

called uniform exponential stability, since the constants α and β neither depend on

the initial values nor on the initial times: See, in the case of linear systems, for

instance [Rug96, Def. 6.5].

Furthermore, in contrast to the definition of asymptotic stability, in the definition of

exponential stability it is not explicitly required that the solution has to be stable.

However it is implicitly contained. �

Thomas Berger
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1.2.5 Proposition (Exponential stability implies stability). Every solution x :

(τ,∞)→ Rn of (1.1) satisfies:

x(·) is exponentially stable =⇒ x(·) is stable.

Proof: Let x : (τ,∞) → Rn be an exponentially stable solution of (1.1) and the

constants α, β > 0 be given as in Definition 1.2.2. Let ε > 0 and t0 > τ , then

∃ η > 0 ∀ y0 ∈ Bη(x(t0)) ∀ y(·) ∈ S(t0, y0) :

[t0,∞) ⊆ dom y ∧ ∀ t ≥ t0 : ‖y(t)− x(t)‖ ≤ αe−β(t−t0)‖y(t0)− x(t0)‖.

Define

δ := min
{ ε
α
, η
}
.

and let y0 ∈ Bδ(x(t0)) and y(·) ∈ S(t0, y0). Since y0 ∈ Bδ(x(t0)) ⊆ Bη(x(t0)) it follows

[t0,∞) ⊆ dom y(·) and

∀ t ≥ t0 : ‖y(t)− x(t)‖ ≤ αe−β(t−t0)‖y(t0)− x(t0)‖

< αe−β(t−t0)δ ≤ αe−β(t−t0) ε

α
≤ ε.

1.3 Structure of the thesis

In this master thesis time-varying linear differential-algebraic equations

E(t)ẋ = A(t)x+ f(t), (1.2)

for τ ∈ [−∞,∞) and continuous E,A : (τ,∞) → Rn×n, f : (τ,∞) → Rn, n ∈ N,

are studied. In particular, E(·) may be singular for some or all t ∈ (τ,∞). Systems

of the form (1.2) naturally occur when modelling linear electrical circuits or simple

mechanical systems. For the case that E(·) and A(·) are constant and f(·) = 0 the

stability behavior of (1.2) has been investigated in [Ber08]. Actually this thesis is the

continuation of the work in [Ber08].

At first sight it seems that the theory of differential-algebraic equations is well devel-

oped, see e.g. the textbooks [Cam80,Cam82,Dai89,KM06] and the references therein.

However, regarding the stability theory of systems (1.2) there only exist some first

Thomas Berger
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results: for constant E(·) and time-varying A(·) [DVP07], constant E(·) and period-

ically A(·) [SLSZ06], and the ansatz of “regularizing operators” to obtain Lyapunov

stability criteria [SC04]. Moreover, there are results for differential-algebraic equations

with index 1 or 2 [Tis94,LMW96]. However, a detailed investigation of systems with

arbitrary index and arbitrary E(·) (particularly of variable rank) seems not to be avail-

able. One aim of this thesis is to develop a connection between the stability behavior

of the solutions of (1.2) and the stability behavior of the trivial solution of its associ-

ated homogeneous system, where only continuity of E(·), A(·) and f(·) is required (see

Theorem 3.2.3). Furthermore, we develop, via a Lyapunov-approach, conditions for a

restricted form of exponential stability (see Theorem 3.6.2).

The preliminaries for our investigations are given in Section 1.2, where the stability

concepts studied in this work are defined, in Section 2.1, where some well-known results

on ordinary linear differential equations are stated, and in Section 2.2, where we state

the most common results of the Lyapunov-theory of ordinary linear differential equa-

tions; with detailed proofs, so the generalization to the case of differential-algebraic

equations becomes more obvious and is not surprising.

Chapter 3 is the main part of this thesis. In Section 3.1 we investigate the behavior

of the solutions of differential-algebraic equations and determine all cases which might

occur, when a solution is right maximal, but not right global. This is a crucial prepara-

tory work for the results of Section 3.2, where the already mentioned Theorem 3.2.3

is developed, which seems to be new. In Section 3.3 we introduce the concept of pairs

of consistent initial values and the standard canonical form (SCF) of homogeneous

systems

E(t)ẋ = A(t)x (1.3)

and will henceforth restrict the consideration to the case of systems which are transfer-

able into SCF. We determine uniqueness of the SCF and develop a representation for

the solutions of initial value problems (1.3), x(t0) = x0. This motivates the introduc-

tion of the generalized transition matrix, which seems to be a new approach to such

systems. We derive some properties of the generalized transition matrix which can be

seen as direct generalizations of the properties of the transition matrix of an ordinary

Thomas Berger
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linear differential equation. In Section 3.4 we develop a representation for the solu-

tions of initial value problems (1.2), x(t0) = x0. We introduce the concept of analytic

solvability and derive a connection to the concept of transferability into SCF. In Sec-

tion 3.5 we derive some equivalent representations for the considered stability concepts,

which are more handy, similar to the case of ordinary linear differential equations. In

Section 3.6 we introduce the projected generalized time-varying Lyapunov-equation

as a new tool for the investigation of exponential stability. Then, in Theorem 3.6.2,

we derive, using this equation, necessary conditions for a restricted form of exponen-

tial stability of systems (1.2) (not necessarily transferable into SCF). Furthermore,

we derive necessary and sufficient conditions for exponential stability of systems (1.2)

which are transferable into SCF, and, moreover, a condition under which the pro-

jected generalized time-varying Lyapunov-equation has a unique solution as well as a

representation for this solution. All results of Section 3.6 seem to be new.

Thomas Berger
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Chapter 2

Time-varying linear differential

equations

In this chapter we consider the linear system

ẋ = A(t)x+ b(t), (2.1)

for τ ∈ [−∞,∞) and continuous A : (τ,∞) → Rn×n, b : (τ,∞) → Rn, n ∈ N; the

associated homogeneous system is

ẋ = A(t)x. (2.2)

2.1 Preliminaries and stability theory

We denote by x(· ; t0, x0) the unique global solution of the initial value problem

ẋ = A(t)x, x(t0) = x0.

The space of all global solutions of (2.2) is an n-dimensional vector space. Let

x1(·), ..., xn(·) be a basis for this vector space. Then the matrix X(·) := [x1(·), ..., xn(·)]
is called a fundamental matrix for (2.2). We define the transition matrix of (2.2) by

Φ(·, t0) := X(·)X(t0)−1, t0 > τ.

Thomas Berger
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The transition matrix Φ(·, t0) does not depend on the choice of the special basis vectors

xi(·); Φ(·, t0) is the unique global solution of the matrix differential equation

Ẋ = A(t)X, X(t0) = In.

We get the following immediate properties of Φ(·, ·), the proofs of which can be found

in [Ama90, Sec. 11] for instance.

2.1.1 Lemma (Properties of Φ(·, ·)). Consider the system (2.2). For arbitrary t, r, s ∈
(τ,∞) the following statements hold:

(i) d
dt

Φ(t, s) = A(t)Φ(t, s),

(ii) Φ(t, t) = In,

(iii) Φ(t, r)Φ(r, s) = Φ(t, s),

(iv) Φ(t, s)−1 = Φ(s, t),

(v) Φ(s, ·)> is the transition matrix of ẋ = −A(t)>x, i.e.

Ẋ = −A(t)>X, X(s) = In

has the unique solution Φ(s, ·)>.

(vi) d
ds

Φ(t, s) = −Φ(t, s)A(s).

When investigating the stability behavior of the inhomogeneous system (2.1), espe-

cially the associated homogeneous system (2.2) is of importance, as the following result

shows.

2.1.2 Proposition (Uniform stability behavior of all solutions). All global solutions of

the inhomogeneous system (2.1) have one of the properties {stable, attractive, asymp-

totically stable, exponentially stable} if, and only if, the trivial solution of the associated

homogeneous system (2.2) has the respective property.

Proof: The assertion regarding stable, attractive and asymptotically stable solutions

follows from [Aul04, Satz 7.5.1]. An analogous proof shows the exponentially stable

solutions.

Thomas Berger
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With respect to Proposition 2.1.2, we call a system of the form (2.1) stable, attrac-

tive, asymptotically stable or exponentially stable, if the global trivial solution of the

associated homogeneous system (2.2) has the respective property. For asymptotic

and exponential stability, in which we are especially interested, we get some further

characterization.

2.1.3 Proposition (Attractivity implies stability [Aul04, Satz 7.5.3]). Every attrac-

tive global solution of (2.1) is stable, and therefore asymptotically stable.

2.1.4 Proposition (Transition matrix and stability [Aul04, Satz 7.5.4]). The trivial

solution of the homogeneous system (2.2) is

(i) stable if, and only if,

∀ t0 > τ ∃ β > 0 ∀ t ≥ t0 : ‖Φ(t, t0)‖ ≤ β,

(ii) asymptotically stable if, and only if,

∀ t0 > τ : lim
t→∞

Φ(t, t0) = 0.

Actually in both cases it is sufficient to consider one single initial time t0 > τ .

The results so far now allow to state some corollaries, which are often used as definitions

for the respective stability concepts.

2.1.5 Corollary. The system (2.1) is asymptotically stable if, and only if, for every

solution x : (τ,∞)→ Rn of the associated homogeneous system (2.2) holds

lim
t→∞

x(t) = 0.

Proof: (⇐) : Follows immediately from Proposition 2.1.2 and Proposition 2.1.3.

(⇒) : Follows from Proposition 2.1.2, Proposition 2.1.4 and the fact that for all

(t0, x0) ∈ (τ,∞)× Rn we can write x(· ; t0, x0) = Φ(·, t0)x0.

2.1.6 Corollary. The system (2.1) is exponentially stable if, and only if,

∃α, β > 0 ∀ (t0, x0) ∈ (τ,∞)× Rn ∀ t ≥ t0 : ‖x(t; t0, x0)‖ ≤ αe−β(t−t0)‖x0‖.

Thomas Berger
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Proof: (⇐) : Follows immediately from Proposition 2.1.2.

(⇒) : Let (t0, x0) ∈ (τ,∞)×Rn. Since (2.1) is exponentially stable, so it is the trivial

solution of (2.2) and hence

∃α, β > 0 ∃ δ = δ(t0) ∀ y0 ∈ Bδ(0) ∀ t ≥ t0 : ‖Φ(t, t0)y0‖ ≤ αe−β(t−t0)‖y0‖.

If x0 = 0 then x(· ; t0, x0) = 0, and if x0 6= 0 it holds true that

∀ t ≥ t0 :

∥∥∥∥Φ(t, t0)
δx0

2‖x0‖

∥∥∥∥ ≤ αe−β(t−t0)

∥∥∥∥ δx0

2‖x0‖

∥∥∥∥
⇐⇒ ∀ t ≥ t0 : ‖Φ(t, t0)x0‖ ≤ αe−β(t−t0)‖x0‖.

2.2 Lyapunov theory

The aim of this section is to state necessary and sufficient conditions for exponential

stability of (2.2). Furthermore, we want to state this without knowledge of the actual

solutions of (2.2), and hence we use a Lyapunov-like approach. A. M. Lyapunov gave

the foundations for this theory in his habilitation [Lya92].

Note that we do not deal with asymptotic stability. The reason for this is, that we

will consider a Lyapunov-equation and can not guarantee existence of solutions to

this equation, if the system (2.2) is not exponentially stable. Asymptotic stability

is not sufficient, since there is a need for a certain convergence rate of the solutions

of (2.2) to zero. Furthermore, the following example illustrates that asymptotic and

exponential stability are not equivalent, as it is in the case, when A(·) is constant (see

e.g. [Aul04, Sec. 7.5]).

2.2.1 Example. Consider the scalar equation

ẋ = −1

t
x, t ∈

(
1

2
,∞
)
. (2.3)

Then for any x0 ∈ R, t0 > 1
2
, the initial value problem (2.3), x(t0) = x0 has the unique

global solution

x :

(
1

2
,∞
)
→ R, t 7→ t0x0

t

and hence (2.3) is asymptotically stable, but not exponentially stable. �

Thomas Berger



2.2. LYAPUNOV THEORY 11

Our approach is mainly based on the Lyapunov-equation for time-varying linear sys-

tems (2.2). The following lemma states this equation and gives a solution under certain

conditions.

2.2.2 Lemma (Solution of the Lyapunov-equation). Let A,Q : (τ,∞) → Rn×n be

continuous and Φ(·, ·) the transition matrix of the system (2.2). If the integral

P (t) :=

∫ ∞
t

Φ(s, t)>Q(s)Φ(s, t) ds

exists for all t > τ , then the time-varying Lyapunov-equation

∀ t > τ : A(t)>P (t) + P (t)A(t) + Ṗ (t) = −Q(t) (2.4)

has the continuously differentiable solution P : (τ,∞)→ Rn×n.

Proof: For all t > τ we have

A(t)>P (t) + P (t)A(t) + Ṗ (t)

=

∫ ∞
t

A(t)>Φ(s, t)>Q(s)Φ(s, t) + Φ(s, t)>Q(s)Φ(s, t)A(t) ds

+ d
dt

∫ ∞
t

Φ(s, t)>Q(s)Φ(s, t) ds

=

∫ ∞
t

A(t)>Φ(s, t)>Q(s)Φ(s, t) + Φ(s, t)>Q(s)Φ(s, t)A(t) ds

+

∫ ∞
t

d
dt

(
Φ(s, t)>Q(s)Φ(s, t)

)
ds− Φ(t, t)>Q(t)Φ(t, t)

Lemma 2.1.1
=

∫ ∞
t

A(t)>Φ(s, t)>Q(s)Φ(s, t) + Φ(s, t)>Q(s)Φ(s, t)A(t) ds

+

∫ ∞
t

(−Φ(s, t)A(t))>Q(s)Φ(s, t) + Φ(s, t)>Q(s)(−Φ(s, t)A(t)) ds−Q(t)

= −Q(t).

Since Q(·) and Φ(·, ·) are continuous, P (·) is continuously differentiable.

We use the time-varying Lyapunov-equation (2.4) and the corresponding solution P (·)
to prove exponential stability of the system (2.2). On the other hand, as already

mentioned, we need exponential stability to prove that the time-varying Lyapunov-

equation has a solution, that means the integral P (t) exists for t > τ . This is true, if

Thomas Berger



12 CHAPTER 2. TIME-VARYING LINEAR DIFFERENTIAL EQUATIONS

we have an exponential convergence rate of the solutions of (2.2) to zero.

For simplicity set

D := (τ,∞)× Rn.

We obtain the following theorem.

2.2.3 Theorem (Necessary and sufficient conditions for exponential stability). Con-

sider system (2.2).

(i) Let A(·) be bounded and Q(·) ∈ PD. If (2.2) is exponentially stable, then there

exists a continuously differentiable solution P (·) ∈ PD to (2.4).

(ii) If there exist P (·), Q(·) ∈ PD, such that P (·) is continuously differentiable and

(2.4) holds, then (2.2) is exponentially stable.

Proof: The proof is essentially from: [Bro70, Chapt. 31, Thm. 5 & Thm. 6] and

[Mar03, Thm. 4.6].

(i): Q(·) ∈ PD means, in particular,

∃ q1, q2 > 0 ∀ t > τ : q1In ≤ Q(t) ≤ q2In. (2.5)

Let Φ(·, ·) be the transition matrix of system (2.2). Define

P : (τ,∞)→ Rn×n, t 7→
∫ ∞
t

Φ(s, t)>Q(s)Φ(s, t) ds.

First we show that P (t) exists for all t > τ .

It follows from the exponential stability of (2.2) and Corollary 2.1.6, that

∃µ, ν > 0 ∀ (t0, x0) ∈ (τ,∞)× Rn ∀ t ≥ t0 : ‖x(t; t0, x0)‖ ≤ µe−ν(t−t
0)‖x0‖.

Let (t0, x0) ∈ (τ,∞) × Rn be arbitrary and t1 > t0. For simplicity define x(·) :=

Thomas Berger
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x(· ; t0, x0). Then

∫ t1

t0
(x0)>Φ(s, t0)>Q(s)Φ(s, t0)x0 ds =

∫ t1

t0
x(s)>Q(s)x(s) ds

≤
∫ t1

t0
q2x(s)>x(s) ds

= q2

∫ t1

t0
‖x(s)‖2 ds

≤ q2

∫ t1

t0
µ2e−2ν(s−t0)‖x0‖2 ds

= −q2µ
2

2ν
‖x0‖2e−2ν(s−t0)

∣∣∣∣t1
t0

=
q2µ

2

2ν
(x0)>x0

(
1− e−2ν(t1−t0)

)
.

Since t1 is arbitrary, P (t0) exists and we have

∀ t > τ : P (t) ≤ q2µ
2

2ν
In.

Then Lemma 2.2.2 yields that P (·) is a solution of (2.4). Due to the continuity of Q(·)
and Φ(·, ·), P (·) is continuously differentiable and due to the symmetry of Q(·), P (·)
is also symmetric. It remains to show, that P (·) is bounded from below.

Boundedness of A(·) means

∃ a > 0 ∀ t > τ : ‖A(t)‖ ≤ a.

Furthermore, for all y ∈ Rn and all t > τ we have

|y>A(t)y| ≤ ‖y‖‖A(t)y‖ ≤ ‖A(t)‖‖y‖2 = ‖A(t)‖y>y.
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Hence

(x0)>P (t0)x0 =

∫ ∞
t0

x(s)>Q(s)x(s) ds

≥
∫ ∞
t0

q1x(s)>x(s) ds

≥ q1

∫ ∞
t0

‖A(s)‖
a

x(s)>x(s) ds

≥ q1
a

∫ ∞
t0
|x(s)>A(s)x(s)| ds

≥ q1
a

∣∣∣∣∫ ∞
t0

x(s)>
(
d

ds
x(s)

)
ds

∣∣∣∣
=

q1
a

∣∣∣∣∫ ∞
t0

1

2

d

ds

(
x(s)>x(s)

)
ds

∣∣∣∣
=

∣∣∣ q1
2a

x(s)>x(s)
∣∣∞
t0

∣∣∣
=

q1
2a
x(t0)>x(t0)

=
q1
2a

(x0)>x0.

This shows P (·) ∈ PD.

(ii): Define

V : Rn × (τ,∞)→ R, (x, t) 7→ x>P (t)x.

Let (t0, x0) ∈ (τ,∞)× Rn be arbitrarily given and again x(·) := x(· ; t0, x0). We show

that there exists an estimate of the form

∃ c ∈ R ∀ t ≥ t0 : d
dt
V (x(t), t) ≤ cV (x(t), t).

We have, for all t ≥ t0,

d
dt
V (x(t), t) = ẋ(t)>P (t)x(t) + x(t)>Ṗ (t)x(t) + x(t)>P (t)ẋ(t)

= x(t)>
(
A(t)>P (t) + Ṗ (t) + P (t)A(t)

)
x(t)

(2.4)
= −x(t)>Q(t)x(t)

(2.5)

≤ −q1x(t)>x(t).

From P (·) ∈ PD we obtain

∃ p1, p2 > 0 ∀ t > τ : p1In ≤ P (t) ≤ p2In, (2.6)
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hence

∀ t ≥ t0 : −In ≤ −
1

p2

P (t),

and thus

∀ t ≥ t0 : d
dt
V (x(t), t) ≤ −q1

p2

x(t)>P (t)x(t) = −q1
p2

V (x(t), t).

Therefore y : (τ,∞)→ R, t 7→ V (x(t), t) solves the differential inequality

ẏ ≤ −q1
p2

y, y(t0) = V (x0, t0).

and separation of variables gives

V (x(t), t) = y(t) ≤ e
− q1

p2
(t−t0)

V (x0, t0), t ≥ t0.

We use this to get a suitable estimate for the norm of x(·).
It further holds by assumption that for all t ≥ t0

V (x(t), t) = x(t)>P (t)x(t) ≥ p1x(t)>x(t),

and so

‖x(t)‖2 = x(t)>x(t) ≤ 1

p1

V (x(t), t)

≤ 1

p1

e
− q1

p2
(t−t0)

V (x0, t0).

Finally we get

‖x(t)‖ ≤
(

1

p1

e
− q1

p2
(t−t0)

V (x0, t0)

) 1
2

=

√
1

p1

e
− q1

2p2
(t−t0)

√
(x0)>P (t0)x0

≤
√

1

p1

e
− q1

2p2
(t−t0)

√
p2‖x0‖2

=

√
p2

p1

e
− q1

2p2
(t−t0)‖x0‖

for t ≥ t0, what is exactly the exponential stability of (2.2) due to Corollary 2.1.6,

since the solution x(·) was arbitrary.
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Now the question arises whether the solution P (·) of the time-varying Lyapunov-

equation (2.4) is unique or not. Note that the following proposition states uniqueness

of P (·) without the claim for symmetry of P (·) or Q(·), resp., and likewise asymptotic

stability of (2.2) is sufficient. However asymptotic stability is not sufficient to deduce

existence of a solution, so the second part of the proposition gives a representation for

P (·) under this assumption.

2.2.4 Proposition (Unique solvability of the Lyapunov-equation). Let (2.2) be

asymptotically stable and Q : (τ,∞) → Rn×n be continuous. If P1 : (τ,∞) → Rn×n

and P2 : (τ,∞)→ Rn×n are continuously differentiable solutions to (2.4) and satisfy

∀ i ∈ {1, 2} ∃αi, βi > 0 ∀ t > τ : αiIn ≤ Pi(t) ≤ βiIn,

then

∀ t > τ : P1(t) = P2(t).

If, furthermore, (2.2) is exponentially stable, A(·) is bounded and Q(·) satisfies (2.5),

then

P : (τ,∞)→ Rn×n, t 7→
∫ ∞
t

Φ(s, t)>Q(s)Φ(s, t) ds

is the unique solution of (2.4), (2.6).

Proof: Let t0 > τ . Define

µ(t) := Φ(t, t0)>
(
P1(t)− P2(t)

)
Φ(t, t0), t ≥ t0.

Then, obviously,

∀ t ≥ t0 : µ̇(t) = 0,

since P1(·) and P2(·) both solve the time-varying Lyapunov-equation. Hence µ(·) must

be constant,

∀ t ≥ t0 : µ(t) = µ(t0) = P1(t
0)− P2(t

0).

Further we deduce

α1Φ(t, t0)>Φ(t, t0)− β2Φ(t, t0)>Φ(t, t0)

≤ Φ(t, t0)>P1(t)Φ(t, t0)− Φ(t, t0)>P2(t)Φ(t, t0)︸ ︷︷ ︸
=µ(t)

≤ β1Φ(t, t0)>Φ(t, t0)− α2Φ(t, t0)>Φ(t, t0)
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for all t ≥ t0. Since lim
t→∞

Φ(t, t0) = 0 due to the asymptotic stability of (2.2) and

Corollary 2.1.5, it follows

lim
t→∞

µ(t) = 0,

and hence

0 = µ(t0) = P1(t
0)− P2(t

0).

Since t0 was arbitrary we may conclude that

∀ t > τ : P1(t) = P2(t).

The second statement, for an exponentially stable system (2.2), follows from the first

one and Lemma 2.2.2, since the integral P (t) exists for all t > τ and P (·) is continuously

differentiable and fulfills (2.6), as it has been shown in the proof of Theorem 2.2.3 (i).

One may also wonder whether the assumption of the boundedness of A(·) in Theo-

rem 2.2.3 (i) is necessary. The following example illustrates that (2.4) has possibly no

solutions in the case of an exponentially stable system and unbounded A(·).

2.2.5 Example. Consider the scalar system

ẋ = −tx, t ∈ R. (2.7)

We show that the time-varying Lyapunov-equation (2.4) has no continuously differen-

tiable solution p(·) ∈ PD. For simplicity we choose q(·) ≡ 1. (Note that D = R2 in

this example.)

The global solution x(·) of the initial value problem (2.7), x(t0) = x0 for (t0, x0) ∈ R2

is given by

x(t) = e−
1
2
(t2−(t0)2)x0, t ∈ R.

Obviously, the system is exponentially stable. The Lyapunov-equation (2.4) has the

shape

ṗ = 2tp− 1. (2.8)

Define

p̃ : R→ R, t 7→ et
2

∫ ∞
t

e−s
2

ds.
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Clearly the integral exists and p̃(·) solves (2.8). Hence the global solution p(·) of (2.8),

p(t0) = p0 for (t0, p0) ∈ R2 is given by

p(t) =
p0 − p̃(t0)
e(t0)2

et
2

+ p̃(t) = et
2

(
p0

e(t0)2
+

∫ ∞
t

e−s
2

ds−
∫ ∞
t0

e−s
2

ds

)
.

Using integration by parts gives, for t > 0,∫ ∞
t

e−s
2

ds = −1

2

∫ ∞
t

1

s
d
(
e−s

2
)

= −1

2

[
e−s

2

s

]∞
t

− 1

2

∫ ∞
t

e−s
2

s2
ds

=
e−t

2

2t
+

1

4

∫ ∞
t

1

s3
d
(
e−s

2
)

=
e−t

2

2t
− e−t

2

4t3
− . . . , (2.9)

thus having

p(t) = et
2

(
p0

e(t0)2
−
∫ ∞
t0

e−s
2

ds

)
+

1

2t
− 1

4t
− . . . , for t > 0.

Hence p(·) is bounded if, and only if, p0 = e(t
0)2
∫∞
t0
e−s

2
ds = p̃(t0). This shows that

p(·) = p̃(·) is the only bounded solution of (2.8). Invoking again (2.9) we find

lim
t→∞

et
2

∫ ∞
t

e−s
2

ds = 0,

and therefore

lim
t→∞

p̃(t) = 0,

which contradicts existence of p1 > 0 such that p(t) ≥ p1 for all t ∈ R. Hence no

solution of (2.8) is an element of PD. �
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Chapter 3

Time-varying linear

differential-algebraic equations

Consider the system

E(t)ẋ = A(t)x+ f(t), (3.1)

for τ ∈ [−∞,∞) and continuous E,A : (τ,∞) → Rn×n, f : (τ,∞) → Rn, n ∈ N; the

associated homogeneous system is

E(t)ẋ = A(t)x. (3.2)

For (t0, x0) ∈ (τ,∞)× Rn let

Sf (t0, x0) :=

 x : J → Rn

∣∣∣∣∣∣ J open interval, t0 ∈ J , x(t0) = x0,

x(·) is a right maximal solution of (3.1)


be the set of all right maximal solutions of the initial value problem

E(t)ẋ = A(t)x+ f(t), x(t0) = x0.

In particular, S0(t
0, x0) is the set of all right maximal solutions of the homogeneous

problem

E(t)ẋ = A(t)x, x(t0) = x0.
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Furthermore, we introduce the following subsets of Sf (t0, x0) and S0(t
0, x0), resp.:

Gf (t0, x0) :={x(·) ∈ Sf (t0, x0) | x(·) is right global solution of (3.1)},

G0(t
0, x0) :={x(·) ∈ S0(t

0, x0) | x(·) is right global solution of (3.2)}.

We will use the latter sets in Section 3.6.

3.1 Singular behavior of the solutions

In this section we concentrate on the initial value problem

E(t)ẋ = A(t)x+ f(t), x(t0) = x0, (3.3)

and determine the behavior which a right maximal, but not right global, solution may

show at its right endpoint.

In the case of ordinary differential equations

ẋ = f(t, x), f ∈ C(D → Rn), D ⊆ R1+n open,

there are only 2 possibilities for the behavior of a right maximal, but not right global,

solution x : (a, b) → Rn (see [Wal98, p. 68] for the case n = 1 and [Wal98, § 10,

Thm. VI] for n > 1):

(a) lim supt↗b ‖x(t)‖ =∞,

(b) limt↗b dist((t, x(t)), ∂D) = 0.

In the case of differential-algebraic equations there arise more possibilities for the

behavior of the solutions. Since we concentrate on systems of the form (3.1) something

like (b) does not occur (the domain has no bound), but besides solutions with finite

escape time we may discern 3 cases for non-extendable solutions. We show this via

the following illustrative example from [KM06, Ex. 3.1], appropriately extended for

our purposes.
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3.1.1 Example. Consider (3.3) with τ = −∞, x0 = 0, t0 ∈ R and

E(t) =

−t t2

−1 t

 , A(t) =

−1 0

0 −1

 , f(t) =

0

0

 (3.4)

for t ∈ R. Then simple calculations show that x : J → Rn is a solution of the initial

value problem if, and only if, J ⊆ R is an open interval and x(t) = c(t)

t
1

, t ∈ J ,

for some c(·) ∈ C1(J → R) with c(t0) = 0. Obviously (3.3) has uncountable many

solutions.

Now the following situations may occur:

(i) (3.3) has a global solution. For example the trivial solution is a global solution

of (3.3).

(ii) (3.3) has a right maximal solution with finite escape time. Choose ω ∈ (t0,∞)

and let c(t) = − 1
t−ω + 1

t0−ω , t < ω. Then we calculate that x : (−∞, ω) →
Rn, t 7→ c(t)[t, 1]> is a solution of (3.3) and lim supt↗ω ‖x(t)‖ =∞.

(iii) (3.3) has a right maximal solution which has no finite escape time at ω ∈ (t0,∞)

and is not continuous at ω. Choose c(t) = sin a
t−ω , t < ω, a = π(t0 − ω). Then

x : (−∞, ω)→ Rn, t 7→ c(t)[t, 1]> is a solution of (3.3) and the limit limt↗ω x(t)

does not exist.

(iv) (3.3) has a right maximal solution which is continuous but not differentiable at

a finite time ω ∈ (t0,∞). Choose c(t) = (t − ω) sin a
t−ω , t < ω, a = π(t0 − ω).

Then x : (−∞, ω)→ Rn, t 7→ c(t)[t, 1]> is a solution of (3.3) and the limit of the

difference quotient limt↗ω
x(t)−x̃
t−ω , where x̃ = limt↗ω x(t), does not exist.

(v) (3.3) has a right maximal solution which is continuous and differentiable at a

finite time ω ∈ (t0,∞), but its derivative is not continuous at ω. Choose c(t) =

(t− ω)2 sin a
t−ω , t < ω, a = π(t0 − ω). Then x : (−∞, ω)→ Rn, t 7→ c(t)[t, 1]> is

a solution of (3.3) and the limit limt↗ω ẋ(t) does not exist.
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We stress that example (3.4) is analytic and t0, x0 are the same for all cases (i)-(v).

Furthermore the matrix pencil A(t)− λE(t) is regular1 for each t ∈ R.

In (iii)-(v) there exists no extension of the solution over ω. In particular, (iii)-(v)

represent all (distinct) possibilities for the behavior of any non-extendable solution at

its right endpoint. �

Finalizing this section, we treat the question whether a system (3.1) always has the

property

x1(·) ∈ Sf (t0, x1), x2(·) ∈ Sf (t0, x2)

=⇒
(

(x1 − x2) : dom x1 ∩ domx2 → Rn
)
∈ S0(t

0, x1 − x2),
(3.5)

i.e. that the difference of two right maximal solutions of (3.1), defined on the inter-

section of their domains, is a right maximal solution of (3.2). The following example

shows that (3.5) does not hold in general.

3.1.2 Example. Consider the scalar equation

tẋ = −tx+ 1, t ∈ R (3.6)

and the associated homogeneous equation

tẋ = −tx, t ∈ R. (3.7)

In the regions (−∞, 0) and (0,∞) the system (3.7) is equivalent to ẋ = −x and has

unique global solutions, resp. Obviously, the solutions in both regions can be uniquely

extended over t = 0, and hence we obtain unique global solutions of (3.7), defined on

all of R. We see

S0(t
0, x0) =

{
x : (t−,∞)→ R

∣∣∣ t− ∈ [−∞, t0), x(t) = e−(t−t0)x0
}
, (3.8)

(t0, x0) ∈ R2.

To show that (3.5) does not hold for this example, first observe that (3.6) reads 0 = 1

1i.e.
(
λ 7→ det

(
A(t) − λE(t)

))
6= 0; for the theory of (regular) matrix pencils see the textbook

[KM06] for instance
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for t = 0, and hence no solution of (3.6) can be defined for t = 0. In the regions

(−∞, 0) and (0,∞) the system (3.6) becomes

ẋ = −x+
1

t
, (3.9)

and for x0 ∈ R we find

S1(t
0, x0) =

{
x : (t−, 0)→ R

∣∣∣∣ t− ∈ [−∞, t0), x(t) = e−(t−t0)x0 +

∫ t

t0

e−(t−s)

s
ds

}
for t0 < 0,

S1(t
0, x0) =

{
x : (t−,∞)→ R

∣∣∣∣ t− ∈ [0, t0), x(t) = e−(t−t0)x0 +

∫ t

t0

e−(t−s)

s
ds

}
(3.10)

for t0 > 0. Let

x1 : (−∞, 0)→ R, t 7→ e−(t−t0)x1 +

∫ t

t0

e−(t−s)

s
ds for t0 < 0, x1 ∈ R,

x2 : (−∞, 0)→ R, t 7→ e−(t−t0)x2 +

∫ t

t0

e−(t−s)

s
ds for x2 ∈ R \ {x1}.

Then x(·) := x1(·) − x2(·) with domx(·) = (−∞, 0) = domx1(·) ∩ domx2(·) is not a

right maximal solution of (3.7), since we could extend it to all of R, however x1(·) and

x2(·) are right maximal solutions of (3.6). �

3.2 Stability behavior of the solutions

Now the question arises whether every solution of the inhomogeneous system (3.1) is

stable if, and only if, the trivial solution of the homogeneous system (3.2) is stable,

as in the case of an ordinary linear differential equation. In general, the answer is

non-affirmative.

3.2.1 Example. Revisit Example 3.1.2. It is clear (see (3.8)) that the trivial solution

of (3.7) is exponentially stable. Since

lim
t↗0

∫ t

−1

e−(t−s)

s
ds = −∞,
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(
x : (−1, 0)→ Rn, t 7→ e−(t−1) +

∫ t
−1

e−(t−s)

s
ds
)
∈ S1(−1, 1) and has a finite escape

time. Therefore x(·) can not be exponentially stable. So the inhomogeneity f(·) in

(3.1) can lead to finite escape times, and therefore change the stability behavior, even

though the trivial solution of the homogeneous equation (3.2) is exponentially stable.

But nevertheless from (3.10) it is easy to deduce that every right global solution of

(3.6) is exponentially stable.

Note that the solutions of any ordinary linear differential equation can not have a

finite escape time for any continuous inhomogeneity. If we consider (3.6) in the region

(−∞, 0) we obtain the ordinary differential equation (3.9) and we find that any global

solution x(·) of (3.9) (on (−∞, 0)) fulfills limt↗0 |x(t)| = ∞. Hence the system (3.9)

has a singular point at t = 0, where the inhomogeneity is not continuous. When we

multiply the system by t and therefore obtain the differential-algebraic equation (3.6)

we keep the singular point, but the inhomogeneity becomes continuous. �

The following lemma is crucial. By Example 3.1.1, property (3.5) is incorrect in gen-

eral, and hence system (3.1) can have a singular behavior. But by a slight modification

of the assumptions, i.e. either x1(·) or x2(·) has to be right global, we may deduce

that the difference is right maximal.

3.2.2 Lemma (Right maximal solutions). Consider systems (3.1) and (3.2), and let

x0, y0 ∈ Rn, t0 > τ .

(i) If x(·) ∈ Sf (t0, x0) is right global and y(·) ∈ Sf (t0, y0), then

(x− y : domx ∩ dom y → Rn) ∈ S0(t
0, x0 − y0).

(ii) If x(·) ∈ Sf (t0, x0) is right global and y(·) ∈ S0(t
0, y0), then

(x+ y : domx ∩ dom y → Rn) ∈ Sf (t0, x0 + y0).

Proof: (i): Note that z = x − y : domx ∩ dom y → Rn is a solution of the initial

value problem

E(t)ż = A(t)z, z(t0) = x0 − y0.

Now let (α, ω) := dom z(·). If ω =∞, then the claim holds. Let ω <∞. Since y(·) is

right maximal and ω = sup dom y(·) there are 4 distinct possibilities for the behavior

of y(·) at ω (see also Example 3.1.1):
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(a) y(·) has a finite escape time, i.e. lim supt↗ω ‖y(t)‖ =∞,

(b) y(·) has no finite escape time and the limit limt↗ω y(t) does not exist,

(c) y(·) is continuous at ω (limt↗ω y(t) exists), but limt↗ω
y(t)−ỹ
t−ω , where ỹ =

limt↗ω y(t), does not exist,

(d) y(·) is continuous and differentiable at ω (ỹ = limt↗ω y(t) and limt↗ω
y(t)−ỹ
t−ω exist),

but limt↗ω ẏ(t) does not exist.

Since x(·) is right global and has therefore no such singular behavior at ω, the difference

z(·) inherits the behavior from y(·). Since the cases (a)-(d) are distinct it is easy to

see that if y(·) fulfills one of them, then z(·) fulfills the same.

We show that z(·) is right maximal. Let µ : (α, ω̃)→ Rn be an extension of z(·), i.e.

ω ≤ ω̃ and z = µ |(α,ω) .

Then µ(·) has the same singular behavior as z(·) at ω and since µ(·) is a solution of

(3.2) it follows that ω̃ ≤ ω and hence ω = ω̃.

(ii): The proof is analogous and omitted.

3.2.3 Theorem (Uniform stability behavior of all right global solutions). Consider

the inhomogeneous system (3.1) and the associated homogeneous system (3.2).

(i) If the trivial solution of (3.2), restricted to (α,∞) for some α ≥ τ , has one

of the properties {stable, attractive, asymptotically stable, exponentially stable},
then every right global solution x : (β,∞) → Rn of (3.1) with β ≥ α has the

respective property.

(ii) If there exists a right global solution x(·) of (3.1) with one of the properties

{stable, attractive, asymptotically stable, exponentially stable}, then the trivial

solution of (3.2), restricted to domx(·), has the respective property.

Proof: The idea for this proof is due to [Aul04, Satz 7.4.10]. We prove the claim for

stability, the other concepts are proved similarly.
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(i): Let the trivial solution of (3.2), restricted to (α,∞) for some α ≥ τ , be stable

and let µ : (β,∞)→ Rn be a right global solution of (3.1), β ≥ α. We show that µ(·)
is stable.

Let ε > 0 and t0 > β. Since the trivial solution of (3.2), restricted to (α,∞), is stable,

Definition 1.2.2 yields

∃ δ > 0 ∀ y0 ∈ Bδ(0) ∀ y(·) ∈ S0(t
0, y0) :

y(·) is right global ∧
[
∀ t ≥ t0 : y(t) ∈ Bε(0)

]
.

(3.11)

Let η ∈ Bδ(µ(t0)). If Sf (t0, η) = ∅, then the claim holds. Let λ(·) ∈ Sf (t0, η). By

Lemma 3.2.2 (i) and since t0 ∈ domλ∩domµ we have (µ− λ : domλ ∩ domµ→ Rn) ∈
S0(t

0, µ(t0)−η). Then µ(t0)−η ∈ Bδ(0) and (3.11) yield that (µ−λ)(·) is right global,

and hence λ(·) must be right global, and

[
∀ t ≥ t0 : λ(t)− µ(t) ∈ Bε(0)

]
=⇒

[
∀ t ≥ t0 : λ(t) ∈ Bε(µ(t))

]
and therefore µ(·) is stable.

(ii): Let µ : J → Rn be a right global and stable solution of (3.1). We show that the

trivial solution of (3.2), restricted to J , is stable.

Let ε > 0 and t0 ∈ J . Since µ(·) is stable, Definition 1.2.2 yields

∃ δ > 0 ∀ y0 ∈ Bδ(µ(t0)) ∀ y(·) ∈ Sf (t0, y0) :

y(·) is right global ∧ ∀ t ≥ t0 : y(t) ∈ Bε(µ(t)).
(3.12)

Let η ∈ Bδ(0). If S0(t
0, η) = ∅, then the claim holds. Let λ(·) ∈

S0(t
0, η). By Lemma 3.2.2 (ii) and since t0 ∈ domλ ∩ domµ we have

(µ+ λ : domλ ∩ domµ→ Rn) ∈ Sf (t0, µ(t0) + η). Then µ(t0) + η ∈ Bδ(µ(t0)) and

(3.12) yield that (µ+ λ)(·) is right global, and hence λ(·) must be right global, and

[
∀ t ≥ t0 : µ(t) + λ(t) ∈ Bε(µ(t))

]
=⇒

[
∀ t ≥ t0 : λ(t) ∈ Bε(0)

]
and therefore the trivial solution of (3.2), restricted to J , is stable.

We emphasize the generality of Theorem 3.2.3. There are no assumptions on the

matrices E(·) and A(·) or on the solutions of the systems (3.1) and (3.2), resp. It
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holds for every differential-algebraic equation.

Theorem 3.2.3 justifies (similar to ordinary linear differential equations) the following

definition.

3.2.4 Definition. The system (3.1) is called stable, attractive, asymptotically stable or

exponentially stable if, and only if, the global trivial solution of (3.2) has the respective

property. �

We will use these notions in Sections 3.5 and 3.6.

3.3 Standard canonical form and homogeneous

DAEs

In this section we investigate the homogeneous system (3.2). We introduce the concept

of consistent initial values and an equivalence relation on the set of all pairs (E,A),

E,A ∈ C((τ,∞)→ Rn×n). Then we define and consider a special class of pairs, which

are equivalent to some canonical form. Finally, via this canonical form, we will be able

to define a generalized transition matrix for the special class of differential-algebraic

equations.

3.3.1 Definition (Pairs of consistent initial values). A pair (t0, x0) ∈ (τ,∞) × Rn is

called a pair of consistent initial values of the system (3.2) if, and only if, there exists

a solution x(·) of (3.2) with t0 ∈ domx(·) and x(t0) = x0. We denote by V the set of

all pairs of consistent initial values of (3.2). Furthermore, for t0 > τ ,

V(t0) :=
{
x0 ∈ Rn

∣∣ (t0, x0) ∈ V
}

is called the set of the initial values, which are consistent with t0. �

This definition can be found in [KM06, Def. 1.1] for instance. For the case that E(·)
and A(·) are constant, consistent initial values and the subspace of all consistent initial

values has been investigated in [OD85].
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3.3.2 Remark. The space V(t0) has the following properties:

(i) ∀ t0 > τ : V(t0) is a linear subspace of Rn,

(ii) If x : J → Rn is a solution of (3.2), then x(t) ∈ V(t) for all t ∈ J . �

3.3.3 Definition (Equivalence of pairs (E,A) [KM06, Def. 3.3]). Two pairs (Ei, Ai),

Ei, Ai ∈ C((τ,∞) → Rn×n), i = 1, 2, of matrix functions are called equivalent w.r.t.

S ∈ C((τ,∞) → Rn×n), T ∈ C1((τ,∞) → Rn×n) if, and only if, S(·) and T (·) are

pointwise nonsingular and

E2 = SE1T, A2 = SA1T − SE1Ṫ (3.13)

as equality of functions. We write (E1, A1) ∼ (E2, A2) if, and only if, (E1, A1) and

(E2, A2) are equivalent, i.e. there exist pointwise nonsingular S ∈ C((τ,∞)→ Rn×n),

T ∈ C1((τ,∞)→ Rn×n) such that (3.13) holds. �

Any T ∈ C1((τ,∞)→ Rn×n) s.t. detT (t) 6= 0 for all t > τ satisfies

0 = d
dt
In = d

dt
(T (t)T (t)−1) = Ṫ (t)T (t)−1 + T (t) d

dt
(T (t)−1)

⇒ d
dt

(T (t)−1) = −T (t)−1Ṫ (t)T (t)−1. (3.14)

3.3.4 Remark (Equivalence relation). By [KM06, Lem. 3.4] the relation introduced

in Definition 3.3.3 is an equivalence relation. In particular, using (3.14), we obtain

E1 = S−1E2T
−1, A1 = S−1A2T

−1 − S−1E2
d
dt
T−1. (3.15)

3.3.5 Remark (Transformation of solutions). Let Ei, Ai ∈ C((τ,∞) → Rn×n), i =

1, 2, be equivalent w.r.t. S ∈ C((τ,∞)→ Rn×n), T ∈ C1((τ,∞)→ Rn×n). Then x(·)
is a solution of

E1(t)ẋ = A1(t)x

if, and only if, y(·) := T (·)−1x(·) is a solution of

E2(t)ẏ = A2(t)y.
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3.3.6 Definition (Transferability into SCF). A system (3.2) is called transferable

into standard canonical form (SCF) if, and only if, there exist n1, n2 ∈ N such that

(E,A) ∼

In1 0

0 N

 ,
J 0

0 In2

 , (3.16)

where J : (τ,∞)→ Rn1×n1 and N : (τ,∞)→ Rn2×n2 , such that, for all t > τ , N(t) is

strictly lower triangular1. �

The definition of the SCF as we use it here can be found in [CP83]; it had its origin

in [Cam83]. The SCF is a generalization of the well-known Weierstraß form for

time-invariant differential-algebraic equations.

Uniqueness of the SCF is dealt with in the following theorem. It is shown that n1, n2

are unique and J,N are unique up to (In1 , J) ∼ (In1 , J̃), (N, In2) ∼ (Ñ , In2).

3.3.7 Theorem (Uniqueness of the SCF). Let n1, n2, ñ1, ñ2 ∈ N and J1 ∈ C((τ,∞)→
Rn1×n1), J2 ∈ C((τ,∞) → Rñ1×ñ1), N1 ∈ C((τ,∞) → Rn2×n2), N2 ∈ C((τ,∞) →
Rñ2×ñ2), such that N1(t) and N2(t) are strictly lower triangular for all t > τ . IfIn1 0

0 N1

 ,
J1 0

0 In2

 and

Iñ1 0

0 N2

 ,
J2 0

0 Iñ2


are equivalent w.r.t. some S ∈ C((τ,∞)→ Rn×n), T ∈ C1((τ,∞)→ Rn×n), then

(i) n1 = ñ1, n2 = ñ2,

(ii) S =

S11 0

0 S22

 , T =

T11 0

0 T22

 , T11 = S−1
11 ,

(iii) (In1 , J1) ∼ (In1 , J2), (N1, In2) ∼ (N2, In2). �

The following lemma is crucial for the proof of Theorem 3.3.7. It deals with the

subsystem N(t)ż = z, which is a so called pure differential-algebraic equation. Such

systems only have the trivial solution.

1A matrix is called strictly lower triangular if it has only zeros on its main diagonal and above.
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3.3.8 Lemma (Solution of the pure DAE part). Let N(·) ∈ C((τ,∞)→ Rn×n) such

that N(t) is strictly lower triangular for all t > τ . Then x(·) = 0 is the unique global

solution of the pure differential-algebraic equation

N(t)ẋ = x. (3.17)

Furthermore, every (local) solution z : J → Rn of (3.17) fulfills z(t) = 0, t ∈ J .

Proof: Step 1 : Clearly x(·) = 0 solves (3.17) for all t > τ .

Step 2 : We show that any solution z : J → Rn of (3.17) fulfills z = 0. Consider (3.17)

row-wise. Let N(t) = (nij(t))i,j=1,...,n for t > τ , then

zi(t) =
i−1∑
j=1

nij(t)żj(t) (3.18)

for t ∈ J and i ∈ {1, ..., n}. We prove

∀ i ∈ {1, . . . , n} ∀ t ∈ J : zi(t) = 0

by induction over i. The assertion clearly holds true for i = 1. Suppose it holds for

some i ∈ {1, . . . , n− 1}. Then żj(t) = 0 for all t ∈ J and all j ∈ {1, . . . , i}, hence

∀ t ∈ J : zi+1(t)
(3.18)
=

i∑
j=1

nij(t)żj(t) = 0.

This shows z = 0 and completes the proof of the lemma.

3.3.9 Corollary. The initial value problem

N(t)ẋ = x, x(t0) = x0,

where N(·) ∈ C((τ,∞) → Rn×n) such that N(t) is strictly lower triangular for all

t > τ , (t0, x0) ∈ (τ,∞)× Rn, has a unique global solution if, and only if, x0 = 0.

Proof of Theorem 3.3.7: Step 1 : Without loss of generality assume that n1 ≥ ñ1.

Write T−1 =

T11 T12

T21 T22

 for T11 ∈ C1((τ,∞) → Rn1×n1), T22 ∈ C1((τ,∞) → Rn2×n2)

and T12, T21 appropriate. We show that, for all t > τ ,

T21(t) = 0, detT11(t) 6= 0, detT22(t) 6= 0.
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Let (t0, x1) ∈ (τ,∞)× Rn1 . Then

x : (τ,∞)→ Rn, t 7→

ΦJ1(t, t
0)x1

0

 ,
where ΦJ1(·, ·) denotes the transition matrix of ż = J1(t)z, solvesIn1 0

0 N1(t)

 ẋ =

J1(t) 0

0 In2

x.
By Remark 3.3.5 y(·) := T (·)−1x(·) solvesIñ1 0

0 N2(t)

 ẏ =

J2(t) 0

0 Iñ2

 y,
and it follows from Lemma 3.3.8 that y(·) =

y1(·)
0

 for some y1 ∈ C1((τ,∞)→ Rñ1).

Hence T11(t
0)x1

T21(t
0)x1

 = T (t0)−1x(t0) = y(t0) =

y1(t
0)

0

 . (3.19)

Since n2 ≤ ñ2 it follows T21(t
0)x1 = 0, and since x1 ∈ Rn1 was arbitrary it follows

T21(t
0) = 0. Thus detT11(t

0) detT22(t
0) = detT (t0)−1, and invertibility of T (t0) yields

invertibility of T11(t
0).

Step 2 : We prove (i). Assume that n1 > ñ1. Let α be the last row of T11(t
0), α> ∈ Rn1 .

Then (3.19) and n1 > ñ1 yield αx1 = 0, and, since x1 was arbitrary, it follows α = 0,

which contradicts detT11(t
0) 6= 0.

Step 3 : We prove (iii). Write S−1 =

S11 S12

S21 S22

 for S11 ∈ C((τ,∞) → Rn1×n1),

S22 ∈ C((τ,∞)→ Rn2×n2) and S12, S21 appropriate. ThenIn1 0

0 N1

 = S−1

In1 0

0 N2

T−1 =

S11T11 + S12N2T21 S11T12 + S12N2T22

S21T11 + S22N2T21 S21T12 + S22N2T22

 ,
(3.20)J1 0

0 In2

 (3.15)
= S−1

J2 0

0 In2

T−1 − S−1

In1 0

0 N2

 d
dt

(
T−1

)
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=

S11J2T11 + S12T21 − S11Ṫ11 − S12N2Ṫ21 S11J2T12 + S12T22 − S11Ṫ12 − S12N2Ṫ22

S21J2T11 + S22T21 − S21Ṫ11 − S22N2Ṫ21 S21J2T12 + S22T22 − S21Ṫ12 − S22N2Ṫ22

 .
(3.21)

Step 1 and the equations in the first n1 columns in (3.20) yield

∀ t > τ : S11(t)
−1 = T11(t) ∧ S21(t) = 0 ∧ detS22(t) 6= 0,

and therefore, by (3.20),

N1 = S22N2T22 (3.22)

and, by the lower right block in (3.21),

In2 = S22T22 − S22N2Ṫ22. (3.23)

Both (3.22) and (3.23) are equivalent to (N1, In2) ∼ (N2, In2). On the other hand the

upper left block in (3.21) yields J1 = S11J2T11 − S11Ṫ11, and invoking S11 = T−1
11 , we

find J1 = T−1
11 J2T11 − T−1

11 Ṫ11 or, equivalently, (In1 , J1) ∼ (In1 , J2).

Step 4 : It remains to prove T12 = S12 = 0. From (3.23) it follows

S−1
22 = T22 −N2Ṫ22.

Observe that the upper right block in (3.21) yields

0 = S11(J2T12Ṫ12) + S12(T22 −N2Ṫ22),

hence

S12 = −S11(J2T12 − Ṫ12)S22. (3.24)

Then, from the upper right block in (3.20) we may deduce

T12 = −S−1
11 S12N2T22

(3.24)
= (J2T12 − Ṫ12)S22N2T22

(3.22)
= (J2T12 − Ṫ12)N1. (3.25)

Therefore we find

T12en2

(3.25)
= (J2T12 − Ṫ12)N1en2 = (J2T12 − Ṫ12)


0
...

0

 = 0, (3.26)
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and, furthermore

T12en2−1
(3.25)
= (J2T12 − Ṫ12)N1en2−1 = (J2T12 − Ṫ12)


0
...

0

∗


(3.26)
= 0.

Proceeding in this way gives T12 = 0 and, invoking (3.24), we find S12 = 0.

Next we derive a representation of the solutions of a system (3.2), which is transferable

into SCF, and, furthermore, a representation for V .

3.3.10 Theorem (Solution of the homogeneous DAE). Let (3.2) be transferable into

SCF and use the notation from Definition 3.3.6.

(i)

(t0, x0) ∈ V ⇐⇒ x0 ∈ imT (t0)

In1

0

 . (3.27)

(ii) Any solution of the initial value problem (3.2), x(t0) = x0, where (t0, x0) ∈ V,

can be uniquely extended to a global solution x(·), and this solution satisfies

x(t) = U(t, t0)x0, U(t, t0) := T (t)

ΦJ(t, t0) 0

0 0

T (t0)−1, t > τ, (3.28)

where ΦJ(·, ·) denotes the transition matrix of ż = J(t)z.
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Proof: Step 1 : We show that x(·) as in (3.28) solves (3.2) for all t > τ :

E(t)ẋ(t)

= E(t)

Ṫ (t)

ΦJ(t, t0) 0

0 0

+ E(t)T (t)

J(t)ΦJ(t, t0) 0

0 0

T (t0)−1x0

(3.16)
=

E(t)Ṫ (t)

ΦJ(t, t0) 0

0 0

+ S(t)−1

In1 0

0 N(t)

J(t)ΦJ(t, t0) 0

0 0

T (t0)−1x0

=

E(t)Ṫ (t) + S(t)−1

J(t) 0

0 In2

ΦJ(t, t0) 0

0 0

T (t0)−1x0

(3.16)
= (E(t)Ṫ (t) + A(t)T (t)− E(t)Ṫ (t))

ΦJ(t, t0) 0

0 0

T (t0)−1x0

= A(t)T (t)

ΦJ(t, t0) 0

0 0

T (t0)−1x0 = A(t)x(t).

Step 2 : We show that x(t0) = x0 for x(·) as in (3.28) if, and only, x0 ∈ imT (t0)

In1

0

.

Set α
β

 := T (t0)−1x0,

where α ∈ Rn1 , β ∈ Rn2 . Then

x(t0) = T (t0)

In1 0

0 0

T (t0)−1x0 = T (t0)

In1 0

0 0

α
β

 = x0 − T (t0)

0

β

 ,
and hence x(t0) = x0 if, and only if, β = 0 or, equivalently, x0 ∈ imT (t0)

In1

0

.

Step 3 : We show that every solution z : J → Rn of (3.2), z(t0) = x0, (t0, x0) ∈ V
fulfills z = x |J for x(·) as in (3.28). Clearly (z−x) : J → Rn solves E(t) d

dt
(z−x)(t) =

A(t)(z − x)(t) for all t ∈ J . Then [y1(·)>, y2(·)>]> = y(·) := T (·)−1(z − x)(·) solves

ẏ1 = J(t)y1,

N(t)ẏ2 = y2,
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and by Lemma 3.3.8 it follows y2(t) = 0 for all t ∈ J . Then, invoking y(t0) =

T (t0)−1(x0 − x(t0)),

0 =

0 0

0 In2

 y(t0) =

0 0

0 In2

T (t0)−1

x0 − T (t0)

In1 0

0 0

T (t0)−1x0


=

0 0

0 In2

T (t0)−1x0 = T (t0)−1(x0 − x(t0)) = y(t0).

Hence y1(t) = 0 for all t ∈ J and therefore z = x |J . This concludes the proof.

Now we are in a position to define the main tool for the further investigations (espe-

cially stability theory), the generalized transition matrix.

3.3.11 Definition (Generalized transition matrix). Let (3.2) be transferable into

SCF, i.e. (3.16) holds for some pointwise nonsingular S ∈ C((τ,∞) → Rn×n), T ∈
C1((τ,∞) → Rn×n). The generalized transition matrix U(· , ·) of the system (3.2) is

defined by

U(t, s) := T (t)

ΦJ(t, s) 0

0 0

T (s)−1, t, s > τ,

and does not depend on the special choice of S, T . �

The following proposition shows uniqueness of U(· , ·) and generalizes Lemma 2.1.1.

3.3.12 Proposition (Uniqueness and properties of U(· , ·)). Let J1, N1, J2, N2 as in

Theorem 3.3.7. IfIn1 0

0 N1

 ,
J1 0

0 In2

 and

In1 0

0 N2

 ,
J2 0

0 In2


are equivalent w.r.t. some S ∈ C((τ,∞)→ Rn×n), T ∈ C1((τ,∞)→ Rn×n), thenΦJ2(t, s) 0

0 0

 = T (t)

ΦJ1(t, s) 0

0 0

T (s)−1, t, s > τ.

If (3.2) is transferable into SCF, then, for arbitrary t, r, s ∈ (τ,∞),

(i) E(t) d
dt
U(t, s) = A(t)U(t, s),
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(ii) imU(t, s) = V(t),

(iii) U(t, r)U(r, s) = U(t, s),

(iv) U(t, t)2 = U(t, t),

(v) ∀x ∈ V(t) : U(t, t)x = x.

Proof: Step 1 : We prove uniqueness of U(· , ·). Choose arbitrary (s, α) ∈ (τ,∞)×Rn1 .

Since, by Theorem 3.3.7,

T =

T11 0

0 T22

 , S =

T−1
11 0

0 S22

 ,

we find x0 := T (s)

α
0

 =

T11(s)α

0

, and hence

x : (τ,∞)→ Rn, t 7→

ΦJ2(t, s) 0

0 0

x0

solves In1 0

0 N2(t)

 ẋ =

J2(t) 0

0 In2

x, x(s) = x0.

Furthermore, y(·) := T (·)−1x(·) solvesIn1 0

0 N1(t)

 ẏ =

J1(t) 0

0 In2

 y, y(s) = T (s)−1x0 =

α
0

 ,
and since the global solution of this initial value problem is unique by Theorem 3.3.10,

we find

y(t) =

ΦJ1(t, s)α

0

 , t > τ.

This gives

T (t)

ΦJ1(t, s) 0

0 0

α
0

 = T (t)y(t) = x(t) =

ΦJ2(t, s) 0

0 0

T (s)

α
0

 , t > τ,
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and since α ∈ Rn1 was arbitrary it follows that

ΦJ1(t, s) = T11(t)ΦJ2(t, s)T11(s).

Finally we may deduce

T (t)

ΦJ1(t, s) 0

0 0

T (s)−1 =

T11(t)ΦJ1(t, s)T11(s)
−1 0

0 0

 =

ΦJ2(t, s) 0

0 0

 , t > τ,

and since s > τ was arbitrary the assertion follows.

Step 2 : We prove (i)-(v). Recall the representation of E(·) and A(·) given by (3.16).

(i) This is a straightforward calculation as in Step 1 of the proof of Theorem 3.3.10.

(ii) The invertibility of ΦJ(t, s) and (3.27) yield

imU(t, s) = im

T (t)

ΦJ(t, s) 0

0 0

T (s)−1

 = im

T (t)

In1 0

0 0

 = V(t).

(iii) It immediately follows from Lemma 2.1.1 (iii) that

U(t, r)U(r, s) = T (t)

ΦJ(t, r) 0

0 0

T (r)−1T (r)

ΦJ(r, s) 0

0 0

T (s)−1

= T (t)

ΦJ(t, r)ΦJ(r, s) 0

0 0

T (s)−1

= T (t)

ΦJ(t, s) 0

0 0

T (s)−1 = U(t, s).

(iv) Follows from (iii).

(v) Let x ∈ V(t). By (ii) we get x ∈ imU(t, t) and hence there exists y ∈ Rn such

that U(t, t)y = x. Then

U(t, t)x = U(t, t)2y
(iv)
= U(t, t)y = x.

Having Theorem 3.3.10 and the generalized transition matrix U(· , ·) we may imme-

diately derive a vector space isomorphism between V(t0) and the set of all global

solutions of (3.2), for all t0 > τ .
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3.3.13 Corollary (Vector space isomorphism). Let (3.2) be transferable into SCF

and t0 > τ . Set

B(E,A) :=
{
x : (τ,∞)→ Rn×n ∣∣ x(·) is a global solution of (3.2)

}
.

Then the linear map

ϕ : V(t0)→ B(E,A), x0 7→
(
(τ,∞) 3 t 7→ U(t, t0)x0

)
is a vector space isomorphism.

Proof: Step 1 : By Theorem 3.3.10 we get

∀x0 ∈ V(t0) :
(
(τ,∞) 3 t 7→ U(t, t0)x0

)
∈ B(E,A),

and since, furthermore, U(· , ·) is well-defined we obtain that ϕ(·) is well-defined.

Step 2 : We show that ϕ(·) is surjective. Let x(·) ∈ B(E,A). Then, clearly, x(t0) ∈
V(t0) and from Theorem 3.3.10 (ii) it follows

∀ t > τ : x(t) = U(t, t0)x(t0),

thus having ϕ(x(t0))(·) = x(·).
Step 3 : We show that ϕ(·) is injective. Let x1, x2 ∈ V(t0) such that ϕ(x1)(·) = ϕ(x2)(·).
Then

x1 3.3.12 (v)
= U(t0, t0)x1 = ϕ(x1)(t0) = ϕ(x2)(t0) = U(t0, t0)x2 3.3.12 (v)

= x2.

This completes the proof.

3.3.14 Remark. If (3.2) is transferable into SCF we find, by Proposition 3.3.12 (ii),

that V(t) = imU(t, t) for all t > τ . Since t 7→ U(t, t) is continuously differentiable,

the representation of V(t) depends continuously differentiable on the time t and the

dimension of V(t) does not change: dimV(t) = n1 for all t > τ .

These properties do not hold true for systems which are not transferable into SCF, as

shown by the following example. �
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3.3.15 Example. Consider the system

tẋ = (1− t)x, t ∈ R. (3.29)

For t0 6= 0, x0 ∈ R, the unique global solution x(·) of (3.29), x(t0) = x0 is

x : R→ R, t 7→ te−t

t0e−t0
x0.

Hence every (local) solution x : J → R of (3.29), x(0) = 0 can be uniquely extended

to

xc : R→ R, t 7→ cte−t,

where c = et̃

t̃
x(t̃) for some t̃ ∈ J \ {0}. The solutions xc(·), c ∈ R, are the only global

solutions of (3.29), x(0) = 0. Furthermore, any initial value problem (3.29), x(0) = x0

with x0 6= 0 has no solution. Hence we find V(t) = R for t 6= 0, but V(0) = {0}. We

stress that the coefficients of (3.29) are analytic. �

3.4 Analytic solvability and inhomogeneous DAEs

In this section we investigate the inhomogeneous system (3.1). For (3.1) transferable

into SCF we derive a representation for the unique global solutions of (3.1), x(t0) = x0

and conditions under which this solution exists. Furthermore, we introduce the concept

of analytic solvability and determine its connection to transferability into SCF.

3.4.1 Proposition (Solution of the inhomogeneous pure DAE). Let N(·) ∈
Cn((τ,∞) → Rn×n) such that N(t) is strictly lower triangular for all t > τ ,

f(·) ∈ Cn((τ,∞) → Rn) and (t0, x0) ∈ (τ,∞) × Rn. Then the initial value prob-

lem

N(t)ẋ = x+ f(t), x(t0) = x0, (3.30)

has a solution if, and only if,

−
n−1∑
k=0

(
N(·) d

dt

)k
f(·)

∣∣∣∣∣
t=t0

= x0. (3.31)
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Any solution of (3.30) can be uniquely extended to a global solution x(·), and this

solution satisfies

x(t) = −
n−1∑
k=0

(
N(t) d

dt

)k
f(t), t > τ. (3.32)

Proof: Step 1 : We show, for any g(·) ∈ Cn(J → Rn), that

∀ t ∈ J :
(
N(t) d

dt

)n
g(t) = 0. (3.33)

Let

g0(·) := ġ(·), gk+1(·) := N(·)ġk(·) + Ṅ(·)gk(·), k = 0, . . . , n− 2.

Then
(
N(·) d

dt

)n
g(·) = N(·)gn−1(·), and hence we find, for all t ∈ J ,

(
N(t) d

dt

)n
g(t) =

n−1∑
j0=0

· · ·
n−1∑
jn=0

αj0,j1,...,jnN
(j0)(t) · · ·N (jn−1)(t)g(jn+1)(t) (3.34)

for some αj0,j1,...,jn ∈ R for (j0, ..., jn) ∈ {0, ..., n − 1}n+1. Since N(·) is strictly lower

triangular, the derivatives of N(·) are also strictly lower triangular. Obviously the

product of n strictly lower triangular matrices must be zero and so (3.33) follows from

(3.34).

Step 2 : We show that x(·) as in (3.32) solves N(t)ẋ(t) = x(t) + f(t) for all t > τ :

N(t)ẋ(t) = −(N(t) d
dt

)
n−1∑
k=0

(
N(t) d

dt

)k
f(t)

= −
n−1∑
k=0

(
N(t) d

dt

)k
f(t) + f(t)−

(
N(t) d

dt

)n
f(t)

(3.33)
= x(t) + f(t).

Step 3 : Clearly x(t0) = x0 for x(·) as in (3.32) if, and only if, (3.31) holds.

Step 4 : We show that any solution z : J → Rn of (3.30) fulfills z = x |J for x(·) as in

(3.32). Obviously (z − x) : J → Rn solves N(t) d
dt

(z − x)(t) = (z − x)(t) for all t ∈ J
and by Lemma 3.3.8 it follows immediately (z − x)(·) = 0.

3.4.2 Theorem (Solution of the inhomogeneous DAE). Let E(·), A(·) ∈ Cn((τ,∞)→
Rn×n) and (3.2) be transferable into SCF and use the notation from Definition 3.3.6.

Furthermore, let S(·), T (·) ∈ Cn((τ,∞)→ Rn×n). Then, for f(·) ∈ Cn((τ,∞)→ Rn),

the following statements hold:
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(i) The initial value problem (3.1), x(t0) = x0 has a solution if, and only if,

x0 +T (t0)

 0

In2

(n1−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

∈ imT (t0)

In1

0

 . (3.35)

(ii) Any solution of (3.1), x(t0) = x0, s.t. (3.35) holds, can be uniquely extended to

a global solution x(·), and this solution satisfies

x(t) = U(t, t0)x0 +

∫ t

t0
U(t, s)T (s)S(s)f(s) ds

−T (t)

 0

In2

 n1−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t), t > τ. (3.36)

where U(· , · ) is the generalized transition matrix of (3.2), see Definition 3.3.11.

Proof: Step 1 : We show that x(·) as in (3.36) solves (3.1) for all t > τ :

E(t)ẋ(t)

= E(t) d
dt
U(t, t0)x0 + E(t)

∫ t

t0

d
dt
U(t, s)T (s)S(s)f(s) ds

+E(t)U(t, t)T (t)S(t)f(t)

−E(t)Ṫ (t)

 0

In2

 n1−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

−E(t)T (t)

 0

In2

 n1−1∑
k=0

( d
dt

)
(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

3.3.12 (i)
= A(t)U(t, t0)x0 + A(t)

∫ t

t0
U(t, s)T (s)S(s)f(s) ds+ E(t)U(t, t)T (t)S(t)f(t)

−E(t)Ṫ (t)

 0

In2

 n1−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

−E(t)T (t)

 0

In2

 n1−1∑
k=0

( d
dt

)
(
N(t) d

dt

)k
[0, In2 ]S(t)f(t) (3.37)
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Since, for t > τ ,

E(t)T (t)

 0

In2

 n1−1∑
k=0

( d
dt

)
(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

(3.16)
= S(t)−1

In1 0

0 N(t)

 0

In2

 n1−1∑
k=0

( d
dt

)
(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

= S(t)−1

n1−1∑
k=0

0 0

0
(
N(t) d

dt

)k+1

S(t)f(t)

= S(t)−1

n1−1∑
k=0

0 0

0
(
N(t) d

dt

)k
−

0 0

0 In2

+

0 0

0
(
N(t) d

dt

)n1

S(t)f(t)

(3.33)
= S(t)−1

n1−1∑
k=0

0 0

0
(
N(t) d

dt

)k
S(t)f(t)− S(t)−1

0 0

0 In2

S(t)f(t),

and

E(t)U(t, t)T (t)S(t)f(t)
(3.16)
= S(t)−1

In1 0

0 0

S(t)f(t),

we find that the last 3 terms in (3.37) equal

S(t)−1

In1 0

0 0

S(t)f(t) + S(t)−1

0 0

0 In2

S(t)f(t)

−E(t)Ṫ (t)

n1−1∑
k=0

0 0

0
(
N(t) d

dt

)k
S(t)f(t)− S(t)−1

n1−1∑
k=0

0 0

0
(
N(t) d

dt

)k
S(t)f(t)

= f(t)− (E(t)Ṫ (t) + S(t)−1)

 0

In2

 n1−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

(3.16)
= f(t)−

A(t)T (t)− S(t)−1

J(t) 0

0 In2

+ S(t)−1

 0

In2


·
n1−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t)

= f(t)− A(t)T (t)

 0

In2

 n1−1∑
k=0

(
N(t) d

dt

)k
[0, In2 ]S(t)f(t),
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and arrive at E(t)ẋ(t) = A(t)x(t) + f(t), t > τ .

Step 2 : We show that x(t0) = x0 for x(·) as in (3.36) if, and only, (3.35) holds. Set

η := T (t0)

 0

In2

(n1−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

,

α
β

 := T (t0)−1
(
x0 + η

)
,

where α ∈ Rn1 , β ∈ Rn2 . Then

x(t0) = T (t0)

In1 0

0 0

T (t0)−1x0 − η = T (t0)

In1 0

0 0

α
β


− T (t0)

In1 0

0 0

 0

In2

(n1−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

− η

= T (t0)

α
0

− η = x0 − T (t0)

0

β

 ,
and hence x(t0) = x0 if, and only if, β = 0 or, equivalently, (3.35) holds.

Step 3 : Let (t0, x0) ∈ (τ,∞) × Rn such that (3.1), z(t0) = x0 has a solution. We

show that every solution z : J → Rn of (3.1), z(t0) = x0 fulfills z = x |J for x(·) as

in (3.36). Clearly (z − x) : J → Rn solves E(t) d
dt

(z − x)(t) = A(t)(z − x)(t) for all

t ∈ J . Then Theorem 3.3.10 gives (z − x)(t0) ∈ imT (t0)

In1

0

, and since, by Step 2,

x0 − x(t0) = T (t0)

0

β

 ∈ imT (t0)

 0

In2

, we conclude

z(t0)− x(t0) ∈ imT (t0)

In1

0

 ∩ imT (t0)

 0

In2

 = {0}.

Therefore, a repeated application of Theorem 3.3.10 yields z = x |J . This concludes

the proof.

3.4.3 Remark (Consistent initial values). Let η be as in the proof of Theorem 3.4.2.

Then (3.35) reads x0 + η ∈ V(t0), where V(t0) is the set of initial values consistent

with t0 of the associated homogeneous system (3.2). Hence the set of initial values
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consistent with t0 of (3.1) is the affine subspace

−η + V(t0) = −T (t0)

 0

In2

(n1−1∑
k=0

(
N(·) d

dt

)k
[0, In2 ]S(·)f(·)

)∣∣∣∣∣
t=t0

+ V(t0).

�

We introduce the concept of analytic solvability.

3.4.4 Definition (Analytic solvability [CP83]). A system (3.1) is called analytically

solvable if, and only if, we have, for all f(·) ∈ Cn((τ,∞)→ Rn),

(i) ∃ solution to (3.1),

(ii) ∀ solutions y : J → Rn of (3.1) :

∃ global solution x(·) of (3.1) with x |J = y,

(iii) ∀ global solutions x1(·), x2(·) of (3.1) :

[
∃ t0 > τ : x1(t

0) 6= x2(t
0)
]
⇒ [∀ t > τ : x1(t) 6= x2(t)] .

3.4.5 Remark. Roughly speaking system (3.1) is analytically solvable if, and only

if, for any inhomogeneity f(·) ∈ Cn((τ,∞) → Rn) there exist solutions to (3.1), and

solutions when they exist, can be extended to all of (τ,∞) and are uniquely determined

by their value at any t0 ∈ (τ,∞). �

3.4.6 Remark. One may also wonder whether in Definition 3.4.4 the conditions (i)

and (ii) already imply (iii), or, in other words, if the following holds: Any initial value

problem (3.1), x(t0) = x0, which has a solution, either has a unique (right) global solu-

tion, or there exists a (right) maximal solution which is not (right) global. Revisiting

Example 3.3.15, one observes that it is possible for an initial value problem to have

more than one global solution, and every local solution can be uniquely extended to

one of the global solutions. �

We derive a relationship between transferability into SCF and analytic solvability.
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3.4.7 Theorem (Relationship between SCF and analytic solvability). Consider sys-

tem (3.1). Then

(3.1) is analytically solvable ⇐⇒ (3.2) is transferable into SCF.

For the implication (⇐), it suffices to assume E,A ∈ Cn((τ,∞)→ Rn) and, using the

notation from Definition 3.3.6, S, T ∈ Cn((τ,∞)→ Rn).

For the implication (⇒), real analyticity of E and A can, in general, not be dispensed.

Proof: (⇐): Follows immediately from Theorem 3.4.2.

(⇒): See [CP83, Thm. 2] and Example 3.4.8 for the latter statement.

Note that the “SCF” constructed in the proof of [CP83, Thm. 2] is a pairIn1 0

0 N

 ,
J 0

0 In2

 =: (Ẽ, Ã), where N(t) is strictly upper triangular for

all t > τ . Choosing S ≡ T ≡

In1 0

0

[
1

1

] we get that (Ẽ, Ã) and

In1 0

0 Ñ

 ,
J 0

0 In2

 are equivalent w.r.t. S, T and Ñ(t) is strictly lower triangu-

lar for all t > τ .

3.4.8 Example. [CP83, Ex. 2] states that the system

E(t)ẋ = −x+ f(t), (3.38)

where

E(t) = t3

sin(t−1)

cos(t−1)

 [cos(t−1),− sin(t−1)], E(0) = 0, (3.39)

is an analytically solvable system, but any S(·), T (·) putting (3.38),(3.39) into SCF

must be discontinuous at zero. Note that for (3.38) it holds A(·) = −I and therefore

A(·) is real analytic and A(t)− λE(t) is a regular matrix pencil for all t ∈ R. �

3.5 Stability

In the following, with respect to Theorem 3.2.3, we concentrate on the homogeneous

system (3.2). Furthermore, we restrict ourselves to systems which are transferable

Thomas Berger



46 CHAPTER 3. TIME-VARYING LINEAR DAES

into SCF. In this section we give some useful characterizations of the various concepts

of stability introduced in Definition 1.2.2. Thereto we generalize Proposition 2.1.3 -

Corollary 2.1.6, which hold for ordinary linear differential equations. The main tool

for deriving stability results is the generalized transition matrix introduced in Defini-

tion 3.3.11.

3.5.1 Remark (Non-existence of the J(·)-block in the SCF). Let (3.2) be transferable

into SCF and suppose that n1 = 0. Then

∀ t0 > τ : U( · , t0) ≡ 0,

and hence (3.2) is exponentially stable. �

3.5.2 Proposition (Attractivity implies stability). Let (3.2) be transferable into SCF.

If system (3.2) is attractive, then it is stable, and hence asymptotically stable.

Proof: We use an argument, which is similar to the proof of Satz 7.5.3 in [Aul04].

Let ε > 0 and t0 > τ . Since (3.2) is attractive we have

∃ δ = δ(t0) > 0 ∀x0 ∈ Bδ(0) ∩ V(t0) ∀x(·) ∈ S0(t
0, x0) :

0 = lim
t→∞

x(t) = lim
t→∞

U(t, t0)x0.

If n1 = 0, then exponential stability of (3.2) follows from Remark 3.5.1. Let n1 > 0.

Consider the matrix

X0 := [X0
1 , . . . , X

0
n1

] :=
δ

2‖T (t0)‖
T (t0)

In1

0

 .
From (3.27) we deduce X0

i ∈ V(t0), i ∈ {1, ..., n1}, and since

∀ i ∈ {1, ..., n1} : ‖X0
i ‖ =

δ

2‖T (t0)‖

∥∥∥∥∥∥T (t0)

ei
0

∥∥∥∥∥∥ ≤ δ

2
< δ

we get X0
i ∈ Bδ(0) ∩ V(t0), i ∈ {1, ..., n1}. Hence

0 = lim
t→∞

U(t, t0)X0 =
δ

2‖T (t0)‖
lim
t→∞

T (t)

ΦJ(t, t0) 0

0 0

In1

0

 .
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From this it follows

lim
t→∞

T (t)

ΦJ(t, t0) 0

0 0

 = 0, thus lim
t→∞

U(t, t0) = 0,

and hence there exists λ = λ(t0) > 0, such that

∀ t ≥ t0 : ‖U(t, t0)‖ ≤ λ.

Define η = η(ε, t0) := ε
λ
. Then

∀x0 ∈ Bη(0) ∩ V(t0) ∀x(·) ∈ S0(t
0, x0) ∀ t ≥ t0 :

‖x(t)‖ = ‖U(t, t0)x0‖ ≤ ‖U(t, t0)‖‖x0‖ < λ
ε

λ
= ε.

Therefore (3.2) is stable.

3.5.3 Remark. Proposition 3.5.2 does not hold true for systems which are not trans-

ferable into SCF: Revisiting Example 3.3.15 one observes that (3.29) is attractive, but

not stable. �

3.5.4 Corollary. Let (3.2) be transferable into SCF. (3.2) is asymptotically stable if,

and only if, every global solution x : (τ,∞)→ Rn of (3.2) satisfies

lim
t→∞

x(t) = 0.

Proof: (⇐): By Proposition 3.3.10 every local solution of (3.2) can be uniquely

extended to a global solution, thus every right maximal solution is right global. Then

attractivity of (3.2) follows immediately, and by Proposition 3.5.2 the asymptotic

stability.

(⇒): Let (t0, x0) ∈ V and x(·) be the global solution of (3.2), x(t0) = x0. Since (3.2)

is asymptotically stable it is attractive. Then, as in the proof of Proposition 3.5.2, it

follows that

lim
t→∞

U(t, t0) = 0, thus having lim
t→∞

x(t) = lim
t→∞

U(t, t0)x0 = 0.

3.5.5 Corollary. Let (3.2) be transferable into SCF. Then (3.2) is exponentially stable

if, and only if,

∃α, β > 0 ∀ (t0, x0) ∈ V ∀ t ≥ t0 : ‖U(t, t0)x0‖ ≤ αe−β(t−t0)‖x0‖.
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Proof: If n1 = 0, then there is nothing to prove, due to Remark 3.5.1. Let n1 > 0.

(⇐): Since any solution x : J → Rn of (3.2) has the representation

∀ t, t0 ∈ J : x(t) = U(t, t0)x(t0)

by Proposition 3.3.10, exponential stability of (3.2) follows immediately.

(⇒): Let (t0, x0) ∈ V . Since (3.2) is exponentially stable we have

∃α, β > 0 ∃ δ = δ(t0) > 0 ∀ y0 ∈ Bδ(0) ∩ V(t0) ∀ t ≥ t0 :

‖U(t, t0)y0‖ ≤ αe−β(t−t0)‖y0‖.

If x0 = 0 then U(t, t0)x0 = 0 for all t ≥ t0, and if x0 6= 0 it holds true that

∀ t ≥ t0 :

∥∥∥∥U(t, t0)
δx0

2‖x0‖

∥∥∥∥ ≤ αe−β(t−t0)

∥∥∥∥ δx0

2‖x0‖

∥∥∥∥
⇐⇒ ∀ t ≥ t0 : ‖U(t, t0)x0‖ ≤ αe−β(t−t0)‖x0‖.

Finalizing this section we derive a relationship between the stability behavior of system

(3.2) and the stability behavior of its SCF. We show that the transformation (3.13)

preserves exponential stability under some condition on T .

3.5.6 Proposition (Exponential stability is preserved by uniformly bounded trans-

formations). Let Ei, Ai ∈ C((τ,∞) → Rn), i = 1, 2, and (E1, A1) and (E2, A2) be

equivalent w.r.t. some S ∈ C((τ,∞)→ Rn), T ∈ C1((τ,∞)→ Rn). Furthermore, let

E1(t)ẋ = A1(t)x (3.40)

be transferable into SCF, V1 be the set of all pairs of consistent initial values of (3.40)

and T (·)−>T (·)−1 ∈ PV1. Then (3.40) is exponentially stable if, and only if,

E2(t)ẋ = A2(t)x (3.41)

is exponentially stable.

Proof: Since (3.40) is transferable into SCF and ∼ is an equivalence relation, also

(3.41) is transferable into SCF. Let U1(·, ·) or U2(·, ·) denote the generalized transition
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matrix of (3.40) or (3.41), resp. As a consequence of Remark 3.3.5 and the uniqueness

of the generalized transition matrix (see Proposition 3.3.12) we find

∀ t, s > τ : U1(t, s) = T (t)U2(t, s)T (s)−1.

Set V1(t) := { x ∈ Rn | (t, x) ∈ V1 } and V2(t) := T (t)−1V1(t) for t > τ ; V2 :=

{ (t, x) ∈ (τ,∞)× Rn | x ∈ V2(t) }. Clearly V2 is the set of all pairs of consistent

initial values of system (3.41). T (·)−>T (·)−1 ∈ PV1 means

∃α, β > 0 : αIn ≤V1 T (·)−>T (·)−1 ≤V1 βIn. (3.42)

Let (t, x) ∈ V2. Then (t, T (t)x) ∈ V1 and hence

1

β
‖x‖2 =

1

β
‖T (t)−1(T (t)x)‖2

(3.42)

≤ ‖T (t)x‖2
(3.42)

≤ 1

α
‖T (t)−1(T (t)x)‖2 =

1

α
‖x‖2,

(3.43)

which gives T (·)>T (·) ∈ PV2 . Now we are in the position to prove the assertion of the

proposition.

(3.40) is exponentially stable if, and only if, (cf. Corollary 3.5.5) there exist µ, ν > 0

such that

∀ (t0, x1) ∈ V1 ∀ t ≥ t0 : ‖U1(t, t
0)x1‖ ≤ µe−ν(t−t

0)‖x1‖. (3.44)

Due to the preparations above we may deduce

(3.44) ⇐⇒ ∀ (t0, x2) ∈ V2 ∀ t ≥ t0 : ‖T (t)U2(t, t
0)x2‖ ≤ µe−ν(t−t

0)‖T (t0)x2‖
3.3.12 (ii)

=⇒
(3.43)

∀ (t0, x2) ∈ V2 ∀ t ≥ t0 :
1

β
‖U2(t, t

0)x2‖2 ≤ µ2

α
e−2ν(t−t0)‖x2‖2

⇐⇒ ∀ (t0, x2) ∈ V2 ∀ t ≥ t0 : ‖U2(t, t
0)x2‖ ≤ µ

√
β√
α
e−ν(t−t

0)‖x2‖,

and

∀ (t0, x2) ∈ V2 ∀ t ≥ t0 :
1

β
‖U2(t, t

0)x2‖2 ≤ µ2

α
e−2ν(t−t0)‖x2‖2

3.3.12 (ii)
=⇒
(3.43)

∀ (t0, x2) ∈ V2 ∀ t ≥ t0 : ‖T (t)U2(t, t
0)x2‖ ≤ µβ

α
e−ν(t−t

0)‖T (t0)x2‖.

This yields the assertion of the proposition.
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As an immediate consequence of Proposition 3.5.6 we obtain the following result, which

yields a suitable relationship between the system (3.2) and the subsystem ż = J(t)z

of its SCF.

3.5.7 Corollary (Exponential stability is inherited from subsystem). Let (3.2)

be transferable into SCF and use the notation from Definition 3.3.6. Suppose

T (·)−>T (·)−1 ∈ PV . Then (3.2) is exponentially stable if, and only if, either n1 = 0 or

the system ż = J(t)z is exponentially stable.

3.6 Exponential stability and projected generalized

time-varying Lyapunov-equation

In this section we investigate exponential stability of (3.2) via a Lyapunov-like ap-

proach. Thereto we generalize Theorem 2.2.3. In the case, where E(·) and A(·) are

constant, the (generalized) Lyapunov-equation is

A>PE + E>PA = −Q, (3.45)

and one uses

V : V∗ → R, x 7→ (Ex)>P (Ex),

where V∗ = V(t) for all t ∈ R, as a Lyapunov-function (see e.g. [OD85, Thm. 2.2]).

Hence it is obvious to use

V : V → R, (t, x) 7→ (E(t)x)>P (t)(E(t)x)

as a Lyapunov-function in the time-varying case. Together with (3.45) and (2.4) this

motivates the investigation of the generalized time-varying Lyapunov-equation

∀ t > τ : A(t)>P (t)E(t) + E(t)>P (t)A(t) + d
dt

(
E(t)>P (t)E(t)

)
= −Q(t). (3.46)

However, performing a generalization of Theorem 2.2.3 (ii), one realizes that it is not

possible to ensure that all right maximal solutions in a neighborhood of the trivial

solution tend exponentially to zero (we can not assure that they are right global at
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all). But if we only consider right global solutions of (3.2) it is possible. Hence we

introduce the following notations.

G := { (t, x) ∈ (τ,∞)× Rn | G0(t, x) 6= ∅ } ,

∀ t > τ : G(t) := { x ∈ Rn | (t, x) ∈ G } ,

EG := { (t, x) ∈ (τ,∞)× Rn | x ∈ E(t)G(t) } .

3.6.1 Remark (Properties of G(t)). The space G(t) has the following properties:

(i) ∀ t > τ : G(t) is a linear subspace of Rn,

(ii) If x : (a,∞) → Rn is a right global solution of (3.2), then x(t) ∈ G(t) for all

t > a. �

Now one experiences that it is sufficient to consider the matrix-valued functions Q(·)
and E(·)>P (·)E(·) as well as the generalized time-varying Lyapunov-equation (3.46)

on the set G, since the graphs of right global solutions are always located in this set

due to Remark 3.6.1. Therefore one comes up with the investigation of the projected

generalized time-varying Lyapunov-equation

A(·)>P (·)E(·) + E(·)>P (·)A(·) + d
dt

(
E(·)>P (·)E(·)

)
=G −Q(·). (3.47)

The next theorem states necessary conditions for a restricted form of exponential

stability of the trivial solution of (3.2). We use the notion “restricted”, since it is not

quite exponential stability. As already mentioned above we can only guarantee that

all right global solutions in a neighborhood of the trivial solution tend exponentially

to zero.

3.6.2 Theorem (Necessary conditions for restricted exponential stability). Consider

system (3.2). If there exist Q(·) ∈ PG and P ∈ C((τ,∞) → Rn×n), such that

E(·)>P (·)E(·) ∈ PG ∩ C1((τ,∞)→ Rn×n) and (3.47) holds, then

∃α, β > 0 ∀ (t0, x0) ∈ (τ,∞)×Rn ∀x(·) ∈ G0(t
0, x0) ∀ t ≥ t0 : ‖x(t)‖ ≤ αe−β(t−t0)‖x0‖.

Proof: Q(·), E(·)>P (·)E(·) ∈ PG mean

∃ q1, q2 > 0 : q1In ≤G Q(·) ≤G q2In, (3.48)

Thomas Berger



52 CHAPTER 3. TIME-VARYING LINEAR DAES

∃ p1, p2 > 0 : p1In ≤G E(·)>P (·)E(·) ≤G p2In. (3.49)

Define

V : G → R, (t, x) 7→ (E(t)x)>P (t)(E(t)x).

Let (t0, x0) ∈ (τ,∞) × Rn be arbitrary. If G0(t
0, x0) = ∅ there is nothing to show.

Hence let x0 ∈ G(t0) and x(·) ∈ G0(t
0, x0). We show that there exists an estimate of

the form

∃ c ∈ R ∀ t ≥ t0 : d
dt
V (t, x(t)) ≤ cV (t, x(t)).

Since, by Remark 3.6.1, (t, x(t)) ∈ G for all t ≥ t0, we may deduce, for all t ≥ t0,

d
dt
V (t, x(t)) = ẋ(t)>E(t)>P (t)E(t)x(t) + x(t)> d

dt

(
E(t)>P (t)E(t)

)
x(t)

+x(t)>E(t)>P (t)E(t)ẋ(t)

= x(t)>
(
A(t)>P (t)E(t) + d

dt

(
E(t)>P (t)E(t)

)
+ E(t)>P (t)A(t)

)
x(t)

(3.47)
= −x(t)>Q(t)x(t)

(3.48)

≤ −q1x(t)>x(t)
(3.49)

≤ −q1
p2

(E(t)x(t))>P (t)(E(t)x(t))

= −q1
p2

V (x(t), t).

Then separation of variables yields (cf. p. 15)

∀ t ≥ t0 : V (x(t), t) ≤ e
− q1

p2
(t−t0)

V (x0, t0). (3.50)

Now we are in a position to derive an estimate for the norm of x(·):

∀ t ≥ t0 : ‖x(t)‖2
(3.49)

≤ 1

p1

(E(t)x(t))>P (t)(E(t)x(t))

(3.50)

≤ 1

p1

e
− q1

p2
(t−t0)

V (x0, t0).

Finally we get for t ≥ t0:

‖x(t)‖ ≤
(

1

p1

e
− q1

p2
(t−t0)

V (x0, t0)

) 1
2

=

√
1

p1

e
− q1

2p2
(t−t0)

√
(x0)>E(t0)>P (t0)E(t0)x0

(3.49)

≤
√
p2

p1

e
− q1

2p2
(t−t0)‖x0‖
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Theorem 3.6.2 shows that not the solution P (·) of (3.47), but E(·)>P (·)E(·), is the

object of interest. Symmetry, differentiability and the boundary conditions are not

claimed for P (·), but for E(·)>P (·)E(·). Under an additional condition on E(·) one

might get a result, where all requirements are made for P (·).

3.6.3 Lemma (Relationship between P (·) and E(·)>P (·)E(·)). Consider system (3.2)

and let E(·)>E(·) ∈ PG and P ∈ C((τ,∞)→ Rn×n) be symmetric. Then

P (·) ∈ PEG ⇐⇒ E(·)>P (·)E(·) ∈ PG.

Proof: E(·)>E(·) ∈ PG means

∃α, β > 0 : αIn ≤G E(·)>E(·) ≤G βIn. (3.51)

(⇒): By P (·) ∈ PEG we find

∃ p1, p2 > 0 : p1In ≤EG P (·) ≤EG p2In. (3.52)

Let (t, x) ∈ G. Then E(t)x ∈ E(t)G(t) and

p1αx
>x

(3.51)

≤ p1x
>E(t)>E(t)x

(3.52)

≤ x>E(t)>P (t)E(t)x
(3.52)

≤ p2x
>E(t)>E(t)x

(3.51)

≤ p2βx
>x.

(⇐): Since E(·)>P (·)E(·) ∈ PG we get

∃ r1, r2 > 0 : r1In ≤G E(·)>P (·)E(·) ≤G r2In. (3.53)

Let (t, x) ∈ EG. Then x ∈ E(t)G(t) and therefore there exists y ∈ G(t) such that

x = E(t)y and

r1
β
x>x =

r1
β

(E(t)y)>(E(t)y)
(3.51)

≤ r1y
>y

(3.53)

≤ y>E(t)>P (t)E(t)y︸ ︷︷ ︸
=x>P (t)x

(3.53)

≤ r2y
>y

(3.51)

≤ r2
α

(E(t)y)>(E(t)y) =
r2
α
x>x.

3.6.4 Corollary (Alternative of Theorem 3.6.2). Consider system (3.2). Let E(·) be

continuously differentiable and satisfy E(·)>E(·) ∈ PG. If there exist Q(·) ∈ PG and a

continuously differentiable P (·) ∈ PEG, such that (3.47) holds, then

∃α, β > 0 ∀ (t0, x0) ∈ (τ,∞)×Rn ∀x(·) ∈ G0(t
0, x0) ∀ t ≥ t0 : ‖x(t)‖ ≤ αe−β(t−t0)‖x0‖.
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Proof: From Lemma 3.6.3 it follows E(·)>P (·)E(·) ∈ PG ∩C1((τ,∞)→ Rn×n). Then

Theorem 3.6.2 yields the assertion.

3.6.5 Remark. Consider the case, where E(·) and A(·) are constant. Then Theo-

rem 3.6.2 and Corollary 3.6.4 improve the well-known results concerning generalized

Lyapunov equations and exponential stability of (3.2) (see e.g. [Sty02,OD85] for these

results), since regularity of the matrix pencil λE − A is not required, and also not

implied by any of the assumptions. �

In the remainder of this section we derive a version of Theorem 3.6.2 (and Corol-

lary 3.6.4) for systems (3.2) which are transferable into SCF. Furthermore, we state a

converse of this result. First we introduce the notation

EV := { (t, x) ∈ (τ,∞)× Rn | x ∈ E(t)V(t) } .

Then note that, due to Theorem 3.3.10, we find

V = G, EV = EG, ∀ t > τ : V(t) = G(t),

for systems (3.2) transferable into SCF.

We derive a result concerning the set V(t) of initial values consistent with t of (3.2)

and kerE(t).

3.6.6 Proposition (The kernel of E(t) does not lie in V(t)). Let (3.2) be transferable

into SCF. Then

∀ t > τ : V(t) ∩ kerE(t) = {0},

and, in particular, for all (t0, x0) ∈ V and for all t > τ ,

E(t)U(t, t0)x0 = 0 ⇐⇒ U(t, t0)x0 = 0.
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Proof: Let x0 ∈ V(t0) ∩ kerE(t0) and use the notation from Definition 3.3.6. Then

0 = T (t0)S(t0)−1E(t0)x0

3.3.12(v)
= T (t0)S(t0)−1E(t0)U(t0, t0)x0

(3.16)
= T (t0)

In1 0

0 N(t0)

T (t0)−1T (t0)

In1 0

0 0

T (t0)−1x0

= T (t0)−1

In1 0

0 0

T (t0)−1x0

= U(t0, t0)x0 3.3.12(v)
= x0.

The second assertion then follows by Proposition 3.3.12 (ii).

One may wonder whether E(·)>E(·) ∈ PV holds true for every system (3.2) which is

transferable into SCF. Clearly

∃ β > 0 : E(·)>E(·) ≤V βIn

does not necessarily hold. But since, due to Proposition 3.6.6, kerE(t) ∩ V(t) = {0}
for all t > τ it could be expected, that

∃α > 0 : αIn ≤V E(·)>E(·) (3.54)

holds true. The following example shows that this is not true.

3.6.7 Example. Consider

E(t) =

 1
t2

0

0 0

 , A(t) =

 1
t2

+ 1
t3

0

0 1

 , t > τ := 0.

Defining S(t) := T (t) :=

t 0

0 1

, t > 0, we obtain that

(E,A) and

1 0

0 0

 ,
1 0

0 1


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are equivalent w.r.t. S, T . Now let t0 > τ and x0 ∈ V(t0) = im

t0
0

. This means

x0 =

αt0
0

 for some α ∈ R. Then

‖E(t0)x0‖ =

∥∥∥∥∥∥
 α
t0

0

∥∥∥∥∥∥ =
|α|
t0
−→
t0→∞

0,

and hence (3.54) can not hold true. �

The projected generalized time-varying Lyapunov-equation has the following shape for

systems (3.2) which are transferable into SCF:

A(·)>P (·)E(·) + E(·)>P (·)A(·) + d
dt

(
E(·)>P (·)E(·)

)
=V −Q(·). (3.55)

3.6.8 Remark (Projected generalized time-varying Lyapunov-equation). One may

wonder why we call (3.47) and (3.55) “projected”. As a matter of fact there is no

motivation to call (3.47) “projected”, but since it is the more general version of (3.55)

we kept the notation. For the motivation to call (3.55) “projected” consider (3.46)

and any V : (τ,∞) → Rn×n with imV (t) = V(t) for all t > τ . We could choose

V (t) = U(t, t), t > τ, for instance. Then, multiplying (3.46) with V (t)> from the left

and with V (t) from the right, we obtain

(V (t)x)>
(
A(t)>P (t)E(t) + E(t)>P (t)A(t) + d

dt

(
E(t)>P (t)E(t)

))
(V (t)x)

= −(V (t)x)>Q(t)(V (t)x)

for all t > τ and x ∈ Rn. Since (t, V (t)x) ∈ V for all t > τ and x ∈ Rn it follows that

(3.55) holds. Hence we obtain (3.55) through a projection via V (·) from (3.46).

This shows also that (3.55) is a more general equation, since if (3.46) holds then (3.55)

holds, too. The converse is not true in general, as the following example shows.

3.6.9 Example. Let

E(t) =

1 0

0 0

 , A(t) =

−t 0

0 1

 , t ∈ R.
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Then (E,A) is already in SCF and we may choose S(·) = T (·) = I. Hence n1 = n2 = 1

and V = R× im

1

0

. Let p : R→ R, t 7→ et
2 ∫∞

t
e−s

2
ds, and

P (t) =

p(t) 0

0 0

 , Q(t) =

1 0

0 1

 , t ∈ R.

Then P (·) and Q(·) solve (3.55), but not (3.46). �

Now we are in the position to state the main theorem of this section.

3.6.10 Theorem (Necessary and sufficient conditions for exponential stability of sys-

tems in SCF). Let (3.2) be transferable into SCF and use the notation from Defini-

tion 3.3.6.

(i) If there exist Q(·) ∈ PV and P ∈ C((τ,∞)→ Rn×n), such that E(·)>P (·)E(·) ∈
PV ∩ C1((τ,∞)→ Rn×n) and (3.55) holds, then (3.2) is exponentially stable.

(ii) Let E(·) be continuously differentiable and satisfy E(·)>E(·) ∈ PV . If there exists

Q(·) ∈ PV and a continuously differentiable P (·) ∈ PEV , such that (3.55) holds,

then (3.2) is exponentially stable.

(iii) Let E(·) and N(·) be continuously differentiable. Furthermore, let

E(·)>E(·), Q(·) ∈ PV , and E(·) and
(
Ė(·) + A(·)

)
be bounded. If (3.2) is expo-

nentially stable, then there exists a solution P : (τ,∞) → Rn×n to (3.55) with

E(·)>P (·)E(·) ∈ PV ∩ C1((τ,∞)→ Rn×n).

(iv) Let E(·) and S(·) be continuously differentiable. Furthermore, let

E(·)>E(·), Q(·) ∈ PV , and E(·) and
(
Ė(·)+A(·)

)
be bounded. If (3.2) is exponen-

tially stable, then there exists a continuously differentiable solution P (·) ∈ PEV
to (3.55).

Proof: (i): Follows from Theorem 3.6.2, V = G and Corollary 3.5.5.

(ii): Follows from Corollary 3.6.4, V = G and Corollary 3.5.5.

(iii): Q(·), E(·)>E(·) ∈ PV mean

∃α1, β1 > 0 : α1In ≤V Q(·) ≤V β1In, (3.56)
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∃α2, β2 > 0 : α2In ≤V E(·)>E(·) ≤V β2In. (3.57)

Define

P : (τ,∞)→ Rn×n, t 7→ S(t)>T (t)>
∫ ∞
t

U(s, t)>Q(s)U(s, t) ds T (t)S(t).

Step 1 : We show that P (t) exists for all t > τ . It follows from the exponential stability

of (3.2) and Corollary 3.5.5, that

∃µ, ν > 0 ∀ (t0, x0) ∈ V ∀ t ≥ t0 : ‖U(t, t0)x0‖ ≤ µe−ν(t−t
0)‖x0‖. (3.58)

Let (t0, x0) ∈ (τ,∞)×Rn be arbitrary and t1 > t0. Set

v
w

 := S(t0)x0, v ∈ Rn1 , w ∈

Rn2 . Then T (t0)S(t0)x0 = T (t0)

v
w

 = T (t0)

v
0

+ T (t0)

0

w

 and

∀ s > τ : U(s, t0)T (t0)

0

w

 = T (t0)

ΦJ(s, t0) 0

0 0

0

w

 = 0. (3.59)

Define y0 := T (t0)

v
0

 ∈ V(t0). Then U(s, t0)y0 ∈ V(s) by Proposition 3.3.12 (ii) and

∫ t1

t0
(x0)>S(t0)>T (t0)>U(s, t0)>Q(s)U(s, t0)T (t0)S(t0)x0 ds

(3.59)
=

∫ t1

t0
(U(s, t0)y0)>Q(s)(U(s, t0)y0) ds

(3.56)

≤
∫ t1

t0
β1(U(s, t0)y0)>(U(s, t0)y0) ds

(3.58)

≤ β1

∫ t1

t0
µ2e−2ν(s−t0)‖y0‖2 ds

= −β1µ
2

2ν
‖y0‖2e−2ν(s−t0)

∣∣∣∣t1
t0

=
β1µ

2

2ν
‖y0‖2

(
1− e−2ν(t1−t0)

)
. (3.60)

Since t1 > t0 and x0 ∈ Rn were arbitrary, P (t0) exists.
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Step 2 : We show that E(·)>P (·)E(·) ≤V cIn for some c > 0. Let (t, x) ∈ V . Then

x = T (t)

v
0

 for some v ∈ Rn1 . Hence

x>E(t)>P (t)E(t)x

(3.16)
= [v>, 0]T (t)>T (t)−>

In1 0

0 N(t)>

S(t)−>P (t)S(t)−1

In1 0

0 N(t)

T (t)−1T (t)

v
0


= [v>, 0]T (t)>

∫ ∞
t

U(s, t)>Q(s)U(s, t) ds T (t)

v
0


=

∫ ∞
t

(U(s, t)x)>Q(s)(U(s, t)x) ds, (3.61)

and therefore, as in (3.60),

x>E(t)>P (t)E(t)x ≤ β1µ
2

2ν
‖x‖2,

thus having, since (t, x) ∈ V was arbitrary,

E(·)>P (·)E(·) ≤V
β1µ

2

2ν
In.

Step 3 : We may write, for all t > τ ,

E(t)>P (t)E(t)

(3.16)
= T (t)−>

In1 0

0 N(t)>

T (t)>
∫∞
t
U(s, t)>Q(s)U(s, t) ds T (t)

In1 0

0 N(t)

T (t)−1,

(3.62)

and since Q(·) and U(·, ·) are continuous, and T (·) and N(·) are continuously differ-

entiable, E(·)>P (·)E(·) is continuously differentiable.

Furthermore, clearly P (·) is symmetric, due to the symmetry of Q(·), and therefore

E(·)>P (·)E(·) is symmetric.

Step 4 : We show that cIn ≤V E(·)>P (·)E(·) for some c > 0. Boundedness of E(·) and(
Ė(·) + A(·)

)
means

∃ e, a > 0 ∀ t > τ : ‖E(t)‖ ≤ e ∧
∥∥∥(Ė(·) + A(·)

)∥∥∥ ≤ a.
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For arbitrary (t, x) ∈ V and x(·) := U( ·, t)x, we find

∀ s > τ : d
ds

(E(s)x(s)) = Ė(s)x(s) + E(s)ẋ(s) =
(
Ė(s) + A(s)

)
x(s), (3.63)

and

0 ≤ ‖E(s)x(s)‖ ≤ e‖U(s, t)x‖ (3.58)−→
s→∞

0, (3.64)

thus having

x>E(t)>P (t)E(t)x
(3.61)
=

∫ ∞
t

x(s)>Q(s)x(s) ds

≥
∫ ∞
t

α1x(s)>x(s) ds

≥ α1

∫ ∞
t

‖E(s)‖
∥∥∥(Ė(s) + A(s)

)∥∥∥
ae

x(s)>x(s) ds

≥ α1

ae

∫ ∞
t

∣∣∣(E(s)x(s))>(Ė(s) + A(s))x(s)
∣∣∣ ds

(3.63)

≥ α1

ae

∣∣∣∣∫ ∞
t

(E(s)x(s))>
(

d
ds

(E(s)x(s))
)
ds

∣∣∣∣
=

α1

ae

∣∣∣∣∫ ∞
t

1

2
d
ds

(
(E(s)x(s))>(E(s)x(s))

)
ds

∣∣∣∣
=

∣∣∣ α1

2ae
‖E(s)x(s)‖2

∣∣∞
t

∣∣∣
(3.64)
=

α1

2ae
‖E(t)U(t, t)x‖2

3.3.12 (v)
=

α1

2ae
‖E(t)x‖2

(3.57)

≥ α1α2

2ae
‖x‖2.

This shows
α1α2

2ae
In ≤V E(·)>P (·)E(·),

and hence E(·)>P (·)E(·) ∈ PV .

Step 5 : It remains to prove that (3.55) holds. Let (t, x) ∈ V . Set

P̂ (t) :=

∫ ∞
t

U(s, t)>Q(s)

−T (s)

ΦJ(s, t)J(t) 0

0 0

T (t)−1

+ T (s)

ΦJ(s, t) 0

0 0

 d
dt

(
T (t)−1

) ds.
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First we show that

x> d
dt

(
E(t)>P (t)E(t)

)
x = x>P̂ (t)x+ x>P̂ (t)>x− x>Q(t)x. (3.65)

Define

Û(t) :=

∫ ∞
t

U(s, t)>Q(s)U(s, t) ds, T̂ (t) := T (t)

In1 0

0 N(t)

T (t)−1.

Since x = T (t)

v
0

 for some v ∈ Rn1 we get

x> d
dt

(
E(t)>P (t)E(t)

)
x

(3.62)
= x>

(
d
dt

(T̂ (t))>Û(t)T̂ (t) + T̂ (t)> d
dt

(Û(t))T̂ (t) + T̂ (t)>Û(t) d
dt

(T̂ (t))
)
x.

Now we derive

T̂ (t)x = T (t)

In1 0

0 N(t)

T (t)−1T (t)

v
0

 = T (t)

v
0

 = x,

and

d
dt

(T̂ (t))x

=

Ṫ (t)

In1 0

0 N(t)

T (t)−1 + T (t)

0 0

0 Ṅ(t)

T (t)−1

+T (t)

In1 0

0 N(t)

 d
dt

(
T (t)−1

)x

(3.14)
= Ṫ (t)

In1 0

0 N(t)

T (t)−1T (t)

v
0

+ T (t)

0 0

0 Ṅ(t)

T (t)−1T (t)

v
0


−T (t)

In1 0

0 N(t)

T (t)−1Ṫ (t)T (t)−1T (t)

v
0


=

I − T (t)

In1 0

0 N(t)

T (t)−1

 Ṫ (t)

v
0


= T (t)

0 0

0 In2 −N(t)

T (t)−1Ṫ (t)

v
0

 .
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Defining

0

w

 :=

0 0

0 In2 −N(t)

T (t)−1Ṫ (t)

v
0

, w ∈ Rn2 , we obtain

x> d
dt

(
E(t)>P (t)E(t)

)
x

=

T (t)

0

w

> Û(t)x+ x> d
dt

(Û(t))x+ x>Û(t)

T (t)

0

w


(3.59)
= x> d

dt
(Û(t))x

= x>
(∫ ∞

t

(
d
dt
U(s, t)

)>
Q(s)U(s, t) + U(s, t)>Q(s)

(
d
dt
U(s, t)

)
ds

)
x

−(U(t, t)x)>Q(t)(U(t, t)x).

Observe that, for all s, t > τ ,

d
dt
U(s, t) = T (s)

 d
dt

ΦJ(s, t) 0

0 0

T (t)−1 + T (s)

ΦJ(s, t) 0

0 0

 d
dt

(
T (t)−1

)
2.1.1 (vi)

= T (s)

−ΦJ(s, t)J(t) 0

0 0

T (t)−1 + T (s)

ΦJ(s, t) 0

0 0

 d
dt

(
T (t)−1

)
,

and therefore

x> d
dt

(
E(t)>P (t)E(t)

)
x

= x>P̂ (t)>x+ x>P̂ (t)x− (U(t, t)x)>Q(t)(U(t, t)x)

3.3.12 (v)
= x>P̂ (t)>x+ x>P̂ (t)x− x>Q(t)x.

Now we prove that

x>E(t)>P (t)A(t)x = −x>P̂ (t)x. (3.66)

Recall that by (3.16) and (3.15)

A(t) = S(t)−1

J(t) 0

0 In2

T (t)−1 − S(t)−1

In1 0

0 N(t)

 d
dt

(
T (t)−1

)
.
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Then, similar to (3.61), we find

x>E(t)>P (t)A(t)x

=

∫ ∞
t

(U(s, t)x)>Q(s)U(s, t) ds T (t)S(t)A(t)x

=

∫ ∞
t

(U(s, t)x)>Q(s)T (s)

ΦJ(s, t) 0

0 0

J(t) 0

0 In2

T (t)−1x ds

−
∫ ∞
t

(U(s, t)x)>Q(s)T (s)

ΦJ(s, t) 0

0 0

In1 0

0 N(t)

 d
dt

(
T (t)−1

)
x ds

= −x>P̂ (t)x.

Due to symmetry it follows in the same way that

x>A(t)>P (t)E(t)x = −x>P̂ (t)>x,

and together with (3.65) and (3.66) this shows that (3.55) holds.

(iv): Let P (·) be the same matrix-valued function as in (iii). Since now S(·) is contin-

uously differentiable by assumption it follows that P (·) is continuously differentiable.

Symmetry of P (·) is obvious. As shown in (iii) it holds E(·)>P (·)E(·) ∈ PV and

therefore Lemma 3.6.3 yields P (·) ∈ PEV . That (3.55) is satisfied has also been proved

in (iii).

Analyzing the proof of Theorem 3.6.10 we obtain the following corollary.

3.6.11 Corollary. Let (3.2) be transferable into SCF and use the notation from

Definition 3.3.6. Furthermore, let Q ∈ C((τ,∞) → Rn×n) such that Q ≤V αIn for

some α > 0. Suppose (3.2) is exponentially stable and E(·) and N(·) are continuously

differentiable. Then the following statements hold:

(i) There exists a solution P : (τ,∞)→ Rn×n to (3.55), such that E(·)>P (·)E(·) is

continuously differentiable and E(·)>P (·)E(·) ≤V βIn for some β > 0.

(ii) If Q(·) is symmetric, then P (·) is symmetric.

(iii) If S(·) is continuously differentiable, then P (·) is continuously differentiable.
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(iv) If E(·) and
(
Ė(·) + A(·)

)
are bounded and there exist γ, δ > 0 such that

E(·)>E(·) ≥V γIn and Q(·) ≥V δIn, then E(·)>P (·)E(·) ≥V λIn for some λ > 0.

3.6.12 Remark (Time-invariant case). Consider the time-invariant case, i.e. E(·)
and A(·) are constant. Then transferability of (3.2) into SCF means that λE − A is

regular. Pick any t0 > τ and set V∗ := V(t0). Hence V(t) = V∗ for all t > τ and

V = (τ,∞)× Rn. E>E ∈ PV is equivalent to

∃α, β > 0 ∀x ∈ V∗ : α‖x‖ ≤ ‖Ex‖ ≤ β‖x‖. (3.67)

Choose β := ‖E‖ and α := min { ‖Ex‖ | x ∈ V∗, ‖x‖ = 1 }. If E 6= 0 (otherwise

(3.67) would be trivially satisfied by any α, β) and V∗ 6= {0} (otherwise (3.67) would

clearly hold true), then β > 0 and α > 0 since kerE ∩ V∗ = {0} by Proposition 3.6.6.

Hence the assumption E>E ∈ PV is always fulfilled in the time-invariant case. There-

fore it follows immediately from Lemma 3.6.3 that

P ∈ PEV ⇐⇒ E>PE ∈ PV .

Hence in the time-invariant case there is no need to consider E>PE and Theo-

rem 3.6.10 (i) and (ii) are equivalent in this case (note that they are not equivalent in

general). Nevertheless Theorem 3.6.10 (ii) (considered time-invariant) is still an im-

provement of the ubiquitous result [Sty02, Thm. 4.6], since Stykel does not consider

the restriction of the generalized Lyapunov equation to the set V∗.
Furthermore, Theorem 3.6.10 (iii) and (iv) are also equivalent in this case and we find

that Corollary 3.6.11 is a generalization of [Sty02, Thm. 4.15 & Rem. 4.16], except

for the uniqueness property, since, using the notation from [Sty02], the matrix Pr is

just a projector onto V∗, and hence G positive definite means P>r GPr ∈ PV . The

uniqueness condition for the solution of the generalized Lyapunov equation given in

[Sty02, Thm. 4.15] can be generalized to a uniqueness condition in the time-varying

case (see Corollary 3.6.16). �

Finalizing this section we prove that the solution P (·) of the projected generalized

time-varying Lyapunov-equation (3.55) is unique on EV . Note that symmetry of P (·)
or Q(·), resp., is not required, and likewise asymptotic stability of (3.2) is sufficient.
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However, to ensure existence of a solution, exponential stability is necessary (see Corol-

lary 3.6.16).

3.6.13 Proposition (Unique solvability of the Lyapunov-equation). Let (3.2) be

transferable into SCF and Q ∈ C((τ,∞) → Rn×n). Suppose (3.2) is asymptotically

stable, P1, P2 : (τ,∞) → Rn×n are solutions to (3.55), such that E(·)>Pi(·)E(·) is

continuously differentiable, i = 1, 2, and

∀ i ∈ {1, 2} ∃α, β > 0 : αiIn ≤V E(·)>Pi(·)E(·) ≤V βiIn. (3.68)

Then E(·)>P1(·)E(·) =V E(·)>P2(·)E(·) or, equivalently, P1(·) =EV P2(·).

Proof: Let s > τ and define

M(t) := U(t, s)>E(t)>(P1(t)− P2(t))E(t)U(t, s), t ≥ s.

Then

Ṁ(t) = (E(t) d
dt
U(t, s))>(P1(t)− P2(t))E(t)U(t, s) +

U(t, s)> d
dt

(
E(t)>(P1(t)− P2(t))E(t)

)
U(t, s) +

U(t, s)>E(t)>(P1(t)− P2(t))E(t) d
dt
U(t, s)

3.3.12 (i)
= (A(t)U(t, s))>(P1(t)− P2(t))E(t)U(t, s) +

U(t, s)> d
dt

(
E(t)>(P1(t)− P2(t))E(t)

)
U(t, s) +

U(t, s)>E(t)>(P1(t)− P2(t))A(t)U(t, s).

Since, by Proposition 3.3.12 (ii), U(t, s)x ∈ V(t) holds for all x ∈ Rn and P1(·), P2(·)
both solve (3.55) it follows that

∀ t ≥ s : Ṁ(t) = 0.

Hence M(·) must be constant, which gives

∀ t ≥ s : M(t) = M(s).
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Repeatedly invoking Proposition 3.3.12 (ii) we deduce

α1U(t, s)>U(t, s)− β2U(t, s)>U(t, s)
(3.68)

≤ U(t, s)>E(t)>P1(t)E(t)U(t, s)− U(t, s)>E(t)>P2(t)E(t)U(t, s)︸ ︷︷ ︸
=M(t)

(3.68)

≤ β1U(t, s)>U(t, s)− α2U(t, s)>U(t, s)

for all t ≥ s. Since (3.2) is asymptotically stable we find, as in the proof of Proposi-

tion 3.5.2,

lim
t→∞

U(t, s) = 0, thus having lim
t→∞

M(t) = 0.

Hence we get M(s) = 0, i.e. (E(s)U(s, s)x)>(P1(s)− P2(s))(E(s)U(s, s)x) = 0 for all

x ∈ Rn, or, equivalently,

∀x ∈ V(s) : x>E(s)>(P1(s)− P2(s))E(s)x = 0.

3.6.14 Example. We show that the solution to (3.55) is not unique on all of (τ,∞)×
Rn in general. Let

E(t) =

1 0

0 0

 , A(t) =

−1 0

0 1

 , t ∈ R.

Then (E,A) is already in SCF and we may choose S(·) = T (·) = I. Hence n1 = n2 = 1

and V = R× im

1

0

 = EV . Let Q(·) ≡ I. Then

P : R→ R2, t 7→

1
2

0

0 p(t)


solves (3.55) and fulfills (3.53) for any p ∈ C(R→ R) with ∃ p1, p2 > 0 ∀ t ∈ R : p1 ≤
p(t) ≤ p2. �

3.6.15 Remark (Uniqueness condition). By Proposition 3.6.13 the uniformly

bounded solution of the Lyapunov-equation (3.55) is unique on EV . To get a unique

solution on all of (τ,∞)× Rn we are somehow free to choose the behavior of P (·) on

(τ,∞) × Rn \ EV . For instance choose V : (τ,∞) → Rn×n such that imV (t) = V(t)
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for all t > τ , and let Q(·), P1(·), P2(·) be as in Proposition 3.6.13 and (3.2) be asymp-

totically stable. If the condition

∀ i ∈ {1, 2} ∀ t > τ : Pi(t) = (E(t)V (t))>Pi(t)(E(t)V (t)) (3.69)

is satisfied, then P1(t) = P2(t) for all t > τ .

Since Proposition 3.6.13 yields P1(·) =EV P2(·), i.e. (E(t)V (t))>(P1(t) −
P2(t))(E(t)V (t)) = 0 for any t > τ , the assertion immediately follows from (3.69).

�

The next corollary is a consequence of Proposition 3.6.13 and Remark 3.6.15 and states

a representation of the unique solution of (3.55) under certain conditions. Note that

symmetry of P (·) or Q(·) is not required.

3.6.16 Corollary. Let (3.2) be transferable into SCF and use the notation from Def-

inition 3.3.6. Furthermore, let Q ∈ C((τ,∞) → Rn×n). Suppose E(·) and N(·) are

continuously differentiable, E(·)>E(·) ∈ PV , Q(·) satisfies γIn ≤V Q(·) ≤ δIn for some

γ, δ > 0, and E(·) and
(
Ė(·)+A(·)

)
are bounded. If (3.2) is exponentially stable, then

P : (τ,∞)→ Rn×n, t 7→ S(t)>T (t)>
∫ ∞
t

U(s, t)>Q(s)U(s, t) ds T (t)S(t)

is the unique solution of

A(·)>P (·)E(·) + E(·)>P (·)A(·) + d
dt

(
E(·)>P (·)E(·)

)
=V −Q(·),

∀ t > τ :

S(t)−1

In1 0

0 0

S(t)

> P (t)

S(t)−1

In1 0

0 0

S(t)

 = P (t),

∃α, β > 0 : αIn ≤V E(·)>P (·)E(·) ≤V βIn.


(3.70)

Proof: It follows from the assumptions, that P (t) exists for all t > τ , E(·)>P (·)E(·)
is continuously differentiable and solves (3.55) and αIn ≤V E(·)>P (·)E(·) ≤V βIn for

some α, β > 0, as it has been shown in the proof of Theorem 3.6.10 (iii). Furthermore,
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since

U(s, t)T (t)S(t)

S(t)−1

In1 0

0 0

S(t)


= T (s)

ΦJ(s, t) 0

0 0

T (t)−1T (t)

In1 0

0 0

S(t)

= T (s)

ΦJ(s, t) 0

0 0

S(t)

= U(s, t)T (t)S(t)

for all s, t > τ we find

∀ t > τ :

S(t)−1

In1 0

0 0

S(t)

> P (t)

S(t)−1

In1 0

0 0

S(t)

 = P (t).

Then

∀ t > τ : E(t)V(t) = E(t) imU(t, t) = imE(t)U(t, t)

= im

S(t)−1

In1 0

0 N(t)

T (t)−1T (t)

In1 0

0 0

T (t)−1


= im

S(t)−1

In1 0

0 0

T (t)−1

 = imS(t)−1

In1 0

0 0

S(t),

and Proposition 3.6.13 together with Remark 3.6.15 yield that P (·) is the unique

solution of (3.70).

3.6.17 Remark. Revisiting the main results of this section (Theorem 3.6.2, Corol-

lary 3.6.4, Theorem 3.6.10, Corollary 3.6.11, Proposition 3.6.13) one observes that

all (crucial) assumptions in theses results are made on the system magnitudes E(·)
and A(·). It is also possible to obtain similar results by doing all calculations after

transforming the system in SCF and reducing the problems to the case of ordinary

differential equations. Calculations are more simple then, but the assumptions one has

to state are on the transformation matrices S(·) and T (·) and also stronger than the

assumptions in the above mentioned results. �
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